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Abstract001

Large pre-trained models (LPMs), such as002
large language models, have become ubiqui-003
tous and are employed in many applications.004
These models are often adapted to a desired005
domain or downstream task through a fine-006
tuning stage. This paper proposes SQFT, an007
end-to-end solution for low-precision sparse008
parameter-efficient fine-tuning of LPMs, al-009
lowing for effective model manipulation in010
resource-constrained environments. Addition-011
ally, an innovative strategy enables the merg-012
ing of sparse weights with low-rank adapters013
without losing sparsity and accuracy, over-014
coming the limitations of previous approaches.015
SQFT also addresses the challenge of hav-016
ing quantized weights and adapters with dif-017
ferent numerical precisions, enabling merg-018
ing in the desired numerical format without019
sacrificing accuracy. Multiple adaptation sce-020
narios, models, and comprehensive sparsity021
levels demonstrate the effectiveness of SQFT.022
We make SQFT’s fine-tuned models avail-023
able to reviewers for reproducing our results024
at: https://anonymous.4open.science/r/025
sqft_examples-71C7026

1 Introduction027

Despite several limitations, such as hallucinations028

and a significant computational footprint, large029

pre-trained, foundation, or frontier models have030

become integral to numerous applications, includ-031

ing language understanding and code generation.032

These models are trained with extensive corpora on033

thousands of graphics processing units (GPUs), re-034

sulting in outstanding zero-shot performance across035

various tasks and datasets. However, it is frequently036

the case that they must be adapted to improve their037

performance on new tasks or data.038

Low-rank adapters (LoRA) (Hu et al., 2022)039

have demonstrated their effectiveness in model040

adaptation. However, when LoRA is combined041

with model compression techniques, e.g., sparsity042
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Figure 1: Limitations of existing approaches for fine-
tuning sparse and quantized models. Full fine-tuning is
expensive. Low-rank adapters (LoRA) for Parameter-
efficient Fine-tuning (PEFT) on sparse or quantized
models cannot easily merge with the compressed
weights due to loss of previously induced sparsity or
different numerical precision.

or quantization, several challenges prevent merg- 043

ing these adapters into a single compressed and 044

fine-tuned model, as illustrated in Figure 1. These 045

challenges stem from two primary reasons: i) merg- 046

ing dense adapters causes the loss of sparsity in 047

the base model, and ii) adapter merging cannot be 048

achieved due to different numerical precisions. 049

This paper introduces SQFT, an end-to-end com- 050

pression and model adaptation solution for large 051

pre-trained models (LPMs) that alleviates the limi- 052

tations above. SQFT is designed to sparsify, quan- 053

tize, and fine-tune large models and can instan- 054

tiate efficient pipelines that streamline compres- 055

sion techniques. Within the SQFT framework, we 056

propose Sparse Parameter-Efficient Fine-Tuning 057

(SparsePEFT), a strategy to address the adapter 058

merging problem for sparse and quantized model, 059

resulting in more effective high-performing mod- 060

els. Furthermore, SQFT also benefits from weight- 061

sharing techniques applied to traditional parameter- 062

efficient fine-tuning (PEFT) techniques and incor- 063

porates insights from state-of-the-art compression 064

techniques. Throughout this paper, we discuss the 065
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Figure 2: SQFT Overview. Several pipeline configurations can be activated to efficiently fine-tune large models
while addressing several limitations of existing approaches.

following contributions:066

1. An end-to-end model adaptation solution,067

SQFT, designed for efficient low-cost config-068

urable pipelines tailored for large pre-trained069

models with low numerical precision and spar-070

sity.071

2. SparsePEFT, a component of SQFT, ad-072

dresses several limitations in existing073

parameter-efficient fine-tuning approaches074

for sparse and quantized models, including075

the reduction in the cost of fine-tuning, the076

effective merging of adapters into the sparse077

model without the loss of sparsity, and the078

effective merging of components that operate079

in different numerical precision.080

3. Extensive experiments demonstrate the effec-081

tiveness of SQFT across different foundation082

models, sparsity levels and adaptation scenar-083

ios.084

This paper is organized as follows: Section 2 de-085

scribes the stages in the proposed end-to-end solu-086

tion, SQFT. Section 3 discusses SQFT’s evaluation,087

and we finalize with some concluding remarks in088

Section 4. Due to page limits, we include a Re-089

lated Work section, and additional results in the090

Appendix.091

2 Methodology092

SQFT fine-tunes large pre-trained models (LPMs)093

in an efficient multi-stage approach that includes094

(1) Sparsification, with an optional reduction in 095

the numerical precision, i.e., Quantization, (2) 096

Fine-tuning with Neural Low-rank Adapter Search 097

(NLS), (3) Sparse Parameter-Efficient Fine-Tuning 098

(SparsePEFT) with optional (4) Quantization- 099

awareness. Figure 2 illustrates the alternative LPM 100

compression and model adaptation pipelines that 101

SQFT can instantiate. In the following sections, we 102

discuss the details of each stage and the benefits of 103

accelerating inference and model serving. 104

2.1 Sparsification and Quantization Stage 105

As shown in Figure 2, at the beginning of all pos- 106

sible pipeline configurations, SQFT employs an 107

effective method to induce sparsity in the model. 108

For a given weight matrix W ∈ Rm×n, with en- 109

tries wi,j s.t. W = (wi,j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, 110

an arbitrary scoring function, Ψ, is assigned to the 111

proposed solution. This function determines the 112

relative importance of wi,j compared to the other 113

weights in W . Ψ can be formulated in various 114

ways. For instance, Ψ(W ) = |W | · ∥X∥2, where 115

X represents sampled feature input activations, as 116

proposed by Sun et al. (2023). However, it is im- 117

portant to highlight that the proposed end-to-end 118

model fine-tuning solution, SQFT, can utilize any 119

other scoring function. Leveraging the scores from 120

Ψ and a desired level of sparsity, s, we derive the 121

sparsified weight, denoted as W p, with a sparsity 122

pattern S{W p} = {(i, j) | W p
i,j ̸= 0, 1 ≤ i ≤ 123

m, 1 ≤ j ≤ n}, s.t. |S{W p}| ≤ |S{W }|. 124

It has been demonstrated that LPMs can tolerate 125
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higher sparsity levels compared with the previous126

