SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation
Models

Anonymous ACL submission

Abstract

Large pre-trained models (LPMs), such as
large language models, have become ubiqui-
tous and are employed in many applications.
These models are often adapted to a desired
domain or downstream task through a fine-
tuning stage. This paper proposes SQFT, an
end-to-end solution for low-precision sparse
parameter-efficient fine-tuning of LPMs, al-
lowing for effective model manipulation in
resource-constrained environments. Addition-
ally, an innovative strategy enables the merg-
ing of sparse weights with low-rank adapters
without losing sparsity and accuracy, over-
coming the limitations of previous approaches.
SQFT also addresses the challenge of hav-
ing quantized weights and adapters with dif-
ferent numerical precisions, enabling merg-
ing in the desired numerical format without
sacrificing accuracy. Multiple adaptation sce-
narios, models, and comprehensive sparsity
levels demonstrate the effectiveness of SQFT.
We make SQFT’s fine-tuned models avail-
able to reviewers for reproducing our results
at: https://anonymous.4open.science/r/
sqft_examples-71C7

1 Introduction

Despite several limitations, such as hallucinations
and a significant computational footprint, large
pre-trained, foundation, or frontier models have
become integral to numerous applications, includ-
ing language understanding and code generation.
These models are trained with extensive corpora on
thousands of graphics processing units (GPUs), re-
sulting in outstanding zero-shot performance across
various tasks and datasets. However, it is frequently
the case that they must be adapted to improve their
performance on new tasks or data.

Low-rank adapters (LoRA) (Hu et al., 2022)
have demonstrated their effectiveness in model
adaptation. However, when LoRA is combined
with model compression techniques, e.g., sparsity

Quantized
@ Base Model Adapter

¥

Quantization

Sparsified
@ Base Model @ Base Model
+

1
Sparsification Sparsification

& K | &

! Sparse Full Tuning V1 LoRA \ :' LoRA i
i

' i b '

’ L Ty S

! o ! i
i |

! @ Frozen ,: ! B Frozen i

X Unable to merge
(loss of sparsity)

X Unable to merge

Expensive
(different numerical precision)

Figure 1: Limitations of existing approaches for fine-
tuning sparse and quantized models. Full fine-tuning is
expensive. Low-rank adapters (LoRA) for Parameter-
efficient Fine-tuning (PEFT) on sparse or quantized
models cannot easily merge with the compressed
weights due to loss of previously induced sparsity or
different numerical precision.

or quantization, several challenges prevent merg-
ing these adapters into a single compressed and
fine-tuned model, as illustrated in Figure 1. These
challenges stem from two primary reasons: i) merg-
ing dense adapters causes the loss of sparsity in
the base model, and ii) adapter merging cannot be
achieved due to different numerical precisions.

This paper introduces SQFT, an end-to-end com-
pression and model adaptation solution for large
pre-trained models (LPMs) that alleviates the limi-
tations above. SQFT is designed to sparsify, quan-
tize, and fine-tune large models and can instan-
tiate efficient pipelines that streamline compres-
sion techniques. Within the SQFT framework, we
propose Sparse Parameter-Efficient Fine-Tuning
(SparsePEFT), a strategy to address the adapter
merging problem for sparse and quantized model,
resulting in more effective high-performing mod-
els. Furthermore, SQFT also benefits from weight-
sharing techniques applied to traditional parameter-
efficient fine-tuning (PEFT) techniques and incor-
porates insights from state-of-the-art compression
techniques. Throughout this paper, we discuss the

https://anonymous.4open.science/r/sqft_examples-71C7
https://anonymous.4open.science/r/sqft_examples-71C7
https://anonymous.4open.science/r/sqft_examples-71C7

@ Base Model @

@ I Unmerged adapters for

=» Sparsification J - QuantizationJ NLS Tralnlng - | @ ‘@: scaling model serving
1
]

SQFT

S@FT with Sparse-aware Adapter Merging

@» Sparsification —>§ Sparse?EFT ->
NLS Training

SQFT with Quantization and Sparse-aware Adapter Merging

@ =» Sparsification J =» Quantization J —_—

Base Model

Sparsified Sparsified-and-Quantized
@ Base Model Adapter

(1

1 | Merge v/ Can merge!
! —

.]

v Can merge!

Quantization-aware .{ E Merge
SparsePEFT - | @ | —

P 1

1

NLS Training !

Figure 2: SQFT Overview. Several pipeline configurations can be activated to efficiently fine-tune large models
while addressing several limitations of existing approaches.

following contributions:

1. An end-to-end model adaptation solution,
SQFT, designed for efficient low-cost config-
urable pipelines tailored for large pre-trained
models with low numerical precision and spar-
sity.

2. SparsePEFT, a component of SQFT, ad-
dresses several limitations in existing
parameter-efficient fine-tuning approaches
for sparse and quantized models, including
the reduction in the cost of fine-tuning, the
effective merging of adapters into the sparse
model without the loss of sparsity, and the
effective merging of components that operate
in different numerical precision.

3. Extensive experiments demonstrate the effec-
tiveness of SQFT across different foundation
models, sparsity levels and adaptation scenar-
i0s.

This paper is organized as follows: Section 2 de-
scribes the stages in the proposed end-to-end solu-
tion, SQFT. Section 3 discusses SQFT’s evaluation,
and we finalize with some concluding remarks in
Section 4. Due to page limits, we include a Re-
lated Work section, and additional results in the
Appendix.

2 Methodology

SQFT fine-tunes large pre-trained models (LPMs)
in an efficient multi-stage approach that includes

(1) Sparsification, with an optional reduction in
the numerical precision, i.e., Quantization, (2)
Fine-tuning with Neural Low-rank Adapter Search
(NLS), (3) Sparse Parameter-Efficient Fine-Tuning
(SparsePEFT) with optional (4) Quantization-
awareness. Figure 2 illustrates the alternative LPM
compression and model adaptation pipelines that
SQFT can instantiate. In the following sections, we
discuss the details of each stage and the benefits of
accelerating inference and model serving.

