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Abstract
One of the remarkable properties of robust com-
puter vision models is that their input-gradients
are often aligned with human perception, referred
to in the literature as perceptually-aligned gradi-
ents (PAGs). However, the underlying mecha-
nisms behind these phenomena remain unknown.
In this work, we provide a first explanation of
PAGs via off-manifold robustness, which states
that models must be more robust off- the data
manifold than they are on-manifold. We first
demonstrate theoretically that off-manifold ro-
bustness leads input gradients to lie approximately
on the data manifold, explaining their perceptual
alignment, and then confirm the same empirically
for models trained with robustness regularizers.
Quantifying the perceptual alignment of model
gradients via their similarity with the gradients
of generative models, we show that off-manifold
robustness correlates well with perceptual align-
ment. Finally, based on the levels of on- and off-
manifold robustness, we identify three different
regimes of robustness that affect both perceptual
alignment and model accuracy: weak robustness,
bayes-aligned robustness, and excessive robust-
ness.

1. Introduction
An important desideratum for machine learning models is
robustness, which requires that models be insensitive to
small amounts of noise added to the input. In particular,
adversarial robustness requires models to be insensitive to
adversarially chosen perturbations of the input. Tsipras et al.
(2019) first observed an unexpected benefit of such models,
namely that their input-gradients were “significantly more
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human-aligned” (see Figure 1 for examples of perceptually-
aligned gradients). Santurkar et al. (2019) built on this
observation to show that robust models could be used to
perform rudimentary image synthesis - an unexpected capa-
bility of models trained in a purely discriminative manner.
Subsequent works have made use of the perceptual align-
ment of robust model gradients to improve zero-shot object
localization (Aggarwal et al., 2020), perform conditional
image synthesis (Kawar et al., 2022), and improve classi-
fier robustness (Blau et al., 2023; Ganz et al., 2022). Kaur
et al. (2019) coined the term perceptually-aligned gradients
(PAGs), and showed that it occurs not just with adversar-
ial training (Madry et al., 2018), but also with randomized
smoothed models (Cohen et al., 2019). Recently, Ganz et al.
(2022) showed that the relationship between robustness and
perceptual alignment can also work in the opposite direc-
tion: approximately enforcing perceptual alignment of input
gradients can increase model robustness.

Despite these advances, the underlying mechanisms behind
the phenomenon of perceptually aligned gradients in robust
models are still unclear. Adding to the confusion, prior
works have used the same term, PAGs, to refer to slightly
different phenomena. We ground our discussion by first
identifying the precise phenomenon we study.

Phenomenon 1 (Perceptual Alignment). The gradients
of robust models highlight perceptually relevant features
(Tsipras et al., 2019), and highlight discriminative input
regions while ignoring distractors (Shah et al., 2021).

While the phenomenon of PAGs is now well-documented,
there is little to no work that attempts to explain the under-
lying mechanism. Progress on this problem has been hard
to achieve because PAGs have been described via purely
qualitative criteria, and it has been unclear how to make
these statements quantitative. In this work, we address these
gaps and make one of the first attempts at explaining the
mechanisms behind PAGs. Crucially, we ground the discus-
sion by attributing PAGs to gradients lying on a manifold,
based on an analysis of Bayes optimal classifiers. We make
the following contributions:

1. We establish the first-known theoretical connections
between Bayes optimal predictors and the perceptual
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Figure 1. The input-gradients of robust classifiers are perceptually similar to the score (of diffusion models (Karras et al., 2022)). Whereas
the score models the entire image (data manifold) the gradients of robust classifiers often focus on discriminative aspects only (signal
manifold). Best viewed in digital format.

alignment of classifiers via off-manifold robustness.
We also identify the manifold w.r.t. which this holds,
calling it the signal manifold.

2. We experimentally verify that models trained with
gradient-norm regularization, noise augmentation and
randomized smoothing all exhibit off-manifold robust-
ness.

3. We identify three regimes of robustness: weak robust-
ness, bayes-aligned robustness and excessive robust-
ness, that differently affect both perceptual alignment
and model accuracy.

2. Related Work
Robust training of neural networks Prior works have
considered two broad classes of model robustness: adversar-
ial robustness and robustness to normal noise. Adversarial
robustness is achieved by training with adversarial perturba-
tions generated using project gradient descent (Madry et al.,
2018), or by randomized smoothing (Cohen et al., 2019),
which achieves certified robustness to adversarial attacks by
locally averaging with normal noise. Robustness to normal
noise is achieved by explicitly training with noise, a tech-
nique that is equivalent to Tikhonov regularization for linear
models (Bishop, 1995). For non-linear models, gradient-
norm regularization (Drucker & Le Cun, 1992) is equivalent
to training with normal noise under the limit of training with
infinitely many noise samples (Srinivas & Fleuret, 2018).
In this paper, we make use of all of these robust training
approaches and investigate their relationship to PAGs.

