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Abstract

We propose TR0N, a highly general framework to

turn pre-trained unconditional generative models,

such as GANs and VAEs, into conditional models.

The conditioning can be highly arbitrary, and re-

quires only a pre-trained auxiliary model. For ex-

ample, we show how to turn unconditional models

into class-conditional ones with the help of a clas-

sifier, and also into text-to-image models by lever-

aging CLIP. TR0N learns a lightweight stochastic

mapping which ªtranslatesº between the space of

conditions and the latent space of the generative

model, in such a way that the generated latent

corresponds to a data sample satisfying the de-

sired condition. The translated latent samples are

then further improved upon through Langevin dy-

namics, enabling us to obtain higher-quality data

samples. TR0N requires no training data nor fine-

tuning, yet can achieve a zero-shot FID of 10.9
on MS-COCO, outperforming competing alterna-

tives not only on this metric, but also in sampling

speed ± all while retaining a much higher level

of generality. Our code is available at https:

//github.com/layer6ai-labs/tr0n.

1. Introduction

Large machine learning models have recently achieved re-

markable success across various tasks (Brown et al., 2020;

Jia et al., 2021; Nichol et al., 2022; Chowdhery et al., 2022;

Rombach et al., 2022; Yu et al., 2022; Ramesh et al., 2022;

Saharia et al., 2022; Reed et al., 2022). Nonetheless, train-

ing such models requires massive computational resources.

Properly and efficiently leveraging existing large pre-trained

models is thus of paramount importance. Yet, tractably com-
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Figure 1. Images generated by TR0N from corresponding text cap-

tions, obtained by finding adequate points on the latent space of a

pre-trained GAN. Neither fine-tuning nor training data are used.

Top row: BigGAN pre-trained on ImageNet. Bottom row: Style-

GAN2 pre-trained on FFHQ.

bining the capabilities of these models in a plug-and-play

manner remains a generally open problem. Mechanisms

to achieve this task should ideally be modular and model-

agnostic, such that one can easily swap out a model compo-

nent for one of its counterparts (e.g. interchanging a GAN

(Goodfellow et al., 2014) for a VAE (Kingma & Welling,

2014; Rezende et al., 2014), or swapping CLIP (Radford

et al., 2021) for a new state-of-the-art text/image model).

In this work, we study conditional generation through the

lens of combining pre-trained models. Conditional gen-

erative models aim to learn a conditional distribution of

data given some conditioning variable c. They are typi-

cally trained from scratch on pairs of data with correspond-

ing c (e.g. images x, with corresponding class labels or

text prompts fed through a language model c) (Mirza &

Osindero, 2014; Sohn et al., 2015). Our goal is to take

an arbitrary pre-trained unconditional pushforward gener-

ative model (Salmona et al., 2022; Ross et al., 2022) ± i.e.

a model G which transforms latent variables z sampled

from a prior p(z) to data samples x = G(z) ± and turn it

into a conditional model. To this end, we propose TR0N, a
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Figure 2. Left panel: The stochastic translator network learns to recover z from c = f(G(z)). Right panel: The (stochastic) output z(0)

of the trained translator ± which is such that G(z(0)) ªroughly satisfiesº condition c ± initializes Langevin dynamics over E(z, c) which

further improves the sample so as to better match c. In the depicted example, G is a GAN trained on ImageNet, f the CLIP image encoder,

c the CLIP text embedding corresponding to the given text prompt, and E(z, c) the negative cosine similarity between f(G(z)) and c.

highly general framework to make pre-trained unconditional

generative models conditional. TR0N assumes access to a

pre-trained auxiliary model f that maps each data point x
to its corresponding condition c = f(x), e.g. f could be a

classifier, or a CLIP encoder. TR0N also assumes access to

a function E(z, c) such that latents z for which G(z) ªbetter

satisfiesº a condition c are assigned smaller values. Using

this function, for a given c, TR0N performs T steps of gradi-

ent minimization of E(z, c) over z to find latents that, after

applying G, will generate desired conditional data samples.

However, we show that naÈıvely initializing the optimiza-

tion of E is highly suboptimal. With this in mind, TR0N

starts by learning a network that we use to better initialize

the optimization process. We refer to this network as the

translator network since it ªtranslatesº from a condition c
to a corresponding latent z such that E(z, c) is small, es-

sentially amortizing the optimization problem. Importantly,

the translator network is trained without fine-tuning G or

f nor using a provided dataset. In this sense, TR0N is a

zero-shot method wherein the only trainable component is a

lightweight translator network. Importantly, TR0N avoids

the highly expensive training of a conditional model from

scratch and is model-agnostic: we can use any G and any

f , which also makes it straightforward to update any of

these components whenever a newer state-of-the-art version

becomes available. We outline the procedure to train the

translator network on the left panel of Figure 2.

Once the translator network is trained, we use its output to

initialize the optimization of E. This reclaims any perfor-

mance lost due to the amortization gap (Cremer et al., 2018;

Kim et al., 2018), resulting in better local optima and faster

convergence than naÈıve initialization. In reality, TR0N is a

stochastic method: the translator network is a conditional

distribution qθ(z|c) that assigns high density to latents z
such that E(z, c) is small, and we add noise during the gra-

dient optimization of E, which allows us to interpret TR0N

as sampling with Langevin dynamics (Welling & Teh, 2011)

using an efficient initialization scheme. We exemplify how

to sample with TR0N on the right panel of Figure 2.

Our contributions are: (i) introducing translator networks

and a particularly efficient parameterization of them, allow-

ing for various ways to initialize Langevin dynamics; (ii)
framing TR0N as a highly general framework, whereas pre-

vious related works mostly focus on a single task with spe-

cific choices of G and f ; and (iii) showing that TR0N em-

pirically outperforms competing alternatives across tasks in

image quality and computational tractability, while produc-

ing diverse samples; and that it can achieve an FID (Heusel

et al., 2017) of 10.9 on MS-COCO (Lin et al., 2014).

2. Background

Joint text/image models In this work, we leverage pre-

trained joint text/image models as a particular choice for

both the auxiliary model f and to construct E, enabling

TR0N to be conditioned on either free-form text prompts or

on image semantics. Recent joint text/image models such as

CLIP learn a joint representation space CCLIP for images and

texts. CLIP includes an image encoder f img : X → CCLIP

and a text encoder f txt : T → CCLIP, where X is the space

of images and T is the space of text prompts, which are

trained in such a way that images and texts that are semanti-

cally aligned are mapped to similar representations. More

specifically, CLIP is such that the negative cosine similar-

ity Usim(f
img(x), f txt(y)) is small for semantically aligned

image/text pairs (x, y) ∈ X ×T , and large for semantically

unaligned pairs, where Usim(c
′, c) = −c⊤c′/(∥c′∥2∥c∥2).

Pushforward models We use the term pushforward

model to refer to any generative model whose samples
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x ∈ X can be obtained as x = G(z), where z ∈ Z is

a latent variable sampled from some (typically not trainable)

prior p(z), and G : Z → X is a neural network. Many

models fall into this category, including generative adver-

sarial networks (GANs), variational autoencoders (VAEs),

normalizing flows (Dinh et al., 2017; Durkan et al., 2019)

and variants thereof (Brehmer & Cranmer, 2020; Caterini

et al., 2021; Ross & Cresswell, 2021), and more (Tolstikhin

et al., 2018; Loaiza-Ganem et al., 2022). We focus on GANs

and VAEs since they use a low-dimensional latent space Z ,

which will later make the translator network’s task easier.