2.1 Sparsification and Quantization Stage

As shown in Figure 2, at the beginning of all pos-
sible pipeline configurations, SQFT employs an
effective method to induce sparsity in the model.
For a given weight matrix W € R™*", with en-
tries wj,; S.t. W = (’LUZ‘J'), 1<1<m,1 <5 <n,
an arbitrary scoring function, ¥, is assigned to the
proposed solution. This function determines the
relative importance of w; ; compared to the other
weights in W. WU can be formulated in various
ways. For instance, U(W) = |W| - || X ||2, where
X represents sampled feature input activations, as
proposed by Sun et al. (2023). However, it is im-
portant to highlight that the proposed end-to-end
model fine-tuning solution, SQFT, can utilize any
other scoring function. Leveraging the scores from
U and a desired level of sparsity, s, we derive the
sparsified weight, denoted as W, with a sparsity
pattern S{W?} = {(i,j) | W}, # 0,1 <i <
m,1 <j<n}, st |S{WP} <]S{W}\

It has been demonstrated that LPMs can tolerate

higher sparsity levels compared with the previous
generations of smaller transformer-based models
(Frantar and Alistarh, 2023). Our experiments con-
firm these observations (Section 3). Once SQFT
has induced sparsity in the pre-trained weights,
WP enables an optional reduction in their numeric
precision. Given the sparsified weights, SQFT
applies layer-wise one-shot quantization (Nagel
et al., 2020; Frantar et al., 2022a; Wang et al.,
2020; Frantar et al., 2022b). Utilizing a selection
from state-of-the-art post-training quantization ap-
proaches, SQFT identifies the low-precision sparsi-
fied weights, denoted as ﬁ\/p, that given an input
X, minimize argming»||[WPX — WPX| 2.

Reducing the numerical precision and inducing
sparsity on weights frequently decrease the model’s
accuracy, requiring fine-tuning to improve perfor-
mance.

2.2 Fine-tuning with Neural Low-rank
Adapter Search (NLS)

Given the sparse quantized weights, ﬁ\/p, SQFT
recovers any drops in accuracy induced by the com-
pression schema and fine-tunes these weights for
a specific downstream task. As shown in Figure 2,
SQFT employs Neural Low-rank Adapter Search
(NLS) (Munoz et al., 2024a) instead of vanilla Low-
rank Adapters (LoRA) (Hu et al., 2022), and fine-
tunes sparse and quantized model. To justify using
NLS, traditional LoRA adapters require assigning
the values for several hyperparameters, including
their rank r, and the subset of modules where these
adapters will be placed. Determining these hyper-
parameters can be a challenging endeavor. To alle-
viate this limitation, SQFT extends NLS’ weight-
sharing techniques to facilitate the discovery of op-
timal adapter configurations from a space of elastic
adapter configurations. In other words, instead of
having a fixed value for the rank, , we enable elas-
tic configurations, C' = [c1,...,¢p], S.t., 7 < ¢
depending on the activation of the corresponding
sub-adapter.

2.3 SparsePEFT

Fine-tuning the sparse quantized model with
adapters effectively improves the model’s perfor-
mance on a downstream task. However, as illus-
trated in the middle and right part of Figure 1, a
challenge arises when dealing with sparse or quan-
tized weights and dense adapter weights: merg-
ing them will 1) result in the loss of sparsity on
the model’s weights or ii) be unable to merge due

BA

' Bolo 0
Sparsification |=> 0 n 0 + 0 0
0 0

0
WP Lp

Figure 3: Sparse Parameter-efficient Fine-tuning
(SparsePEFT). A binary mask is obtained from the spar-
sified weights and applied to the adapters, allowing for
the later merge without loss of sparsity.

to different numerical precisions. Aiming to ad-
dress the first limitation, we propose an effective
strategy, Sparse Parameter-Efficient Fine-Tuning
(SparsePEFT), to make adapters sparsity-aware. As
depicted in Figure 3, SparsePEFT applies a binary
mask M derived from the initial sparsification of
W . This mask is used to sparsify the adapters ma-
trix (denoted as B A) into L”. The process can be
formulated as:

LP = (BA)® M, 1)

which is activated during the fine-tuning process for
sparsity awareness. SparsePEFT enables the merg-
ing of the sparsified weights WP and the adapter
weight L? without sacrificing the sparsity induced
early in the compression pipeline as follows,

WP « WP + LP.)

In addition to preserving sparsity, SparsePEFT
demonstrates comparable (even better) accuracy
compared to fine-tuning with dense adapters. Ex-
tensive experimental findings substantiate the ad-
vantages of SparsePEFT, as detailed in Section 3.

Although SparsePEFT can effectively preserve
the model’s sparsity, it presents additional chal-
lenges when merging with quantized models, the
second limitation we discussed before, which is
primarily attributed to the need for the adapter and
pre-trained weights to possess identical numerical
precision. In the following subsection, we explore
a pipeline variation for SQFT that facilitates the
integration of sparse quantized weights. This ap-
proach aims to address both challenges mentioned
above while improving the overall efficiency of the
resulting model.

2.4 Quantization-aware SparsePEFT

Building upon the concept of SparsePEFT, we
propose Quantization-aware SparsePEFT (QA-
SparsePEFT), an extension of SparsePEFT for
sparse quantized models. QA-SparsePEFT inte-
grates quantization awareness into SparsePEFT. In
most common quantization schemes, the zero point
and scales for the target quantized tensor can be
determined during the quantization process (e.g.,
GPTQ (Frantar et al., 2022a)). Within the frame-
work of QA-SparsePEFT, the zeros, and scales
of the sparse quantized weights W' are shared
with the adapter. The adapters can be quantized
smoothly with the shared fixed zeros and scales,
enabling quantization-aware fine-tuning. Formally,
given the sparsified pre-trained weight WP, sparsi-
fied adapter weight L? obtained from SparsePEFT,
zeros z and scales s from the quantization of
WP, the quantization process in the proposed QA-
SparsePEFT can be formulated as:
‘//I\/fn = round (clamp (w7 Qn, Qp)))

S

(3)
where an denotes the sparse quantized (merged)
weight, Q, = —2"! and Qp = o=l _ 1 (n

represents the bit-width of the quantized values).
Dequantization is the inverse as follows:

Wi =W, xs+z, (4)
which applies z and s to approximate W?P .
Through QA-SparsePEFT, we can obtain the fine-
tuned, sparsified low-precision resulting model.
Moreover, SQFT with QA-SparsePEFT can run
the NLS stage using this schema, which allows us
to merge the adapters once an optimal configura-
tion has been discovered.