generations of smaller transformer-based models127

(Frantar and Alistarh, 2023). Our experiments con-128

firm these observations (Section 3). Once SQFT129

has induced sparsity in the pre-trained weights,130

W p enables an optional reduction in their numeric131

precision. Given the sparsified weights, SQFT132

applies layer-wise one-shot quantization (Nagel133

et al., 2020; Frantar et al., 2022a; Wang et al.,134

2020; Frantar et al., 2022b). Utilizing a selection135

from state-of-the-art post-training quantization ap-136

proaches, SQFT identifies the low-precision sparsi-137

fied weights, denoted as Ŵ
p
, that given an input138

X , minimize argmin
Ŵ

p ||W pX − Ŵ
p
X||22.139

Reducing the numerical precision and inducing140

sparsity on weights frequently decrease the model’s141

accuracy, requiring fine-tuning to improve perfor-142

mance.143

2.2 Fine-tuning with Neural Low-rank144

Adapter Search (NLS)145

Given the sparse quantized weights, Ŵ
p
, SQFT146

recovers any drops in accuracy induced by the com-147

pression schema and fine-tunes these weights for148

a specific downstream task. As shown in Figure 2,149

SQFT employs Neural Low-rank Adapter Search150

(NLS) (Munoz et al., 2024a) instead of vanilla Low-151

rank Adapters (LoRA) (Hu et al., 2022), and fine-152

tunes sparse and quantized model. To justify using153

NLS, traditional LoRA adapters require assigning154

the values for several hyperparameters, including155

their rank r, and the subset of modules where these156

adapters will be placed. Determining these hyper-157

parameters can be a challenging endeavor. To alle-158

viate this limitation, SQFT extends NLS’ weight-159

sharing techniques to facilitate the discovery of op-160

timal adapter configurations from a space of elastic161

adapter configurations. In other words, instead of162

having a fixed value for the rank, r, we enable elas-163

tic configurations, C = [c1, . . . , cn], s.t., r ← ci164

depending on the activation of the corresponding165

sub-adapter.166

2.3 SparsePEFT167

Fine-tuning the sparse quantized model with168

adapters effectively improves the model’s perfor-169

mance on a downstream task. However, as illus-170

trated in the middle and right part of Figure 1, a171

challenge arises when dealing with sparse or quan-172

tized weights and dense adapter weights: merg-173

ing them will i) result in the loss of sparsity on174

the model’s weights or ii) be unable to merge due175
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Figure 3: Sparse Parameter-efficient Fine-tuning
(SparsePEFT). A binary mask is obtained from the spar-
sified weights and applied to the adapters, allowing for
the later merge without loss of sparsity.

to different numerical precisions. Aiming to ad- 176

dress the first limitation, we propose an effective 177

strategy, Sparse Parameter-Efficient Fine-Tuning 178

(SparsePEFT), to make adapters sparsity-aware. As 179

depicted in Figure 3, SparsePEFT applies a binary 180

mask M derived from the initial sparsification of 181

W . This mask is used to sparsify the adapters ma- 182

trix (denoted as BA) into Lp. The process can be 183

formulated as: 184

Lp = (BA)⊙M , (1) 185

which is activated during the fine-tuning process for 186

sparsity awareness. SparsePEFT enables the merg- 187

ing of the sparsified weights W p and the adapter 188

weight Lp without sacrificing the sparsity induced 189

early in the compression pipeline as follows, 190

W p ←W p +Lp. (2) 191

In addition to preserving sparsity, SparsePEFT 192

demonstrates comparable (even better) accuracy 193

compared to fine-tuning with dense adapters. Ex- 194

tensive experimental findings substantiate the ad- 195

vantages of SparsePEFT, as detailed in Section 3. 196

Although SparsePEFT can effectively preserve 197

the model’s sparsity, it presents additional chal- 198

lenges when merging with quantized models, the 199

second limitation we discussed before, which is 200

primarily attributed to the need for the adapter and 201

pre-trained weights to possess identical numerical 202

precision. In the following subsection, we explore 203

a pipeline variation for SQFT that facilitates the 204

integration of sparse quantized weights. This ap- 205

proach aims to address both challenges mentioned 206

above while improving the overall efficiency of the 207

resulting model. 208
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2.4 Quantization-aware SparsePEFT209