Gradient-based model explanations Several popular
post hoc explanation methods(Simonyan et al., 2014; Sun-
dararajan et al., 2017; Smilkov et al., 2017) estimate fea-
ture importances by computing gradients of the output with
respect to input features and aggregating them over local
neighborhoods (Han et al., 2022). However, the visual
quality criterion used to evaluate these explanations has

given rise to methods that produce visually striking attri-
bution maps, while being independent of model behavior
(Adebayo et al., 2018). While (Srinivas & Fleuret, 2021)
attribute visual quality to implicit score-based generative
modeling of the data distribution, (Bordt et al., 2022) pro-
pose that it depends on explanations lying on the data man-
ifold. While prior works have attributed visual quality to
generative modeling of data distribution or explanations ly-
ing on data manifold, our work demonstrates for the first
time that (1) off-manifold robustness is a crucial factor, and
(2) it is not the data manifold / distribution, rather the signal
manifold / distribution (defined in Section 3.2) that is the
critical factor in explaining the phenomenon of PAGs.

3. Explaining Perceptually-Aligned Gradients
Our goal in this section is to understand the mechanisms
behind PAGs. We first consider PAGs as lying on a man-
ifold, and show theoretically that such on-manifold align-
ment of gradients is equivalent to off-manifold robustness
of the model. We then argue that Bayes optimal models
achieve both off-manifold robustness and on-manifold gra-
dient alignment. In doing so, we introduce the distinction
between the data and the signal manifold, which is key in
order to understand the input gradients of robust discrimina-
tive models.

Notation Throughout this paper, we consider the task of
image classification with inputs x ∈ Rd where x ∼ X and
y ∈ [1, 2, ...C] with C-classes. We consider deep neural
networks f : Rd → △C−1 which map inputs x onto a C-
class probability simplex. We assume that the input data
x lies on a k-dimensional manifold in the d-dimensional
ambient space. Formally, a k-dimensional differential man-
ifold M ⊂ Rd is locally Euclidean in Rk. At every point
x ∈ M, we can define a projection matrix Px ∈ Rd×d that
projects points onto the k-dimensional tangent space at x.
We denote P⊥

x = I − Px as the projection matrix to the
subspace orthogonal to the tangent space.
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3.1. Off-Manifold Robustness ⇔ On-Manifold
Alignment

We now show via geometric arguments that off-manifold
robustness of models and on-manifold alignment of gradi-
ents are identical. We begin by discussing definitions of
on- and off-manifold noise. Consider a point x on man-
ifold M, and a noise vector u. Then, u is off-manifold
noise, if Px(x + u) = x, which we denote u := uoff, and
u is on-manifold noise, if Px(x+ u) = x+ u, which we
denote u := uon. In other words, if the noise vector lies
on the tangent space then it is on-manifold, otherwise it
is off-manifold. Given this definition, we can define rela-
tive off-manifold robustness. For simplicity, we consider a
scalar valued function, which can correspond to one of the
C output classes of the model.

Definition 1. (Relative off-manifold robustness) A model
f : Rd → R is ρ1-off-manifold robust, wrt some noise
distribution u ∼ U if

Euoff (f(x+ uoff)− f(x))
2

Eu(f(x+ u)− f(x))2
≤ ρ1 where uoff = P⊥

x (u)

While this definition states that the model is more robust off-
manifold than it is overall, it can equivalently be interpreted
as being more robust off-manifold than on-manifold (with
a factor ρ1

1−ρ1
). Let us now define on-manifold gradient

alignment.

Definition 2. (On-manifold gradient alignment) A model
f : Rd → R has ρ2-on-manifold aligned gradients if

∥∇xf(x)−∇on
x f(x)∥2

∥∇xf(x)∥2
≤ ρ2 s.t. ∇on

x f(x) = Px∇xf(x)

This definition captures the idea that the difference between
the gradients and its on-manifold projection is small. If
ρ2 = 0, then the gradients exactly lie on the tangent space.
We are now ready to state the following theorem.

Theorem 1 (Equivalence between off-manifold robustness
and on-manifold alignment). A function f : Rd → R ex-
hibits on-manifold gradient alignment if and only if it is
off-manifold robust wrt normal noise u ∼ N (0, σ2) for
σ → 0 (with ρ1 = ρ2).

The full proof is given in the supplementary material. Thus
when the noise is small, on-manifold gradient alignment
and off-manifold robustness are identical. To extend this
to larger noise levels, we would need to make assumptions
regarding the curvature of the data manifold. Broadly speak-
ing, the less curved the underlying manifold is (the closer it
is to being linear), the larger the off-manifold noise we can
add, without it intersecting at another point on the manifold.
In practice, we expect image manifolds to be quite smooth,
indicating relative off-manifold robustness to larger noise

levels (Shao et al., 2018). In this next part, we will specify
the properties of the specific manifold w.r.t. which these
notions hold.