2.5 Model Serving and Inference Acceleration

Accelerating model serving and inference through
sparsification and quantization techniques has
shown significant efficacy across various hardware
platforms and kernels, demonstrating remarkable
speedups. However, for PEFT with a sparsified
or quantized model (as shown in Figure 1), the
addition of adapter models introduces the com-
putational overhead during inference due to their
non-mergeability. SparsePEFT (QA-SparsePEFT)
allows adapters to be merged into the sparse (quan-
tized) model, which can reduce adapters’ redun-
dancy and computational overhead, leading to more
streamlined inference processes. Moreover, quanti-
zation techniques further enhance acceleration by

reducing the model size and computational com-
plexity, but balancing the trade-off between accel-
eration and maintaining competitive accuracy is
essential.

In summary, SQFT and its SparsePEFT strategy
bring the benefits of adapter merging and maintain-
ing accuracy on sparse or quantization scenarios.
The choice between the sparsity level and whether
to apply quantization depends on the specific de-
ployment scenario (e.g., task requirements and re-
source constraints), including the trade-off between
model performance, inference speed, and memory
efficiency. In the next section, we will delve into
further empirical studies to fully understand the
strengths and weaknesses of each approach in dif-
ferent settings.

3 Experimental Results

We evaluate SQFT on several state-of-the-art large
pre-trained models and datasets. Next, we discuss
the setup for our experimental analysis.

3.1 Setup

Models SQFT is evaluated on two state-of-the-
art models, including Llama-3-8B!, Phi-3-Mini-
4K-Instruct’>. To study it more comprehensively,
we aim to explore SQFT across different models,
scales, and settings.

Datasets and Settings Aligned with other works
in the LPMs compression and fine-tuning spaces,
SQFT is validated on three experimental settings:
1) Grade School Math 8K (GSMS8K) (Cobbe et al.,
2021), 2) Math reasoning with instruction tuning
(following LLM-Adapters (Hu et al., 2023)), in-
cluding 3 math reasoning datasets: GSM8K, Math
Word Problems (MAWPS) (Koncel-Kedziorski
et al., 2016), Simple Variations on Arithmetic Math
word Problems (SVAMP) (Patel et al., 2021), and 3)
Commonsense reasoning datasets: Boolean Ques-
tions (BoolQ) (Clark et al., 2019), Physical Inter-
action: Question Answering (PIQA) (Bisk et al.,
2020), HellaSwag (Zellers et al., 2019), Large-
scale Winograd Schema Challenge (WinoGrande)
(Sakaguchi et al., 2021), AI2 Reasoning Challenges
(Arc-e, Arc-c) (Clark et al., 2018), and Open Book
Question Answering (OBQA) (Mihaylov et al.,
2018).

The evaluations of our experiments are con-
ducted utilizing Im-eval-harness (Gao et al., 2023)

"https://huggingface.co/meta-llama/Meta-Llama-3-8B
*https://huggingface.co/microsoft/Phi-3-mini-4k-instruct

Table 1: Results for adapting Llama-3-8B to GSM8K. The criterion for mergeable is that there should be no
loss in either accuracy or sparsity before and after merging. The evaluation used the default configuration for

Im-eval-harness (Gao et al., 2023).

Model Sparsity Method Mergeable Final Precision GSMBK Test
(Base + Adapter / Base) Accuracy(%)
0% w/o tune FP16 50.0
w/o Quantization
T wlotwne T .0 T T T FPle 125
LoRA X FP16 + FP16 50.6
Shears X FP16 + FP16 522
Llama-3-8B 50% _ SQFT + SparsePEFT (Ours) v v . FI6 525
Quantization
T wiotwme T . T T T INT4 70
GPTQ + LoRA X INT4 + FP16 489
SQFT (Ours) X INT4 + FP16 50.0
SQFT + QA-SparsePEFT (Ours) 4 INT4 50.2

in both setting 1 and 3, while following the evalua-
tion from LLM-Adapters in setting 2. We present a
comparative analysis of the results obtained from
our various pipelines and also compare with vanilla
LoRA (Hu et al., 2022), Shears (Munoz et al.,
2024a) (a parameter-efficient fine-tuning method
for sparse models), and GPTQ + LoRA. For fair
comparison, all methods are run in the same envi-
ronment and with the same configuration. SQFT
employs the implementation of Wanda (Sun et al.,
2023) as default method for sparsification, and
GPTQ in Huggingface ? for quantizing the LPMs
and adapters.

Reference configuration Unless stated in the re-
sults, we report a reference configuration for SQFT.
This configuration is obtained utilizing the heuristic
proposed in Munoz et al. (2024b). The heuristic is
intuitive and straightforward, activating the config-
uration with the median of each set of elastic values
per module. Spending additional cycles to search
the space of configurations might yield even more
competitive results, presented in Table 4. Next, we
discuss experimental results and studies conducted
using SQFT.

3.2 Main Results

3.2.1 Fine-tuning Llama-3 on GSM8K

We begin our evaluation with Llama-3B-8B, as-
sessing its accuracy in a dense mode and after in-
ducing 50% sparsity without fine-tuning on the
GSMBSK dataset. Subsequently, we execute various
pipelines of SQFT. As described in Table 1, for
Llama-3-8B at the 50% sparsity level, SQFT re-
covers the model’s accuracy from 12.5% to 52.5%
without employing quantization, while allowing for

3https://huggingface.co/blog/gptq-integration

the merging of adapters without sacrificing sparsity
(SparsePEFT) and incorporating quantization into
the pipeline results in a minor drop in accuracy
to 50.2% when enabling the adjustment to merge
adapters (QA-SparsePEFT).

More importantly, SQFT with SparsePEFT and
QA-SparsePEFT exhibit comparable performance
to their corresponding non-mergeable approaches.
These results suggest that SQFT with SparsePEFT
(QA-SparsePEFT) effectively addresses the limi-
tation of the merging problem encountered when
fine-tuning adapters into sparse models (or sparse
and quantized models) without any degradation in
accuracy. Furthermore, the comparison between
LoRA and SQFT with SparsePEFT (or Shears),
and between GPTQ + LoRA and SQFT with QA-
SparsePEFT without adapter merging, highlights
the superior performance of NLS (elastic rank)
compared with LoRA (fixed rank). We also explore
the performance of a broader range of sparsity lev-
els and conduct more detailed ablation experiments
in this experimental setting, which can be found in
Sections 3.4 and 3.6, respectively.