Our main goal is to turn a pre-trained unconditional pushfor-

ward model (p(z), G) into a conditional model (p(z|c), G).

EBMs and Langevin dynamics We will later formalize

the goal of TR0N as sampling from a distribution p(z|c)
defined only up to proportionality, i.e. p(z|c) ∝ e−βE(z,c),

where E : Z × C → R is called the energy function, and

the hyperparameter β > 0 controls the degree to which

small values of E(z, c) correspond to large values of p(z|c),
and vice-versa. We hereafter refer to this formulation as an

energy-based model (EBM). While the energy function in

EBMs is typically learnable (Xie et al., 2016; Du & Mor-

datch, 2019), in our work we define and fix an energy func-

tion that allows us to enforce the requirement that ªapplying

G to a sample from p(z|c) satisfies condition cº. Langevin

dynamics is a method that allows us to sample from EBMs

by constructing a Markov chain (z(0), z(1), . . . ) given by

z(t+1) = z(t) − βλ(t)

2
∇zE

(

z(t), c
)

+
√

λ(t)ϵ(t), (1)

where the sequence (λ(0), λ(1), . . . ) is a hyperparameter,

and ϵ(t) ∼ N (ϵ; 0, I). Under mild conditions and by send-

ing λ(t) to 0 at an appropriate rate, the limiting distribution

of this Markov chain as t → ∞ is p(z|c). Langevin dy-

namics can be interpreted as gradient descent on E with

added noise, and has been successfully applied to sample

and train deep EBMs, where in practice it is common to

deviate from theory and set λ(t) = λ > 0 for all t (i.e. a sin-

gle scalar hyperparameter λ is used) for improved empirical

performance. Also, while in theory convergence does not

depend upon the starting point z(0), in practice this choice

can greatly speed up convergence (Hinton, 2002; Nijkamp

et al., 2020; Yoon et al., 2021), just as with gradient descent

(Boyd & Vandenberghe, 2004; Glorot & Bengio, 2010).

3. TR0N

3.1. Plug-and-play components of TR0N

TR0N requires three key components to ensure that it can

operate as a plug-and-play framework. First, TR0N takes an

arbitrary pre-trained pushforward model (p(z), G). TR0N

also assumes access to a pre-trained auxiliary model f :

X → C that maps data to its corresponding condition. For

example, if our goal is to condition on class labels, f would

be a classifier, and C the space of probability vectors of

appropriate length. If we aim to condition on text, f could

be given by the CLIP image encoder f img ± although we

will see later that a different choice of f led us to improved

empirical performance in this setting ± and C the latent space

of CLIP, CCLIP. The final component of TR0N is a function

E : Z × C → R which measures how much G(z) satisfies

condition c, an intuitive choice being

E(z, c) = U(f(G(z)), c), (2)

where U : C × C → R measures discrepancy between con-

ditions, for example: when f is a classifier, U could be the

categorical cross entropy; and when f is the image encoder

from CLIP, U could be the negative cosine similarity, Usim.

However, other choices of E are possible, as we will show

in our experiments.

3.2. Overview of TR0N

Translator networks TR0N uses the aforementioned

components to train the translator network which, given

c, aims to output a z with small E(z, c). This can be intu-

itively understood as amortizing the minimization of E with

a neural network so as to not have to run a minimizer from

scratch for every c. Since there can be many latents z for

which G(z) satisfies c (i.e. E(z, c) is small), we propose

to have the translator be a distribution qθ(z|c), parameter-

ized by θ. This way, the translator can assign high density

to all the latents z such that E(z, c) is small. We will de-

tail how we instantiate qθ(z|c) with a neural network in

subsection 3.4, but highlight that any choice of conditional

density is valid. Importantly, since we have access to the

unconditional model (p(z), G), we can generate synthetic

data G(z) with z ∼ p(z); and since we have access to f ,

we can obtain the condition corresponding to G(z), namely

c = f(G(z)). Together, this means that the translator can

be trained through maximum likelihood without the need

for a provided training dataset, through

θ∗ = argmin
θ

Ep(z) [− log qθ (z|c = f(G(z)))] . (3)

We summarize the above objective in Algorithm 1.

Error correction The translator is trained to stochasti-

cally recover z from c = f(G(z)), so that intuitively it

places high densities on latents which have low E(z, c) val-

ues. Yet, the translator is not directly trained to minimize E,

and thus having an error correction step, over which E is

explicitly optimized, is beneficial to further improve its out-

put. Thus, for a given c, we run T steps of gradient descent

on E(z, c) over z, which we initialize with the help of the

translator. Initializing optimization with qθ∗(z|c) rather than

3
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Algorithm 1 TR0N training

Input: p(z), G, f , qθ(z|c), and batch size B
while not converged do

Sample zi ∼ p(z) for i = 1, . . . , B
ci ← f(G(zi)) for i = 1, . . . , B

∆← ∇θ
1

B

B
∑

i=1

− log qθ(zi|ci)

Use ∆ to update θ, e.g. with ADAM (Kingma & Ba,

2015)

end while

naÈıvely (e.g Gaussian noise) significantly speeds up conver-

gence, and as we will see in our experiments, can also lead

to better local optima. Importantly, we can use the translator

in various ways to initialize optimization. For example, we

can sample M times from qθ∗(z|c), and use the sample with

the lowest E(z, c) value (which would be impossible if the

translator was deterministic). We will detail another way to

leverage the translator network to initialize optimization in

subsection 3.4. In practice, we add Gaussian noise to gradi-

ent descent. Together with the stochasticity of the translator,

this ensures diverse samples. Lastly, we transform the final

latent, z(T ), through G to obtain a conditional sample from

TR0N. We summarize this procedure in Algorithm 2.

3.3. TR0N as an EBM sampler

TR0N can be formalized as sampling from an EBM with

Langevin dynamics. Defining the distribution p(z|c), which

we call the conditional prior, as p(z|c) ∝ e−βE(z,c), Algo-

rithm 2 uses Langevin dynamics (1) to sample from p(z|c),
initialized with the help of qθ∗(z|c). Thus, TR0N can be

interpreted as a sampling algorithm for the conditional push-

forward model (p(z|c), G). Again, G remains fixed through-

out, and conditioning is achieved only through the prior

p(z|c). In this view, the translator network qθ∗(z|c) can

be understood as a rough approximation to p(z|c), as both

of these distributions assign large densities to latents z for

which E(z, c) is small. This is precisely why the translator

provides a good initialization for Langevin dynamics: the

more z(0) ªcomes from p(z|c)º, the faster (1) will converge.

Why maximum-likelihood? If our goal is for the transla-

tor to be close to the conditional prior, i.e. qθ∗(z|c) ≈ p(z|c),
then a natural question is why train the translator through

(3), which does not involve p(z|c), rather than by minimiz-

ing some discrepancy between these two distributions? The

answer is that, since the target p(z|c) is specified only up

to proportionality and true samples from it are not readily

available (better sampling from p(z|c) is in fact what we

designed TR0N to achieve), minimizing commonly-used

discrepancies such as the KL divergence or the Wasserstein

Algorithm 2 TR0N sampling

Input: c, qθ∗(z|c), M , E, T , β, λ, G
Output: G(z(T ))
Initialize z(0) with qθ∗(z|c), e.g. zm ∼ qθ∗(z|c) for m =
1, . . . ,M , and z(0) = argmin

z
m

E(zm, c)

for t = 0 to T − 1 do

Sample ϵ(t) ∼ N (ϵ; 0, I)

z(t+1) = z(t) − βλ

2
∇zE

(

z(t), c
)

+
√
λϵ(t)

end for

distance is not tractable. The only discrepancy we are aware

of that could be used in this setting is the Stein discrepancy,

which has also been used to train EBMs (Grathwohl et al.,

2020). However, in preliminary experiments we observed

very poor results by attempting to minimize this discrep-

ancy. In contrast, the maximum-likelihood objective (3) is

straightforward to optimize, and obtained strong empirical

performance in our experiments.