3.2. Connecting Bayes Optimal Classifiers and
Off-Manifold Robustness

In this subsection, we aim to understand the manifold struc-
ture characterizing the gradients of Bayes optimal models.
We proceed by recalling the concept of Bayes optimality.

Bayes optimal classifiers. If we perfectly knew the data
generating distributions for all the classes, i.e., p(x | y = i)
for all C classes, we could write the Bayes optimal clas-
sifier as p(y = i | x) = p(x|y=i)∑C

j=1 p(x|y=j)
. This is an oracle

classifier that represents the “best possible” model one can
create from data with perfect knowledge of the data gener-
ating process. Given our assumption that the data lies on
a low-dimensional data manifold, the Bayes optimal clas-
sifier is uniquely defined on the data manifold. However,
outside this manifold, its behaviour is undefined as all of
the class-conditional probabilities p(x | y) are zero or un-
defined themselves. In order to link Bayes-optimality and
robustness, which is inherently about the behavior of the
classifier outside the data manifold, we introduce a ground-
truth perturbed data distribution that is also defined outside
the data manifold. While we might consider many per-
turbed distributions, it is convenient to consider the data
generating distributions that are represented by denoising
auto-encoders with a stochastic decoder (or equivalently,
score-based generative models (Vincent, 2011)). Here, the
stochasticity ensures that the data-generating probabilities
are defined everywhere, not just on the data manifold. In
practice, this approach allows us to estimate the data mani-
fold, assuming that the autoencoder has a bottleneck layer
with k features for a d-dimensional ambient space (Shao
et al., 2018).

The Difference Between the Data and the Signal Man-
ifold. Given a classification problem, one can often de-
compose the inputs into a signal component and a distrac-
tor component. For intuition, consider the binary task of
classifying cats and dogs. Given an oracle data generat-
ing distribution of cats and dogs in different diverse back-
grounds, the label must be statistically independent of the
background, and depend purely on the object (either cat or
dog) in the image. In other words, there don’t exist spu-
rious correlations between the background and the output
label. In such a case, we can call the object as the signal
and the background as the distractor. Formally, for every
input x there exists a binary mask m(x) ∈ {0, 1}d such
that the signal is given by s(x) = x ⊙ m(x) and the dis-
tractor is given by d(x) = x ⊙ (1 − m(x)). The signal
and distractor components are orthogonal to one another
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(s(x)⊤d(x) = 0), and that we can decompose any input in
this manner (x = s(x) + d(x)). Using this, we can now
define the signal-distractor distributions.

Definition 3. Given a data distribution p(x | y) for
y ∈ [1, C], we have masking functions m(x) such that the
resulting distribution p(x⊙ (1−m) | y) = p(x⊙ (1−m))
is statistically independent of y. The sparsest such masking
function (such that m∗ = argminm Ex∼p(x|y) ∥m(x)∥0),
yields a corresponding distribution p(x ⊙ (1 − m∗(x))),
which is the distractor distribution, and its counterpart
p(x⊙m∗(x) | y) the signal distribution.

While the subject of finding such optimal masks is the topic
of feature attribution (Jethani et al., 2021), in this discus-
sion, we shall assume that the optimal masks m∗ and the
corresponding signal and distractor distributions are known.
Similar to decomposing any point on the manifold, we can
also decompose any vector on the tangent space on the data
manifold into signal and distractor components using the
optimal mask m∗. In other words, we can write

∇xp(x | y) = ∇xp(x | y)⊙m∗(x)︸ ︷︷ ︸
signal s(x) (has information about y)

+∇xp(x | y)⊙ (1−m∗(x))︸ ︷︷ ︸
distractor d(x) (independent of y)

Finally, we note that this signal-distractor decomposition
does not meaningfully exist for all classification problems,
in that it can be trivial with the entire data distribution being
equal to the signal, with zero distractors. Two examples of
such cases are: (1) ordinary MNIST classification has no
distractors due to the simplicity of the task, as the entire digit
is predictive of the true label and the background is zero.
(2) multi-class classification with a large set of classes with
diverse images also have no distractors due to the complexity
of the task, as the background can already be correlated with
class information. For example, if the dataset mixes natural
images with deep space images, there is no single distractor
distribution one can find via masking that is independent
of the class label. Given this definition of the signal and
distractor distributions, we are ready to make the following
theorem, which states that the input-gradients of a Bayes
optimal classifer lie on the signal manifold, as opposed to
the general data manifold.

Theorem 2. The input-gradients of Bayes optimal classi-
fiers lie on the signal manifold ⇔ Bayes optimal classifiers
are relative off-manifold robust.

The proof is given in the supplementary material. This can
be intuitively thought of as follows: the optimal classifier
only needs to look at discriminative regions of the input in
order to make its classification. In other words, changing

the input values at discriminative signal regions is likely
to have a larger effect on model output than changing the
inputs slightly at unimportant distractor regions, indicating
that the gradients of the Bayes optimal classifier highlight
the signal. Thus the Bayes optimal classifier does not need
to model the distractor, and only the signal is sufficient. This
fact inspires us to make the following hypothesis to help us
ground the discussion on perceptual alignment of gradients:

Hypothesis 1. The input gradients of a discriminatively
trained model are perceptually aligned if and only if they lie
on the signal manifold.