3.2.2 Math Reasoning with Instruction
Tuning for Phi-3

In addition to Llama-3 on GSMS8K, we also inves-
tigated the performance of SQFT with the Phi-3
model. Since the Phi-3-series models released by
Microsoft are the instruction models currently best-
suited for a chat prompt, we evaluate SQFT on
three math reasoning datasets for instruction tun-
ing. Table 2 presents the test accuracy for our
approaches and baselines. Interestingly, in the full-
precision mode (w/o Quantization), our proposed
SparsePEFT not only achieves the highest average
accuracy (77.3%) compared to other approaches

Table 2: Results for Phi-3-Mini-4K-Instruct with math instruction tuning. Mergeable means that merging the
dense adapters with the sparse weights is possible without losing the induced sparsity levels or affecting the desired

low numerical precision.

Final Precision Datasets | Accuracy(%)

Model Sparsity Method Mergeable Average
(Base + Adapter / Base) GSMS8K MAWPS SVAMP
0% wl/o tune FP16 64.7 84.5 85.4 78.2
w/o Quantization
‘wlotne T T T FPI6 389 647 668 568
LoRA FP16 + FP16 62.5 90.3 77.8 76.9
Shears FP16 + FP16 62.3 90.8 76.1 76.4
Phi-3-Mini-4K-Instruct 50% _SQFT + SparsePEFT (Ours) v 1 Fpl6 619 912 787 773
Quantization
‘wlowne -7 7 7 " INT4 334 567 642 514
GPTQ + LoRA INT4 + FP16 60.3 89.5 74.8 74.9
SQFT (Ours) INT4 + FP16 60.3 90.8 75.6 75.5
SQFT + QA-SparsePEFT (Ours) INT4 60.4 90.8 72.9 74.7

but also uniquely allows for the merging of adapters
and sparse weights without any loss of sparsity.
This result is achieved without needing an expen-
sive search and by utilizing the heuristic detailed
in Section 3.1. However, in quantization mode, the
accuracy of SQFT + QA-SparsePEFT (mergeable)
is marginally lower compared to the non-mergeable
approaches (74.7% vs. 74.9%/75.7%). This result
suggests there may be a need to balance the trade-
off between accuracy and efficiency. Fortunately,
SQFT + QA-SparsePEFT results in a merged fine-
tuned quantized model, eliminating the overhead
associated with dense adapters.

3.2.3 Fine-tuning Phi-3 on Commonsense
Reasoning

Besides the mathematical domain of the first two
experimental settings, we also explore SQFT in
other areas, e.g., commonsense reasoning. We ap-
ply SQFT to fine-tuning the Phi-3 model on a set
of unified commonsense training datasets with 83K
samples for fine-tuning from BoolQ, PIQA, Hel-
laSwag, WinoGrande, Arc-e, Arc-c, and OBQA.
Table 3 compares the test accuracy of the evaluated
approaches. SQFT obtains a competitive config-
uration with Shears, LoRA, and GPTQ + LoRA.
However, SQFT has the additional benefit of al-
lowing for the merging without losing the previ-
ously induced sparsity, both in full-precision and
quantized modes. It is worth noting that SQFT
with QA-SparsePEFT shows super competitiveness
here, i.e., the most efficient model with high accu-
racy (among all full-precision and quantized cases).

3.3 Hill-climbing to Better Configurations

The results presented in the previous sections em-
ploy the simple heuristic (as detailed in Section

SQFT + SparsePEFT

= =
N &

QKV Adapter Rank
@

>

hd 012345678 910111213141516171819202122232425262728293031
Layer

SQFT + QA-SparsePEFT

= =
N @

QKV Adapter Rank
©

-]

=

01234567 8 910111213141516171819202122232425262728293031

Figure 4: The adapter rank distribution of the optimal
configurations obtained from the hill-climbing search
algorithm (Phi-3-Mini-4K-Instruct with commonsense
reasoning).

3.1) to obtain a reference configuration from the
NLS search space. However, superior configura-
tions can be discovered with an additional budget.
We apply a well-designed hill-climbing search al-
gorithm (Algorithm 1 in Appendix), which starts
from the configuration derived from the heuristic
and explores its neighboring configurations in a hill-
climbing matter based on their validation accuracy.
For this purpose, we employed the validation sets
from Arc-e, Arc-c, and OBQA, as other datasets
do not provide a validation set. As demonstrated
in Table 4, a more optimal configuration can be
discovered, outperforming the default adapter con-
figuration obtained from the heuristic. Exploring
further the search space of elastic adapter ranks
produces richer adapter distributions as depicted in
Figure 4. More importantly, the test set results re-

Table 3: Results for Phi-3-Mini-4K-Instruct with commonsense reasoning. SQFT obtains competitive fine-tuned
models with an additional benefit over Shears and LoRA applied to low-precision weights, i.e., SQFT’s adapters
can be efficiently merged into the weights without any loss of precision or accuracy. We are reporting a reference
submodel for SQFT obtained the heuristic detailed in 3.1, which means that, as shown in Table 4, with an additional
cost, SQFT can discover submodels with even higher performance.

Model SparsityMethod

Mergeable
(Base + Adapter / Base)BoolQPIQA HellaSWinoG Arc-eArc-cOBQA

Final Precision Datasets | Accuracy(%)

Average

0% w/o tune - FP16 86.1 80.3 785 737 832 575 468 723
w/o Quantization

wotme - PFPI6 825 759 699 69.1 769 509 434 669
LoRA X FP16 + FP16 856 79.1 758 715 79.6 532 494 70.6
Shears X FP16 + FP16 852 789 757 726 80.1 533 504 70.9

PHESMiniKCInstruct [SQT + SpasePBFT Ous) v FPIG___$40 788 755 721 $01 35 486104

Quantization

wotme - INT4 814 752 685 682 759 503 402 657
GPTQ + LoRA X INT4 + FP16 853 79.1 753 725 795 546 472 705
SQFT (Ours) X INT4 + FP16 85.1 79.0 754 712 79.6 54.1 488 705
SQFT + QA-SparsePEFT (Ours) v INT4 83.7 80.1 74.1 736 80.1 55.1 482 70.7

Table 4: Hill-climbing searching results for Phi-3-Mini-4K-Instruct with commonsense reasoning.

