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Abstract

Recent advances in large language models (LLMs) have enabled the development1

of multimodal medical AI. While models such as MedGemini achieve high ac-2

curacy on VQA tasks like USMLE-MM, their performance on ECG-based tasks3

remains limited, and some models, such as MedGemma, do not support ECG data4

at all. Interpreting ECGs is inherently challenging, and diagnostic accuracy can5

vary depending on the interpreter’s experience. Although echocardiography pro-6

vides rich diagnostic information, it requires specialized equipment and personnel,7

limiting its availability.8

In this study, we focus on constructing a robust ECG encoder for multimodal9

pretraining using real-world hospital data. We employ SigLIP, a CLIP-based model10

with a sigmoid-based loss function enabling multi-class prediction, and introduce a11

modified loss function tailored to the multi-class nature of ECG data. Experiments12

demonstrate that incorporating medical knowledge in the language model and13

applying the modified loss significantly improve multi-class ECG classification.14

To further enhance performance, we increase the embedding dimensionality and15

apply random cropping to mitigate data drift.16

Finally, per-label analysis reveals which ECG findings are easier or harder to17

predict. Our study provides a foundational framework for developing medical18

models that utilize ECG data.19

1 Introduction20

In recent years, alongside the emergence of large language models (LLMs), multimodal medical21

AI has been developed. Recently, models such as MedGemini [6] and MedGemma [7] have been22

introduced, marking the appearance of multimodal models in the medical domain. However, while23

MedGemini achieves high accuracy on VQA tasks such as USMLE-MM, reaching 93.5%, its24

performance on ECG-QA, which involves electrocardiogram data (ECG), is considerably lower at25

57.7%. In addition, MedGemma does not support an ECG at all. This discrepancy can be attributed26

to the inherently challenging nature of ECGs for model training.27

In real-world clinical settings, interpreting ECGs is one of the more challenging tasks, and it is well28

known that diagnostic accuracy can vary significantly depending on the interpreter’s professional29

background and level of experience [3]. Although transthoracic echocardiography is recommended for30

the diagnosis of cardiovascular diseases due to its rich informational content [2], it requires specialized31

technicians, and many facilities lack sufficient infrastructure to perform the examination [11]. In32

this context, the development of a multimodal model capable of handling electrocardiogram data33

and estimating echocardiographic findings from ECGs could provide substantial support in clinical34

settings. However, to date, no such clinically useful multimodal model exists.35
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To build a high-quality multimodal model, it is essential to design ECG encoders suitable for the36

modality. In this study, we focus on the construction of a convincing encoder for ECGs. Previous37

studies have reported attempts to apply CLIP [5] as a pretraining method for ECGs [1, 4, 12], but38

these approaches have several limitations. First, many of these studies utilize publicly available39

datasets such as PTB-XL [8] rather than real-world clinical data, which limits their clinical validity.40

Second, while real-world cardiovascular diseases often involve multiple abnormalities simultaneously,41

representing a multi-class problem, existing studies applying CLIP have been limited to single-class42

prediction.43

In this study, we employed real-world hospital data and conducted pretraining based on SigLIP [13],44

assessing its performance in multi-class prediction tasks. SigLIP is a model that replaces the45

CrossEntropyLoss of CLIP with a sigmoid-based loss function, thereby enabling multi-class inference46

for each prediction. We also demonstrate that improving the loss function is necessary to enhance47

multi-class classification performance when training ECG data using SigLIP. Moreover, we addressed48

the clinically significant task of estimating echocardiographic findings from ECGs, investigating the49

potential of ECGs as a surrogate for echocardiography.50

Overall, our study introduces two principal contributions. First, it leverages authentic clinical51

data for multimodal pretraining, enhancing the clinical validity of the model. Second, it adopts a52

sigmoid-based loss function to facilitate multi-class prediction, thereby enabling clinically meaningful53

inferences from ECGs that were not achievable with previous CLIP-based approaches.54