Building upon the concept of SparsePEFT, we210

propose Quantization-aware SparsePEFT (QA-211

SparsePEFT), an extension of SparsePEFT for212

sparse quantized models. QA-SparsePEFT inte-213

grates quantization awareness into SparsePEFT. In214

most common quantization schemes, the zero point215

and scales for the target quantized tensor can be216

determined during the quantization process (e.g.,217

GPTQ (Frantar et al., 2022a)). Within the frame-218

work of QA-SparsePEFT, the zeros, and scales219

of the sparse quantized weights Ŵ
p

are shared220

with the adapter. The adapters can be quantized221

smoothly with the shared fixed zeros and scales,222

enabling quantization-aware fine-tuning. Formally,223

given the sparsified pre-trained weight W p, sparsi-224

fied adapter weight Lp obtained from SparsePEFT,225

zeros z and scales s from the quantization of226

W p, the quantization process in the proposed QA-227

SparsePEFT can be formulated as:228

Ŵ
p

m = round
(

clamp
(
(W p + Lp)− z

s
, Qn, Qp

))
,

(3)229

where Ŵ
p

m denotes the sparse quantized (merged)230

weight, Qn = −2n−1 and Qp = 2n−1 − 1 (n231

represents the bit-width of the quantized values).232

Dequantization is the inverse as follows:233

W̃
p
m = Ŵ

p

m × s+ z, (4)234

which applies z and s to approximate W p
m.235

Through QA-SparsePEFT, we can obtain the fine-236

tuned, sparsified low-precision resulting model.237

Moreover, SQFT with QA-SparsePEFT can run238

the NLS stage using this schema, which allows us239

to merge the adapters once an optimal configura-240

tion has been discovered.241

2.5 Model Serving and Inference Acceleration242

Accelerating model serving and inference through243

sparsification and quantization techniques has244

shown significant efficacy across various hardware245

platforms and kernels, demonstrating remarkable246

speedups. However, for PEFT with a sparsified247

or quantized model (as shown in Figure 1), the248

addition of adapter models introduces the com-249

putational overhead during inference due to their250

non-mergeability. SparsePEFT (QA-SparsePEFT)251

allows adapters to be merged into the sparse (quan-252

tized) model, which can reduce adapters’ redun-253

dancy and computational overhead, leading to more254

streamlined inference processes. Moreover, quanti-255

zation techniques further enhance acceleration by256

reducing the model size and computational com- 257

plexity, but balancing the trade-off between accel- 258

eration and maintaining competitive accuracy is 259

essential. 260

In summary, SQFT and its SparsePEFT strategy 261

bring the benefits of adapter merging and maintain- 262

ing accuracy on sparse or quantization scenarios. 263

The choice between the sparsity level and whether 264

to apply quantization depends on the specific de- 265

ployment scenario (e.g., task requirements and re- 266

source constraints), including the trade-off between 267

model performance, inference speed, and memory 268

efficiency. In the next section, we will delve into 269

further empirical studies to fully understand the 270

strengths and weaknesses of each approach in dif- 271

ferent settings. 272

3 Experimental Results 273

We evaluate SQFT on several state-of-the-art large 274

pre-trained models and datasets. Next, we discuss 275

the setup for our experimental analysis. 276

3.1 Setup 277

Models SQFT is evaluated on two state-of-the- 278

art models, including Llama-3-8B1, Phi-3-Mini- 279

4K-Instruct2. To study it more comprehensively, 280

we aim to explore SQFT across different models, 281

scales, and settings. 282

Datasets and Settings Aligned with other works 283

in the LPMs compression and fine-tuning spaces, 284

SQFT is validated on three experimental settings: 285

1) Grade School Math 8K (GSM8K) (Cobbe et al., 286

2021), 2) Math reasoning with instruction tuning 287

(following LLM-Adapters (Hu et al., 2023)), in- 288

cluding 3 math reasoning datasets: GSM8K, Math 289

Word Problems (MAWPS) (Koncel-Kedziorski 290

et al., 2016), Simple Variations on Arithmetic Math 291

word Problems (SVAMP) (Patel et al., 2021), and 3) 292

Commonsense reasoning datasets: Boolean Ques- 293

tions (BoolQ) (Clark et al., 2019), Physical Inter- 294

action: Question Answering (PIQA) (Bisk et al., 295

2020), HellaSwag (Zellers et al., 2019), Large- 296

scale Winograd Schema Challenge (WinoGrande) 297

(Sakaguchi et al., 2021), AI2 Reasoning Challenges 298

(Arc-e, Arc-c) (Clark et al., 2018), and Open Book 299

Question Answering (OBQA) (Mihaylov et al., 300

2018). 301

The evaluations of our experiments are con- 302

ducted utilizing lm-eval-harness (Gao et al., 2023) 303

1https://huggingface.co/meta-llama/Meta-Llama-3-8B
2https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
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Table 1: Results for adapting Llama-3-8B to GSM8K. The criterion for mergeable is that there should be no
loss in either accuracy or sparsity before and after merging. The evaluation used the default configuration for
lm-eval-harness (Gao et al., 2023).

Model Sparsity Method Mergeable Final Precision GSM8K Test
(Base + Adapter / Base) Accuracy(%)

Llama-3-8B

0% w/o tune - FP16 50.0

50%

w/o Quantization
w/o tune - FP16 12.5
LoRA ✗ FP16 + FP16 50.6
Shears ✗ FP16 + FP16 52.2
SQFT + SparsePEFT (Ours) ✓ FP16 52.5

Quantization
w/o tune - INT4 7.0
GPTQ + LoRA ✗ INT4 + FP16 48.9
SQFT (Ours) ✗ INT4 + FP16 50.0
SQFT + QA-SparsePEFT (Ours) ✓ INT4 50.2

