
Robustifying Point Cloud Networks by Refocusing

Meir Yossef Levi, Guy Gilboa
Viterbi Faculty of Electrical and Computer Engineering
Technion - Israel Institute of Technology, Haifa, Israel

me.levi@campus.technion.ac.il ; guy.gilboa@ee.technion.ac.il

Abstract

The ability to cope with out-of-distribution (OOD) cor-
ruptions and adversarial attacks is crucial in real-world
safety-demanding applications. In this study, we develop
a general mechanism to increase point clouds neural net-
works robustness based on focus analysis. Recent stud-
ies have revealed the phenomenon of Overfocusing, which
leads to a performance drop. When the network is primar-
ily influenced by small input regions, it becomes less robust
and prone to misclassify under noise and corruptions. How-
ever, quantifying overfocusing is still vague and lacks clear
definitions. Here, we provide a mathematical definition of
focus, overfocusing and underfocusing. The notions are
general, but in this study, we specifically investigate the case
of 3D point clouds. We observe that corrupted sets result in
a biased focus distribution compared to the clean training
set. We show that as focus distribution deviates from the one
learned in the training phase - classification performance
deteriorates. We thus propose a parameter-free refocusing
algorithm that aims to unify all corruptions under the same
distribution. We validate our findings on a 3D zero-shot
classification task, achieving SOTA in robust 3D classifi-
cation on ModelNet-C dataset, and in adversarial defense
against Shape-Invariant attack.

1. Introduction
In recent years, significant research efforts have been dedi-
cated to understanding the underlying mechanisms of neu-
ral networks for producing accurate and reliable results.
One important area of study is explainable AI (XAI), which
aims to determine where the network ”looks” within an im-
age to establish classification [2, 3, 37]. It is well known that
networks may rely on spurious cues [14] or shortcuts [7] for
prediction. For instance, a cow may be predicted based on a
green pasture rather than cow features, influenced by dataset
bias. XAI algorithms typically propagate gradient compu-
tations to provide a heatmap, showing regions in the image
that mostly contributed to the network’s decision. While nu-
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Figure 1. Outliers and smooth corruptions often draw high
influence. Samples color coded according to influence. The mea-
surement of influence, well distributed according to meaningful
features in uncorrupted point clouds, is redistributed mainly to out-
liers in the corrupted version.

merous explainable approaches exist in various fields, meth-
ods to effectively analyze these heatmaps remain unclear.
Consequently, there are limited tools available for analyz-
ing XAI maps, particularly those fast enough to be embed-
ded for decision-making during the inference phase. We
propose to analyze XAI heatmaps through the lens of focus
analysis.

By measuring the influential regions (using existing XAI
tools), it is possible to investigate the relations between the
focus of the network and its performance. Although a def-
inition of attention concentration based on entropy was in-
troduced in [8], the term focus, in a general context, remains
somewhat ambiguous and not well-defined. Intuitively, a
focused network is influenced by only a few prominent in-
put data points, while an unfocused one relies on input data
spread throughout the domain. See Fig. 2 for point cloud
examples of high and low focus.

Recent studies have shown that many networks tend to
overfocus, making decisions based only on a few highly lo-
calized input regions [10]. This results in less stable per-
formance and lacks robustness when statistics change with
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Figure 2. High and low focus examples. Samples resulting in low focus distribute influence across a wide spatial range of points, while
in the case of high focus, influence becomes concentrated within specific regions. Samples containing flat areas, with some extent of
symmetry against the center of the shape, contribute to a decrease in focus. It is possible that samples predominantly spanning a 2D plane
prompt the network to prioritize attention towards distinctive regions. Points are color-coded by influence.

respect to the training phase. We investigate classification
robustness in the context of 3D point clouds, examining the
interplay between focus and robustness to corruptions and
to adversarial attacks. We first define a general notion of
the network’s focus based on normalized entropy. We then
analyze the focus distribution and its changes under vari-
ous corruptions, using a recently proposed corrupted point
cloud benchmark, ModelNet-C [35]. Our findings reveal
that the clean dataset, used during training, has a distinct
focus distribution for which the network is optimal. Each
corruption type induces a different unique focus distribu-
tion. The general trend is that corruptions involving outliers
cause overfocus, while those involving occluded parts cause
underfocus, compared to the uncorrupted data (See Fig. 3).
This leads to significant performance degradations.