This indicates that Bayes optimal models gradients are
perceptually-aligned. In the next section, we address em-
pirically the question of whether the gradients of practical
models, particularly robust models are also off-manifold
robust.

4. Experimental Evaluation
In this section, we conduct extensive empirical analysis to
confirm our theoretical analyses, and hypotheses for the case
of robust models. We first demonstrate that robust models
exhibit relative off-manifold robustness (Section 4.1). We
then show that off-manifold robustness correlates with the
perceptual alignment of gradients (Section 4.2). Finally,
we show that robust models exhibit a signal-distractor de-
composition, that is they are relatively robust to noise on
a distractor rather than the signal (Section 4.3). Below we
detail our experimental setup. Any additional details can be
found in the Supplementary material.

Data sets and Robust Models. We use CIFAR-10
(Krizhevsky et al., 2009), ImageNet and ImageNet-64 (Deng
et al., 2009), and an MNIST dataset (Deng, 2012) with a
distractor, inspired by (Shah et al., 2021). We train robust
Resnet18 models (He et al., 2016) with (i) gradient norm
regularization, (ii) randomized smoothing, (iii) a smooth-
ness penalty, and (iv) l2-adversarial robust training. The
respective loss functions are given in the Supplementary
material. On ImageNet, we use pre-trained robust models
from (Salman et al., 2020).

Measuring On- and Off-Manifold Robustness. We mea-
sure on- and off-manifold robustness by perturbing data
points with on- and off-manifold noise (Section 3.1). For
this, we estimate the tangent space of the data manifold with
an auto-encoder, similar to (Shao et al., 2018; Anders et al.;
Bordt et al., 2022). We then draw a random noise vector and
project it onto the tangent space. Perturbation of the input in
the tangent direction is used to measure on-manifold robust-
ness. Perturbation of the input in the orthogonal direction
is used to measure off-manifold robustness. To measure
the change in the output of a classifier with C classes, we
compute the L1-norm ||f(x)− f(x+ u)||1.
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Figure 2. Top Row: Robust models are off-manifold robust. The figure depicts the on- and off-manifold robustness of Resnet18 models
trained with different objectives on CIFAR-10. As we increase the importance of the robustness term in the training objective, the
models become increasingly robust to off-manifold perturbations. At the same time, their robustness to on-manifold perturbations stays
approximately constant. This means that the models become off-manifold robust. As we further increase the degree of robustness, both
on- and off-manifold robustness increase. Bottom Row: The input gradients of robust models are perceptually similar to the score of
the probability distribution, as measured by the LPIPS metric. We can also identify the models that have the most perceptually-aligned
gradients (the global maxima of the yellow curves). Figures depict mean and deviation across 10 different random seeds.

Measuring Perceptual Alignment. To estimate the percep-
tual alignment of model gradients, we would ideally com-
pare them with the gradients of the Bayes optimal classifier.
Since we do not have access to the Bayes optimal model
gradients ∇xp(y | x), we use the score ∇x log p(x | y)
as a proxy, as both lie on the same data manifold. Given
the gradient of the robust model and the score, we use the
Learned Perceptual Image Patch Similarity (LPIPS) metric
(Zhang et al., 2018) to measure the perceptual similarity
between the two. The LPIPS metric computes the simi-
larity between the activations of an AlexNet (Krizhevsky
et al., 2012) and has been shown to match human perception
well (Zhang et al., 2018). In order to estimate the score
∇x log p(x | y), we make use of the diffusion-based genera-
tive models from Karras et al. (2022). Concretely, if D(x, σ)
is a denoiser function for the noisy probability distribution
p(x, σ) (compare Section 3.2), then the score is given by
∇x log p(x, σ) = (D(x, σ) − x)/σ2 (Karras et al., 2022).
We use noise levels σ = 0.5 and σ = 1.2 on CIFAR-10 and
ImageNet-64, respectively.

4.1. Evaluating On- vs. Off-manifold Robustness of
Models

We measure the on- and off-manifold robustness of differ-
ent Resnet18 models on CIFAR-10, using the procedure
described above. We measure how much the model output
changes in response to an input perturbation of a fixed size
(about 10% of the input). The models were trained with
three different robustness objectives and to various levels
of robustness. The results are depicted in the top row of

Figure 2. Larger values in the plots correspond to a larger
perturbation in the output, that is less robustness. For little
to no regularization (the left end of the plots), the models are
less robust to random changes off- than to random changes
on- the data manifold (the red curves lie above the green
curves). Increasing the amount of robustness makes the
models increasingly off-manifold robust (the red curves de-
crease monotonically). At the same time, the robustness
objectives do not affect the on-manifold robustness of the
model (the green curves stay roughly constant). This means
that the robust models become relatively off-manifold ro-
bust (Definition 1). At some point, the robustness objectives
also start to affect the on-manifold behavior of the model,
so that the models become increasingly on-manifold robust
(the green curves start to fall). As can be seen by a compari-
son with the accuracy curves in the bottom row of Figure 2,
increasing on-manifold robustness mirrors a steep fall in the
accuracy of the trained models (the green and blue curves
fall in tandem). Remarkably, these results are consistent
across the different types of regularization.