in both setting 1 and 3, while following the evalua-304

tion from LLM-Adapters in setting 2. We present a305

comparative analysis of the results obtained from306

our various pipelines and also compare with vanilla307

LoRA (Hu et al., 2022), Shears (Munoz et al.,308

2024a) (a parameter-efficient fine-tuning method309

for sparse models), and GPTQ + LoRA. For fair310

comparison, all methods are run in the same envi-311

ronment and with the same configuration. SQFT312

employs the implementation of Wanda (Sun et al.,313

2023) as default method for sparsification, and314

GPTQ in Huggingface 3 for quantizing the LPMs315

and adapters.316

Reference configuration Unless stated in the re-317

sults, we report a reference configuration for SQFT.318

This configuration is obtained utilizing the heuristic319

proposed in Munoz et al. (2024b). The heuristic is320

intuitive and straightforward, activating the config-321

uration with the median of each set of elastic values322

per module. Spending additional cycles to search323

the space of configurations might yield even more324

competitive results, presented in Table 4. Next, we325

discuss experimental results and studies conducted326

using SQFT.327

3.2 Main Results328

3.2.1 Fine-tuning Llama-3 on GSM8K329

We begin our evaluation with Llama-3B-8B, as-330

sessing its accuracy in a dense mode and after in-331

ducing 50% sparsity without fine-tuning on the332

GSM8K dataset. Subsequently, we execute various333

pipelines of SQFT. As described in Table 1, for334

Llama-3-8B at the 50% sparsity level, SQFT re-335

covers the model’s accuracy from 12.5% to 52.5%336

without employing quantization, while allowing for337

3https://huggingface.co/blog/gptq-integration

the merging of adapters without sacrificing sparsity 338

(SparsePEFT) and incorporating quantization into 339

the pipeline results in a minor drop in accuracy 340

to 50.2% when enabling the adjustment to merge 341

adapters (QA-SparsePEFT). 342

More importantly, SQFT with SparsePEFT and 343

QA-SparsePEFT exhibit comparable performance 344

to their corresponding non-mergeable approaches. 345

These results suggest that SQFT with SparsePEFT 346

(QA-SparsePEFT) effectively addresses the limi- 347

tation of the merging problem encountered when 348

fine-tuning adapters into sparse models (or sparse 349

and quantized models) without any degradation in 350

accuracy. Furthermore, the comparison between 351

LoRA and SQFT with SparsePEFT (or Shears), 352

and between GPTQ + LoRA and SQFT with QA- 353

SparsePEFT without adapter merging, highlights 354

the superior performance of NLS (elastic rank) 355

compared with LoRA (fixed rank). We also explore 356

the performance of a broader range of sparsity lev- 357

els and conduct more detailed ablation experiments 358

in this experimental setting, which can be found in 359

Sections 3.4 and 3.6, respectively. 360

3.2.2 Math Reasoning with Instruction 361

Tuning for Phi-3 362

In addition to Llama-3 on GSM8K, we also inves- 363

tigated the performance of SQFT with the Phi-3 364

model. Since the Phi-3-series models released by 365

Microsoft are the instruction models currently best- 366

suited for a chat prompt, we evaluate SQFT on 367

three math reasoning datasets for instruction tun- 368

ing. Table 2 presents the test accuracy for our 369

approaches and baselines. Interestingly, in the full- 370

precision mode (w/o Quantization), our proposed 371

SparsePEFT not only achieves the highest average 372

accuracy (77.3%) compared to other approaches 373
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Table 2: Results for Phi-3-Mini-4K-Instruct with math instruction tuning. Mergeable means that merging the
dense adapters with the sparse weights is possible without losing the induced sparsity levels or affecting the desired
low numerical precision.

Model Sparsity Method Mergeable Final Precision Datasets | Accuracy(%) Average
(Base + Adapter / Base) GSM8K MAWPS SVAMP

Phi-3-Mini-4K-Instruct

0% w/o tune - FP16 64.7 84.5 85.4 78.2

50%

w/o Quantization
w/o tune - FP16 38.9 64.7 66.8 56.8
LoRA ✗ FP16 + FP16 62.5 90.3 77.8 76.9
Shears ✗ FP16 + FP16 62.3 90.8 76.1 76.4
SQFT + SparsePEFT (Ours) ✓ FP16 61.9 91.2 78.7 77.3

Quantization
w/o tune - INT4 33.4 56.7 64.2 51.4
GPTQ + LoRA ✗ INT4 + FP16 60.3 89.5 74.8 74.9
SQFT (Ours) ✗ INT4 + FP16 60.3 90.8 75.6 75.5
SQFT + QA-SparsePEFT (Ours) ✓ INT4 60.4 90.8 72.9 74.7

but also uniquely allows for the merging of adapters374

and sparse weights without any loss of sparsity.375

This result is achieved without needing an expen-376

sive search and by utilizing the heuristic detailed377

in Section 3.1. However, in quantization mode, the378

accuracy of SQFT + QA-SparsePEFT (mergeable)379

is marginally lower compared to the non-mergeable380

approaches (74.7% vs. 74.9%/75.7%). This result381

suggests there may be a need to balance the trade-382

off between accuracy and efficiency. Fortunately,383

SQFT + QA-SparsePEFT results in a merged fine-384

tuned quantized model, eliminating the overhead385

associated with dense adapters.386

3.2.3 Fine-tuning Phi-3 on Commonsense387

Reasoning388

Besides the mathematical domain of the first two389

experimental settings, we also explore SQFT in390

other areas, e.g., commonsense reasoning. We ap-391

ply SQFT to fine-tuning the Phi-3 model on a set392

of unified commonsense training datasets with 83K393

samples for fine-tuning from BoolQ, PIQA, Hel-394

laSwag, WinoGrande, Arc-e, Arc-c, and OBQA.395

Table 3 compares the test accuracy of the evaluated396

approaches. SQFT obtains a competitive config-397

uration with Shears, LoRA, and GPTQ + LoRA.398

However, SQFT has the additional benefit of al-399

lowing for the merging without losing the previ-400

ously induced sparsity, both in full-precision and401

quantized modes. It is worth noting that SQFT402

with QA-SparsePEFT shows super competitiveness403

here, i.e., the most efficient model with high accu-404

racy (among all full-precision and quantized cases).405

3.3 Hill-climbing to Better Configurations406

The results presented in the previous sections em-407

ploy the simple heuristic (as detailed in Section408
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Figure 4: The adapter rank distribution of the optimal
configurations obtained from the hill-climbing search
algorithm (Phi-3-Mini-4K-Instruct with commonsense
reasoning).