2 Methods55

2.1 Model architecture56

In this study, we trained an ECG encoder using SigLIP and evaluated its performance in multi-class57

classification. The predicted findings are presented in the Appendix 5.1. We adopted a 1D ResNet-1858

as an ECG Encoder as previous studies [1, 4] have reported superior performance compared with59

Vision Transformer (ViT) architectures. As the language model, we employed Qwen3-8B [10],60

which was selected based on preliminary evaluation indicating a favorable balance between model61

size and domain-specific knowledge regarding the target labels. For the ablation study, we utilized62

Gemma3-4B [9] to investigate whether ECG knowledge in language models influences pretraining63

effectiveness. By examining its generated outputs, we found that Gemma3-4B possesses limited ECG64

knowledge related to ECGs.65

2.2 Dataset66

The dataset consisted of 33,732 ECG data from our hospital. The ECG data consisted of 12-lead67

recordings sampled at 500 Hz over a duration of 10 seconds. The training text was formatted as:68

“This ECG shows {finding_1}, {finding_2}, . . . , {finding_n}.”69

3 Experiments70

We conducted a series of experiments for comparison.71

In the first experiment, we followed the standard SigLIP training process.72

In the second experiment, we modified the loss function of the standard SigLIP to account for the73

multi-class nature specific to ECG data. While SigLIP trains by treating diagonal pairs as the correct74

labels, ECG datasets with a limited number of diagnostic categories may contain patients with the75

same ECG findings within the same batch, which can lead to label conflicts. To address this issue, we76

modified the loss function. The modified loss was designed to treat patients with the same condition77

as similar pairs, and the loss calculation was adjusted accordingly to account for this similarity. We78

used the Jaccard Score as a metric for this similarity. Further details are provided in the Appendix 5.2.79

For all two experiments, training was conducted using the Adam optimizer with a learning rate of80

1× 10−3. The models were trained for 250 epochs, with a warm-up phase of 5,000 steps.81

The results are presented in Table 1. Evaluation was performed using the multi-label metrics:82

Hamming Loss, Precision (Micro), Recall (Micro), F1 Score (Micro), and Jaccard Index.83
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Table 1: Results of the standard SigLIP and SigLIP with the modified loss
Metric Standard Modified loss
Hamming Loss 0.0665 ↓ 0.0451 ↓
Precision (Micro) 0.5067 ↑ 0.3147 ↑
Recall (Micro) 0.0365 ↑ 0.3020 ↑
F1 Score (Micro) 0.0681 ↑ 0.3082 ↑
Jaccard Index 0.0373 ↑ 0.0858 ↑

From Table 1, it can be observed that the Modified Loss exhibits superior performance in multi-84

class ECG classification, as indicated by metrics such as F1 Score (Micro), Jaccard Index, and85

Hamming Loss.86

In the third experiment, we trained SigLIP using a language model without ECG-related knowledge87

to investigate how the presence or absence of domain knowledge in the language model affects88

pretraining performance. In all subsequent experiments, we employ our Jaccard-based sigmoid loss89

function instead of the original sigmoid loss of SigLIP.90

Table 2: Results of SigLIP with the modified loss, and Gemma3-4b
Metric Modified loss (Qwen3-8B) Gemma3-4b
Hamming Loss 0.0451 ↓ 0.0539 ↓
Precision (Micro) 0.3147 ↑ 0.2451 ↑
Recall (Micro) 0.3020 ↑ 0.2970 ↑
F1 Score (Micro) 0.3082 ↑ 0.2686 ↑
Jaccard Index 0.0858 ↑ 0.0736 ↑

From the results in Table 2, it can be seen that the medical knowledge of the language model affects91

the overall performance of multi-label classification.92

Through the experiments conducted thus far, we have demonstrated that employing the Modified93