4.2. Evaluating the Perceptual Alignment of Robust
Model Gradients

We now show that the input gradients of an intermediate
regime of accurate and relatively off-manifold robust models
(”Bayes-aligned robust models”) are perceptually aligned,
whereas the input gradients of weakly robust and excessively
robust models are not. As discussed above, we measure the
perceptual similarity of input gradients with the score of the
probability distribution. The bottom row of Figure 2 depicts
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Figure 3. Robust Models are relatively robust to noise on distractor.

our results on CIFAR-10. For all three robustness objec-
tives, the perceptual similarity of input gradients with the
score, as measured by the LPIPS metric, gradually increases
with robustness (the orange curves gradually increase). The
perceptual similarity then peaks for an intermediate amount
of robustness, after which it begins to decrease. Figure 5 de-
picts our results on ImageNet and ImageNet-64x64. Again,
the perceptual similarity of input gradients with the score
gradually increases with robustness. On ImageNet-64x64,
we also trained excessively robust models that exhibit a
decline both in accuracy and perceptual alignment.

To gain intuition for these results, Figure 6, as well as ad-
ditional figures in the Supplementary material, provide a
visualization of model gradients. In particular, Figure 6
confirms that the model gradients belonging to the left and
right ends of the curves in Figure 2 are indeed not perceptu-
ally aligned, whereas the model gradients around the peak
(depicted in the middle columns of Figure 6) are indeed
perceptually similar to the score.

While we use the perceptual similarity of input gradients
with the score as a useful proxy for the perceptual align-
ment of input gradients, we note that this approach has a
theoretical foundation in the energy-based perspective on
discriminative classifiers (Grathwohl et al., 2019). In par-
ticular, Srinivas & Fleuret (2021) have suggested that the
input gradients of softmax-based discriminative classifiers
could be related to the score of the probability distribution.
To the best of our knowledge, our work is the first to ex-
plicitly compare the input gradients of robust models with
independent estimates of the score.

4.3. Evaluating Signal vs. Distractor Robustness
for Robust Models

We now show that robust models are relatively robust to
noise on a distractor. Since a distractor is by definition not
part of the signal manifold (Section 3.2), this serves as evi-
dence that the input gradients of robust models are aligned

with the signal manifold. In order to have perfect control,
we manually added a distractor to the MNIST data set, in-
spired by (Shah et al., 2021) (the details of this construction
are in the supplement). Because we know the signal and the
distractor, we can add noise to only the signal or only the
distractor and then measure the robustness of different mod-
els towards either type of noise. We call the ratio between
these two robustness values the relative noise robustness of
the model. Figure 3 depicts the relative noise robustness
both for a standard- and an adversarially robust Resnet18.
From Figure 3, we see that the standard model is already
more robust to noise on the distractor. The robust model,
however, is relatively much more robust to noise on the dis-
tractor. Since distractor noise is by definition off-manifold
robust w.r.t. the signal manifold, and is pereptually aligned,
this result serves as evidence for Hypothesis 1.

5. Discussion
Three Regimes of Robustness. Our experimental results
show that different robust training methods show similar
trends in terms of how they achieve robustness. For small
levels of robustness regularization, we observe that the clas-
sifiers sensitivity to off-manifold perturbations slowly de-
creases (weak robustness), eventually falling below the on-
manifold sensitivity, satisfying our key property of (relative)
off-manifold robustness, as well as alignment with the Bayes
classifier (Bayes-aligned robustness). Excessive regulariza-
tion causes models to become insensitive to on-manifold
perturbations, which often corresponds to a sharp drop in
accuracy (excessive robustness).

The observation that robust training consists of different
regimes (weak-, Bayes-aligned-, and excessive robustness)
calls us to rethink standard robustness objectives and bench-
marks (Croce et al., 2020), which do not distinguish on-
and off-manifold robustness. An important guiding princi-
ple here can be not to exceed the robustness of the Bayes
optimal classifier.

Conclusion. In this study, we have provided a first ex-
planation for PAGs via off-manifold robustness of models.
Future work involves strengthening this connection by for-
mally proving this property for models trained via practical
robustness objectives such as adversarial training.
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Supplementary Material

A. Additional Proofs
Theorem 3 (Equivalence between off-manifold robustness and on-manifold alignment). A function f : Rd → R exhibits
on-manifold gradient alignment if and only if it is off-manifold robust wrt normal noise u ∼ N (0, σ2) for σ → 0 (with
ρ1 = ρ2).