3.1) to obtain a reference configuration from the 409

NLS search space. However, superior configura- 410

tions can be discovered with an additional budget. 411

We apply a well-designed hill-climbing search al- 412

gorithm (Algorithm 1 in Appendix), which starts 413

from the configuration derived from the heuristic 414

and explores its neighboring configurations in a hill- 415

climbing matter based on their validation accuracy. 416

For this purpose, we employed the validation sets 417

from Arc-e, Arc-c, and OBQA, as other datasets 418

do not provide a validation set. As demonstrated 419

in Table 4, a more optimal configuration can be 420

discovered, outperforming the default adapter con- 421

figuration obtained from the heuristic. Exploring 422

further the search space of elastic adapter ranks 423

produces richer adapter distributions as depicted in 424

Figure 4. More importantly, the test set results re- 425
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Table 3: Results for Phi-3-Mini-4K-Instruct with commonsense reasoning. SQFT obtains competitive fine-tuned
models with an additional benefit over Shears and LoRA applied to low-precision weights, i.e., SQFT’s adapters
can be efficiently merged into the weights without any loss of precision or accuracy. We are reporting a reference
submodel for SQFT obtained the heuristic detailed in 3.1, which means that, as shown in Table 4, with an additional
cost, SQFT can discover submodels with even higher performance.

Model SparsityMethod Mergeable
Final Precision Datasets | Accuracy(%)

Average
(Base + Adapter / Base)BoolQPIQAHellaSWinoGArc-eArc-cOBQA

Phi-3-Mini-4K-Instruct

0% w/o tune - FP16 86.1 80.3 78.5 73.7 83.2 57.5 46.8 72.3

50%

w/o Quantization

w/o tune - FP16 82.5 75.9 69.9 69.1 76.9 50.9 43.4 66.9

LoRA ✗ FP16 + FP16 85.6 79.1 75.8 71.5 79.6 53.2 49.4 70.6

Shears ✗ FP16 + FP16 85.2 78.9 75.7 72.6 80.1 53.3 50.4 70.9

SQFT + SparsePEFT (Ours) ✓ FP16 84.0 78.8 75.5 72.1 80.1 53.5 48.6 70.4

Quantization

w/o tune - INT4 81.4 75.2 68.5 68.2 75.9 50.3 40.2 65.7

GPTQ + LoRA ✗ INT4 + FP16 85.3 79.1 75.3 72.5 79.5 54.6 47.2 70.5

SQFT (Ours) ✗ INT4 + FP16 85.1 79.0 75.4 71.2 79.6 54.1 48.8 70.5

SQFT + QA-SparsePEFT (Ours) ✓ INT4 83.7 80.1 74.1 73.6 80.1 55.1 48.2 70.7

Table 4: Hill-climbing searching results for Phi-3-Mini-4K-Instruct with commonsense reasoning.

Model Sparsity Method Sub-Adapter
Validation Datasets | Accuracy(%) Test Datasets | Accuracy(%)
Arc-e Arc-c OBQA Average BoolQ PIQA HellaS WinoG Arc-e Arc-c OBQA Average

Phi-3-Mini-4K-Instruct 50%
SQFT + SparsePEFT

Heuristic 79.3 50.8 47.4 59.2 84.0 78.8 75.5 72.1 80.1 53.5 48.6 70.4
Hill-climbing 80.2 51.8 47.6 59.9 84.3 78.9 75.4 72.0 80.1 54.3 49.4 70.6

SQFT + QA-SparsePEFT
Heuristic 80.0 51.5 45.4 59.0 83.7 80.1 74.1 73.6 80.1 55.1 48.2 70.7
Hill-climbing 80.4 53.5 46.2 60.0 83.6 79.7 74.1 73.7 80.1 56.2 48.8 70.9
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Figure 5: Comparison of various sparsity levels for
Llama-3-8B with GSM8K. SQFT achieves similar per-
formance as Shears but with the added benefit of merg-
ing adapters with different numerical precision.

veal a significant improvement in the performance426

of the Arc-c and OBQA datasets, which suggests427

that an appropriate validation set can assist in iden-428

tifying the optimal adapter configuration.429

3.4 Exploring a Broader Range of Sparsity430

Levels431

All our previous experiments employ 50% sparsity432

as it is moderate and mild. In this section, we ex-433

plored the behavior of SQFT in a broader range of434

sparsity levels. As shown in Figure 5, the model’s435

accuracy experiences a significant drop between a436

sparsity of 60% and 70%. We denote this range 437

as the critical sparsity threshold, representing the 438

boundary at which the model’s performance begins 439

to degrade notably. Through our recovery down- 440

stream fine-tuning strategy, models with up to 50% 441

sparsity (even with quantization) can achieve com- 442

parable performance with the original dense model 443

(represented by the baseline in the figure) on the 444

downstream task. This 50% sparsity can be de- 445

fined as the optimal sparsity level, as it represents 446

the point of balance where the model maintains 447

high performance while achieving computational 448

efficiency. Moreover, there is little difference in 449

accuracy between our mergeable approaches and 450

non-mergeable methods, which illustrates the ef- 451

fectiveness of our proposed SparsePEFT. 452

3.5 Cost Analysis of Pipeline Configurations 453

The different versions of SQFT’s pipelines incur 454

various costs that allow users to choose based 455

on their fine-tuning budget. Table 6 details the 456

characteristics of each pipeline configuration, e.g., 457

whether we can merge the adapters, the preci- 458

sion of the based model and the adapters, and the 459

cost of each configuration. Two assumptions are 460
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Table 5: Ablation studies for LoRA vs. NLS (Llama-3-8B with GSM8K). Compared to LoRA, NLS demonstrates
significantly better accuracy performance across all possible pipelines of SQFT and different sparsity levels.

