
0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 1

Recomputation of the dense layers for
performance improvement of DCNN

Yimin Yang, Member, IEEE, Q. M. Jonathan Wu, Senior Member, IEEE , Xiexing Feng, Graduate Student
Member, IEEE, and Thangarajah Akilan, Graduate Student Member, IEEE,

F

Abstract—radient descent optimization of learning has become a
paradigm for training deep convolutional neural networks (DCNN). How-
ever, utilizing other learning strategies in the training process of the DC-
NN has rarely been explored by the deep learning (DL) community. This
serves as the motivation to introduce a non-iterative learning strategy to
retrain neurons at the top dense or fully connected (FC) layers of DCNN,
resulting in, higher performance.radient descent optimization of learning
has become a paradigm for training deep convolutional neural networks
(DCNN). However, utilizing other learning strategies in the training pro-
cess of the DCNN has rarely been explored by the deep learning (DL)
community. This serves as the motivation to introduce a non-iterative
learning strategy to retrain neurons at the top dense or fully connected
(FC) layers of DCNN, resulting in, higher performance.G The proposed
method exploits the Moore-Penrose Inverse to pull back the current
residual error to each FC layer, generating well-generalized features.
Further, the weights of each FC layers are recomputed according to
the Moore-Penrose Inverse. We evaluate the proposed approach on six
most widely accepted object recognition benchmark datasets: Scene-
15, CIFAR-10, CIFAR-100, SUN-397, Places365, and ImageNet. The
experimental results show that the proposed method obtains improve-
ments over 30 state-of-the-art methods. Interestingly, it also indicates
that any DCNN with the proposed method can provide better perfor-
mance than the same network with its original Backpropagation (BP)-
based training.

1 INTRODUCTION

The past few years have witnessed the development of deep
learning (DL) including auto-encoders, deep convolutional
neural networks (DCNN), etc [1], [2], [3], [4], [5], [6], [7], [8].
DL has been around for a long time, since the early works
in the 1980s [1], [2], [9], [10], [11], [3]. The Neocognitron [9]
was probably the first network that deserved a deep structure
that incorporated neurophysiological insights. Hinton et al. [5],
[6], [7] initiated a breakthrough that was used to reduce the
dimensionality of data by multilayer neural networks (NN) with
the back-propagation (BP). Over many benchmark datasets,
recent DL methods including GoogLeNet [12], AlexNet [13],
very deep convolutional network [14], 96/160-layer ResNet [15],
Network in Networks [16], Google-Inception model [17], and
DenseNet [18], have substantially advanced the state-of-the-
art accuracies of objection recognition and have become very

This work was supported by the Natural Sciences and Engineering Research
Council of Canada.
Y. M. Yang is with the Computer Science Department, Lakehead University
P7B 5E1, Thunder Bay, Ontario, Canada.
Q. M. J. Wu, X. Feng, and T. Akilan are with the Department of Electrical and
Computer Engineering, University of Windsor N9B 3P4, Ontario, Canada.

good at discovering intricate structures in real data. With the
increase in NN depth, the richness of the data representation
is enhanced, and the generalization performance of the final
classifier improves as well. Recent evidence reveals that net-
work depth is crucial, as the classification/recognition results
of deeper NN are better than the shallow ones. This can be
observed from the DCNNs with a depth of 8-layer of AlexNet
[13], 16-layer of VGG [14], 152-layer of ResNet [19], and 264-
layer of DenseNet [18] from 2012 to 2017. With the increase
in network depth or network architecture optimization, the
performance of DCNN methods has been boosted significantly
and is therefore applicable to many real-world applications,
such as image recognition, semantic, segmentation, etc.

However, the performance improvement through network
architecture optimization is approaching its limitation accord-
ing to the recent results on the ILSVRC competition. For exam-
ple, compared to the 8-layer AlexNet which won the ILSVRC
in 2012, the top-5 accuracy of 19-layer VGG mode, the winner
of ILSVRC in 2014, surged from 84.6 % to 92.7 %. However,
after 2015, the top-5 accuracy of ILSVRC increased marginally.
For example, 152-layer ResNet release in 2016 and 264-layer
DenseNet released in 2017 provide 94.3% and 93.8% top-5
error rates respectively on the ImageNet validation set. But
more significant was the increase in number of network depth,
which added 240 extra layers compared to VGG-19 network. In
other words, the number of network depth spiked dramatically
around 13 times over the period. Thus naturally leads to the
following motivation: Can we further improve the performance
of the DCNN models by other learning methods?

Although a lot of research efforts have accomplished ar-
chitectural improvements in the DCNN, all the present-day
DCNN models use the BP as a cornerstone of their end-to-
end training. Such iterative training process of the BP suffers
from slow convergence, getting trapped in a local minimum
and being sensitive to the learning rate configurations. Unlike
iterative learning strategy, the non-iterative methods, such as
alternating minimization, Moore-Penrose Inverse, QuickNet,
random forest, etc., have emerged into the single-layer-based
classifiers since a long time [20]. Likewise, the Moore-Penrose
Inverse utilized in this paper can be referred to the work of
Schmid [20] back from 1992. Authors in [20] mentioned that
neuron weights could sometimes be called the Fisher vector
and found by solving the linear equations through standard
numerical methods, such as BP or the generalized inverse
method. Later, in 2004, Huang et al. [21] proved that with

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 2

Fig. 1. Schematic Diagram of the proposed method

Moore-Penrose Inverse, single-layer networks are universal
approximators even when some neurons in the network are
generated randomly. Following this, many researchers propose
non-iterative learning-based classifiers for regression and clas-
sification problem [22], [23], [24], [25], [26], [27], [28].

However, the non-iterative learning algorithms for training
a DCNN model are rarely found. Driven by the confliction, a
more detailed motivation arises: if the DCNN network structure
is maintained constant, could we use a non-iterative learning
algorithm to obtain a better performance? To address this
question, in this paper we try to propose a non-iterative learn-
ing strategy to retrain the weights in fully connected layers in
DCNN to further boost the generalization performance further.
Particularly, this paper contributes the following:

1) Adaptability of DCNN models. In the proposed method,
we utilize the Moore-Penrose Inverse strategy to pull back the
current residual error e of the network to each fully-connected
layer one by one, generating a desired output P for each
fully connected (FC) layer. Then according to the obtained
desired output and input features, we use the same strategy
to recalculate weights in each FC layer. However, our method
only recalculates the parameters in the fully-connected layers
but never involves any network structure modification, which
makes the proposed method fit for all existing DCNN models.

2) Performance improvements. Experimental results show
that a DCNN model using the proposed method always pro-
vides better performance than the same DCNN model with
its original BP method. For instance, our method achieves
categorization accuracy of 94.8% on the Scene15 dataset, which
is almost close to human-level performance. Furthermore,
as Moore-Penrose Inverse method itself does not need any
iterative operation; as compared to other DCNN models with
iterative methods, the recomputation operation only requires a
reasonably extra computational workload (See Fig.12).

2 THE PROPOSED METHOD

Training a DCNN with BP takes thousands of iterations to
adjust the network parameters such as weights and biases of
each layer, which would take several hours even in advanced
GPUs. Here we show how a traditional DCNN architecture

training process can be recalculated with the help of multi-layer
neurons that are trained by the Moore-Penrose Inverse strategy.
The detailed schematic diagram of the proposed method is
shown in Fig 1.