We propose a new learning procedure that reduces the
variance of the focus distribution under corruptions. In
a nutshell, we train the network to perform a more chal-
lenging task, relying on less influential input points. This
results in a less focused network during training. Subse-
quently, by applying the same filtering during inference,
which may contain corruptions, we achieve a focus dis-
tribution which is more aligned to the training phase. A
more stable network is obtained, with improved robustness
to out-of-distribution (OOD) corruptions, effectively bal-
ancing overall performance on clean samples. This generic
idea can enhance the robustness of various point cloud clas-
sification networks. We demonstrate it on DGCNN [44],
RPC [35], and GDANet [52].
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Figure 3. Variation of focus across different corruptions. In-
fluence maps on corrupted samples from ModelNet-C [35] using
DGCNN [44]. The presence of outliers predominantly increases
focus, while occluded parts decrease it. Points are color-coded ac-
cording to influence. We denote by f the focus of the network for
that sample, as defined in Eq. (3).

1.1. Why rely on less influential inputs?

Our approach might seem counterintuitive, as one would
expect prominent regions to contribute most to high-quality
class discrimination. However, relying on less influential
points offers several important benefits:
1. Calibrated focus. Our analysis demonstrates that the

network performs optimally for data within the focus
distribution of the training phase (Fig. 6). The proposed
learning procedure of refocusing by screening out the in-
fluential points is highly stable, yielding a similar focus
distribution for OOD samples as for the clean set, as il-
lustrated in Fig. 4.
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Figure 4. Refocusing. Left - Focus distribution on DGCNN [44] based on the clean set of ModelNet40 [47] and on corrupted sets
(ModelNet-C [35]). Corrupted samples deviate from the in-focus region. Right - Screening out influential points align the focus distribution,
expanding the in-focus region at the expense of under- and over-focus regions. In the chair example shown, one can observe the network is
influenced by similar points after refocusing, resembling roughly the same influence distribution across the shape.

2. Better resilience to corruptions. Corruptions are often
perceived as influential features by the network, lead-
ing to a significant performance drop, as shown in Fig.
1. Our approach exhibits implicit significant filtering ca-
pacity of outliers. In Tab. 1, we conducted a compar-
ison between filtering the most influential and filtering
the less influential points to analyze the trade-off be-
tween accuracy on the clean set and on the corrupted set.
We find that relying on the less influential points signif-
icantly enhances robustness to outliers at the expense of
only a slight performance drop on the clean set (i.e. for
DGCNN [44], a significant improvement in the Mean
Corruption Error, reducing it from 1.000 to 0.688).

3. Preserving clean data performance. Sub-sampling,
known for enhancing robustness [22, 25], may cause a
slight performance drop. However, this can be compen-
sated through ensemble methods [22], which, overall,
can surpass vanilla performance, as validated in Tab. 2.
Integrating our approach with the ensemble classifica-
tion method EPiC [22] yields competitive results on
clean samples while significantly improving robustness.

Our main contributions are:
1. We provide a general definition for the network’s fo-

cus and for over- and under-focusing. A comprehensive
analysis is performed relating corruptions to the focus
distribution.

2. We propose a refocusing scheme, which is parameter-
free and can be applied to any point-cloud classification
network. It offers a more robust and reliable learning
strategy, handling OOD corruptions and adversarial at-

Accuracy

Clean Add-Global [35]
Least Influential 91.0% 90.3%
Most Influential 91.1% 43.2%

Table 1. Test accuracy of most vs. least influential inputs.
While both approaches perform comparably on the clean set, us-
ing less influential points is much more robust to outliers. Trained
and evaluated on 600 least or most influential.

tacks better, without sacrificing overall accuracy.
3. We demonstrate our approach in Robust Classification

and Adversarial Defense, achieving state-of-the-art re-
sults.