3.4. GMMs to parameterize translator networks

While clearly any choice of conditional density model

qθ(z|c) can be used in TR0N, we choose a Gaussian mix-

ture model (GMM), as it has several advantages that we

will discuss shortly. More specifically, we use a neural net-

work, parameterized by η, which maps conditions c ∈ C
to the mean (µη,k(c))

K
k=1 ∈ ZK and weight wη(c) ∈ R

K

parameters of a Gaussian mixture, i.e.

qθ(z|c) =
K
∑

k=1

wη,k(c)N (z;µη,k(c), diag(σ2)), (4)

where wη(c) has positive entries which add up to one (en-

forced with a softmax), and θ = (η, σ), i.e. σ is learnable.

We use a simple multilayer perceptron with multiple heads

to parameterize this neural network.

Our GMM choice for the stochastic translator has four im-

portant benefits: (i) It is a very lightweight model, and thus

achieves our goal of being much more tractable to train

than any of the pre-trained components G and f , which we

once again highlight remain fixed throughout. (ii) Sampling

from a GMM is very straightforward and can be done very

quickly. (iii) Empirically, we found that using more compli-

cated density models qθ(z|c) such as normalizing flows did

not result in improved performance. We hypothesize that,

since Langevin dynamics acts as an error correction step,

qθ∗(z|c) just needs to approximate, rather than perfectly re-

cover, p(z|c). (iv) Finally, taking qθ(z|c) as a GMM allows

using the translator to initialize Langevin dynamics in ways

that are not straightforward to extend to a non-GMM setting.

In particular, we found that sometimes (when diversity is

not as paramount), rather than initializing (1) as described

4



TR0N: Translator Networks for 0-Shot Plug-and-Play Conditional Generation

in Algorithm 2, better performance could be achieved by

directly using the GMM parameters. That is, we initialize

at the GMM mean, z(0) =
∑

k wη∗,k(c)µη∗,k(c). Note that

the mean of more complex distributions might not be so eas-

ily computable. Further, we found that when initializing this

way, optimizing the weights and means directly yielded bet-

ter performance, i.e we write z(t) as z(t) =
∑

k w
(t)
k µ

(t)
k ,

and perform Langevin dynamics as

(w(t+1), µ(t+1)) = (5)

(w(t), µ(t))− βλ

2
∇(w,µ)E

(

z(t), c
)

+
√
λϵ(t),

where w(0) = wη∗(c), µ
(0)
k = µη∗,k(c) for k = 1, . . . ,K,

and the size of ϵ(t) is appropriately changed from (1).

3.5. TR0N for Bayesian inference

In some settings, the auxiliary model f might provide a

probabilistic model p(c|x). For example, when f is a clas-

sifier, p(c|x) = fc(x).
1 Combined with the pushforward

model, this provides a latent/data/condition joint distribution

p(z, x, c) = p(z)δG(z)(x)p(c|x), where δG(z)(x) denotes

a point mass on x at G(z). For Bayesian inference, it might

be of interest to sample from the corresponding posterior

p(x|c), which is equivalent to sampling from p(z|c) and

transforming the result through G. That is, in this scenario,

the conditional prior p(z|c) is a proper posterior distribu-

tion of latents given a condition. TR0N can sample from

this posterior by using specific choices of β and E. While

these choices provide a probabilistically principled way of

combining (p(z), G) and f into a conditional model, we

find that non-Bayesian choices obtain stronger empirical re-

sults. We nonetheless believe that TR0N being compatible

with Bayesian inference is worth highlighting. Due to space

constraints, we include additional details in Appendix A.

4. Related Work

Several methods aim to obtain a conditional generative

model by combining pre-trained models, although none

of them shares all of the advantages of TR0N. Notably, al-

most all the works we discuss below are shown to work for

a single task, unlike TR0N which is widely applicable.

Non-zero-shot methods Zhou et al. (2021a) and Wang

et al. (2022) leverage CLIP to train text-to-image models

without text data, but unlike TR0N, still require a training

dataset of images and relatively longer training times. Wang

& Torr (2022) propose a method to turn a classifier into a

conditional generative model which also requires training

data to train a masked autoencoder. Nie et al. (2021) con-

1We slightly abuse notation here and use c interchangeably as
either a one-hot vector, or as the corresponding integer index.

dition GANs through a similar EBM as us, but use data to

train f , do not condition on text, and do not use translator

networks. Zhang & Agrawala (2023) add conditioning to

pre-trained diffusion models (Ho et al., 2020), but require

training data to do so.

Deterministic optimization The works of Nguyen et al.

(2016), Liu et al. (2021), Patashnik et al. (2021), and Li et al.

(2022b) can be thought of as deterministic versions of our

EBM, where rather than sampling from p(z|c) ∝ e−βE(z,c),

the energy E(z, c) is directly minimized over z. These

methods do not account for the fact that there can be many

latents z such that G(z) satisfies condition c, and thus can

be less diverse than TR0N. Additionally, these methods

do not have a translator network, and with the exception of

FuseDream (Liu et al., 2021), naÈıvely initialize optimization,

resulting in reduced empirical performance and needing

more gradient steps for optimization to converge. We also

note that FuseDream’s initialization scheme ± which we

detail in Appendix B for completeness ± requires many

forward passes through G and f , and remains much more

computationally demanding than TR0N’s.

Stochastic methods Ansari et al. (2021) apply Langevin

dynamics on the latent space of a GAN, but do so to itera-

tively refine its samples, rather than for conditional sampling.

Nguyen et al. (2017) use a similar EBM to ours, but do not

use a translator network and initialize Langevin dynamics

naÈıvely, once again resulting in significantly decreased em-

pirical performance as compared to TR0N. Wu et al. (2022)

also define a similar EBM to ours, which is approximated

with a normalizing flow for each different c, meaning that a

different model has to be trained for each condition, result-

ing in a method that is far less scalable than TR0N. Finally,

Pinkney & Li (2022) propose clip2latent, which can be un-

derstood as using a diffusion model instead of a GMM as

the translator network, making clip2latent more expensive

to train than TR0N. Importantly, they perform no error cor-

rection step whatsoever, and thus do not leverage important

information contained in the gradient of E.

5. Experiments

All our experimental details are provided in Appendix B.

5.1. Conditioning on class labels

We demonstrate TR0N’s ability to make an unconditional

model on CIFAR-10 (Krizhevsky, 2009) into a class-

conditional one. To highlight the flexibile plug-and-play na-

ture of TR0N, we use two different pushforward models G:

an NVAE (Vahdat & Kautz, 2020), and an AutoGAN (Gong

et al., 2019) ± we use this somewhat non-standard choice

of GAN since most publicly available GANs pre-trained
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Figure 3. Samples from NVAE (first panel), TR0N:NVAE+ResNet50 (second panel), AutoGAN (third panel), and

TR0N:AutoGAN+ResNet50 (fourth panel). Rows on the second and fourth panels correspond to classes: TR0N learns to diversely

sample in a class-conditional way, while retaining the image quality of the underlying unconditional model. Best viewed while zoomed-in.

on CIFAR-10 are class-conditional. Here, C is the space of

probability vectors of length 10, we take f as a ResNet50

classifier (He et al., 2015), and use E as in (2) with U given

by the cross-entropy loss, Uent(c
′, c) := −∑

j cj log c
′
j .