Model Sparsity Method Mergeable Final Precision Fine-tune GSM8K Test
(Base + Adapter / Base) Approach Accuracy(%)

Llama-3-8B

30%

Shears ✗ FP16 + FP16
LoRA 58.2
NLS 59.8+1.6

SQFT + SparsePEFT (Ours) ✓ FP16
LoRA 60.0
NLS 61.2+1.2

SQFT (Ours) ✗ INT4 + FP16
LoRA 56.7
NLS 57.6+0.9

SQFT + QA-SparsePEFT (Ours) ✓ INT4
LoRA 54.8
NLS 56.0+1.2

50%

Shears ✗ FP16 + FP16
LoRA 50.6
NLS 52.2+1.6

SQFT + SparsePEFT (Ours) ✓ FP16
LoRA 50.6
NLS 52.5+1.9

SQFT (Ours) ✗ INT4 + FP16
LoRA 48.9
NLS 50.0+1.1

SQFT + QA-SparsePEFT (Ours) ✓ INT4
LoRA 48.2
NLS 50.2+2.0

70%

Shears ✗ FP16 + FP16
LoRA 25.5
NLS 27.9+2.4

SQFT + SparsePEFT (Ours) ✓ FP16
LoRA 22.1
NLS 24.9+2.8

SQFT (Ours) ✗ INT4 + FP16
LoRA 24.2
NLS 25.2+1.0

SQFT + QA-SparsePEFT (Ours) ✓ INT4
LoRA 22.6+0.2
NLS 22.4

made regarding model storage, inference speedup,461

or memory: merging is better than unmerging462

due to the overhead from the unmerged adapters,463

and quantization mode is better than full-precision464

mode. As for accuracy, the mergeable method465

we propose is competitive with the previous non-466

mergeable method. Regarding the fine-tuning time,467

our mergeable method is slightly slower than the468

non-mergeable method due to the additional mask469

and adapter calculations. In summary, SQFT with470

SparsePEFT is the best choice for full-precision471

mode because it eliminates the adapter’s additional472

path without sacrificing accuracy. Suppose mem-473

ory usage during fine-tuning is a priority for the474

quantization mode. In that case, vanilla SQFT (first475

configuration in Figure 2) is the best choice because476

it only requires the quantized model with little over-477

head of different precision adapters. Otherwise,478

SQFT with QA-SparsePEFT is better because it479

can ultimately produce a most efficient model that480

will be of great benefit at deployment time.481

3.6 Ablation Studies - LoRA vs NLS482

As shown in Table 5, the ablation studies across483

30%, 50%, and 70% sparsity highlight the benefits484

of elastic adapters (NLS), which enhance the per-485

formance of SQFT, further reducing the gap to the486

dense or non-quantized models while enjoying the487

advantages of sparsity or quantization.488

Table 6: Cost analysis for different pipelines (rank).
ID 1, 2, 3, and 4 represent LoRA/Shears, SQFT +
SparsePEFT, SQFT, and SQFT + QA-SparsePEFT, re-
spectively.

ID 1 2 3 4

Mergeable ✗ ✓ ✗ ✓

Final Precision FP16 + FP16 FP16 INT4 + FP16 INT4

Model Storage (↓) 1 > 2 > 3 > 4

Fine-tuning Time (↓) 1 ≈ 3 < 2 ≈ 4

Fine-tuning Memory (↓) 3 < 1 ≈ 2 ≈ 4

Inference Speedup (↑) 4 > 3 > 2 > 1

Inference Memory (↓) 4 < 3 < 2 < 1

Accuracy (↑) 1 ≈ 2 > 3 ≈ 4

4 Conclusion 489

Large pre-trained models often require fine-tuning 490

to downstream target tasks and compression to uti- 491

lize them in resource-constrained environments. 492

This paper presents SQFT, a low-cost fine-tuning 493

solution for low precision and sparse foundation 494

models. SQFT solves challenges when merging 495

sparse (and quantized) base models and dense 496

(with different numerical precision) adapters with- 497

out losing the induced sparsity in the base model 498

while delivering high-performing fine-tuned mod- 499

els. We make a few SQFT’s fine-tuned mod- 500

els available to reviewers for reproducing our re- 501

sults at: https://anonymous.4open.science/ 502

r/sqft_examples-71C7 503
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Limitations and Ethical Considerations504