2. Related Work

Focus in neural networks. Focus has been investigated
until now mainly in the context of attention maps of trans-
formers. The studies of [5] and [29] have highlighted the
tendency of attention maps in certain network layers to rely
heavily on a few dominant tokens. Guo et al. [10] coined
this phenomenon as Token Overfocusing and established a
correlation with corruptions. While there have been visual
demonstrations of overfocused attention maps, we lack a
clear and standardized definition of focus, which may be
applied to any type of network. Ghader et al. [8] introduced
Attention Concentration defined mathematically using at-
tention entropy. This definition has allowed for the analy-
sis of attention concentration in different parts of sentences



in natural language processing (NLP) [43], and the investi-
gation of differences between supervised and unsupervised
training in terms of attention entropy [30]. However, it is
primarily designed for attention maps in transformers and
cannot be applied to general neural network architectures.
Additionally, it does not rely on normalized entropy, which
plays a vital role when dealing with varying numbers of in-
put elements.

3D robust classification. Point cloud classification
[9, 26, 28, 32, 33, 44, 50–52, 56] is vital for autonomous
driving [4, 57] and robotics [42]. However, research on
robustness against corruptions is relatively scarce. Point-
Net [32] introduced the concept of critical points, which
is a subset of points that remain active after the last pool-
ing layer. We note that outliers are often misinterpreted as
influential or critical. Supervised [6, 19] and unsupervised
[55] 3D sorting strategies have been proposed to better sam-
ple point clouds for downstream tasks. These approaches
prone to underperform at the presence of out-of-distribution
(OOD) corruptions since they prioritize highly influential
points. Our observations indicate outliers are highly likely
to be sampled by these methods. Several studies [34, 53]
offered learnable outlier removal for adaptive sampling
in Euclidean space. ModelNet-C dataset [35] introduced
real-world corruptions, involving outliers or missing points
(which can be caused by occlusions) from 3D point clouds,
either globally or locally. They also proposed Robust Point-
cloud Classifier (RPC) [35], an algorithm which is a com-
bination of the most robust modules from typical classifi-
cation networks, achieving state-of-the-art performance on
ModelNet-C. Recently, EPiC [22] proposed an ensemble
approach combining different sampling schemes, outper-
forming RPC. However, such ensemble methods are rela-
tively resource-intensive.

3D adversarial attacks. Designing classification net-
works which are robust against adversarial attacks, particu-
larly in 3D settings, is significant. Numerous 3D adversar-
ial attack methods have emerged in recent years [13, 17, 21,
24, 39, 41, 45, 49, 54, 61–63]. These attacks primarily focus
on perturbing points, emphasizing imperceptible manipula-
tions. Our proposed influence measure and point filtering
approach can be employed for adversarial defense. Shape-
Invariant Attack [15] introduces a sensitivity map consis-
tent across diverse neural networks, sliding points along
the tangent plane based on this map. Point Cloud Saliency
Maps [62] analyze gradient loss when shifting points to the
spherical center to determine importance. The vulnerabil-
ity of critical points [32] has been used to design several
attack strategies, such as [45, 49, 54]. We compare our pro-
posed defensive scheme against the state-of-the-art Shape-
Invariant Attack [15], highlighting that even imperceptible
perturbations can alter point influence, demonstrating the
generality of our approach.

3D adversarial defense. Advanced 3D augmentation
techniques like PointWolf [18] and RSMix [20] enhance
network robustness against corruptions [35]. Adversarial
Training (AT) techniques [12, 16, 23, 31, 40, 54, 59] inten-
tionally introduce perturbations during training to defend
against malicious attacks, but they require prior knowledge,
therefore not robust for OOD corruptions. PointGuard [25]
and PointCert [58] propose certified defense schemes us-
ing point-cloud sub-sampling and majority voting. How-
ever, their ensemble strategy is highly demanding compu-
tationally. Point filtering techniques include Simple Ran-
dom Sampling (SRS) [64], which removes input points ran-
domly, and Statistical Outlier Removal (SOR) [36], which
filters points far from their nearest neighbors. SOR per-
forms well against outliers (with known distributions) but
may fail on smooth corruptions. Dup-Net [64] combines de-
noising and upsampling, significantly increasing inference
time. LPF-Defense [12] focuses on low-frequency features
using spherical harmonics transformation. IF-Defense [48]
optimizes surface distortion, requiring a training phase dur-
ing inference. In [23] prediction derivatives are calculated
to obtain per-point importance, facing scalability challenges
with large networks. Our work aims to address these chal-
lenges. In our comparison we use Shape-Invariant attack
[15] and LPF-Defense [12] as baselines.