Figure 3 shows qualitative results: we can see that, for

both pushforward models, TR0N not only obtains samples

from each of the 10 classes, but that it achieves this without

sacrificing neither image quality nor diversity.

We also make quantitative comparisons between each uncon-

ditional model (i.e. NVAE and AutoGAN) and the resulting

conditional models provided by TR0N. To make the com-

parison equitable, we sample unconditionally from TR0N

models by first sampling one of the 10 classes uniformly at

random, and then sampling from the corresponding condi-

tional. Results are shown in Table 1, by measuring image

quality and diversity through both the FID score and the in-

ception score (Salimans et al., 2016), and the quality of con-

ditioning through the average probability that the ResNet50

assigns to the intended class of TR0N samples. TR0N not

only makes the models conditional as these probabilities are

very close to 1, especially for the AutoGAN-based model,

but it also improves their FID and inception scores (IS):

TR0N leverages the classifier f not only to make a con-

ditional model, but also to improve upon its underlying

pre-trained pushforward model.

Table 1 also includes some ablations: (i) removing the

error correction (Langevin dynamics) step altogether, which

results in heavily degraded FID and IS for the NVAE-based

model, and much worse conditioning for both models; (ii)
removing the translator, which is equivalent to a stochastic

version (i.e. with Langevin dynamics instead of gradient

descent) of the method of Nguyen et al. (2016), and which

significantly hurts FID, IS, and conditioning performance,

highlighting the relevance of translator networks; (iii) using

a deterministic translator rather than a stochastic one (see

Appendix B for details), which significantly hurts FID and

IS due to a lack of diversity since Langevin dynamics is

Table 1. FID, IS, and average probability assigned to the intended

class of generated samples by a ResNet50 on CIFAR-10. ªno ECº

stands for ªno error correctionº, ªno Tº for ªno translatorº, ªDTº

for ªdeterministic translatorº, and ªADAMº and for changing the

optimizer in Langevin dymanics.

Model FID ↓ IS ↑ Avg. prob. ↑
NVAE 41.70 6.95 −
TR0N:NVAE+ResNet50 19.79 8.64 0.75
TR0N:NVAE+ResNet50 (no EC) 40.80 6.95 0.20
TR0N:NVAE+ResNet50 (no T) 36.74 7.75 0.54
TR0N:NVAE+ResNet50 (DT) 77.11 7.15 0.48
TR0N:NVAE+ResNet50 (ADAM) 20.24 8.31 0.51

AutoGAN 12.45 8.53 −
TR0N:AutoGAN+ResNet50 10.69 8.91 0.95
TR0N:AutoGAN+ResNet50 (no EC) 11.00 8.66 0.41
TR0N:AutoGAN+ResNet50 (no T) 14.30 8.37 0.68
TR0N:AutoGAN+ResNet50 (DT) 123.23 5.48 0.97
TR0N:AutoGAN+ResNet50 (ADAM) 11.08 8.88 0.93

always initialized at the same point for a given condition;

and (iv) using ADAM instead of gradient descent to update

latents in Algorithm 2, which not only removes the formal

interpretation of TR0N as an EBM sampler, but also worsens

performance across metrics. Finally, we include additional

results in Appendix C using the Bayesian choice of β and

E mentioned in subsection 3.5.

5.2. Conditioning on text

Natural images We now show TR0N’s capability to turn

unconditional models into text-to-image models. Here, we

use C as the latent space of CLIP, CCLIP, and to condition

on a text prompt y ∈ T , we simply use the text encoder,

c = f txt(y). First, we take G as a BigGAN2 (Brock et al.,

2018) pre-trained on ImageNet (Deng et al., 2009), and use

two different choices of f leveraging CLIP. The first choice

is simply the image encoder of CLIP, f img. We focus our

2While BigGAN is a class-conditional model, it is not text-
conditional. We include the class condition on Z and think of the
GAN as unconditional. See Appendix B for details.
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A pencil drawing of an insect, abstract, sur-

realism

A beach with crystal clear water and palm

trees, with snow-capped mountains in the

background

A painting of the middle-aged, gothic

church surrounded with trees, under the

rainy weather

Figure 4. Samples from TR0N:BigGAN+CLIP (BLIP). We can see samples are diverse for all captions.

comparisons against FuseDream ± which to the best of our

knowledge is the best performing competing method.3

As our second choice of f , we also leverage a pre-trained

caption model h : X → T followed by CLIP’s text en-

coder, i.e. f = f txt ◦ h, further demonstrating the plug-and-

play nature of TR0N. The idea behind this choice is that

CLIP’s image and text encoders have been shown to not

perfectly map images and text to the same regions of CCLIP

(Liang et al., 2022). Adding the caption model h ± which

maps images to text descriptions ± allows us to use the text

encoder within f , i.e. the same encoder used to obtain c,
resulting in better matching latents. This choice of f is

a novel empirical contribution for zero-shot text-to-image

generation. We use BLIP (Li et al., 2022a) for the caption

model h. For both choices of f , we follow FuseDream and

use the negative augmented CLIP score ECLIP as E, which

is given by ECLIP(z, c) := Ep(ϕ)[Usim(f
img(ϕ[G(z)]), c)],

where ϕ[x] is a differentiable data-augmentation (Zhao et al.,

2020) of x, and p(ϕ) a pre-specified distribution over data-

augmentations. Like Liu et al. (2021), we find that using the

data augmentations helps avoid adversarial examples with

small values of E(z, c) which nonetheless do not satisfy c.
Note that ECLIP always uses the image encoder from CLIP,

regardless of which f we use to train the translator network.

We compare TR0N against FuseDream on the MS-COCO

dataset, which contains text/image pairs. For each text, we

generate a corresponding image with both methods, and then

compute both the FID and augmented CLIP score. Results

are displayed in Figure 5 for various computational budgets

(the higher the budget, the bigger T , i.e. the longer Langevin

dynamics is iterated for). As a consequence of FuseDream’s

3While FuseDream is a deterministic method, its provided im-
plementation (optionally) adds noise during gradient optimization:
https://github.com/gnobitab/FuseDream.
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Figure 5. Comparisons between TR0N:BigGAN+CLIP and Fuse-

Dream on MS-COCO as a function of time required to generate

a sample. Top panel: FID score (in log scale), lower is better.

Bottom panel: augmented CLIP score, higher is better.

expensive initialization scheme, TR0N can achieve similar

performance much faster. This is true for our first choice of

f , where TR0N uses the same components as FuseDream

(red vs orange lines), emphasizing once again the relevance

of the translator, as also evidenced by the light blue lines

in Figure 5, which correspond to TR0N with no translator

(or equivalently, FuseDream with naÈıve initialization). It is

also true for our second choice of f (with a caption model),

which allows TR0N to not only be faster than FuseDream

(which cannot incorporate this f as it has no translator),

but also outperform it (blue vs orange lines). We once

again perform ablations over different design choices of the

translator, which we include in Appendix C.
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0.32 ± 0.001 0.25 ± 0.000 0.34 ± 0.001 0.33 ± 0.001 0.34 ± 0.001 0.26 ± 0.001

0.24 ± 0.002 0.21 ± 0.002 0.28 ± 0.002 0.25 ± 0.003 0.23 ± 0.003 0.21 ± 0.003

A child with blue

eyes and straight

brown hair in the

sunshine

A haidresser A young boy with

glasses and an an-

gry face

Cristiano Ronaldo Denzel Washington Cinderella

Figure 6. Comparison between TR0N:StyleGAN2+CLIP (top row) and clip2latent (bottom row). Numbers above each image correspond

to average augmented CLIP score (higher is better) plus/minus standard error over 10 samples from the given caption. Thanks to the error

correction step, TR0N better semantically matches the input text in its generated images than clip2latent.