Validation Datasets | Accuracy(%)
Arc-e Arc-c OBQA Average

Model Sparsity Method Sub-Adapter

Test Datasets | Accuracy(%)
BoolQ PIQA HellaS WinoG Arc-e Arc-c OBQA Average

SQFT + SparsePEFT gi?“?,“l_ ;3; 2(1)2

- g
Phi-3-Mini-4K-Instruct ~ 50% - — — — — — — — — LooIToMe SRE_9L9
Heuristic 80.0 51.5

SQFT + QA-SparsePEFT

Hill-climbing 80.4 53.5

474 59.2 840 788 755 721 80.1 535 486 704

47.6 59.9 843 789 754 720 80.1 543 494 70.6
454 7590 837 801 741 736 801 551 482 707

46.2 60.0 83.6 797 741 737 801 562 488 709

w/o Quantization Quantization

)
a o

S

Baseline
(w/o sparse and tune)

a o O

W W e R g

GSMS8K Accuracy (%)
=l

Shears
—&— SQFT + SparsePEFT

SQFT
—4— SQFT + QA-SparsePEFT

N
a

70 20 30 40 50 60 70
Sparsity (%)

20 30 40 50 60

Sparsity (%)

Figure 5: Comparison of various sparsity levels for
Llama-3-8B with GSM8K. SQFT achieves similar per-
formance as Shears but with the added benefit of merg-
ing adapters with different numerical precision.

veal a significant improvement in the performance
of the Arc-c and OBQA datasets, which suggests
that an appropriate validation set can assist in iden-
tifying the optimal adapter configuration.

3.4 Exploring a Broader Range of Sparsity
Levels

All our previous experiments employ 50% sparsity
as it is moderate and mild. In this section, we ex-
plored the behavior of SQFT in a broader range of
sparsity levels. As shown in Figure 5, the model’s
accuracy experiences a significant drop between a

sparsity of 60% and 70%. We denote this range
as the critical sparsity threshold, representing the
boundary at which the model’s performance begins
to degrade notably. Through our recovery down-
stream fine-tuning strategy, models with up to 50%
sparsity (even with quantization) can achieve com-
parable performance with the original dense model
(represented by the baseline in the figure) on the
downstream task. This 50% sparsity can be de-
fined as the optimal sparsity level, as it represents
the point of balance where the model maintains
high performance while achieving computational
efficiency. Moreover, there is little difference in
accuracy between our mergeable approaches and
non-mergeable methods, which illustrates the ef-
fectiveness of our proposed SparsePEFT.

3.5 Cost Analysis of Pipeline Configurations

The different versions of SQFT’s pipelines incur
various costs that allow users to choose based
on their fine-tuning budget. Table 6 details the
characteristics of each pipeline configuration, e.g.,
whether we can merge the adapters, the preci-
sion of the based model and the adapters, and the
cost of each configuration. Two assumptions are

Table 5: Ablation studies for LoORA vs. NLS (Llama-3-8B with GSM8K). Compared to LoRA, NLS demonstrates
significantly better accuracy performance across all possible pipelines of SQFT and different sparsity levels.

. Final Precision Fine-tune GSMBSK Test
Model Sparsity Method Mergeable (Base + Adapter / Base) Approach Accuracy(%)
LoRA 58.2
CShews o FPIG+FRIG NLS 598,
SQFT + SparsePEFT (Ours) v FP16 LoRA 600
30% NLS 61.2,:>
S 7T A
SQFT (Ours) X INT4 + FP16 NLS 57.6.0
e 7 7- N ¥ S
SQFT + QA-SparsePEFT (Ours) v INT4 NLS 560,15
LoRA 50.6
Sheas o FRIG+FRI6 NLS S22,
SQFT + SparsePEFT (Ours) v FP16 LoRA 306
NLS 52.5.19
Llama-3-8B 50% ittt gl 3550wl oy Sl
e oo NS S0
LoRA 48.2
SQFT + QA-SparsePEFT (Ours) v INT4 NLS 502,20
LoRA 25.5
Sheas o FPIG+FPI6 NLS 279,
SQFT + SparsePEFT (Ours) v EP16 LoRA 22.1
NLS 24.9.,5
T0% @ - — = = — m m e e e e e e e m o o T
SQFT (Ours) X INT4 + FP16 LoRA 242
i NLS 25.2.10
T e o T T T T T T 7T LoRA T 2264,
SQFT + QA-SparsePEFT (Ours) v INT4 NLS 04

made regarding model storage, inference speedup,
or memory: merging is better than unmerging
due to the overhead from the unmerged adapters,
and quantization mode is better than full-precision
mode. As for accuracy, the mergeable method
we propose is competitive with the previous non-
mergeable method. Regarding the fine-tuning time,
our mergeable method is slightly slower than the
non-mergeable method due to the additional mask
and adapter calculations. In summary, SQFT with
SparsePEFT is the best choice for full-precision
mode because it eliminates the adapter’s additional
path without sacrificing accuracy. Suppose mem-
ory usage during fine-tuning is a priority for the
quantization mode. In that case, vanilla SQFT (first
configuration in Figure 2) is the best choice because
it only requires the quantized model with little over-
head of different precision adapters. Otherwise,
SQFT with QA-SparsePEFT is better because it
can ultimately produce a most efficient model that
will be of great benefit at deployment time.

3.6 Ablation Studies - LoRA vs NLS

As shown in Table 5, the ablation studies across
30%, 50%, and 70% sparsity highlight the benefits
of elastic adapters (NLS), which enhance the per-
formance of SQFT, further reducing the gap to the
dense or non-quantized models while enjoying the
advantages of sparsity or quantization.

Table 6: Cost analysis for different pipelines (rank).
ID 1, 2, 3, and 4 represent LoRA/Shears, SQFT +
SparsePEFT, SQFT, and SQFT + QA-SparsePEFT, re-
spectively.

ID 1 2 3 4

Mergeable
Final Precision

X v X v
FP16 + FP16 FP16 INT4+FP16 INT4

Model Storage (|)
Fine-tuning Time ()
Fine-tuning Memory ({)

1>2>3>4
lxr3<2x4
3<1l=2=x4

Inference Speedup (1) 4>3>2>1
Inference Memory () 4<3<2<1
Accuracy (1) 1~2>3~4

4 Conclusion

Large pre-trained models often require fine-tuning
to downstream target tasks and compression to uti-
lize them in resource-constrained environments.
This paper presents SQFT, a low-cost fine-tuning
solution for low precision and sparse foundation
models. SQFT solves challenges when merging
sparse (and quantized) base models and dense
(with different numerical precision) adapters with-
out losing the induced sparsity in the base model
while delivering high-performing fine-tuned mod-
els. We make a few SQFT’s fine-tuned mod-
els available to reviewers for reproducing our re-
sults at: https://anonymous.4open.science/
r/sqft_examples-71C7

https://anonymous.4open.science/r/sqft_examples-71C7
https://anonymous.4open.science/r/sqft_examples-71C7
https://anonymous.4open.science/r/sqft_examples-71C7

Limitations and Ethical Considerations

Large pre-trained models have gained popularity
and are the base of many applications. However,
these models are often used indiscriminately with
little analysis of their potential failures and conse-
quences. SQFT solely focuses on these large mod-
els’ efficient fine-tuning and compression. How-
ever, users of SQFT should also consider the lim-
itations of these models before deployment in en-
vironments where they can cause harm or conflict.
Although compressing and fine-tuning these mod-
els on a particular downstream task would make
them perform better, more studies are needed re-
garding the effects of this specialization.