3. Focus Definition and Refocusing Method
Let X ∈ RN×d be the input data consisting of N elements
Xi ∈ Rd in arbitrary dimension d. Let F : RN×d → Rm

be a classification neural network for m classes. We denote
by IF (X) : RN×d → RN an influence score. This measure
attempts to quantify, for a given X , the amount of influence
of each input element on the output of the network F . The
term influence may be defined in various ways with mul-
tiple approaches to compute it, such as based on attention
mechanisms or in the general case by using XAI methods.
We denote by IiF the ith element of IF (X). It is further as-
sumed that the influence score is normalized, such that it has
only non-negative values with a unit sum, that is, IiF ≥ 0,
∀i = {1, .. , N}, and

∑N
i=1 I

i
F = 1.

3.1. Focus

Let p be a distribution of N elements with pi denoting the
probability of each element. We remind that pi ≥ 0, ∀i, and∑N

i=1 pi = 1. Given some probability distribution p, a gen-
eral measure for uniformity of that distribution is entropy,

H(p) := −
N∑
i=1

pi ln(pi). (1)

It is a non-negative function, H is low when the distribution
has sharp peaks and its value increases as the distribution
becomes more even. To obtain a normalized measure, in the



Model Approach WolfMix[18, 20] Un-Augmented

Clean↑ mCE↓ Clean↑ mCE↓

DGCNN[44]

Vanilla 93.2% 0.590 92.6% 1.000
EPiC [22] 92.1% 0.529 93.0% 0.669

PointGuard [25] 81.9% 1.154 83.8% 1.165
Refocusing (Ours) 91.4% 0.560 91.6% 0.688

EPiC & Refocusing (Ours) 92.9% 0.484 93.4% 0.557

RPC[35]

Vanilla 93.3% 0.601 93.0% 0.863
EPiC [22] 92.7% 0.501 93.6% 0.750

PointGuard [25] 83.2% 1.067 86.9% 1.051
Refocusing (Ours) 91.2% 0.562 91.6% 0.728

EPiC & Refocusing (Ours) 92.9% 0.476 93.2% 0.616

GDANet[52]

Vanilla 93.4% 0.571 93.4% 0.892
EPiC [22] 92.5% 0.530 93.6% 0.704

PointGuard [25] 83.2% 1.059 84.8% 1.132
Refocusing (Ours) 91.8% 0.528 91.4% 0.718

EPiC & Refocusing (Ours) 92.8% 0.493 93.4% 0.587

Table 2. Comparison on ModelNet-C [35], WolfMix augmented and augmented free. Our approach is on-par with EPiC with extremely
faster inference time (see Fig. 7). Combining our approach as extra sampling strategy in EPiC based on RPC achieves SOTA results in
terms of robustness. Lower mean Corruption Error (mCE), values and on-par performance on uncorrupted (clean) set, ModelNet40 [47].

range [0, 1], we use normalized entropy. This measure di-
vides the entropy by the maximum possible entropy for that
sample: Hn := H/Hmax, where Hmax = maxp{H(p)}.
It is well known that entropy is maximized for the uniform
distribution, pi = 1/N , ∀i. Plugging this in Hmax and rear-
ranging yields the following expression for the normalized
entropy [46],

Hn(p) =
H(p)

ln(N)
. (2)

We can now define the focus of a network.

Definition 3.1 (Focus of a network) Given a network F ,
an input X and an associated normalized influence mea-
sure ÎF (X), the focus of the network, denoted f , is defined
by

f(X) := 1−Hn(ÎF (X)). (3)

Let us state some basic properties of f(X).

Proposition 3.1 (Focus properties) For any network F ,
input X of any size N and normalized influence IF (X),
the focus f(X) has the following properties:
1. f(X) ∈ [0, 1].
2. f(X) = 1 iff ∃i, IiF = 1, IjF = 0, ∀j ̸= i.
3. f(X) = 0 iff IiF = 1

N , ∀i.