Figure 1 and Figure 4 show text-to-image samples from

TR0N. Although BigGAN was trained on ImageNet and

remains fixed throughout, the images that TR0N manages

to produce from it using text prompts are highly out-of-

distribution for this dataset: TR0N’s ability to efficiently

leverage CLIP to explore the GAN’s latent space Z is note-

worthy. We include additional samples in Appendix C,

showing both how images evolve throughout Langevin dy-

namics, and failure cases of TR0N.

By using the same G and version of CLIP as FuseDream,

the previous experiments show that TR0N outperforms it

thanks to its methodology, rather than an improved choice of

networks. Yet, these networks can be improved. To further

strengthen TR0N, we upgrade: G to a StyleGAN-XL (Sauer

et al., 2022) ± also pre-trained on ImageNet, CLIP to its

LAION2B (Schuhmann et al., 2022) version, and the caption

model to BLIP-2 (Li et al., 2023) (using BLIP-2 instead of

BLIP as in other experiments again highlights the plug-and-

play nature of TR0N). Table 2 shows quantitative results,

where we can see that these updates significantly boost the

performance of TR0N, to the point of making it competitive

with very large models requiring text/image data and much

more compute to train. While this StyleGAN-XL-based

version of TR0N achieves particularly strong results on MS-

COCO in terms of FID, we find that the images it produces

are not consistently better, visually, than those from the

BigGAN-based model. Samples and further discussion can

be found in Appendix C.

Facial images To further highlight the wide applicability

of TR0N, we show it can be used for other text-to-image

tasks. We now use a StyleGAN2 (Karras et al., 2020) and an

NVAE as G, both pre-trained on FFHQ (Karras et al., 2019).

Table 2. FID score on MS-COCO. The top part of the table shows

models trained directly for text-to-image generation using paired

text/image data (these are sometimes called zero-shot as they were

not trained on MS-COCO, but are not zero-shot in the same way

as TR0N). The bottom part shows zero-shot methods that require

only pre-trained models and no provided dataset.

Model FID ↓
DALL-E (Ramesh et al., 2021) ≈ 27.5†

StyleGAN-T (Sauer et al., 2023) 13.9†

Latent Diffusion (Rombach et al., 2022) 12.6†

GLIDE (Nichol et al., 2022) 12.2†

DALL-E 2 (Ramesh et al., 2022) 10.4†

Imagen (Saharia et al., 2022) 7.3†

Parti (Yu et al., 2022) 7.2†

FuseDream (Liu et al., 2021) 16.3∗

TR0N:BigGAN+CLIP (BLIP) 15.0
TR0N:StyleGAN-XL+LAION2BCLIP (BLIP-2) 10.9

† Score as reported by the authors, not computed by us.
∗ Liu et al. (2021) report an FID of 21.9 since they use ADAM instead of

Langevin dynamics.

We use CLIP’s image encoder f img as f (we do not use a

caption model here as the descriptions of faces it outputs are

too generic to be useful), and use the negative augmented

clip score ECLIP as E. We compare against clip2latent,

which uses the same setup with the StyleGAN2, but with a

diffusion model instead of a GMM as a translator network,

and no error correction procedure.

Figure 1 and Figure 6 show qualitative results. We can see

that TR0N produces images that are much more seman-

tically aligned with the input text, which further corrobo-

rates that using a GMM as the translator is enough, while

also emphasizing the relevance of error-correcting through

Langevin dynamics. We highlight that the pushforward

models were pre-trained on FFHQ ± not CelebA (Liu et al.,

8
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Figure 7. TR0N samples conditioning on image semantics with G as a BigGAN (first and second panels, x′ is highlighted in red), and

interpolations with G as a StyleGAN2 (third panel, x′
1 and x′

2 are highlighted in red).

2015) ± and thus likely have not seen celebrities such as

Cristiano Ronaldo, Denzel Washington, and Muhammad

Ali: we believe TR0N’s performance is once again note-

worthy. We omit large scale quantitative comparisons here

because of several reasons: First, text descriptions of FFHQ

images are highly generic, which makes it challenging to

compute FID against FFHQ. Second, the FID score has

recently been shown to be particularly poor at evaluating

facial images (KynkÈaÈanniemi et al., 2022). We thus only

include the average augmented CLIP score for the used text

prompts in Figure 6. We include additional samples for the

NVAE-based TR0N model in Appendix C.

5.3. Conditioning on image semantics

We follow Ramesh et al. (2022) and consider two tasks

which involve conditioning on image semantics: For the

first, given an image x′, the goal is to generate diverse im-

ages x which share semantics with x′. Here, C is still the

latent space of CLIP, CCLIP, and f is CLIP’s image encoder,

f img. Instead of obtaining conditions c from a text prompt,

we take c = f img(x′). We use both BigGAN and Style-

GAN2 as G, and still use the negative augmented CLIP

score, ECLIP, as E. For the second task, instead of comput-

ing c from a single image x′, we compute it by interpolating

between the encodings f img(x′1) and f img(x′2) of two given

images, x′1 and x′2. Results are shown in Figure 7, where

we can see that TR0N produces meaningful samples and

interpolations: this highlights that TR0N allows for arbi-

trary conditioning ± not just class labels or text prompts. We

show additional samples in Appendix C.

6. Conclusions, limitations, and future work

In this paper we introduced TR0N, a highly general and

simple-to-train framework to turn pre-trained unconditional

generative models into conditional ones by learning a

stochastic map from conditions to latents, whose output

is used to initialize Langevin dynamics. TR0N is quick to

sample from, outperforms competing methods, and has a

remarkable ability to generate images outside of the distribu-

tion used to train G. Despite the empirical performance of

TR0N being good, it is inevitably limited by that of the pre-

trained model (p(z), G). Diffusion models have been shown

to outperform GANs, but have no low-dimensional latent

space Z that the translator can map to, and thus applying

TR0N in this setting is not straightforward.

We thus believe extending TR0N to diffusion models to be

an interesting direction for future work. We also hope that

our ideas can be extended to initialize Langevin dynamics in

other EBM settings. Given our results on CIFAR-10 where

TR0N improved upon its pre-trained unconditional model,

we also believe that further exploring how large pre-trained

models can be used to improve upon existing generative

models ± rather than endowing them with conditional capa-

bilities ± to be a promising research avenue. Finally, here we

focused exclusively on generating images, but combining

large pre-trained models is of interest outside of this task.

For example, zero-shot conditional text generation (Su et al.,

2022) is a relevant problem, and we hope that the ideas

behind TR0N can be extended to this task.