2.1 DCNN with BP-based optimizer
The convolutional (Conv) layer is the cornerstone of the mod-
ern deep neural networks (DNN). A Conv operation w.r.t. a
filter a, bias b, and an input patch x is computed as follows:

Cov(m,n) = b +
F−1∑
p=1

F−1∑
q=0

a(p, q)∗x(m +p,n +q), (1)

where ∗, F , (m,n), and (p, q) represent the Conv operation,
size of the convolutional filter or kernel, the first coordinate
of the input image patch, and element indexes of the filter
respectively. Hence, the filter weights are updated during
training using BP.
The DCNN network is trained using Stochastic Gradient
Descent with Momentum (SGDM) optimizer that minimizes
the cost function, i.e., difference between the actual output and
the predicted output of the network. For instance, if a single
layer network with sigmoid classifier is used for a two-class
problem (binary classification task), then the log probability of
a target class t w.r.t. weights a, an input x, and the prediction
y , which can be given by following:

ln p(t |x,a) = t ln y + (1− t) ln(1− y). (2)

Eventually, the SGD optimises the parameter a resulting in
maximising the log probability. In other words, it minimises
the negative log probability or the cost function E n of a layer n
defined by (3).

E n =−(
t n ln yn + (1− t n) ln(1− yn)

)
. (3)

Then, the gradient descent algorithm computes the derivative
of the loss with respect the weight ∂E

∂a noted as ∇E(a) to update
the weight as

al+1 = al −µ∇E(al) (4)

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 3

where l stands for the iteration step and µ is the learning
rate. The SGD will repeat the process until it converges to a
minimum solution (∇E(al) ≈ 0).

The proposed pipeline also utilizes the SGDM similar to
the traditional CNN methods to update the parameters.
However, the weights of the FC layers are recomputed as
described in Section 2.2 to improve the training process.

2.2 DCNN with the proposed method
2.2.1 Notations
All the notations used in the paper are shown in Table I.

TABLE 1
Notations used in the paper

Notation Definition

an the parameters/weights in nth FC layer
µ learning rate
z dropout rate

Hn input features of nth FC layer
en current output error of nth FC layer
Pn desired output adjustment of nth FC layer
o output of the last FC layer
x input data
y desired output data of the network
C coefficient parameter
I identity matrix

2.2.2 Retraining FC layers
Consider a problem of mapping inputs x to output y with a
function f(x) given a dataset (x,y). Similar to [26], we define
the nested objective function to learn the function f (x) with n
hidden layers, as shown that in Fig.2 (to simplify notation, we
ignore bias parameters).

E = 1

2

∑‖yn − f (x,a)‖2

f (x,a) = fn(· · · f2(f1(x,a1),a2) · · · ,an)
(5)

where each layer function has the form fn(x,a) = g (x,a),
i.e., a linear mapping followed by a squashing nonlinearity
(g (·) applies a scalar function, such as the sigmoid function,
sine/cosine function, etc.) But because FC layers in DCNN has
no activation function, and the inputs come from the flatten
layer, we can rewrite the above equation as follows:

E = 1

2
‖a‖2 + 1

2

∑‖y− f (H,a)‖2

f (H,a) = fn(an · (· · · f2(a2 · f1(a1 ·H0))))
(6)

The basic issue is the n FC layers in the DCNN. The traditional
way to minimize equation (6) is by computing the gradient over
all the weights of the layers using BP. But we use Moore-Penrose
Inverse strategy to pull back the residual error of the network to
each FC layer, generating a desired output P for each FC layer.
The detailed retraining method has the following two elements:

1) A step where we fix other input weights and biases of
FC layers (· · · ,an+1,an−1, · · · ,a1), and only update input
weights (an) and biases with the desired output Pn .

2) A step where we fix all the input weights, and calculate
a desired output Pn−1 for the nth layer using Moore-
Penrose Inverse strategy.

2.2.3 Step 1: Update parameters in each FC layer
For the nth layer of the FC layers in any DCNN model, given
N samples that the desired outputs of the nth layer y, current
network output o, the weights of the nth layer an , the inputs
Hn , which is the outputs of nth FC layer, the problem for the
proposed method can be formulated as follows:

min
an

E =C
1

2

N∑
i=1

‖yi − f (Hn
i ,an)‖2 (7)

Because no activation function used in FC layers in DCNN,
f is linear function. With alternating minimization, we try to
calculate the error-based weight ηn , satisfying

∑N
i=1(ηn ·Hn

i) =
o−y. Therefore in other words, such error-based weights could
satisfy

∑N
i=1(ηn +an) ·Hn

i) = y. In this study, we try to minimize
the training error as well as the norm of error-based weights ηn

to avoid the far changes made from the previous weights an .

min
η

E =C
1

2

N∑
i=1

‖ei‖2 + 1

2
‖η‖2

Subject to
N∑

i=1
Hiη

n = Pi −ei

(8)

where P is the desired adjustments of the outputs, e is the
training error with respect to the input Hn

i . Based on the KKT
theorem, training the aforementioned equation is equivalent to
solving the following optimization problem.

E = 1

2
‖ηn‖2 +C

1

2

N∑
i=1

e2
i −

N∑
i=1

m∑
j=1

αi , j f (Hn
i ,ηn)−Pi +ei) (9)

where αi , j is the Lagrange multiplier. We can have the KKT
corresponding optimality conditions as follows:

∂E

∂a
= 0 −→ ηn = (Hn

i)T ·α (10a)

∂E

∂e
= 0 −→αi =C ei (10b)

∂E

∂α
= 0 −→ Hn

i η
n −P+e = 0 (10c)

From equation (10a) and equation (10b), we have

ηn =C (Hn
i)T e (11a)

e = I

C
((Hn

i)T)−1ηn (11b)

where H−1 is Moore-Penrose inverse of H. From (10c), we have

Hn
i η

n −P+ I

C
((Hn

i)T)−1ηn = 0

Hn
i η

n + I

C
((Hn

i)T)−1ηn = P

(Hn
i)T (Hn

i +
I

C
((Hn

i)T)−1)ηn = HT P(
(Hn

i)T (Hn
i)+ I

C

)
ηn = HT P

ηn =
(
(Hn

i)T (Hn
i)+ I

C

)−1

·HT P

(12)

Thus the last FC layer (softmax layer) can be updated by

an =an+1 +µ ·ηn

=an +µ ·
(
((Hn

i)T (Hn
i)+ I

C
)−1 ·HT P

)
(13)

where µ ∈ (0,1] represent the learning rate to determines how
fast weights of the fully connected layers change.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 4

Fig. 2. Learning strategy of the proposed method. ←− represents the feedforward operations of the proposed method, while ←− represents the
error-inverse operations of the proposed method. (a) Step 1: update parameters (a1, · · · ,an) in each fully connected layer. (b) Step 2: update the
adjustment of the outputs (P1, · · · ,Pn) in each fully connected layer.

As the proposed method is going to retrain the parameters
in the FC layer, the learning rate should be introduced for
convergence of the entire network. Similar to the learning rate
used in the BP part, here, the learning rate µ should be involved
to match the weights changes occurring simultaneously in the
Conv layers. At each iteration after the BP-based training, we
use the Moore-Penrose Inverse to calculate ηηηn and add it to the
weights. Without the learning rate µ in previous equation, the
weights will change significantly with each iteration, leading to
the over-correct, increasing the testing loss. As shown in Fig.3-4,
without learning rate µ, the top-1 testing accuracy will actually
decrease.