Proof. We proceed by observing that we can decompose the input-gradient into on-manifold and off-manifold components
by projecting onto the tangent space and its orthogonal component respectively, i.e., ∇xf(x) = Px∇xf(x) + P⊥

x ∇xf(x).

We also observe that we can write the gradient norm in terms of an expected dot product, i.e.,
1
σ2 Eu∼N (0,σ2)(∇xf(x)

⊤u)2 = 1
σ2∇xf(x)

⊤ E(uu⊤)∇xf(x) = ∥∇xf(x)∥2.

Using these facts we can compute the norm of the off-manifold component as follows,

∥∇xf(x)− Px∇xf(x)∥2

∥∇xf(x)∥2︸ ︷︷ ︸
On-manifold gradient alignment

=
∥P⊥

x ∇xf(x)∥2

∥∇xf(x)∥2

=
1
σ2 Euoff∼N (0,σ2Σ)(∇xf(x)

⊤uoff)
2

1
σ2 Eu∼N (0,σ2)(∇xf(x)⊤u)2

; Σ = Cov(uoff) = P⊥
x (P⊥

x )
⊤

= lim
σ→0

Euoff∼N (0,σ2Σ)(f(x+ uoff)− f(x))2

Eu∼N (0,σ2)(f(x+ u)− f(x))2︸ ︷︷ ︸
Off-manifold robustness

The second line is obtained by using the fact above regarding re-writing the gradient norm in terms of the expected dot
product, and the final line is obtained by using a first order Taylor expansion, which is exact in the limit of small sigma. From
the equality of first and last terms, we have that the on-manifold gradient alignment ⇔ the off-manifold robustness.

Theorem 4. The input-gradients of Bayes optimal classifiers lie on the signal manifold ⇔ Bayes optimal classifiers are
relative off-manifold robust.

Proof. From definition 3, it is clear that given a classification problem, there exists a single distractor distribution d(x).
Now, we take gradients of log probabilities of the Bayes optimal classifiers, which results in:

∇x log p(y = i | x) = ∇x log p(x | y = i)−
∑
j

p(y = j | x)∇x log p(x | y = j)

We notice first that the vectors ∇x log p(x | y) all lie tangent to the data manifold by definition, as this data generating
process p(x | y) itself defines the data manifold. As ∇x log p(y | x) is a linear combination of the class-conditional
generative model gradients, it follows that the input-gradient of the Bayes optimal model also lie tangent to the data manifold.
Now, like any vector on the tangent space at x, it can be decomposed into signal and distractor components. Computing the
distractor, we find that

∇x log p(y | x)⊙ (1−m∗(x)) = d(x)−
∑
j

p(y = j | x)d(x) = 0

This happens because the distractor is independent of the label, thus the distractor component is zero, and the input-gradient
of the Bayes optimal model lies entirely on the signal manifold. From Theorem 3, it follows that when a model gradients lie
on a manifold, it is also off-manifold robust wrt that manifold.
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B. Connecting Robust Models and Off-Manifold Robustness
In the main paper, we saw that Bayes optimal classifiers have the property of relative off-manifold robustness. Here, we
argue that off-manifold robustness also holds for robust models in practice. This is a non-trivial and a perhaps surprising
claim: common robustness objectives such as adversarial training, gradient-norm regularization, etc are isotropic, meaning
that they do not distinguish between on- and off-manifold directions.

Hypothesis 2. Robust models are off-manifold robust w.r.t. the signal manifold.

We provide two lines of argument in support for this hypothesis. Ultimately, however, our evidence is empirical.

Argument 1: Combined robust objectives are non-isotropic. While robustness penalties itself are isotropic and do not
prefer robustness in any direction, they are combined with the cross-entropy loss on data samples, which lie on the data
manifold. Let us consider the example of gradient norm regularization. The objective is given by:

E
x

(
ℓ(f(x), y(x)) + λ∥∇xf(x)∥2

)
= E

x

ℓ(f(x), y(x)) + λ∥∇on
x f(x)∥2︸ ︷︷ ︸

on-manifold objective

+λ ∥∇off
x f(x)∥2︸ ︷︷ ︸

off-manifold objective


Here we have used, ∥∇xf(x)∥2 = ∥∇on

x f(x)+∇off
x f(x)∥2 = ∥∇on

x f(x)∥2+∥∇off
x f(x)∥2 due to ∇on

x f(x)⊤∇off
x f(x) = 0,

which is possible because the on-manifold and off-manifold parts of the gradient are orthogonal to each other. Assuming
that we are able to decompose models into on-manifold and off-manifold parts, these two objectives apply to these
decompositions independently. This argument states that in this robust training objective, there exists a trade-off between
cross-entropy loss and on-manifold robustness term, whereas there is no such trade-off for the off-manifold term, indicating
that it is much easier to minimize off-manifold robustness than on-manifold. This argument also makes the prediction that
increased on-manifold robustness must be accompanied by higher train loss and decreased out-of-sample performance, and
we will test this in the experiments section.