The proof follows directly from the properties of normal-
ized entropy. Consequently, we obtain a general definition
of focus within the range [0, 1], enabling easy comparison

across different network settings and input sizes. To pro-
vide a better intuition for the extremities of the focus mea-
sure distributed on a 3D shape, we visualize samples from
ModelNet40 [47] with high and low focus values in Fig. 2.

3.1.1 Why normalized entropy?

As mentioned in [46],“To obtain a measure of uncertainty
that can be compared across distributions, actual uncer-
tainty must be divided by the maximum possible uncer-
tainty.” In this paper, our primary focus is on 3D classifi-
cation; however, we formulate the definition in a broader
context, such that it can be extended to other domains. For
an entropy measure, the following relation holds:

−
k1∑
1

1

k1
ln

(
1

k1

)
> −

k2∑
1

1

k2
ln

(
1

k2

)
.

For all k1 > k2 > 0. This implies that the maximal
(not normalized) entropy of a vector with more elements
is higher. In 3D analysis, when the influence measure is
evenly distributed, a larger point cloud has larger entropy.
We would like a measure which is invariant to the point
cloud size. Hence, normalized entropy is employed.

3.2. Focus distribution, over- and under-focusing

We would like to analyze the network’s focus behavior un-
der different datasets, introducing additional notions. Let
T ∈ RMT×N×d represent a training set with MT data in-
stances, and S ∈ RMS×N×d denote a test set with MS data



instances. Random samples from these sets are denoted
as XT and XS , respectively. The empirical mean is de-
noted by E[·]. For a given set Q, let µQ = E[f(XQ)] and
σQ =

√
E[(f(XQ)− µQ)2].

Algorithm 1 Refocusing (Inference)

Require: X, paramsrefocused
modelrefocused ← paramsrefocused ▷ Load Pretrained
Xf = modelrefocused(X) ▷ First forward-pass
I(X) = Eq.(4)
Î = I

ΣN
i=1(I)

f = Eq.(3) ▷ Calculate f
K = ⌊(1− f) ·N⌋ ▷ Adaptive Threshold
▷ Select K lowest influential points
Xsampled = SelectLowest(X, Î,K)
P = modelrefocused(Xsampled) ▷ Second forward-pass
Class = argmax(P )

We define an over-focused sample as XS such that
f(XS) ≥ µT +α · σT and an under-focused sample as XS

such that f(XS) ≤ µT −β ·σT , where α and β are tunable
parameters corresponding to T . Practically, this approach
allows us to identify OOD regions, where samples signifi-
cantly deviate from the learned focus distribution. Detect-
ing such regions is crucial, as performance degradation is
associated with data residing outside the training distribu-
tion (See Fig. 6). By incorporating prior knowledge derived
from the statistics obtained during training, we gain valu-
able insights into potential challenges the model may en-
counter when faced with unfamiliar data at inference.

3.3. Refocusing

Our method relies on filtering the most influential points
identified by a given influence map, as outlined in Algo-
rithm 1. To achieve this, we seek an influence evaluation
that is computationally efficient, given its integration dur-
ing inference. The literature on XAI for point-cloud clas-
sification broadly falls into three categories: 1) Iterative
processes [38, 62]; 2) Dedicated explainable architectures
[1, 60]; 3) Utilizing gradients [11, 27]. However, these ap-
proaches either consume significant computational time or
lack the capacity to explain certain architectures. Conse-
quently, we choose an explainable method that is a variation
of [55]. In essence, the influence measure prioritizes impor-
tance based on the frequency of appearance in the global
feature vector. Specifically, it quantifies the count of fea-
tures with the highest values compared to all other points.
The influence measure is defined as:

IF (X(j, ·)) =
K∑

k=1

I(j == argmax
n

(Xf (n, k))), (4)

where I is an indicator function (equal to 1 when true and
0 otherwise), Xf ∈ RN×K is a matrix where each row
corresponds to a per-point learned feature, and K is the
size of the feature vector. The normalized influence is thus
ÎF (X(j, ·)) = IF (X(j,·))∑N

i=1 IF (X(i,·)) .