2.2.4 Step 2: Update desired adjustment of the output in
each FC layer

As shown in Fig.5, we already have the updated an in the nth FC
layer; then, we need to update the an−1 in the upper layer (n −
1th) FC layer. According to Subsection 2.3.2, first, the calculate
of the desired adjustment of the upper layer Pn−1 is necessary.
Based on the updated an , we can update the current output
error of nth FC layer as shown in Fig.5 step 2.1:

en = Pn −
N∑

i=1
Hn ·ηn (14)

1 2 3 4 5 6

89

90

91

92

88.5

90.3
90.2

91.2

91.4
91.5

90.1

91.1

91.6

92.1 92.1

92.3

89.8

90.8

91.4

90.8

89.9

88.8

Training Epoch

Te
st

in
g

A
cc

u
ra

cy
o

n
C

IF
A

R
10

(%
)

Backpropagation

The proposed method with learning rate µ

The proposed method without learning rate µ

Fig. 3. Testing accuracy performance comparison of AlexNet with or
without learning rate used in the proposed method.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 5

Fig. 5. Illustration of the key re-calculation operations with the proposed method in fully-connected layers. ←− represents the feedforward operations
of the proposed method, while ←− represents the error-inverse operations of the proposed method. (a) Step 1: update parameters (an) in the nth
fully connected layer. (b) Step 2.1: update the current output error of the nth layer with the updated parameters (an). (c) Step 2.2: update the desired
adjustment of n −1th layer Pn−1 with updated error en .

Algorithm 1 The proposed method

Initialization: Given a designed DCNN network architecture,
input images dataset with labels x,y, number of FC layers in
DCNN n, positive coefficient C , learning rate µ, dropout rate
z, batch size value, and maximum training epoch number
L1 and L2.
for (j1 = 1, j1 <= L1, j1 ++) do

BP-based training:
Use SGDM-optimizer to train the DCNN network with only
one training epoch.
while j2 < L2 do

retraining FC layers:
1) Extract deep features from the flatten layer (H0),
extract current weights from the DCNN model trained
by BP.
2) Obtain the current output error (en) of the last FC
layer.
for (i = n,i <= 1,i −−) do

Step1) update the weights ai in i th FC layer using
equation (18).
Step2.1) calculate the current error ei of the i th FC
layer using equation (14).
Step2.2) calculate the desired adjustment Pi−1 of i −
1th FC layer using equation (16).

end for
end while

end for
Obtain feature data H f .

Because no activation function is used in FC layer, for the
output error of the nth layer en , we have the following equation:

en =
N∑

i=1
Pn−1 ·an (15)

Based on Moore-Penrose inverse strategy, we can pull the error
back across the nth FC layer and the desired adjustment output
for n −1th layer is as follow:

Pn−1 = en · (an)T (
C

I
+an(an)T)−1 (16)

1 2 3 4 5 6 7 8 9

65

70

75

69.1

71.3

72.9

73.7
74.1

74.7 74.9 75.1 75.2

62.3

67.9

70.2

72.8
73.2 73.2 73.4 73.5 73.5

69.4

71.5
71.1

70.3

68.47 68.6

67.2

66.1 66

Training Epoch

Te
st

in
g

A
cc

u
ra

cy
o

n
C

IF
A

R
10

(%
)

Backpropagation

The proposed method with learning rate µ

The proposed method without learning rate µ

Fig. 4. Testing accuracy performance comparison of AlexNet with or
without learning rate used in the proposed method.

where (·)−1 is Moore-Penrose inverse. Due to the relu-layer
existing, here we give two models for users to select

Pn−1 =


en · (an)T (

C

I
+an(an)T)−1 model 1

max(0,en · (an)T (
C

I
+an(an)T)−1 model 2

(17)

2.2.5 Update Parameters through a dropout operation

Recent studies show dropout layer in DCNN also plays a vital
role to counteract over-fitting issue. With a dropout operation,
the parameters in each fully-connected layer could be updated
by

an =z(an +µ · (Pn((Hn)T (
C

I
+Hn(Hn)T)−1))) (18)

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 6

space λ

space β

space α

Fig. 6. Dropout strategy for updating parameters. For instance, the initial
parameters of 20 neurons are distributed in space α. After updating the
neurons using the proposed method, the parameters of 20 neurons are
distributed in space β. Finally, if the dropout rate equals 50 %, we only
randomly select ten neurons from space α, and the other ten neurons
from space β to finalize the 20 recalculated neurons in space λ.

an =z(an+1 +·µ ·ηn)

=z
(

an +µ ·
(
((Hn

i)T (Hn
i)+ I

C
)−1 ·HT P

))
(19)

where z represents a dropout operation to partially update
neurons with a random selection way. For example, if we
randomly choose a 50% dropout rate, the detailed operation
steps can be indicated as the following Fig.6.

2.2.6 The learning steps of the proposed method
Our method can be summarized in Algorithm 1. In order to
fully indicate the proposed method, the following is a specific
example of using VGG16 for training CIFAR10 as given in Fig.7,
which includes three major parts.

• Part I. Loading VGG16 model, and training the VGG16
with SGDM-optimizer. Then extracting weights of the
three FC layers as initial weights in retraining part.

• Part II. Extracting deep features from the flatten layer
(H0), and calculating outputs of the three FC layers
(H1,H2,H3)

• Part III. Calculating desired output adjustment of the
three layers (P1,P2,P3), as well as the updated weights
(a1 +η1,a2 +η2,a3 +η3).

In this paper, running Part II and Part III simultaneously indi-
cates that the training epoch of the retraining process equals
one. As mentioned in Table 3 and Table 4, we only use one or
two training iterations in the experiments. We will release our
source codes including the Matlab version and Keras version,
after the work has been published.

1. [44] mentioned "This dataset (Scene15) contains only 15 scene cate-
gories with a few hundreds images per class, where current classifiers are
saturating this dataset nearing human performance at 95 percent".

TABLE 2
Scene-15 classification accuracy for our method against leading

alternate approaches without data argumentation

Method Scene15

Improved classifiers based on NN/SVM/Kernel/KNN
Kernel codebook [29] 76.6
Object-to-class kernels [30] 88.8
KNN with localized multiple kernel [31] 89.1
Label Consistent K-SVD, Spatial pyramid [32] 92.9

Sparse representation-based methods
Linear spatial pyramid, sparse coding [33] 80.3
Laplacian sparse coding, feature combination [34] 88.9

Recent feature coding methods
Feature fusion [35] 71.6
Visual word ambiguity [36] 76.7
Hard assignment [37] 81.4
Soft assignment [38] 82.2
Centrist, Spatial PACT [39] 83.9

Hierarchical networks
Feature pooling [40] 80.6
Multilayer ELM, SIFT features [25] 82.4
Sparse coding, Max-pooling[41] 84.3
Six-layer deep network, Macro Feature [42] 85.4
Five-layer manifold deep network [43] 86.9

CNN networks with pre-trained features
Hybrid-CNN, pretrained by Places205 dataset [44] 91.6
AlexNet, pretrained by Places365 dataset [45] 90.0
AlexNet, pretrained by ImageNet dataset 82.4
16-layer VGG, pretrained by ImageNet dataset 88.0
GoogLeNet, pretrained by Places365 dataset [45] 91.2
16-layer VGG, pretrained by Places365 dataset [45] 92.0
16-layer VGG, pretrained by Places365+ImageNet dataset [45] 92.2

Our architecture
Our method with ImageNet pretrained Alexnet 86.2
Our method with ImageNet pretrained 16-layer VGG 89.8
Our method with Places205 pretrained Alexnet 91.8
Our method with Places205 pretrained 16-layer VGG 94.8

Human-level Performance1 [44] 95.0

3 EXPERIMENTAL VERIFICATION

3.1 Rival methods

This section aims at examining the performance of our pro-
posed learning method, we test the proposed method on
several image datasets. The experiments are conducted in two
environments (Matlab 2017b or Keras). For efficient compar-
isons, we evaluate the 29 state-of-the-art methods arising from
the following three families:

(1) Recent single layer classifiers include centrist [39],
hard/soft assignment [37], sparse coding [33], feature fusion
[35], object-to-class kernels [30], multilayer ELM [25], visual
word ambiguity [36], K-SVD [32], soft assignment [38], KNN
kernel [31], kernel codebook [29], and Laplacian sparse coding
[34].