Sigmoid Loss, which is tailored for multi-class classification, together with a language model incorpo-94

rating medical knowledge, leads to performance improvements. However, the overall F1 Score (Micro)95

remains low at 0.3082, which is insufficient for practical applications.96

To further enhance the F1 Score (Micro), we conducted several performance improvement experi-97

ments. The first approach involved increasing the dimensionality of the embedding vector, which98

represents the final similarity, from 128 to 256. The reason for increasing the embedding dimension-99

ality is that 128 dimensions may be insufficient to adequately capture the representations of ECG100

signals. We also experimented with 512 dimensions, but no further performance improvement was101

observed; therefore, those results are omitted. The second approach aimed to address the issue of102

data drift by randomly cropping ECG waveforms. Since real ECG signals may vary in both start and103

end times, this variability can degrade performance. By applying random cropping, we mitigate this104

issue.105

In addition, to ensure that the effect of random cropping is properly reflected in the model, we set the106

warmup steps to 20,000, following the original SigLIP paper, and increased the number of training107

epochs to 600.108

Table 3: Performance comparison of baseline and proposed enhancements

Metric Baseline Embedding
dim 256

Embedding dim 256
+ random crop

(250 epoch, 5k warmup)

Embedding dim 256
+ random crop

(600 epoch, 20k warmup)
Hamming Loss 0.0451 ↓ 0.0769 ↓ 0.0856 ↓ 0.0680 ↓
Precision (Micro) 0.3147 ↑ 0.4097 ↑ 0.3824 ↑ 0.4898 ↑
Recall (Micro) 0.3020 ↑ 0.3521 ↑ 0.4636 ↑ 0.5165 ↑
F1 Score (Micro) 0.3082 ↑ 0.3788 ↑ 0.4191 ↑ 0.5028 ↑
Jaccard Index 0.0858 ↑ 0.2218 ↑ 0.2827 ↑ 0.3495 ↑
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The results are presented in Table 3. As a result, the final F1 Score (Micro) increased to 0.5028.109

Although the type and amount of data differ, this result achieves an F1-score comparable to that110

reported in the prior CLIP-based study [4]. From these results, it can be seen that increasing the111

embedding dimensionality to enhance ECG representation and applying random cropping to address112

data drift both contribute to improved multi-class prediction performance when training ECGs with113

SigLIP.114

We will now examine the classification performance of the final model for each individual label. The115

Accuracy, Precision, Recall, and F1 Score for each label are presented in Appendix Table 5.116

From this table, it can be seen that some labels are easier to train with SigLIP-based contrastive117

learning on ECGs, while others are more difficult. For example, findings such as ventricular premature118

contractions and myocardial infarction have low F1 scores, indicating that they are difficult to predict119

from ECGs. Additionally, conditions observable via echocardiography, such as left atrial enlargement120

and left ventricular hypertrophy, have relatively low accuracy, showing that it is challenging to predict121

them without any misclassification. In contrast, labels such as atrial fibrillation, ST-T abnormalities,122

and right and left bundle branch blocks are easier to predict from ECGs. Additionally, for lowEF,123

which is a condition observable via echocardiography, the model achieves a high accuracy of 0.9138124

and an F1 Score of 0.5152. Furthermore, as shown in Appendix 5.4, lowEF achieved a high AUC of125

0.887, confirming its strong average predictive performance. This indicates that SigLIP is capable of126

predicting certain conditions, such as lowEF, which are typically identified from echocardiography,127

directly from ECG data.128

We investigated whether performance degradation occurs when using ECG data obtained from a129

different hospital. The results are presented in Appendix 5.5. Overall, the F1 score decreased only130

slightly to 0.4841, a reduction of approximately 0.02, indicating minimal decline in the model’s131

inference performance. Predictions for conditions such as lowEF also maintained an AUC of 0.888.132

These results suggest that our training approach is capable of preserving performance even on data133

from a different medical institution.134

4 Conclusion135

In this study, we enhanced the performance of multi-class electrocardiogram (ECG) classification136

by employing a SigLIP-based ECG encoder trained on real-world clinical data and a modified loss137

function incorporating the Jaccard similarity. By increasing the embedding dimension and applying138

random cropping, the F1 score improved to 0.50, revealing which findings are relatively easy or139

difficult to predict. These results contribute to establishing a foundation for multimodal medical AI140

utilizing ECG data.141
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5 Appendix240