However, there are nuances to be observed here: while the data lies on the data manifold, the gradients of the optimal model
lie on the signal manifold so this argument may not be exact. Nonetheless, for cases where the signal manifold and data
manifold are identical, this argument holds and can explain a preference for off-manifold robustness over on-manifold
robustness.

Argument 2: Robust linear models are off-manifold robust. It is a well-known result in machine learning (from, for
example the representer theorem) that the linear analogue of gradient norm regularization, i.e., weight decay causes model
weights to lie in the linear span of the data. In other words, given a linear model f(x) = w⊤x, its input-gradient are the
weights ∇xf(x) = w, and when trained with the objective L = Ex(f(x)− y(x))2 + λ∥w∥2, it follows that the weights
have the following property: w =

∑N
i=1 αixi, i.e., the weights lie in the span of the data. In particular, if the data lies on a

linear subspace, then so do the weights. Robust linear models are also infinitely off-manifold robust: for any perturbation
uoff orthogonal to the data subspace, w⊤(x+ uoff) = w⊤x, thus they are completely robust to off-manifold perturbations.

In addition, if we assume that there are input co-ordinates xi that are uncorrelated with the output label, then wixi is also
uncorrelated with the label. Thus the only way to minimize the mean-squared error is to set wi = 0 (i.e., a solution which
sets wi = 0 has strictly better mean-squared error than one that doesn’t), in which case the weights lie in the signal subspace,
which consists of the subspace of all features correlated with the label. This shows that even notions of signal-distractor
decomposition transfer to the case of linear models.

C. Experimental Details
C.1. Robust Training Objectives

We consider the following robust training objectives, where l(x, y) denotes the cross-entropy loss function.

1. Gradient norm regularization: l(f(x), y) + λ∥∇xf(x)∥22 with a regularization constant λ.
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Figure 4. Left: Images from CIFAR10. Middle: Random perturbations on the data manifold. Right: Random perturbations off the data
manifold.

2. A smoothness penalty: l(f(x), y) + λEϵ∼N (0,σ2)∥f(x + ϵ) − f(x)∥22 with a fixed noise level σ2 and a varying
regularization constant λ.

3. Randomized Smoothing: Eϵ∼N (0,σ2)l(f(x+ ϵ), y) with a noise level σ2.

4. Adversarial Robust Training: l(f(x̃), y) where x̃ = argmaxx̃∈Bϵ(x) l(f(x̃), y) and x̃ was obtained from the ϵ-ball
around x using projected gradient descent.

C.2. Training Details

On CIFAR-10, we trained Resnet18 models for 200 epochs with an initial learning rate of 0.025. When training with gradient
norm regularization or the smoothness penalty and large regularization constants we reduced the learning rate proportional
to the increase in the regularization constant. After 150 and 175 epochs, we decayed the learning rate by a factor of 10.

On ImageNet-64x64, we trained Resnet18 models for 90 epochs with a batch size of 4096 and an initial learning rate of 0.1
that was decayed after 30 and 60 epochs, respectively. We used the same parameters for projected gradient descent (PGD)
as in (Salman et al., 2020), that is we took 3 steps with a step size of 2ϵ/3.

On the MNIST dataset with a distractor, we trained a Resnet18 model for 9 epochs with an initial learning rate of 0.1 that
was decayed after 3 and 6 epochs, respectively. We also trained an l2-adversarially robust Resenet18 with projected gradient
descent (PGD). We randomly chose the perturbation budget ϵ ∈ {1, 4, 8} and took 10 steps with a step size of α = 2.5ϵ/10.

C.3. Diffusion Models

On CIFAR-10, we use the unconditional diffusion model edm-cifar10-32x32-uncond-vp. On ImageNet-64x64,
we use the conditional diffusion model edm-imagenet-64x64-cond-adm. Both models are available at https:
//github.com/NVlabs/edm.

C.4. Model Gradients

With the unconditional diffusion model, we sum the input gradients across all classes. With the conditional diffusion model,
we consider the input gradient with respect to the predicted class. We consider input gradients before the softmax (Srinivas
& Fleuret, 2021).

C.5. CIFAR-10 Autoencoder

We use https://github.com/clementchadebec/benchmark_VAE to train an autoeoncoder on CIFAR-10
with a latent dimension k = 128. We use a default architecture and training schedule. We then use the autoencoder to
estimate, at each data point, a 128-dimensional tangent space. Figure 4 depicts random directions within the estimated
tangent spaces.

https://github.com/NVlabs/edm
https://github.com/NVlabs/edm
https://github.com/clementchadebec/benchmark_VAE


Which Models have Perceptually-Aligned Gradients?