(2) Recent DCNN models include AlexNet [13], VGG-16/19
model [46], Network in Networks [16], Google-Inception mod-
el [17], 96/160-layer recurrent convolutional network [15],
ResNet50/100, DenseNet [18], ImageNet-pretrained CNN mod-
els, Places365-pretrained models [45], hybrid-CNN features
[44], hierarchical manifold deep network [43], Multi-column
deep network [47], All convolutional net [48], and Deep-
supervised Nets [49].

(3) Recent DCNN with feature fusion technologies include
multi-layer deep network [42], max-pooling with spatial pyra-

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 7

Fig. 7. Retraining fully connected layers of VGG16 with our proposed method (CIFAR10). ←− represents the feedforward operations of the proposed
method, while ←− represents the error-inverse operations of the proposed method.

AlexNet DenseNet Inception VGG-16 ResNet-50

72

74

76

78

80

82

73.5

72.6

77.1

79.4

80.8

75.2

73.3

77.3

80

81.9

Different CNN models

Te
st

in
g

A
cc

u
ra

cy

CIFAR100

AlexNet DenseNet Inception VGG-16 ResNet-50

40

45

50

55

60

39.1

59.6

49.3

53.1

59.6

52

42

60.4

48.9

55.6

54.3

Different CNN models

SUN397

AlexNet DenseNet VGG-16Inception ResNet-50

92

93

94

95

91.51

93

95.2

93.7

95

92.3

93.7

94.7

95.2

95.4

Different CNN models

CIFAR10

BP based CNN Model Our method with the same CNN Model

Fig. 8. Top-1 Testing Accuracy of CIFAR10/100 and SUN397: Our method with CNN models vs Original CNN models.

mid features [41], feature pooling [40], deep attention selective
networks [50], sumproduct network with deep architecture [51].

3.2 Experimental Environment

3.2.1 Computation resource setting
For this experiment, we select some widely used image dataset-
s to evaluate our method. For completeness, we select six
image databases, including one small dataset (Scene15[52]),
three medium datasets (CIFAR10/100, SUN397), and two large
datasets (Places365 and ImageNet). For the small/medium
dataset tests, the experiments are conducted in Matlab 2017b
or Keras environment with 32 GB of memory, Geforce 1080
Ti 11GB GPU, and an I7-7700k processor. For the large-scale
datasets, a workstation with 128 GB memory, and one/four
Geforce 1080 TI GPU(s) is/are used to run the tests. All the

results are obtained through three trials. To highlight general
trends, we mark all results that outperform the existing state-
of-the-art methods in boldface and the best result in blue color.

3.2.2 Experimental Environment
For the Caltech10/100, we use all 50,00 training images for
training and the remaining 10,000 images for testing. For
Scene15 dataset, we randomly select 100 image per category
as training data and use the rest as test data. For SUN397, we
randomly split the datasets into a training dataset and a testing
dataset, each with 50 images per class. Subsequently, there
are 19,850 images for both the training and testing datasets.
For Places365 dataset which contains around 1.8 million im-
ages comprising 365 unique scene categories, we randomly
select 500, 1000, and 1500 images per class from the dataset
to produce the training set, and use the validation dataset

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 8

TABLE 3
Experimental settings under the condition of transfer learning

AlexNet VGG16 Inception ResNet50 DenseNet121a

CIFAR10
Initial Learn Rate 1.0−3 1.0−3 1.0−2 1.0−2 -

BP-based Batch Size 128 32 32 32 -
Learn Rate Drop Factor 10 times 10 times 10 times 10 times -
Learn Rate Drop Period 3 3 3 3 -

MaxEpoches 6 epoches 9 epoches 9 epoches 9 epoches -
Parameter C 4 6 2 4 -

Dropout parameter in equation (13) (%) 50 50 50 50 -
Training loops in retraining process 1 1 2 2 -
Relu-operation in retraining process model 1 model 2 b b b

CIFAR100
Initial Learn Rate 1.0−3 1.0−3 1.0−2 1.0−2 -

BP-based Batch Size 128 32 32 32 -
Learn Rate Drop Factor 10 times 10 times 10 times 10 times -
Learn Rate Drop Period 3 3 3 3 -

MaxEpoches 9 epoches 9 epoches 9 epoches 9 epoches -
Parameter C 4 4 2 4 -

Dropout parameter in equation (13) (%) 50 50 50 50 -
Training loops in retraining process 1 1 2 2 -
Relu-operation in retraining process model 1 model 1 b b b

SUN397
Initial Learn Rate 1.0−3 1.0−3 1.0−2 1.0−2 1.0−3

BP-based Batch Size 128 32 32 32 16
Learn Rate Drop Factor 10 times 10 times 10 times 10 times 10 times
Learn Rate Drop Period 3 3 2 2 10

MaxEpoches 9 epoches 9 epoches 6 epoches 6 epoches 30 epoches
Parameter C 4 4 4 4 1

Dropout parameter in equation (13) (%) 50 50 50 50 50
Training loops in retraining process 1 1 2 2 2
Relu-operation in retraining process model 2 model 2 b b b

a The 121-layer DenseNet is running in Keras environment.
b No relu-operation because only one FC layer existed in the DCNN model.

TABLE 4
Experimental settings under the condition of training from scratch

CIFAR10 CIFAR100 ImageNet mini ImageNet minia ImageNet ImageNeta

DenseNet
Number of layers 40 40 121 121 121 121
Initial Learn Rate 0.1 0.1 0.1 0.1 0.1 0.1

BP-based Batch Size 64 64 20 216 20 216
Learn Rate Drop Factor 10 times 10 times 10 times 10 times 10 times 10 times
Learn Rate Drop Period [150,75,75]b [150,75,75]b 30 30 30 30

MaxEpoches 300 epoches 300 epoches 90 epoches 90 epoches 90 epoches 90 epoches
Parameter C 1 1 1 1 1 1

Dropout parameter in equation (13) (%) 50 50 50 50 50 50
Training loops in retraining process 2 2 2 2 2 2

Batch size in retraining process 50,000 50,000 20,000 20,000 20,000 28,800

a The 121-layer DenseNet is trained by 4 Geforce 1080 Ti GPUs.
b At the beginning 150 epoches (0-150), the learning rate equals 0.1. Then the learning rate will be dropped by 10 times, maintaining 0.01 in the later 75

epoches (151-225). Finally the learning rate will be dropped by 10 times again, maintaining 0.001 in the last 75 epoches (226-300).

(36,500 images) for the testing dataset. No data argumentation
algorithms are used for above aformentioned datasets.

For ImageNet which consists around 1.2 million images, we
adopt the same data argumentation scheme for training images
as in [18], and apply a single-crop with size 224×224 at test
time. First we generate an ImageNet Mini dataset by randomly
selecting 200 images per category from the dataset. Then we
further test our method with full version ImageNet dataset.
But due to the huge training time (17 days per training time
with 4 GPUs), we only carry out the comparative performance
between DenseNet and DenseNet with our method at the
current stage.

3.2.3 Validation methods selection
We compare our method with other state-of-the-art methods
in two ways. (i) Our method vs. other classifiers; (ii) The
DCNN model with our method vs. the same original DCNN
model. For the results category (i) (in Subsection 3.3), we try

to indicate that the proposed method could generally pro-
vide comparable results among the recent well-known image
recognition methods. Moreover, for the results category (ii)
(in Subsection 3.4), we demonstrate that any DCNN network
with our proposed method could generally result in a better
generalization performance than that same model with BP-
based methods.