Large pre-trained models have gained popularity505

and are the base of many applications. However,506

these models are often used indiscriminately with507

little analysis of their potential failures and conse-508

quences. SQFT solely focuses on these large mod-509

els’ efficient fine-tuning and compression. How-510

ever, users of SQFT should also consider the lim-511

itations of these models before deployment in en-512

vironments where they can cause harm or conflict.513

Although compressing and fine-tuning these mod-514

els on a particular downstream task would make515

them perform better, more studies are needed re-516

garding the effects of this specialization.517

We demonstrate SQFT on several pre-trained518

models. The benefits obtained from the pro-519

posed solution might transfer smoothly to other520

transformer-based models. However, there might521

also be models and datasets in which additional522

considerations must be taken. For instance, in our523

current experiments, we have noticed that in the524

case of OpenELM-1.1B (Mehta et al., 2024), fine-525

tuning on math reasoning datasets, e.g., GSM8K,526

does not result in high accuracy, and more exper-527

imentation is needed. There is also the case in528

which a pre-trained model might have been trained529

on a particular benchmark, a form of data contam-530

ination, which is difficult to confirm since often531

the details of the training data are not shared pub-532

licly (Zhang et al., 2024). In these cases, inducing533

sparsity might result in a drop in accuracy on that534

particular benchmark.535

Due to the many unknowns and complexity of536

current large models, it is essential to take measures537

to prevent their use in sensitive applications. With538

insights obtained by the research community in539

the years to come, understanding the intricacies of540

these models will help us use them beneficially and541

safely.542
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Appendix710

A Related Work711

Generative pre-trained models often based on the712

Transformer architecture (Vaswani et al., 2017) re-713

quire the application of compression techniques to714

reduce their significant computational cost and to715

address challenges, e.g., related to memory band-716

width. Classic compression techniques like pruning717

and quantization have been adapted to the age of718

LPMs, removing inefficiencies that cannot be toler-719

ated when dealing with billions of parameters. We720

discuss them in more detail next.721

Pruning Inducing sparsity, either by zeroing out722

weights or activations or removing network ele-723

ments, can improve the efficiency of LPMs during724

inference, provided that they are executed on a725

runtime that can exploit sparse patterns. Pruning726

has a long history (LeCun et al., 1989), but with727

the advent of LPMs, traditional methods(Hoefler728

et al., 2021), e.g., Magnitude Pruning (Hagiwara,729

1994), have been replaced by new approaches that730

are suited for the challenges of these models. In731

particular, due to their large number of parameters.732

SparseGPT (Frantar and Alistarh, 2023) proposes733

a one-shot pruning method for transformer-based734

models that trade minimal accuracy drop for in-735

creasing sparsity levels. The method approaches736

LPMs’ pruning layer-wise with an efficient weight737

reconstruction algorithm that incrementally prunes738

the weight matrix elements. Wanda (Sun et al.,739

2023) proposes a more straightforward approach740

that does not require weight updates, computing741

a score using the weight magnitude and the norm742

of input activations. This approach obtains better743

results than SparseGPT. Recently, BESA (Xu et al.,744

2024) improves over SparseGPT and Wanda by745

targeting individual transformer blocks and allocat-746

ing sparsity per layer using a differentiable method.747

These approaches induce sparsity on pre-trained748

models and are evaluated on zero-shot benchmarks.749

Our end-to-end solution, SQFT, focuses on fur-750

ther adapting the sparsified models to new tasks or751

datasets.752

Quantization In the era of large pre-trained foun-753

dation/frontier models (LPMs), quantization ap-754

proaches have evolved to address the challenges755

of scale and memory bandwidth. Due to the756

high cost of retraining these models to recover ac-757

curacy degradation, special consideration has to758

be taken when incorporating compression tech- 759

niques, like quantization-aware training in foun- 760

dation models. Post-training, one-shot quantiza- 761

tion methods have prevailed, obtaining quantized 762

versions of large models in hours. LLM.Int8() 763

was among the first Int8 quantization procedures 764

for large-scale transformer-based PLMs (Dettmers 765

et al., 2022). Using vector-wise quantization 766

and mixed-precision decomposition, LLM.Int8() 767

demonstrated that it can effectively confront the 768

outliers that emerge in activations, which makes tra- 769

ditional quantization methods fail in models with 770

more than 6.7B parameters. In a contemporary 771

work, after running thousands of experiments with 772

various large pre-trained models, it was demon- 773

strated that 4-bit parameters can reach optimal 774

performance compared to other bit-precisions in 775

the 3 to 16-bit range (Dettmers and Zettlemoyer, 776

2023). ZeroQuant (Yao et al., 2022) quantizes 777

GPT-3 models, obtaining a reduction in latency 778

up to 4.16x by utilizing group-wise quantization 779

for weights, token-wise quantization for activa- 780

tions, and layer-by-layer knowledge distillation. 781

SmoothQuant (Xiao et al., 2023) makes activations 782

easier to quantize by smoothing them and compen- 783

sating this operation with a transformation of the 784

weights, resulting in improved results over Zero- 785

Quant and LLM.Int8(). GPTQ is another good rep- 786

resentative of one-shot quantization approaches de- 787

signed especially for LPMs (Frantar et al., 2022a). 788

GPTQ builds on the learnings from Optimal Brain 789

Quantization (OBQ) (Frantar et al., 2022b) and ap- 790

plies layer-wise quantization to the full-precision 791

weights of a base LPM. We incorporate GPTQ as 792

the default quantization method in SQFT’s pre-fine- 793

tuning stage. 794

Parameter-efficient Fine-tuning (PEFT) Due 795

to their large number of parameters, it is too costly 796

to fine-tune pre-trained large models. Updating all 797

their weights to improve their performance in a 798

downstream task might require devices with large 799

memory capacity. PEFT techniques attempt to ad- 800

dress this challenge by avoiding the update of all 801

weights in the pre-trained model. For instance, 802

low-rank (LoRA) adapters (Hu et al., 2022) use a 803

fraction (often less than 1%) of additional weights 804

to adapt the model to a new task. LoRA adapters, 805

B and A, are utilized to reparameterize a linear 806

projection, Y = WX , keeping the weights, W , 807

frozen and updating only the low-rank adapter ma- 808

trices, A and B, i.e., Y = WX +BAX . 809
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Algorithm 1 Hill-climbing Search Algorithm
Input: Number of turns T , Number of neighbors N , Neighbor step size S, Number of evaluation samples M , Heuristic

configuration ch, Validation dataset D
Output: Optimal configuration c∗

1: ca ← ch ▷ Initialize anchor with the heuristic configuration
2: V ← {ch} ▷ Initialize the set of visited configurations
3: DM ← Sample(D, M ) ▷ Create a proxy dataset by randomly sampling M samples from D
4: for t← 1 to T do
5: C ← Neighbor-sample(ca, N , S) - V ▷ Sample N unvisited S-step neighbor configs
6: V ← V ∪ C ▷ Add the sampled configurations to the set of visited configurations
7: cm ←MaxAcc(Eval(DM , C)) ▷ The config with the maximum accuracy on proxy data
8: if Acc(cm) > Acc(c∗) then
9: ca ← cm ▷ Update anchor configuration if the new configuration has higher accuracy

10: end if
11: end for
12: c∗ ← ca ▷ The optimal configuration is the final anchor configuration
13: return c∗