We demonstrate SQFT on several pre-trained
models. The benefits obtained from the pro-
posed solution might transfer smoothly to other
transformer-based models. However, there might
also be models and datasets in which additional
considerations must be taken. For instance, in our
current experiments, we have noticed that in the
case of OpenELM-1.1B (Mehta et al., 2024), fine-
tuning on math reasoning datasets, e.g., GSM8K,
does not result in high accuracy, and more exper-
imentation is needed. There is also the case in
which a pre-trained model might have been trained
on a particular benchmark, a form of data contam-
ination, which is difficult to confirm since often
the details of the training data are not shared pub-
licly (Zhang et al., 2024). In these cases, inducing
sparsity might result in a drop in accuracy on that
particular benchmark.

Due to the many unknowns and complexity of
current large models, it is essential to take measures
to prevent their use in sensitive applications. With
insights obtained by the research community in
the years to come, understanding the intricacies of
these models will help us use them beneficially and
safely.

References

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind

Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix mul-
tiplication for transformers at scale. In Advances in
Neural Information Processing Systems.

Tim Dettmers and Luke Zettlemoyer. 2023. The case
for 4-bit precision: k-bit inference scaling laws. In
Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-
sive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022a. GPTQ: Accurate post-training
compression for generative pretrained transformers.
arXiv preprint arXiv:2210.17323.

Elias Frantar, Sidak Pal Singh, and Dan Alistarh. 2022b.
Optimal Brain Compression: a framework for ac-
curate post-training quantization and pruning. Ad-

vances in Neural Information Processing Systems,
36.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Masafumi Hagiwara. 1994. A simple and effective
method for removal of hidden units and weights. Neu-
rocomputing, 6(2):207-218. Backpropagation, Part
Iv.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in deep
learning: pruning and growth for efficient inference
and training in neural networks. J. Mach. Learn. Res.,
22(1).

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-
janya Poria. 2023. Llm-adapters: An adapter family

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.1016/0925-2312(94)90055-8
https://doi.org/10.1016/0925-2312(94)90055-8
https://doi.org/10.1016/0925-2312(94)90055-8
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152-1157, San
Diego, California. Association for Computational
Linguistics.

Yann LeCun, John Denker, and Sara Solla. 1989. Op-
timal brain damage. In Advances in Neural In-
formation Processing Systems, volume 2. Morgan-
Kaufmann.

Sachin Mehta, Mohammad Sekhavat, Qingqing Cao,
Max Horton, Yanzi Jin, Frank Sun, Iman Mirzadeh,
Mahyar Najibikohnehshahri, Dmitry Belenko, Pe-
ter Zatloukal, and Mohammad Rastegari. 2024.
Openelm: An efficient language model family with
open training and inference framework.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

J. Pablo Munoz, Jinjie Yuan, and Nilesh Jain. 2024a.
Shears: Unstructured sparsity with neural low-rank
adapter search. The 2024 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL-2024).

J. Pablo Munoz, Jinjie Yuan, Yi Zheng, and Nilesh Jain.
2024b. LoNAS: FElastic low-rank adapters for effi-
cient large language models. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 10760-10776,
Torino, Italia. ELRA and ICCL.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,
Christos Louizos, and Tijmen Blankevoort. 2020. Up
or down? adaptive rounding for post-training quanti-
zation. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML’20. JMLR.org.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99-106.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

10

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Peisong Wang, Qiang Chen, Xiangyu He, and Jian

Cheng. 2020. Towards accurate post-training net-
work quantization via bit-split and stitching. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 9847-9856. PMLR.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,

Julien Demouth, and Song Han. 2023. SmoothQuant:
Accurate and efficient post-training quantization for
large language models. In Proceedings of the 40th
International Conference on Machine Learning.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang,

Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao,
and Ping Luo. 2024. Besa: Pruning large language
models with blockwise parameter-efficient sparsity
allocation. Preprint, arXiv:2402.16880.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,

Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 27168-27183. Curran Associates,
Inc.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali

Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson,

Catherine Wu, Will Song, Tiffany Zhao, Pranav Raja,
Dylan Slack, Qin Lyu, Sean Hendryx, Russell Ka-
plan, Michele Lunati, and Summer Yue. 2024. A
careful examination of large language model per-
formance on grade school arithmetic. Preprint,
arXiv:2405.00332.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen

Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
2023. Loraprune: Pruning meets low-rank parameter-
efficient fine-tuning. Preprint, arXiv:2305.18403.

https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/2404.14619
https://arxiv.org/abs/2404.14619
https://arxiv.org/abs/2404.14619
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://arxiv.org/abs/2404.10934
https://arxiv.org/abs/2404.10934
https://arxiv.org/abs/2404.10934
https://aclanthology.org/2024.lrec-main.940
https://aclanthology.org/2024.lrec-main.940
https://aclanthology.org/2024.lrec-main.940
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v119/wang20c.html
https://proceedings.mlr.press/v119/wang20c.html
https://proceedings.mlr.press/v119/wang20c.html
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2305.18403

Appendix
A Related Work

Generative pre-trained models often based on the
Transformer architecture (Vaswani et al., 2017) re-
quire the application of compression techniques to
reduce their significant computational cost and to
address challenges, e.g., related to memory band-
width. Classic compression techniques like pruning
and quantization have been adapted to the age of
LPMs, removing inefficiencies that cannot be toler-
ated when dealing with billions of parameters. We
discuss them in more detail next.