3.2.4 CNN models setting
Apart from comparing performance of the rival methods in
Subsection 3.3, we further conduct comparison performance
experiments in Subsection 3.4 to test the performance gain
using the proposed method in the same CNN architecture.
To validate these gains, we test our method with fairly known
CNN models, including AlexNet, VGG16, ResNet, Inception, and
DenseNet40/121.

For the same CNN architecture, the comparison experi-
ments are conducted under the exact same experimental set-

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 9

tings such as batch size, learning rate, training epochs, dropout
rate, and software/hardware environment. Thus once the per-
formance gap occurs, we can ensure that these performance
gain/loss are generated because of different training methods.
We consider the following two conditions to conduct these
comparison experiments.

1) Transfer Learning. For AlexNet, VGG16, Inception,
DenseNet and ResNet-50, we used the existing Ima-
geNet/Places365 pretrained CNN networks and associated the
pre-trained weights as initial parameters with an end-to-end
training on the target datasets. In this case, the CNN models
contain knowledge from both the target datasets, as well as the
innate priors (ImageNet or Places365). Due to the pretrained
models used as an initial network, the required training epochs
could significantly be reduced. The detained information of the
CNN settings has been shown in Table 3. For Places365 dataset,
the detailed information has been included in Fig.9-10.

2) Training from scratch. To further test our method with
CNN models, we also conduct the comparison experiments
with DenseNet-40 and DenseNet-121 under the training from
scratch condition. In these experiments, we train a DenseNet
from scratch with random initialization in pure GPU-based
Keras environment. Furthermore, for big dataset ImageNet,
it is impossible to extract all the features and to feed the
extracted features for retraining stage due to GPU memory
limitation. Therefore, batch-by-batch training strategy is used
in the retraining stage. The detailed settings for this are shown
in Table 4.

As seen in Table 3-4, we set up several special rules for pa-
rameter settings to avoid wasting time on finding "the best pa-
rameters combination" and involving unfairness performance
comparisons.

1) we use similar the same parameter settings such as
learn rate, drop factor, maxEpoches, and dropout rate.

2) we set the batch size as large as possible according
to the actual amount of GPU memory. For example,
to train ImageNet dataset, the maxiumal batch size of
DenseNet is 20 with one 11GB memory GPU (1080 TI)
because some of the GPU memory is used to store
features for retraining process. However, with 4 GPU
1080 Ti GPUs, the maximal batch size of DenseNet
could reach up to 216.

3) Similarly (2), we select the initial learn rate as large
as possible from the vector [0.1, 0.01, 0.001] if the
selected initial learn rate is not for convergence of the
CNN network or the training accuracy does not show
significant improvement in the first training epoch.

4) For other parameters only existent in retraining part,
we also keep these parameters fairly consistent in
Keras or Matlab environment.

3.3 Comparison performance of DCNN with our
method vs. other 31 state-of-the-art methods
In the Subsection 3.3, we experiment our method on four clas-
sic DCNN models including AlexNet, VGG16, 50-layer ResNet
and Inception-GoogleNet. The comparison results of Scene15
and CIFAR10/100 are shown in Table 2 and Table 5.

In Table 2, we include results from complex approaches that
incorporate many cues and learning-optimal feature combina-
tions and leading alternate approaches. For example, Zhou et

al. [44] [45] term a new dataset (Places dataset), which contains
approximately more than 7 million images from 205 or 365
place categories, making it the largest image database of scenes
and places so far. After pre-trained the large-scale dataset,
around 92% accuracy is obtained by [44], which approaches
almost human-level performance at 95%. However, with the
same model used in [44], our result was 94.8%, which is almost
equal to human-level performance.

In Table 5, we take almost all the recent leading methods
as rivals to evaluate our method, including ResNet, Inception,
VGG-16, All Convnet Net [48], Densely Net [18], etc. It is easy to
notice that our method with AlexNet, GoogleNet, and VGG16
model outperforms the existing state-of-the-art consistently on
the three datasets.

3.4 Comparison performance with the same DCNN ar-
chitecture

In the Subsection, we involve almost some of all the recent well-
known DCNN models to show the comparative performance
between BP-based learning strategy and our method. Hence
except for learning strategy, all the other experimental settings,
including the learning rate, the monument rate, the batch-size,
the network architecture, etc., are maintained constant. Then,
we train these DCNN models including AlexNet, VGG-16 Net,
Google inception, DenseNet, and the 50-layer ResNet with both
BP-based method and our proposed method. The comparison
results of the CIFAR10/100, the SUN397, and the Places365
datasets are shown in Table 6-7 and Figure 8-10.

3.4.1 Comparison performance on Scene15, CI-
FAR10/100, and SUN397

The results shown in Fig.8 and Table 6 indicate that DCNN
models with our method significantly boost the learning ca-
pacity. As seen in Fig.8, it can be observed that with the same
DCNN architecture, our proposed method generally provides
better performance than that with BP-method.

We carry out a series of experiments under the two training
environmental conditions (training from scratch and training
from a pretrained model) to evaluate the comparative perfor-
mance which has been recorded in Table 6. The advantage is
obvious; for CIFAR10/100 and SUN397, the top-1 accuracies
are close to 1% to 2% higher than the same DCNN model
with BP method. Although the 1 % to 2 % top-1 accuracy
boost seems to lead to marginal improvement-it is not easy to
obtain these improvements at the current stage. For example,
in the well-known DCNN models, the VGG-16 is an ILSVRC
winner in the year of 2014 which obtains 95.2 %, 79.4%, and
53.1 % top-1 accuracy on the three databases CIFAR10/100
and SUN397, respectively. However, for CIFAR100 datasets, the
2016 winner ResNet only provides 1.2 % boost. Moreover, for
SUN397, ResNet even provides a 1 % lower than VGG-16.

Furthermore, unlike the aforementioned DCNN models
which try to obtain performance improvements through struc-
ture optimization, our method does not access any network
structure re-design task but achieves 1 % to 2 % boost by
a non-iterative learning algorithm, which provides another
direction in future research to further improve generalization
the performance of DCNN models.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 10

1 2 3 4 5 6

25

30

35

40

learning rate = 1.0−3

learning rate = 1.0−4

learning rate = 1.0−5

25.38

27.24

35.47 35.63
36.15 36.28

25.58

27.19

36.4
36.68

38.25
38.71

Training Epoch

Te
st

in
g

A
cc

u
ra

cy
o

n
P

la
ce

s3
65

500 training samples per class

1 2 3 4 5 6

30

35

40

learning rate = 1.0−3

learning rate = 1.0−4

learning rate = 1.0−5

27.74

30.21

38
38.5

39.1 39.16

31.62 31.67

39.61

40.56
40.9 40.92

Training Epoch

1000 training samples per class

1 2 3 4 5 6

30

35

40

learning rate = 1.0−3

learning rate = 1.0−4

learning rate = 1.0−5

30.32
29.81

38.79

39.45
40.05 40.13

31.22

32.07

40.49

41.5

42.21 42.21

Training Epoch

1500 training samples per class

AlexNet Model Our method with AlexNet Model

Fig. 9. Top-1 Testing Accuracy of Places365: Our method with AlexNet vs AlexNet.