3.3.1 Refocusing - “Reign of the less influential”

In Fig. 6 the success rate is shown as a function of focus.
We see typical narrow range for the clean set and a much
wider range for the corrupted sets. Based on our observa-
tion that outliers strongly affect the influence map, it is in-
tuitive to diminish corruption byproducts by discarding the
most influential points. Thus, the influence is redistributed
among the remaining points. This action should filter out
corruptions and align the focus closer to the narrow region
of the clean set. Introduction or removal of points shifts the
focus distribution from the distribution learned during train-
ing. Outliers cause over-focusing, whereas missing points
yield under-focusing. However, after cropping most influ-
ential points, the focus distribution is aligned, as can be seen
in Fig. 4. Therefore, we term our process as refocusing.
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Figure 5. Adaptive vs. fixed threshold. Our adaptive threshold
demonstrates superior robustness compared to any fixed threshold.
The adaptive, parameter-free threshold yields a single result, rep-
resented as a straight (orange) line in the plot.

3.3.2 Adaptive threshold

We argue that samples containing outliers should be sub-
jected to more aggressive filtering, compared to samples
that have missing points. In fact, it is not clear whether the
latter case should be sampled at all. This raises the general
question: How many points should be retained? In infor-
mation theory, normalized entropy [46], also referred to as
efficiency can resolve this. One can think of maximal en-
tropy as the most efficient representation, where normalized
entropy is a measure of relative efficiency. In the context
of 3D classification, setting equal contribution for any in-
put point is equivalent to the most efficient representation.
Thus, we advocate using normalized entropy as a criterion
for determining the ratio of remaining points during the fil-
tering process. We set the remaining number of points to
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Figure 6. In-focus, Under-focus, and Over-focus. Top - Histogram of focus values for the clean set, ModelNet40 [47], defining the
in-focus region inside the standard deviation. Histograms collected from corrupted sets in ModelNet-C [35] are clearly out of the training
distribution. The trend indicates that the appearance of outliers correlates with over-focusing, while the absence of points correlates with
under-focusing. Bottom - Success rate of clean (blue) and corrupted (red) sets. A clear performance drop is observed in the over-focus and
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Figure 7. Robustness vs. inference time (log-scale). Our method
is as fast as vanilla networks, with outstanding robustification, on-
par with EPiC [22]. Combining our approach as extra sampling
strategy achieves SOTA mCE (both highlighted in blue).

We evaluate various fixed values of remaining points,
compare them to our adaptive threshold, and plot the ac-
curacy on uncorrupted samples and robustness to corrupted
ones in a classification task (see Fig. 5). The results strongly
support our proposal of employing an adaptive threshold
rather than a fixed one. The utilization of our suggested
selective filtering approach significantly improves the mean
corruption error (mCE) compared to any fixed number of
sampling points. Moreover, it preserves good performance
in terms of success rate on clean samples. Our refocusing

algorithm by sampling is summarized in Algorithm 1 for
inference; the training procedure is detailed in the supple-
mentary.

4. Applications and Experiments
We now show how our proposed refocusing method can be
used for robust classification and adversarial defense.

4.1. Robust classification

Benchmark. ModelNet-C [35] is a variation of ModelNet-
40 [47] designed to assess robustness to out-of-distribution
(OOD) data. It introduces seven types of corruptions (jitter,
scale, rotate, add-global, add-local, drop-global, and drop-
local), each with five difficulty levels. A unified calculation
mechanism, referred to as mean Corruption Error (mCE),
is used to measure robustness. Lower mCE scores indicate
better performance. Please refer to [35] for more details.

During training, a point-cloud classification network is
trained on the clean set only, adapted to accept a wide range
of sampled points (256-1024). The same basic network is
used for querying the influence map and for the actual pre-
diction on the filtered sample. Thus, this process can be
thought of as a self-restraining process. The network pro-
vides a mapping of the influential inputs. After refocusing,
the same network is used for classification, based on the
least influential points. More details and a pseudocode of
the training procedure appear in the supplementary. Infer-
ence procedure is described in details in Algorithm 1. It
includes dual forward-pass, and simple and fast extra cal-



Defense DGCNN [44] PointNet[32] GDANet[52]