Broader impact Generative models have many applica-

tions, including among others: audio generation (van den

Oord et al., 2016; Engel et al., 2017), chemistry (GÂomez-

Bombarelli et al., 2018), neuroscience (Sussillo et al., 2016;

Gao et al., 2016; Loaiza-Ganem et al., 2019), and text gen-

eration (Bowman et al., 2016; Devlin et al., 2019; Brown

et al., 2020). Each of these applications can have meaning-

ful and positive effects on society, but can also be potentially

misused for unethical purposes. Text-to-image generation

is no exception, and thus the possibility exists that TR0N

could be misemployed to generate inappropriate or deceit-

ful content. We do highlight however that other powerful

text-to-image models exist and are publicly available, and as

such we do not foresee TR0N enabling nefarious actors to

abuse text-to-image models in previously unavailable ways.
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A. TR0N for Bayesian inference

As mentioned in the main manuscript, in the setting where we have access to a probabilistic model p(c|x), a joint distribution

p(z, x, c) = p(z)δG(z)(x)p(c|x) is implied. The goal of Bayesian inference is to sample from the corresponding conditional

(posterior) distribution p(x|c). Since p(z, x|c) = p(z|c)δG(z)(x), sampling from p(z|c) and transforming the result through

G allows to obtain (z, x) pairs from p(z, x|c). Discarding z, or equivalently marginalizing out z from p(z, x|c), results

in samples from p(x|c). In other words, we only need to sample from p(z|c) and transform the result through G in order

to perform Bayesian inference. Furthermore, we know that p(z|c) ∝ p(z, c) =
∫

p(z)δG(z)(x)p(c|x)dx = p(z)p(c|x =
G(z)), which means that TR0N can be used to sample from p(z|c) by setting β = 1 and taking E as EBayes, where

EBayes(z, c) = − log p(z)− log p(c|x = G(z)). (6)

Note that when p(z) = N (z; 0, ν2I), the first term is just an L2 penalty, i.e. − log p(z) = 1
2ν2 ∥z∥22 (up to an additive

constant that does not depend on z and is thus irrelevant for TR0N). As mentioned in the main manuscript, we find that

non-Bayesian choices obtain stronger empirical results. This observation is consistent with previous works, e.g. Dhariwal &

Nichol (2021) find ± in a different context ± that equally weighting the density p(z) and classifier p(c|x = G(z)) terms as in

EBayes is suboptimal, and that more heavily weighting the classifier term leads to improved empirical performance. As an

attempt to improve performance in our experiments in Appendix C, we thus also consider sampling from a distribution

proportional to e−E′

Bayes(z,c), where

E′
Bayes(z, c) = −β1 log p(z)− β2 log p(c|x = G(z)), (7)

and β1 and β2 are used as hyperparameters instead of β. Note that β1 = β2 = 1 corresponds to Bayesian inference.

B. Experimental details

FuseDream’s initialization FuseDream (Liu et al., 2021) uses a similar procedure to TR0N to initialize z(0) as described

in Algorithm 2 except, since Liu et al. (2021) have no translator, they have to use the prior p(z) to sample candidates zm.

As a result, they need orders of magnitude more samples M in order to obtain a decent initializer (i.e. a sample roughly

matching the given condition c). This is costly, as ECLIP(zm, c) has to be evaluated for every m = 1, . . . ,M , which requires

a forward pass for G and for f img. When M is very large ± as is required by FuseDream, e.g. M = 1000 ± this initialization

takes a non-negligible amount of time. In particular, FuseDream uses the parameterization from (5), but since no GMM

parameters are available, FuseDream uses the K latents with lowest ECLIP out of the M sampled ones to initialize each µ
(0)
k ,

for k = 1, . . . ,K, and initializes w(0) randomly.

Deterministic translators For our ablations using a deterministic translator, we specify a neural network Sθ : C → Z
instead of qθ(z|c). We train this translator as a regressor with an L2 loss:

θ∗ = argmin
θ

Ep(z)

[

∥Sθ(f(G(z)))− z∥22
]

. (8)

NVAE-based models The NVAE model is presented as having a hierarchical latent space Z ′ = Z0 × · · · × ZL, whose

prior is given by

p(z′) = p(z0)

L
∏

ℓ=1

p(zℓ|zℓ−1), (9)

where z′ = (z0, . . . , zL), p(z0) is a standard Gaussian, and p(zℓ|zℓ−1) = N (zℓ; gℓ(zℓ−1),Σℓ(zℓ−1)), where gℓ and Σℓ are

neural networks. The NVAE model also has a decoder p(x|zL). In order to produce a data sample, once zL is sampled from

(9), G′(zL) is computed to obtain a sample on X , where G′ is the mean of the decoder p(x|zL). Thus, the NVAE fits exactly

into the framework of a pushforward model with Z = ZL, p(z) as the zL-marginal of (9), and G as G′. NaÈıvely, we could

thus have the translator be a distribution over zL, qθ(zL|c), and apply TR0N. However, zL is actually high-dimensional,

and we found this approach did not work particularly well. We thus take a slightly different view of the same NVAE

model, where Z = Z0, p(z) is just p(z0), and G is now a stochastic map: in order to compute G(z0), one samples zℓ from

p(zℓ|zℓ−1) for ℓ = 1, . . . , L, until zL is obtained, and then computes G′(zL). In this view, the NVAE is a pushforward

model with a low-dimensional latent space and a stochastic G, to which we can also apply TR0N. While this approach
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worked better, we found that Z0 generally did not provide sufficient semantic control over generated images due to the

added noise from (p(zℓ|zℓ−1))
L
ℓ=1, essentially rendering conditioning very hard. We thus slightly modify G as follows so

as to effectively remove sources of randomness: we fix an index ℓ∗, and deterministically transform zℓ until ℓ∗ using the

mean neural networks, i.e.

zℓ = gℓ(zℓ−1) for ℓ = 1, . . . , ℓ∗, (10)

and only sample the remaining entries of the hierarchy:

zℓ|zℓ−1 ∼ p(zℓ|zℓ−1) for ℓ = ℓ∗ + 1, . . . , L. (11)

Now, G(z0) is given by G′(zL), where zL is now obtained from z0 from (10) and (11). While the formalism of Langevin

dynamics is broken here since E(z, c) cannot be evaluated exactly due to the randomness of G, the intuition behind TR0N

remains, and we find that even if for a fixed z0, different calls to G(z0) return different random images (i.e. G is stochastic),

TR0N provides strong empirical performance in this setting. We also point out that using a single scalar λ in Langevin

dynamics ± which as mentioned in the main manuscript is a common practice ± also formally breaks down the interpretation

of EBM sampling. We thus do not see randomness in G as a fundamental limitation and argue that we are performing

approximate Langevin dynamics in this setting.

On using ECLIP and the caption model We note that much like the randomness in G as described above for the NVAE-

based models, when we use ECLIP, the formalism of Langevin dynamics breaks since E cannot be exactly evaluated, and

only approximated by sampling data augmentations. Similarly to the NVAE case though, we find that TR0N works well

regardless, and we see this as approximate Langevin dynamics. Also, the caption model h that we use to perform text

conditioning using BigGAN is stochastic, which means that f is stochastic when training the translator.

BigGAN-based models As mentioned in the main manuscript, the BigGAN model is a class-conditional model and its

latent space Z = Z1 × Z2 has a continuous component Z1, and a discrete component Z2 composed of a discrete set of

tokens, one per ImageNet class. We found that, while the stochastic GMM translator was fundamental to model Z1, it was

not so for Z2. We thus used a GMM only for the continuous part of the latent space, Z1, and a deterministic translator

(trained with an L2 loss as described above) for the discrete part, Z2. In practice we use a single shared translator, with

GMM heads for Z1 and a regression head for Z2.

StyleGAN2-based models To ensure that we are directly comparable with clip2latent (Pinkney & Li, 2022), for

StyleGAN2-based models, we define Z as the intermediate latent space of StyleGAN2, W . During training, we first

sample Gaussian noise and pass it through the mapping network of StyleGAN2 to obtain a latent w ∈ W . Note that this

procedure implicitly defines the prior p(w) as a pushforward distribution whose density cannot be evaluated, although this is

not a problem since training the translator (3) requires only sampling from the prior, not evaluating its density.