Pruning Inducing sparsity, either by zeroing out
weights or activations or removing network ele-
ments, can improve the efficiency of LPMs during
inference, provided that they are executed on a
runtime that can exploit sparse patterns. Pruning
has a long history (LeCun et al., 1989), but with
the advent of LPMs, traditional methods(Hoefler
et al., 2021), e.g., Magnitude Pruning (Hagiwara,
1994), have been replaced by new approaches that
are suited for the challenges of these models. In
particular, due to their large number of parameters.
SparseGPT (Frantar and Alistarh, 2023) proposes
a one-shot pruning method for transformer-based
models that trade minimal accuracy drop for in-
creasing sparsity levels. The method approaches
LPMs’ pruning layer-wise with an efficient weight
reconstruction algorithm that incrementally prunes
the weight matrix elements. Wanda (Sun et al.,
2023) proposes a more straightforward approach
that does not require weight updates, computing
a score using the weight magnitude and the norm
of input activations. This approach obtains better
results than SparseGPT. Recently, BESA (Xu et al.,
2024) improves over SparseGPT and Wanda by
targeting individual transformer blocks and allocat-
ing sparsity per layer using a differentiable method.
These approaches induce sparsity on pre-trained
models and are evaluated on zero-shot benchmarks.
Our end-to-end solution, SQFT, focuses on fur-
ther adapting the sparsified models to new tasks or
datasets.

Quantization In the era of large pre-trained foun-
dation/frontier models (LPMs), quantization ap-
proaches have evolved to address the challenges
of scale and memory bandwidth. Due to the
high cost of retraining these models to recover ac-
curacy degradation, special consideration has to

11

be taken when incorporating compression tech-
niques, like quantization-aware training in foun-
dation models. Post-training, one-shot quantiza-
tion methods have prevailed, obtaining quantized
versions of large models in hours. LLM.Int8()
was among the first Int8 quantization procedures
for large-scale transformer-based PLMs (Dettmers
et al., 2022). Using vector-wise quantization
and mixed-precision decomposition, LLM.Int&()
demonstrated that it can effectively confront the
outliers that emerge in activations, which makes tra-
ditional quantization methods fail in models with
more than 6.7B parameters. In a contemporary
work, after running thousands of experiments with
various large pre-trained models, it was demon-
strated that 4-bit parameters can reach optimal
performance compared to other bit-precisions in
the 3 to 16-bit range (Dettmers and Zettlemoyer,
2023). ZeroQuant (Yao et al., 2022) quantizes
GPT-3 models, obtaining a reduction in latency
up to 4.16x by utilizing group-wise quantization
for weights, token-wise quantization for activa-
tions, and layer-by-layer knowledge distillation.
SmoothQuant (Xiao et al., 2023) makes activations
easier to quantize by smoothing them and compen-
sating this operation with a transformation of the
weights, resulting in improved results over Zero-
Quant and LLM.Int8(). GPTQ is another good rep-
resentative of one-shot quantization approaches de-
signed especially for LPMs (Frantar et al., 2022a).
GPTQ builds on the learnings from Optimal Brain
Quantization (OBQ) (Frantar et al., 2022b) and ap-
plies layer-wise quantization to the full-precision
weights of a base LPM. We incorporate GPTQ as
the default quantization method in SQFT’s pre-fine-
tuning stage.

Parameter-efficient Fine-tuning (PEFT) Due
to their large number of parameters, it is too costly
to fine-tune pre-trained large models. Updating all
their weights to improve their performance in a
downstream task might require devices with large
memory capacity. PEFT techniques attempt to ad-
dress this challenge by avoiding the update of all
weights in the pre-trained model. For instance,
low-rank (LoRA) adapters (Hu et al., 2022) use a
fraction (often less than 1%) of additional weights
to adapt the model to a new task. LoRA adapters,
B and A, are utilized to reparameterize a linear
projection, Y = W X, keeping the weights, W,
frozen and updating only the low-rank adapter ma-
trices, A and B,ie.,Y = WX + BAX.

Algorithm 1 Hill-climbing Search Algorithm

Input: Number of turns 7', Number of neighbors IV, Neighbor step size S, Number of evaluation samples M, Heuristic

configuration cy,, Validation dataset D
Output: Optimal configuration c*
1: cqo < cp
Vo {Ch}
D < Sample(D, M)
fort < 1to7T do
C < Neighbor-sample(cq, N, S) -V
V+Vucl
cm < MaxAcc(Eval(Dyy, C))
if Acc(cm) > Acc(c™) then
Ca < Cm
end if
: end for
et g
. return c*

> Initialize anchor with the heuristic configuration
> Initialize the set of visited configurations

> Create a proxy dataset by randomly sampling M samples from D

> Sample N unvisited S-step neighbor configs

> Add the sampled configurations to the set of visited configurations

> The config with the maximum accuracy on proxy data

> Update anchor configuration if the new configuration has higher accuracy

> The optimal configuration is the final anchor configuration

Recently, Shears proposed Neural Low-rank
Adapter Search (Munoz et al., 2024a) and demon-
strated that LoRA adapters can be made elastic to
allow for the application of weight-sharing schemes
and keeping the original weights of the model
frozen and compressed, e.g., inducing sparsity be-
fore the fine-tuning stage. However, a challenge
that emerges is that merging the dense adapters
with the sparse weights results in the overall loss of
sparsity. LoORAPrune has attempted to address this
challenge by using the weights and gradients of the
LoRA adapters to remove elements in the model’s
weights (Zhang et al., 2023). As demonstrated in
the main sections of the paper, SQFT proposes an
alternative method for merging the dense adapters
with a minimal drop in accuracy.

B Hyperparameters

The hyperparameters used in our main experiments
are shown in Table 7.

C Hill-climbing search algorithm

We propose Algorithm 1 to start from the refer-
ence configuration (Section 3.1) and systematically
explore its neighbors. Table 4 in the main pa-
per shows the benefits of using any available bud-
get to execute this algorithm and discover better-
performing models.

D Additional Sparsity Levels and
Ablation Studies for Llama-3 on
GSMSK

We conducted additional experiments and ablations
studies with different sparsity levels and compared
the underlying NLS approach to LoRA. Table 8

12

shows that up to high sparsity levels, SQFT delivers
high-performing models.

Table 7: Hyperparameters used in our experiments. For all approaches with NLS, we explored several manually
designed search spaces and identified the optimal configuration for each pipeline. Note that in our experiments
involving GSMS8K and math instruction tuning, we conducted trials over 3 or 4 epochs and reported the best results
achieved. Interestingly, SQFT with QA-SparsePEFT often necessitates extended training periods to exploit its
quantization-aware capabilities fully.