ASR↓ AQ↑ ASR↓ AQ↑ ASR↓ AQ↑
Undefended 99.3 106.7 99.8 18.9 99.8 18.9
SRS(50%) [64] 78.4 566.3 94.0 190.9 78.1 595.4
SRS(30%) [64] 68.6 790.3 97.6 93.5 72.4 714.0
SOR [36] 75.6 795.6 78.4 592.9 69.9 913.2
LPF-Defense[12] 47.8 1148.0 98.2 123.1 52.6 1071.4
Refocusing (Ours) 37.5 1376.18 72.0 730.4 34.6 1425.5

Table 3. Adversarial defenses from shape-invariant attack [15] on ModelNet40 [47]. Attack success rate (ASR, measured in percents)
is consistently the lowest and mean query cost (AQ, measured in average time) is the highest, over all examined networks, compared to all
other defense methods. Note that for DGCNN and GDANet ASR is extremely decreased.

culations. To demonstrate the efficiency of the proposed
method, Fig. 7 depicts a comparison to other robust net-
works, by plotting mCE vs. inference time. We train
three different networks with refocusing, showing a sub-
stantial improvement in robustness (lower mCE), while be-
ing competitive in terms of accuracy on clean samples. To
further mitigate accuracy on clean samples, and for even
better performance against corruptions, we used refocusing
as an extra global sampling strategy, such that combining
with EPiC [22] ensemble method, yields SOTA results on
this dataset (technical explanation of embedding refocus in
EPiC are provided in the supplementary).

4.2. Adversarial defense

Another major threat for point cloud classification networks
is adversarial attacks. It has been shown that main classi-
fication networks are vulnerable for this attacks, even for
barely distinguishable perturbed clouds [15, 62]. In these
cases, the classification network has no knowledge regard-
ing the manipulation, thus, there is a clear advantage for
OOD robust approaches. We applied our method (as de-
scribed in Alg. 1) as a defense scheme against Shape-
Invariant Attack [15] and evaluated it against several OOD
defenses. Our evaluation includes a comparison with an un-
defended backbone model, along with the trivial defense of
Simple Random Sampling (SRS), which randomly removes
30% and 50% of input points. Additionally, we assess more
sophisticated defenses such as Statistical Outlier Removal
(SOR) [36] and LPF-Defense [12]. Our method achieves
substantial improvements, reducing the attack success rate
(ASR) to a limited 37.5% (compare to 47.8% using LPF-
Defense [12]) when embedded to DGCNN [44]. We ex-
amine the case where DGCNN is functioning as both the
surrogate model and the attacked model, to eliminate trans-
ferability issues. The results are shown in Tab. 3.

5. Discussion and Conclusion

The analysis of focus introduces a deeper understanding of
neural network performance. It is intriguing to measure
over- and under-focus characteristics in various domains,
including NLP, audio, and image processing. This under-
standing can pave the way for a wide range of applications.
In the supplementary material, we provide a very prelimi-
nary example of how facilitating refocusing or parts of the
algorithm can aid in outliers removal. The idea can further
extend, for instance, for developing over- or under-focus ad-
versarial attacks, yielding specific focus values. Another
potential path is guided adversarial training, which extends
the focus range to the one exposed during training.

In this study, we introduced a novel perspective on point
cloud neural network behavior through the analysis of fo-
cus. We proposed a definition for a network’s focus, over-
focus, and under-focus, which can be extended beyond 3D
point clouds. We observed a strong correlation between cor-
ruptions and focus distribution. The presence of outliers
predominantly increases focus, while occluded parts have
the opposite effect. To enhance the network’s ability to pro-
cess corrupted data, we proposed a robust algorithm aimed
at screening out the most influential input elements. Fil-
tering mitigates the impact of outliers and aligns the focus
distribution, resulting in improved robustness against OOD
corruptions, with only a marginal degradation in accuracy
for clean data.

Our method is computationally efficient, making it ap-
plicable to time-demanding applications. Experimental re-
sults on robust classification and adversarial defense tasks
showcase the effectiveness of our approach. We achieved
state-of-the-art results for both robust zero-shot classifica-
tion on the ModelNet-C [35] dataset and for adversarial de-
fense against Shape-Invariant attacks [15].
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