StyleGAN-XL-based models StyleGAN-XL is a class-conditional model like BigGAN. However, similar to StyleGAN2-

based models, we define Z as the intermediate latent space of StyleGAN-XL,W , which has already encoded the class

conditioning. During training of the translator, to obtain a latent w ∈ W , we first sample a random noise latent z1 ∼
N (z1; 0, I) and a class label z2 ∈ Z2 uniformly at random, then pass them both through StyleGAN-XL’s mapping network

to recover a desired sample w ∈ W .

B.1. Details and hyperparameters that are shared across all experiments

Translator architecture We use an MLP as the translator consisting of two hidden layers with a residual connection in

between, and ReLU activations after each hidden layer. Both hidden layers have the same number of hidden units H , which

we set for each experiment. A set of heads following the second hidden layer then produce the desired outputs. For the

GMM heads, we have one head to predict the K Gaussian means (µη,k(c))
K
k=1 ∈ ZK (the head outputs the concatenated

means which are then reshaped) and another head to predict the mixture weights wη(c) ∈ R
K . In all experiements, K = 10.

For the regression heads, we directly predict the latent z. For the GMM translator, we also learn a separate standard

deviation σ of the same size as z. To ensure its training remains stable, we instead learn a parameter ν and then recover σ as

σ = eν + 10−6, guaranteeing that σ > 10−6. We initialize the standard deviation to σ = 0.01. All other translator weights

are randomly initialized using the default PyTorch (Paszke et al., 2019) linear layer initializer.
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Translator training In practice, instead of sampling from p(z) at each step during translator training and then feeding the

latent sample through G and f as in Algorithm 1, we generate a synthetic dataset of (z, c) pairs ahead of time by sampling

N = 1, 000, 000 latents z ∼ p(z) and recovering the corresponding conditions c = f(G(z)). While not necessary, we

perform this step simply to speed up training the translator since, once the synthetic dataset is generated, we no longer need

to perform expensive forward passes through G and f . We train the translator for 10 epochs on said synthetic dataset with a

batch size B = 16. We find in our experiments that the maximum likelihood loss outlined in Algorithm 1 takes values with

high orders of magnitude, so we scale the loss with a scalar ± we use 10−4 ± so that we can use standard learning rates

schemes. We thus use ADAM to optimize the translator network with a learning rate of 10−4 and a cosine scheduler to

anneal the learning rate to 0 throughout training. Unless otherwise stated, p(z) is a standard Gaussian in our experiments.

TR0N sampling While Langevin dynamics can be understood as gradient descent with added noise, in practice we use

gradient descent with momentum and added noise since it helps empirical performance. We set the momentum to 0.99 and

add noise with λ = 10−4 in all experiments. Unless otherwise stated, we use T = 100 steps of Langevin dynamics. We

also note that while in (5) we update both w and µ through Langevin dynamics for didactic purposes, we find that applying

Langevin dynamics only to µ and that deterministically updating w with ADAM to work better in practice (we use a learning

rate for w of 5× 10−3 for all experiments). Also, we find that expanding each (wk)
K
k=1 to be of the same size as µ such

that each component of µ has its own weights to be a helpful heuristic.

B.2. Conditioning on class labels

To train the translator, we set H = 100. For Langevin dynamics, we use β = 20 and iterate for T = 25 steps for AutoGAN

and T = 50 steps for NVAE. In addition, we use the initialization described in Algorithm 2 with M = 5 for AutoGAN and

M = 10 for NVAE. Also, for NVAE, we use p(z) as a standard Gaussian with standard deviation of 0.7 and we use ℓ∗ = 0.

B.3. Conditioning on text

As mentioned in the main manuscript, we use two choices of f . The first uses the CLIP image encoder f = f img. For this

choice of f , taking inspiration from Zhou et al. (2021b) and Nukrai et al. (2022), we add noise during TR0N training to

simulate ªpseudo-text embeddingsº from image embeddings in the joint latent space of CLIP, CCLIP. This helps account for

the fact that the fixed condition c = f txt(y) uses the the text encoder, while ci in Algorithm 1 uses the image encoder, f img.

More specifically, we modify (3) to:

θ∗ = argmin
θ

Ep(z) [− log qθ (z|c = f(G(z)) + γϵ)] , (12)

where ϵ ∼ N (ϵ; 0, I). We find γ = 0.2 to work well in these experiments.

For the second choice of f ± which uses a caption model h to obtain f = f txt ◦ h ± we do not add Gaussian noise. This is

because the caption model produces embeddings that are closer to the text conditions c that the translator will observe during

TR0N sampling. As mentioned, we use BLIP (or BLIP-2) as the caption model and leverage nucleus sampling (Holtzman

et al., 2019) to generate more diverse and semantically meaningful captions.

In all these experiments, we set H = 2048 in the translator’s architecture. In terms of TR0N sampling, we perform Langevin

dynamics as described in (5). Also, we approximate ECLIP by sampling 50 times from p(ϕ) and then taking the average

of Usim across these sampled data augmentations. For BigGAN, we use β = 105 and for StyleGAN2, StyleGAN-XL and

NVAE, we use β = 2000.

For BigGAN, we bound the continuous component Z1 of Z (see note above) to be in range [−2, 2], similar to FuseDream.

When training the translator, we enforce this in a differentiable way using a tanh activation at the output of the GMM mean

and regression heads. Moreover, we can sample from the discrete component Z2 of Z by uniformly sampling an ImageNet

class. In practice, when generating our synthetic dataset, we generate the same number of samples from each ImageNet class

to ensure mode coverage when training the translator. As mentioned before, we use a deterministic translator for Z2, whose

output we deterministically update during TR0N sampling with ADAM using a learning rate of 5× 10−3. We therefore

only apply (5) to the continuous component Z1.

For StyleGAN-XL, to sample a class label, we again in practice sample the same number of samples from each ImageNet

class when generating the synthetic dataset and use p(z) as outlined above.

16



TR0N: Translator Networks for 0-Shot Plug-and-Play Conditional Generation

Table 3. FID, IS, and average probability assigned to the intended class of generated samples by a ResNet50 on CIFAR-10.

Model FID ↓ IS ↑ Avg. prob. ↑
NVAE 41.70 6.95 −
TR0N:NVAE+ResNet50 (β1 = 0, β2 = 20) 19.79 8.64 0.75
TR0N:NVAE+ResNet50 (β1 = 1, β2 = 1) 20.12 8.40 0.51
TR0N:NVAE+ResNet50 (β1 = 1, β2 = 20) 20.34 8.62 0.68

AutoGAN 12.45 8.53 −
TR0N:AutoGAN+ResNet50 (β1 = 0, β2 = 20) 10.69 8.91 0.95
TR0N:AutoGAN+ResNet50 (β1 = 1, β2 = 1) 10.85 8.86 0.89
TR0N:AutoGAN+ResNet50 (β1 = 1, β2 = 20) 10.71 8.90 0.95

Also, for StyleGAN2, we use p(z) as outlined above. For NVAE, we use p(z) as a standard Gaussian with standard deviation

scaled by 0.6 and we use ℓ∗ = 7.

We note that to compute all FID scores in Figure 5, we use the entire validation set of MS-COCO, which contains 40k
text/image pairs. To compute the FID scores in Table 2, we randomly subsample 30k points from the validation set. We do

this for valid comparisons, since the papers whose FID we report on the top part of Table 2 use only 30k samples. While we

find it more principled to use the entire dataset, we find no major difference between these two ways of computing FID.