Model Task Sparsity Method Epoch B?tCh Learning Adapter rank Adapter Adapter
size rate alpha target modules

LoRA 3 16 3e-4 32 64 Q. K, V, Up, Down

Shears 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
Llama-3-8B GSMSK 50% SQFT + SparsePEFT 3 16 3e-4 48,32,16 64 Q, K, V, Up, Down

GPTQ + LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down

SQFT 3 16 3e-4 40,32,24 64 Q. K, V, Up, Down

SQFT + QA-SparsePEFT 4 16 3e-4 48,32,16 64 Q, K, V, Up, Down

LoRA 3 16 3e-4 32 64 Qkv

Shears 3 16 3e-4 48,40,32,24,16 64 Qkv
Phi-3-Mini-4K-Instruct ~ Math 50% SQFT + SparsePEFT 3 16 3e-4 48,32,16 64 Qkv

GPTQ + LoRA 3 16 3e-4 32 64 Qkv

SQFT 3 16 3e-4 32,28,24,20,16 64 Qkv

SQFT + QA-SparsePEFT 4 16 3e-4 32,24,16 64 Qkv

LoRA 3 16 le-4 16 32 Qkv

Shears 3 16 le-4 16,12,8 32 Qkv
Phi-3-Mini-4K-Instruct cs 50% SQFT + SparsePEFT 3 16 le-4 16,12,8 32 Qkv

GPTQ + LoRA 3 16 le-4 16 32 Qkv

SQFT 3 16 le-4 16,12,8 32 Qkv

SQFT + QA-SparsePEFT 3 16 le-4 16,12,8 32 Qkv

13

Table 8: Ablation studies for various sparsity levels (Llama-3-8B with GSM8K).

. Final Precision Fine-tune GSMSK Test
Model Sparsity Method Mergeable (Base + Adapter / Base) Approach Accuracy(%)
0% w/o tune - FP16 - 50.0
w/o Quantization
“wiotwne” T T T T T T - T T T T T FPl6~ ~ ~ ~ - T T T T 4 4757 7 7
LoRA 58.7
Shears X FP16 + FP16 NLS 61.2.1
SQFT + SparsePEFT v FP16 LoRA 60.3
NLS 62.0,7
20% @ - = = m m m e e m m e m m m—— = o s L
Quantization
“wiotune- T T T T T T - T T T T T INT2a™ — ~ — 7 T - T T T T 366
LoRA 57.8
SQFT X INT4 + FP16 NLS 60.0,2,
LoRA 54.7
SQFT + QA-SparsePEFT v INT4 NLS 55.6.00
w/o Quantization
“wiotune- ~ T T T T T - T T T T 7 FPl6 ~ ~ ~ ~ ~ -7 T T T 4 409~ ~
) LoRA 58.2
Shears X FP16 + FP16 NLS 598,16
SQFT + SparsePEFT v FP16 LoRA 60.0
NLS 61.2,,
30% - — — — — — — — — — — — — — — — — — — — = = = = = = — - T
Quantization
“wlotme” -~ T T T T T - T T T T INT4™ — ~ ~ ~ T - T T T T 3037
LoRA 56.7
SQFT X INT4 + FP16 NLS 57.6,00
LoRA 54.8
SQFT + QA-SparsePEFT v INT4 NLS 56.0,1,
w/o Quantization
“wiotwne” T T T T T T - T T T T T FPl6~ ~ ~ ~ — - T T T T 7 316~
LoRA 56.9
Shears X FP16 + FP16 NLS 56.9
SQFT + SparsePEFT v FP16 LoRA 579,15
NLS 56.4
% - = = = - m e m e m - m - - -~ e e e e e e e T -
Quantization
“wiotwne” T T T T T - T T T T T NTa™ ~ ~ ~ 7~ -7 T T T % 2017
LoRA 54.9
SQFT X INT4 + FP16 NLS 549
LoRA 534
Llama-3-8B SQFT + QA-SparsePEFT v INT4 NLS 53704
w/o Quantization
“wiotune- T T T T T - T T T T 7 FPl6~ ~ ~ ~ - T T T 125- 7
} LoRA 50.6
Shears X FP16 + FP16 NLS 522,16
SQFT + SparsePEFT v FP16 LoRA 506
NLS 525,19
50% - — — — — — — — — — — — — — — — — — — — = = = = = = — T
77777777777777777 Quantization
w/o tune - INT4 - 7.0
LoRA 48.9
SQFT X INT4 + FP16 NLS 50,0,
LoRA 48.2
SQFT + QA-SparsePEFT v INT4 NLS 502,20
w/o Quantization
“wlotwne” T T T T T - T T T T T FPlI6~ ~ ~ ~ ~ -~ 7 7 .
LoRA 39.9
Shears X FP16 + FP16 NLS 45.3.5,
SQFT + SparsePEFT v FP16 LoRA 40.7
NLS 425,
60% - = = = = = & m ——— e mm - - =~ s
Quantization
“wiotwne- T T T T T - T T T T T NT2a™ ~ - 7~ -7
LoRA 40.1
SQFT X INT4 + FP16 NLS 420,10
LoRA 37.6
SQFT + QA-SparsePEFT v INT4 NLS 409,34
w/o Quantization
“wiotune- T T T T T - T T T T T FPlI6~ ~ ~ ~ ~ -~ 77 P
, LoRA 255
Shears X FP16 + FP16 NLS 279024
SQFT + SparsePEFT v FP16 LoRA 22.1
NLS 24.9,,5
0% -——— — = == — = — = — — — — — — — — = = = = = = — TR
77777777777777777 Quantization
w/o tune - INT4 - -
LoRA 242
SQFT X INT4 + FP16 NLS 252,10
LoRA 22 6+0 2
SQFT + QA-SparsePEFT v INT4 NLS a4

14

	Introduction
	Methodology
	Sparsification and Quantization Stage
	Fine-tuning with Neural Low-rank Adapter Search (NLS)
	SparsePEFT
	Quantization-aware SparsePEFT
	Model Serving and Inference Acceleration

	Experimental Results
	Setup
	Main Results
	Fine-tuning Llama-3 on GSM8K
	Math Reasoning with Instruction Tuning for Phi-3
	Fine-tuning Phi-3 on Commonsense Reasoning

	Hill-climbing to Better Configurations
	Exploring a Broader Range of Sparsity Levels
	Cost Analysis of Pipeline Configurations
	Ablation Studies - LoRA vs NLS

	Conclusion
	Related Work
	Hyperparameters
	Hill-climbing search algorithm
	Additional Sparsity Levels and Ablation Studies for Llama-3 on GSM8K