TABLE 5
Classification accuracy for our method against other leading methods without data augmentation

Method CIFAR10 CIFAR100

Hierarchical networks
Sumproduct network with deep architecture [51] 84.1 -

Multi-column deep networks [47] 88.9 -
Deep attention selective networks [50] 90.7 66.3

Deep-supervised Nets [49] 90.2 -
96-layers Recurrent convolutional network [15] 89.7 65.8

160-layers Recurrent convolutional network [15] 91.3 68.3
44-layers ResNet [19] 92.8 -

110-layers ResNet [19] 93.5 -
Network in Networks, pretrained by ImageNet dataset [16] 89.6 64.4

Densely connected convolutional networks [18] 94.8 80.4
All convolutional net, ImageNet-pretrained [48] 92.0 75.6

Our method with CNN models
Ours with AlexNet 92.3 75.2

Ours with Google Inception 94.7 77.3
Ours with 16-layer VGG 95.2 80.0

Ours with ResNet-50 95.4 81.9

3.4.2 Comparison performance on Places365 and Ima-
geNet

As far as we know, Places365 and ImageNet could be the largest
datasets in image recognition task area. To further test the per-
formance of our method on large-scale datasets, we select the
recent large-scale datasets Places365 and ImageNet to evaluate
our method. Similarly, we also try to expose recent well-known
DCNN models to two training conditions (training from a
pretrained model and training from scratch). The experimental
results are shown in Fig.9-10 and Table 7.

First, we use ImageNet pretrained DCNN models as initial
neuron parameters to evaluate the comparative performance of
Places365 dataset. As ImageNet and Places365 are two different
databases, the specialty of the units in the object-centric DCNN
(ImageNet) and scene-centric DCNN (Places365) yield very
different performances of generic visual features on a variety of
recognition benchmarks. We report the top-1 accuracy of both
our method and other two well-known DCNN models (AlexNet

and VGG16) on Places365. As seen in Table 7 and Fig.9-10, the
results are quite similar as we have mentioned in Subsection
4.3.1 that our method has significantly beneficial in regarding
both learning effectiveness and generalization performance. As
shown in Fig.9, the AlexNet with 182,500 training images (1500
training images per class), needs six training epochs to provide
40.13% accuracy, while our method with two training epochs
provides 40.49% accuracy. Similar trends can be observed in
Fig.8, where the VGG-16 with our proposed method could also
provide better performance than that of VGG-16 with pure BP
method.

Second, we evaluate the comparative performance by train-
ing a scratch DenseNet model with both BP-method and our
proposed method on ImageNet. To obtain the top-1 accuracy
as fast as possible, in this study, we select 121-layer DenseNet
model because DenseNet has a relatively smaller number of
parameters than VGG-16, AlexNet, or ResNet models. After
around 17 days training, we finally obtain this top-1 accuracy of

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 11

TABLE 6
Top-1 Classification accuracy with both our method and original BP method

Method CIFAR10 CIFAR100 SUN397

Pretrained AlexNet
AlexNet [13], ImageNet-pretrained 91.5 73.5 38.5

Ours with ImageNet-pretrained AlexNet 92.3 75.2 40.5
AlexNet, Places365-pretrained - - 39.1

Ours with Places365-pretrained AlexNet - - 42.0

Pretrained VGG-16
16-VGG, ImageNet-pretrained [46] 95.2 79.4 53.1

Ours with ImageNet-pretrained 16-layer VGG 95.2 80.0 55.6

Google Inception
Google-Inception, ImageNet-pretrained [17] 93.7 77.1 49.3

Ours with ImageNet-pretrained Google Inception 94.7 77.3 48.9

DenseNet
40-layer DenseNet, training from scratch [18] 93.0[18] 72.6[18] 59.6a

Ours with 40-layer DenseNet,training from scratch 93.7 73.3 60.4a

ResNet-50
ImageNet-pretrained ResNet-50 95.0 80.8 52.0

Ours with ImageNet-pretrained ResNet-50 95.4 81.9 54.3

a 121-layer ImageNet Pretrained DenseNet .

1 2 3 4 5 6
36

38

40

42

44

46

learning rate = 1.0−3

learning rate = 1.0−4

learning rate = 1.0−5

36.85

40.78

45.15

44.62 44.73 44.69

38.67

42.51

46.14 46.26
46.01 46.05

Training Epoch

Te
st

in
g

A
cc

u
ra

cy
o

n
P

la
ce

s3
65

500 training samples per class

1 2 3 4 5 6

42

44

46

48

learning rate = 1.0−3

learning rate = 1.0−4

learning rate = 1.0−5

40.85

43.59

47.41 47.41 47.43 47.34

42.52

44.64

48.62 48.6

48.14 48.16

Training Epoch

1000 training samples per class

1 2 3 4 5 6

44

46

48

50

learning rate = 1.0−3

learning rate = 1.0−4

learning rate = 1.0−5

43.05

45.88

48.7 48.82
49.14

49

42.92

45.29

49.1

48.59

49.25
49.59

Training Epoch

1500 training samples per class

VGG-16 Model Our method with VGG-16 Model

Fig. 10. Top-1 Testing Accuracy of Places365: Our method with VGG16 Vs VGG-16

TABLE 7
Classification accuracy on Scene-centric databases for the deep features of Object-centric databases (ImageNet). All the accuracy is the top-1

accuracy.

Method Dataset training image per category Top-1 Accuracy

Training from the ImageNet pretrained model
AlexNet, ImageNet-pretrained model Place365 1500 40.13
Ours, ImageNet-pretrained AlexNet model Place365 1500 42.21
VGG-16, ImageNet-pretrained model Place365 1500 49.00
Ours, ImageNet-pretrained VGG-16 model Place365 1500 49.59

Training from scratch
121-layer DenseNet, batch size 20 ImageNet Mini 200 48.83
Ours with 121-layer DenseNet, batch size 20 ImageNet Mini 200 51.45
121-layer DenseNet, batch size 216, ImageNet Mini 200 50.06
Ours with 121-layer DenseNet, batch size 216 ImageNet Mini 200 51.60
121-layer DenseNet, batch size 216, ImageNet 732-1300 69.05
Ours with 121-layer DenseNet, batch size 216, ImageNet 732-1300 69.97

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 12

CIFAR10 CIFAR100 SUN397

0

200

400

600 581 587

336

97 89
47

6 6 7

123 121

388

34 33
85

1 1 1

Tr
ai

n
in

g
ti

m
e

p
er

o
n

e
tr

ai
n

in
g

ep
o

ch
(s

ec
o

n
d

)

BP based training time of the VGG-16

Extract deep features from the flattened layer

Our method for recalculating fully-connected layers in VGG-16

BP-based training time of the DenseNet

Extract deep features from the flattened layer

Our method for recalculating fully-connected layers in DenseNet

Fig. 11. Training time per training epoch on Keras version environment (one 1080 TI GPU): Our method vs original DCNN models. For DenseNet,
we use 40-layer DenseNet on CIFAR10/100, and use 121-layer DenseNet on SUN397.

CIFAR10 CIFAR100 SUN397

0

200

400

600

800

1,000

1,200

1,400
1,259 1,276 1,288

167 156

600

488 490

696

308 325

174
250 236

674

204 190

780

150 139

580

121 126
52

T r
ai

n
in

g
ti

m
e

p
er

o
n

e
tr

ai
n

in
g

ep
o

ch
(s

ec
o

n
d

)

BP based training time of the VGG-16

Extracting data from the database

Extracting features from the flattened layer

Our method for recalculating FC layers in VGG-16

BP-based training time of the AlexNet

Extracting data from the database

Extracting features from the flattened layer

Our method for recalculating fully-connected layers in AlexNet

Fig. 12. Training time per training epoch on Matlab 2017b version environment (one 1080 Ti GPU, I7700k CPU): Our method vs original DCNN
models. For DenseNet, we use 40-layer DenseNet on CIFAR10/100, and use 121-layer DenseNet on SUN397.