Note also that the FID scores we report on the upper part of Table 2 are from models which produce images at a 256× 256
resolution, whereas the BigGAN and StyleGAN-XL models that we use for the lower part of the table produce images at a

512× 512 resolution. For the fairest possible comparison, we thus downscale the 512× 512 images to 256× 256 before

computing the FID score.

The experiments that required timing were all run on an NVIDIA TITAN RTX. Note that a single Langevin dynamics step

takes the exact same amount of time in TR0N as it does in FuseDream, as we use the same choice of E and K, so that the

gains we observe in TR0N are truly due to the translator’s efficient initialization, since FuseDream requires M = 1000
forward passes through G just to initialize Langevin dynamics. In contrast, since for TR0N we use (5), we need no forward

passes through G to initialize Langevin dynamics: a single pass through the translator is enough. For these experiments, we

evaluate metrics at T ∈ {0, 10, 25, 50, 100, 150, 250, 500}.

B.4. Conditioning on image semantics

To train the translator, we set H = 2048. For Langevin dynamics, we use use the same hyperparameters as in text

conditioning and we also approximate ECLIP the same way. In addition, we use the initialization described in Algorithm

2 with M = 1 for the first task (with a single image), and the mode of the GMM for the second task (interpolation).

For BigGAN, we follow the same procedure as described for text conditioning to deal with the continuous and discrete

components of Z , and for StyleGAN2 we again use theW space as before. For the interpolation experiments, we use slerp

interpolation.

C. Additional experiments

C.1. Conditioning on class labels through Bayesian inference

We compare in Table 3 the performance of E′
Bayes from (7) against the choice from the main manuscript for conditioning

on class labels on CIFAR-10, i.e. using (2) with U as the cross entropy loss, Uent(c
′, c) = −∑

j cj log c
′
j . Note that since

Uent(f(G(z)), c) = − log p(c|x = G(z)), using E′
Bayes amounts simply to adding an L2 penalty on z and re-weighting the

classifier term. For all experiments, we use the exact same translator: only the energy function used for Langevin dynamics

changes. Table 3 includes results for: the energy function from used in the main manuscript (β1 = 0, β2 = 20); the fully

Bayesian choice (β1 = β2 = 1), which as previously mentioned hurts performance; and also for β1 = 1 and a tuned value

of β2, which loses the Bayesian interpretation and does not outperform the first choice.

C.2. Ablations for text-to-image results with natural images

As mentioned in the main manuscript, we carry out an ablation over different translators so as to empirically justify our

choices. Figure 8 shows results of TR0N using BigGAN for text-to-image generation on MS-COCO for the GMM translator
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Figure 8. Ablations of translator choice for TR0N:BigGAN+CLIP (BLIP) on MS-COCO.

A photo of a snowy valley

A light shining in the night

A crayon drawing of a space elevator

Figure 9. Evolution of samples throughout Langevin dynamics for our TR0N:BigGAN+CLIP (BLIP) model. Each row shows G(z(t)) for

increasing values of t ∈ {0, 15, 30, 45, 60, 75, 90, 140, 210, 280, 350, 500} for the corresponding text prompt.

that we use on the main text, a normalizing-flow translator (marked as ªNFº), a deterministic translator (ªDTº), and no

translator (ªno Tº, as also shown in the main manuscript). We use the choice of f with a caption model for all translators.

Due to computational constraints, we only use 10k generated samples to compute metrics (this change accounts for any

difference with the numbers shown in the main manuscript). We can see that only the NF translator matches the GMM one

in terms of FID score, but only for larger time budgets; while no method beats the GMM translator in augmented CLIP

score. Once again, these results confirm our choices for the translator.

Finally, we make a note about the preliminary experiments that we mentioned in the main manuscript using Stein discrepancy

to train the translator: we did not manage to stabilize training, and the obtained FIDs were an order of magnitude greater

than those of the GMM translator.

C.3. Additional samples

Figure 9 shows how samples evolve throughout Langevin dynamics. We can see that the output of the translator provides a

sensible initialization, and that image quality improves throughout Langevin dynamics. Not surprisingly, the output of the

translator more closely matches the given text prompt for in-distribution prompts (e.g. ªA photo of a snowy valleyº) than for

out-of-distribution prompts (e.g. ªA crayon drawing of a space elevatorº), although the initialization remains useful for all

situations.

Figure 10 shows text prompts for which TR0N fails. In particular, we find that TR0N struggles to produce images which

involve: written text (e.g. ªA sign that says ‘Deep Learning’ º or ªA photo of the digit number 5º), humans (e.g. ªA photo of

a girl walking on the streetº), understanding the relationship between various objects (e.g. ªA red cube on top of a blue

cubeº), misspelled text prompts (e.g. ªA photo of a Tcennis rpacketº), or counting (e.g. ªFour boxes on the tableº).

Figure 11 shows uncurated samples from our TR0N:BigGAN+CLIP (BLIP) and TR0N:StyleGAN-XL+LAION2BCLIP

(BLIP2) models. We use out-of-distribution text-prompts we collected from various sources (the entire list of text prompts
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Figure 10. Failure cases from our TR0N:BigGAN+CLIP (BLIP) model.
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bird’s eye view

A train on top

of a surfboard

An ancient

Egyptian paint-

ing

A painting an

outer space,

gothic style

A painting of a

Starry Night

A shark in the

desert

Figure 11. Uncurated samples from our TR0N:BigGAN+CLIP (BLIP) model (first and third image rows) and from our TR0N:StyleGAN-

XL+LAION2BCLIP (BLIP2) model (second and fourth image rows).

± which we randomly subsampled to produce the figure ± along with where we obtained each prompt from, is included

with our code). Note that we did not curate the particular images shown in the main manuscript, although we did select

text prompts for which TR0N produced good results. Although the images from the StyleGAN-XL-based model look a bit

sharper (likely explaining the improved FID of this model), we find it hard to conclude than one model is consistenly better

than the other. In particular, the StyleGAN-XL-based model seems to be slightly worse at conditioning (e.g. the images it

produces with the same prompts as in Figure 1 and Figure 4 are worse than those from the BigGAN-based model). We

hypothesize that using the style spaceW as the latent space for our StyleGAN-XL-based model might bias TR0N towards

focusing more on style than matching the semantic content of the given condition.

Figure 12 shows uncurated samples from our TR0N:StyleGAN2+CLIP model. We use (randomly subsampled) out-of-

distribution prompts from Pinkney & Li (2022).

Figure 13 shows samples from the TR0N:NVAE+CLIP. We do not compare this model against clip2latent since clip2latent
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Figure 12. Uncurated Samples from our TR0N:StyleGAN2+CLIP model.

A young boy with

black hair
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beard
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glasses

Figure 13. Samples from our TR0N:NVAE+CLIP model.

only uses StyleGAN2, and the comparison would thus not be fair. Figure 13 is thus meant to show that TR0N can also

enable an NVAE model to be conditioned on text, once again highlighting the generality of TR0N.

Figure 14 shows the image semantics conditioning samples mentioned in subsection 5.3. Despite both the StyleGAN2 and

the BigGAN-based models having good performance at the first task (conditioning on a single image), we find that the

former is better at interpolation. Note that TR0N carries out the interpolation on CCLIP rather than Z , which we hypothesize

might be the reason that the BigGAN-based model is not as strong at interpolation.
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Figure 14. TR0N samples conditioning on image semantics with G as a StyleGAN2 (left panels, x′ is highlighted in red); and interpolations

(right panels, x′
1 and x′

2 are highlighted in red) with G as a StyleGAN2 (top right panels), and with G as a BigGAN (bottom right

panels).
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