0.01 0.03 0.05 0.1 0.25 0.5 1 3 5
Adversarial Perturbation Budget (Epsilon)

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

1-
LP

IP
S

ImageNet

10−2 10−1 100 101 102 103

Adversarial Perturbation Budget (Epsilon)

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

0.3

0.4

0.5

0.6

1-
LP

IP
S

ImageNet-64x64

Figure 5. The input gradients of robust models trained with projected gradient descent on ImageNet and Imagenet-64x64 are perceptually
similar to the score of the probability distribution, as measured by the LPIPS metric. On Imagenet-64x64, we also trained excessively
robust models.

C.6. Pre-Trained Robust Models on ImageNet

On ImageNet, we use the pre-trained robust Resnet18 models form https://github.com/microsoft/
robust-models-transfer. To load these models, we use the robustness library https://github.com/
MadryLab/robustness.

C.7. Estimating the Score on ImageNet

We estimate the score on ImageNet using the diffusion model for ImageNet-64x64. To estimate the score, we simply
down-scale an image to 64x64.

C.8. MNIST with a Distractor

The MNIST data set with a distractor is inspired by (Shah et al., 2021). The data set consists of gray-scale images of size
56x28. Every image contains a single MNIST digit and the distractor. We choose the fixed letter ”A” as the distractor. On
every image, we randomly place the distractor on top or below the MNIST digit. In order to estimate the relative noise
robustness, we separately add different levels of noise to the signal or distractor. Figure 12 depicts images and models
gradients on this data set.

C.9. The LPIPS metric

The LPIPS metric measures the perceptual similarity between two different images. The metric itself corresponds to a loss,
meaning that lower values correspond to more similar images (Zhang et al., 2018). The figures in the main paper depict
1-LPIPS, that is higher values correspond to more similar images.

C.10. Resources Used

All computations were done on an internal cluster using Nvidia 2080 Ti GPUs. In total, this project required 6 GPU months.

D. Additional Experiments
We show additional experiments on the Imagenet and Imagenet-64 dataset in Figure 5, where we find that the same
phenomena observed on CIFAR-10 also hold on Imagenet. Essentially, more robust models yield gradients that are more
perceptually aligned via the LPIPS metric, and further, we also observe the ”excessively robust” models for Imagenet-64,
where LPIPS drops upon inducing high levels of robustness.

Figure 6 shows an illustrative figure indicating the three regimes of robustness, and how that affects gradient alignment in all
three cases. We observe that for Bayes-Aligned models, the model gradients are most perceptually aligned and reflect the
input more than the other regimes of robustness.

https://github.com/microsoft/robust-models-transfer
https://github.com/microsoft/robust-models-transfer
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
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Figure 6. The figure depicts the input gradients of models belonging to different regimes of robustness. Top row: CIFAR-10. Bottom
row: ImageNet-64x64. Weakly robust models are accurate but not off-manifold robust. Bayes-aligned robust models are accurate and
off-manifold robust. These are exactly the models that have perceptually aligned gradients. Excessively robust models are excessively
on-manifold robust which makes them inaccurate. Best viewed in digital format.

E. Additional Plots
The figures below depict the model gradients of different types of models, ranging from weakly robust to excessively robust.
The figures depict the relationship between model gradients and the score qualitatively. This complements the quantitative
results in the main paper.
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Figure 7. The input gradients of different models trained with gradient norm regularization on CIFAR-10. The top rows depict the
image, the score, and the input gradients of unrobust models. The middle rows depict the perceptually aligned input gradients of robust
models. The bottom rows depict the input gradients of excessively robust models. Best viewed in digital format.



Which Models have Perceptually-Aligned Gradients?

Figure 8. The input gradients of different models trained with a smoothness penalty on CIFAR-10. The top rows depict the image, the
score, and the input gradients of unrobust models. The middle rows depict the perceptually aligned input gradients of robust models. The
bottom rows depict the input gradients of excessively robust models. Best viewed in digital format.
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Figure 9. The input gradients of different models trained with randomized smoothing on CIFAR-10. The top rows depict the image, the
score, and the input gradients of unrobust models. The middle rows depict the perceptually aligned input gradients of robust models. The
bottom rows depict the input gradients of excessively robust models. Best viewed in digital format.



Which Models have Perceptually-Aligned Gradients?

Figure 10. The input gradients of different models trained with projected gradient descent on ImageNet-64x64. The top rows depict the
image, the score, and the input gradients of unrobust models. The middle rows depict the perceptually aligned input gradients of robust
models. The bottom rows depict the input gradients of excessively robust models. Best viewed in digital format.
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Figure 11. The input gradients of different models trained with projected gradient descent on ImageNet. The models are from (Salman
et al., 2020). The top rows depict the image, the score, and the input gradients of unrobust models. The bottom rows depict the perceptually
aligned input gradients of robust models. Best viewed in digital format.
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(a) Images from the data set.

(b) Noise on the signal.

(c) Noise on the distractor.

(d) Input gradients of a Resnet18.

(e) Input gradients of an adversarially robust Resnet18.

Figure 12. The MNIST dataset with a distractor used to create Figure 3 in the main paper.