ImageNet. As seen from Table 7, the 121-layer DenseNet using
our method provide around 0.4 to 2 percent top-1 accuracy
boost than that of the original 121-layer DenseNet.

3.5 Computational Cost
The proposed method is unable to shorten the training speeds
in each learning iteration if network structure/size is remained
constant. However, our method does not add many computa-
tional workloads into the existing training process. As we tested

our algorithm under the two environments, we provide the
related computational information in the following two parts.

1. Keras environment. Here we use GPU, not CPU for
retraining FC layers. The detailed computational time can be
found in Fig. 11. We test our datasets in the following two
conditions.

1) Directly extracting all the features and retraining the
entire features once. Here we use one GPU (1080 TI,
11GB memory) to conduct the training process. There-

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 13

fore the total computational time was also composed
of the same four computational parts as mentioned: (i)
Loading data to GPU, (ii) BP-based computation with
GPU, (iii) Extracting all the features from H0 layer, (iv)
GPU-based retraining for FC layers.

2) Batch-by-batch training. For big dataset ImageNet, it is
impossible to extract all the features and to feed the
extracted features for retraining due to GPU memory
limitation. Even in multi-GPU environment, 4 GPUs
have 44 GB GPU-memory in total, but it is also unable
to extract all the features of ImageNet. Therefore in this
paper, DenseNet has been tested under the batch-by-
batch training condition with our proposed method.
For CIFAR10/100, SUN397, and the mini version of
ImageNet, we used one 1080 Ti GPU with a batch size
of 16. For ImageNet, we use four 1080 Ti GPUs with a
batch size of 20 and 232.

2. Matlab environment. The detailed computational cost
is shown in Fig.12. We use deep learning to train the CNN
network with BP-based algorithm. Moreover, we extract all the
features from H0 layer, and feed the features to our CPU-
based Matlab code to retrain the FC layers. Therefore, in the
Matlab environment, total computational time was composed
of four computational parts: (i) Loading data to GPU (deep
learning toolbox), (ii) BP-based computation with GPU (deep
learning toolbox), (iii) Extracting features from H0 Layer with
GPU, (iv) CPU-based retraining for FC layers. Although we use
CPU to retrain the FC layers, the computational time is not
considerable huge because we only retrain the parameters of
the FC layer once;(in other words no iterative learning) in the
retraining part.

3.6 Experimental discussion
Based on the experimental results, we cite the following facts.

1. DCNN models with the proposed method vs. original
DCNN models. As observed through the experimental results,
DCNN models with our method consistently outperform other
original DCNN models almost across all the tested databases.
As the exact the same experimental settings are used in both
BP-based method and our method, the advantage of the perfor-
mance improvements is evident. Furthermore, the design of a
learning algorithm for DCNN models, rather than a new DCNN
architecture, remains an important feature for users’ capability
of directly utilizing the proposed method to the existing DCNN
models.

2. Computational cost. The proposed method retrain the
weights in FC layers at the end of every training epoch, which
is still the natural iterative learning method. Therefore, the
proposed method is unable to shorten the training speeds.
However, according to the results shown in Fig.11-12, the
method does not add many computational workloads (espe-
cially in pure GPU environment) but provides improvements
in the generalization performance. As seen in Fig.11, major
extra computational workload is a feature of the extraction
process, and the computational workload of the feature extrac-
tion stage theoretically could be entirely removed if Matlab or
Keras/Tensorflow can give permissions to allow researchers to
modify the core sources or special commends/tools could be
released in the future to allow data transmission between GPUs
inertly.

3. Retraining Epochs. As seen in Table 3-4, the training
epochs used in the retraining process are set as one or two.
In fact, all the experimental results of our method are obtained
by a nearly non-iterative learning method although the entire
training process should be considered an iterative method. As
this paper shows that the alternating minimization algorithm
used in FC layers benefits generalization performance, it may
be an important direction to further investigate the perfor-
mance of using non-iterative learning methods in Conv. layers
in the future.

4 CONCLUSION

This paper introduces a learning strategy to retrain the param-
eters of fully-connected layers in deep convolutional neural
networks which results in improvements in the efficiency at
the training stage and performance boost in the testing accu-
racy. The experimental results demonstrate that the proposed
model achieves state-of-the-art results across several bench-
mark datasets as compared to highly ranked object recognition
methods.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Net., vol. 61, pp. 85–117, Jan. 2015.

[2] J. Weng, N. Ahuja, and T. S. Huang, “Cresceptron: a self-organizing
neural network which grows adaptively,” in Proc. Int. Jt. Conf. Neural.
Netw., vol. 1, (Baltimore, US.), pp. 576–581, Jun. 1992.

[3] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Back-propagation applied to handwritten zip
code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[4] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, pp. 504–507, July 2006.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proc. Adv. Neural Inf. Process. Syst.,
(Vancouver, BC, Canada), 2007.

[6] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Dec 2010.

[7] M. Chen, K. Weinberger, Z. Xu, and F. Sha, “Marginalizing stacked
autoencoders,” J. Mach. Learn. Res., vol. 22, no. 2, pp. 191–194, 2015.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2016.

[9] K. Fukushima, “Neocognitron: A self-organizing neural network for
a mechanism of pattern recognition unaffected by shift in position,”
Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980.

[10] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, 1994.

[11] N. Schraudolph and T. J. Sejnowski, “Unsupervised discrimination of
clustered data via optimization of binary information gain,” in Proc.
Adv. Neural Inf. Process. Syst., (San Mateo, US.), pp. 499–506, 1993.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., June 2015.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, pp. 1097–1105, 2012.

[14] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the
devil in the details: Delving deep into convolutional nets,” in British
Machine Vision Conference, 2014.

[15] M. Liang and X. Hu, “Recurrent convolutiaonl neural network for
object recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
(Boston, US.), pp. 3367–3375, Jun, 2015.

[16] M.Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, 2013.
[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–9, June 2015.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 14

[18] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, June 2016.

[20] W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin, “Feed forward neural
networks with random weights,” in in Proc. Int. Conf. Neural. Netw.,
(The Hague, The Netherlands), pp. 1–4, 1992.

[21] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learn-
ing machine,” in Technical Report ICIS/03/2004 (also in
http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm), (School of Electrical
and Electronic Engineering, Nanyang Technological University,
Singapore), Jan. 2004.

[22] G.-B. Huang, H.-M. Zhou, X.-J. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.
Man. Cy. B., vol. 42, pp. 513–529, April 2012.

[23] R. Zhang, Y. Lan, G.-B. Huang, and Z.-B. Xu, “Universal approximation
of extreme learning machine with adaptive growth of hidden nodes,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 365–371, 2012.

[24] D. Lam and D. Wunsch, “Unsupervised feature learning classification
with radial basis function extreme learning machine using graphic
processors,” IEEE Trans. Cybern., vol. PP, no. 99, pp. 1–8, 2016.

[25] Y. Yang and Q. M. J. Wu, “Multilayer extreme learning machine with
subnetwork nodes for representation learning,” IEEE Transactions on
Cybernetics, vol. 46, pp. 2570–2583, Nov 2016.

[26] M. Carreira-Perpinan and W. Wang, “Distributed optimization of
deeply nested systems,” in Proceedings of the Seventeenth Interna-
tional Conference on Artificial Intelligence and Statistics (S. Kaski and
J. Corander, eds.), vol. 33 of Proceedings of Machine Learning Research,
(Reykjavik, Iceland), pp. 10–19, PMLR, 22–25 Apr 2014.

[27] Z. Zhang, Y. Chen, and V. Saligrama, “Efficient training of very deep
neural networks for supervised hashing,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1487–1495, June
2016.