Recently, Shears proposed Neural Low-rank810

Adapter Search (Munoz et al., 2024a) and demon-811

strated that LoRA adapters can be made elastic to812

allow for the application of weight-sharing schemes813

and keeping the original weights of the model814

frozen and compressed, e.g., inducing sparsity be-815

fore the fine-tuning stage. However, a challenge816

that emerges is that merging the dense adapters817

with the sparse weights results in the overall loss of818

sparsity. LoRAPrune has attempted to address this819

challenge by using the weights and gradients of the820

LoRA adapters to remove elements in the model’s821

weights (Zhang et al., 2023). As demonstrated in822

the main sections of the paper, SQFT proposes an823

alternative method for merging the dense adapters824

with a minimal drop in accuracy.825

B Hyperparameters826

The hyperparameters used in our main experiments827

are shown in Table 7.828

C Hill-climbing search algorithm829

We propose Algorithm 1 to start from the refer-830

ence configuration (Section 3.1) and systematically831

explore its neighbors. Table 4 in the main pa-832

per shows the benefits of using any available bud-833

get to execute this algorithm and discover better-834

performing models.835

D Additional Sparsity Levels and836

Ablation Studies for Llama-3 on837

GSM8K838

We conducted additional experiments and ablations839

studies with different sparsity levels and compared840

the underlying NLS approach to LoRA. Table 8841

shows that up to high sparsity levels, SQFT delivers 842

high-performing models. 843
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Table 7: Hyperparameters used in our experiments. For all approaches with NLS, we explored several manually
designed search spaces and identified the optimal configuration for each pipeline. Note that in our experiments
involving GSM8K and math instruction tuning, we conducted trials over 3 or 4 epochs and reported the best results
achieved. Interestingly, SQFT with QA-SparsePEFT often necessitates extended training periods to exploit its
quantization-aware capabilities fully.

Model Task Sparsity Method Epoch Batch Learning Adapter rank Adapter Adapter
size rate alpha target modules

Llama-3-8B GSM8K 50%

LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down
Shears 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
SQFT + SparsePEFT 3 16 3e-4 48,32,16 64 Q, K, V, Up, Down
GPTQ + LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down
SQFT 3 16 3e-4 40,32,24 64 Q, K, V, Up, Down
SQFT + QA-SparsePEFT 4 16 3e-4 48,32,16 64 Q, K, V, Up, Down

Phi-3-Mini-4K-Instruct Math 50%

LoRA 3 16 3e-4 32 64 Qkv
Shears 3 16 3e-4 48,40,32,24,16 64 Qkv
SQFT + SparsePEFT 3 16 3e-4 48,32,16 64 Qkv
GPTQ + LoRA 3 16 3e-4 32 64 Qkv
SQFT 3 16 3e-4 32,28,24,20,16 64 Qkv
SQFT + QA-SparsePEFT 4 16 3e-4 32,24,16 64 Qkv

Phi-3-Mini-4K-Instruct CS 50%

LoRA 3 16 1e-4 16 32 Qkv
Shears 3 16 1e-4 16,12,8 32 Qkv
SQFT + SparsePEFT 3 16 1e-4 16,12,8 32 Qkv
GPTQ + LoRA 3 16 1e-4 16 32 Qkv
SQFT 3 16 1e-4 16,12,8 32 Qkv
SQFT + QA-SparsePEFT 3 16 1e-4 16,12,8 32 Qkv
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Table 8: Ablation studies for various sparsity levels (Llama-3-8B with GSM8K).

Model Sparsity Method Mergeable Final Precision Fine-tune GSM8K Test
(Base + Adapter / Base) Approach Accuracy(%)

Llama-3-8B

0% w/o tune - FP16 - 50.0

20%

w/o Quantization
w/o tune - FP16 - 47.5

Shears ✗ FP16 + FP16 LoRA 58.7
NLS 61.2+2.5

SQFT + SparsePEFT ✓ FP16 LoRA 60.3
NLS 62.0+1.7

Quantization
w/o tune - INT4 - 36.6

SQFT ✗ INT4 + FP16 LoRA 57.8
NLS 60.0+2.2

SQFT + QA-SparsePEFT ✓ INT4 LoRA 54.7
NLS 55.6+0.9

30%

w/o Quantization
w/o tune - FP16 - 40.9

Shears ✗ FP16 + FP16 LoRA 58.2
NLS 59.8+1.6

SQFT + SparsePEFT ✓ FP16 LoRA 60.0
NLS 61.2+1.2

Quantization
w/o tune - INT4 - 30.3

SQFT ✗ INT4 + FP16 LoRA 56.7
NLS 57.6+0.9

SQFT + QA-SparsePEFT ✓ INT4 LoRA 54.8
NLS 56.0+1.2

40%

w/o Quantization
w/o tune - FP16 - 31.6

Shears ✗ FP16 + FP16 LoRA 56.9
NLS 56.9

SQFT + SparsePEFT ✓ FP16 LoRA 57.9+1.5
NLS 56.4

Quantization
w/o tune - INT4 - 20.1

SQFT ✗ INT4 + FP16 LoRA 54.9
NLS 54.9

SQFT + QA-SparsePEFT ✓ INT4 LoRA 53.4
NLS 53.7+0.3

50%

w/o Quantization
w/o tune - FP16 - 12.5

Shears ✗ FP16 + FP16 LoRA 50.6
NLS 52.2+1.6

SQFT + SparsePEFT ✓ FP16 LoRA 50.6
NLS 52.5+1.9

Quantization
w/o tune - INT4 - 7.0

SQFT ✗ INT4 + FP16 LoRA 48.9
NLS 50.0+1.1

SQFT + QA-SparsePEFT ✓ INT4 LoRA 48.2
NLS 50.2+2.0

60%

w/o Quantization
w/o tune - FP16 - -

Shears ✗ FP16 + FP16 LoRA 39.9
NLS 45.3+5.4

SQFT + SparsePEFT ✓ FP16 LoRA 40.7
NLS 42.5+1.8

Quantization
w/o tune - INT4 - -

SQFT ✗ INT4 + FP16 LoRA 40.1
NLS 42.0+1.9

SQFT + QA-SparsePEFT ✓ INT4 LoRA 37.6
NLS 40.9+3.3

70%

w/o Quantization
w/o tune - FP16 - -

Shears ✗ FP16 + FP16 LoRA 25.5
NLS 27.9+2.4

SQFT + SparsePEFT ✓ FP16 LoRA 22.1
NLS 24.9+2.8

Quantization
w/o tune - INT4 - -

SQFT ✗ INT4 + FP16 LoRA 24.2
NLS 25.2+1.0

SQFT + QA-SparsePEFT ✓ INT4 LoRA 22.6+0.2
NLS 22.4
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