[28] A. Choromanska, S. Kumaravel, R. Luss, I. Rish, B. Kingsbury, M. Rigot-
ti, P. DiAchille, V. Gurev, R. Tejwani, and D. Bouneffouf, “Beyond back-
prop: Alternating minimization with co-activation memory,” CoRR,
arXiv:1806.09077, 2018.

[29] J. Gemert, C. Geusebroek, C. Veenman, and A. Smeulders, “Kernel
codebooks for scene categorization,” in Proc. IEEE Eur. Cof. Comput.
Visi., (Marseille, France), pp. 696–709, 2008.

[30] L. Zhang, X. Zhen, and L. Shao, “Learning object-to-class kernels for
scene classification,” IEEE Trans. Image Process., vol. 23, pp. 3241–
3253, Aug. 2014.

[31] Y. Han, K. Yang, Y. Ma, and G. Liu, “Localized mutiple kernel learn-
ing via simaple-wise alternating optimization,” IEEE Trans. Cybern.,
vol. 44, pp. 137–148, Jan. 2014.

[32] Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent K-SVD: Learning a
discriminative dictionary for recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, pp. 2651–2664, Nov 2013.

[33] L. Yang, R. Jin, R. Sukthankar, and F. Jurie, “Linear spatial pyramid
matching using sparse coding for imge classification,” in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit., (Miami, US.), pp. 1794–1801,
2009.

[34] S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao, “Local features are not
lonely-laplacian sparse coding for image classification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., pp. 3555–3561.

[35] J. Yu, D. Tao, Y. Cui, and J. Cheng, “Pariwise constraints based
multiview features fusion for scene classification,” Pattern Recognit.,
vol. 46, pp. 483–496, Feb 2013.

[36] J. Van Gemert, V. C.J., A. Smeuldes, and J. Geusebroek, “Visual word
ambiguity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, pp. 1271–
1283, July 2010.

[37] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognition natural scene categories,”
in Proc.IEEE Int. Conf. Comput. Vis. Pattern Recognit., (New York, NY.,
US.), pp. 2169–2178, 2006.

[38] L. Liu, L. Wang, and X. Liu, “In defence of soft-assignment coding,” in
Proc. IEEE Int. Conf. Computer Vision, (Barcelona, Spain), pp. 2486–
2493, 2011.

[39] J. X. Wu and J. M. Rehg, “Centrist: A visual descriptor for scene cate-
gorization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, pp. 1489–
1501, Aug. 2011.

[40] Y. Boureau, J. Ponce, and Y. Lecun, “A theoretical analysis of feature
pooling in vision recognition,” in Proc. Int. Conf. Machine Learning,
(Haifa, Israel), 2010.

[41] Y.-l. Boureau and F. Bach, “Learning Mid-Level Features For Recogni-
tion,” in Proc.IEEE Int. Conf. Comput. Vis. Pattern Recognit., pp. 2559–
2566, 2010.

[42] H. Goh, N. Thome, M. Cord, and J.-h. Lim, “Learning Deep Hierar-
chical Visual Feature Coding,” IEEE Trans. Neural Netw. Learn. Syst.,
pp. 2212–2225, 2014.

[43] Y. Yuan, L. Mou, and X. Lu, “Scene recognition by manifold regularized
deep learning architecture,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 26, no. 10, pp. 2222–2233, 2015.

[44] B. Zhou, a. J. X. A. Lapedriza, A. Torralba, and A. Oliva, “Learning deep
features for scene recognition using places database,” in Proc.Neural
Inf. Process. Syst., 2014.

[45] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A
10 million image database for scene recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, pp. 1452–1464,
June 2018.

[46] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[47] C. Dan, M. Ueli, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc.IEEE Int. Conf. Comput. Vis.
Pattern Recognit., CVPR ’12, (Washington, DC, USA), pp. 3642–3649,
2012.

[48] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller,
“Striving for simplicity: The all convolutional net,” pp. 1–18, 2015.

[49] C. Lee, S. Xie, P. Gallagher, Z. Z.Y., and Z. Tu, “Deeply-supervised nets,”
CoRR, 2015.

[50] M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber, “Deep
networks with internal selective attention through feedback con-
nections,” in Advances in Neural Information Processing Systems 27,
pp. 3545–3553, 2014.

[51] R. Gens and P. Domingos, “Discriminative learning of sum-product
networks,” in Advances in Neural Information Processing Systems 25,
pp. 3239–3247, Curran Associates, Inc., 2012.

[52] F.-F. Li and P. Perona, “A bayesian hierarchical model for learning
natural scene categories,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., (San Diego, US.), pp. 524–531, Jun, 2005.

Yimin Yang (S’10-M’13) received his Ph.D. de-
grees in Electrical Engineering from Hunan Uni-
versity, China, in 2013.

He is currently an Assistant Professor at Com-
puter Science Department in Lakehead Univer-
sity, Thunder Bay, Ontario, Canada. From 2014
to 2018, he was a Post-Doctoral Fellow with
the Department of Electrical and Computer En-
gineering at the University of Windsor, Ontario,
Canada. He has authored or coauthored more
than 40 refereed papers. His research interests

are artificial neural networks, hybrid system approximation, and image
feature selection.

Dr. Yang was the recipient of the Outstanding Ph.D. Thesis Award of
Hunan Province, and the Outstanding Ph.D. Thesis Award Nominations
of Chinese Association of Automation, China, in 2014 and 2015, respec-
tively. He has been serving as a Reviewer for international journals of
his research field, a Guest Editor of multiple journals, and a Program
Committee Member of some international conferences.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2917685, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 2019 15

Q. M. Jonathan Wu (M’92-SM’09) received his
Ph.D. in Electrical Engineering from the Univer-
sity of Wales, Swansea, U.K., in 1990.

He was affiliated with the National Research
Council of Canada for ten years beginning in
1995, where he became a Senior Research
Officer and a Group Leader. He is currently a
Professor with the Department of Electrical and
Computer Engineering, University of Windsor,
Windsor, Ontario, Canada. He has published
more than 300 peer-reviewed papers in comput-

er vision, image processing, intelligent systems, robotics, and integrated
microsystems. His current research interests include 3-D computer vi-
sion, active video object tracking and extraction, interactive multimedia,
sensor analysis and fusion, and visual sensor networks.

Dr. Wu holds the Tier 1 Canada Research Chair in Automotive Sen-
sors and Information Systems. He is an Associate Editor for the IEEE
Transaction on Cybernetics, the IEEE Transactions on Circuits and Sys-
tems for Video Technology, and the journal of Cognitive Computation. He
has served on technical program committees and international advisory
committees for many prestigious conferences.

Xiexing Feng received his bachelor’s degree in
Mechanical Design, Manufacturing and Automa-
tion from North University of China, in 2013. He
is currently a Ph.D. Candidate with the Depart-
ment of Electrical and Computer Engineering, U-
niversity of Windsor, Windsor, Ontario, Canada.
His research focuses on machine learning and
computer vision.

Akilan Thangarajah (S’07) received his Ph.D. in
Electrical and Computer Engineering from the U-
niversity of Windsor, Windsor, Canada, in 2018.

He is a Postdoctoral fellow in the Electrical
and Computer Engineering at the Computer Vi-
sion and Sensing Systems Laboratory, Universi-
ty of Windsor, Windsor, Ontario, Canada. His re-
search interest includes object and action recog-
nition, image/video processing and segmenta-
tion, and data fusion using statistical techniques,
machine learning, and deep learning. He is a re-

cipient of 2015-2016 Golden Key’s premier Graduate Scholar Award. He
serves as a reviewer for several journals, including IEEE Transactions on
Multimedia and IEEE Transactions on Industrial Informatics.