5.1 Labels241

In this study, the labels used for training is selected under the guidance of the cardiologists. These242

labels are listed in Table 4. Note that the ground truth for lowEF, left ventricular hypertrophy, and left243

atrial enlargement was obtained from echocardiography data not than from ECG.244

5.2 Modified sigmoid loss245

We improved the original loss (Listing 1) to enhance multi-class prediction performance.246

247
1 # img_emb : image model embedding [n, dim]248

2 # txt_emb : text model embedding [n, dim]249

3 # t_prime, b : learnable temperature and bias250

4 # n : mini-batch size251

5252

6 t = exp(t_prime)253

7 zimg = l2_normalize(img_emb)254

8 ztxt = l2_normalize(txt_emb)255

9 logits = dot(zimg, ztxt.T) * t + b256

10 labels = 2 * eye(n) - ones(n) # -1 with diagonal 1257

11 l = -sum(log_sigmoid(labels * logits)) / n258259

Listing 1: Original Sigmoid loss pseudo-implementation.

Specifically, we modified the eye component in Listing 1. The original eye is defined as a diagonal260

matrix261

eye = {E ∈ {0, 1}n×n | Eii = 1, Eij = 0 (i ̸= j)}, (1)
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Table 4: ECG findings used in this study
ECG Findings

Left ventricular hypertrophy
Left atrial enlargement
Low ejection fraction (lowEF)
Normal range (Normal)
Prolonged QT interval
Tall T wave
Left axis deviation
Artificial pacemaker rhythm
Intraventricular conduction delay
Complete right bundle branch block
Complete left bundle branch block
Flat T wave
Inverted T wave
ST-T abnormality
Poor R wave progression
Abnormal Q wave
Anterior wall myocardial infarction
Lateral wall myocardial infarction
Inferior wall myocardial infarction
Anterior septal myocardial infarction
Ventricular premature contraction
Frequent ventricular premature contraction
Ventricular bigeminy
Ventricular tachycardia
Couplet of ventricular premature contractions
Atrial fibrillation

that is, a matrix whose diagonal entries are one and off-diagonal entries are zero. The entries of one262

correspond to positive labels, whereas the zeros represent negative labels. This implies that the i-th263

ECG finding is considered positive only for the i-th label.264

However, it can easily occur that the patients with the same diseases are included in the same batch.265

We then modified the eye in Eq. 1 based on the similarity of ECG findings among patients within a266

batch.267

We employed the Jaccard similarity to represent the similarity of these ECG findings. The modified268

eye is defined as in Eq. 2, where the set of ECG findings for the i-th data is denoted by Ai and that269

for the j-th data is denoted by Aj .270

Jaccard(Ai, Aj) =
|Ai ∩Aj |
|Ai ∪Aj |

, eyeij = Jaccard(Ai, Aj), ∀i, j ∈ {1, . . . , n}, (2)

The Jaccard similarity satisfies 0 ≤ Jaccard(Ai, Aj) ≤ 1, Jaccard(Ai, Aj) = Jaccard(Aj , Ai),271

and Jaccard(Ai, Aj) = 1 when i = j. Here, a value of Jaccard(Ai, Aj) closer to 1 indicates that272

the patients have more similar diseases. Using the modified eye defined in Eq. 2, we conducted the273

experiments in this study.274
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5.3 Appendix: Individual Label Metrics 5275

Table 5: Classification performance for each label of the final model
Label Accuracy Precision Recall F1-Score
lowEF 0.9138 0.5038 0.5271 0.5152
Normal 0.9091 0.8054 0.5526 0.6555
Prolonged QT 0.9368 0.5161 0.2753 0.3590
Tall T wave 0.9842 0.1471 0.1515 0.1493
Left axis deviation 0.9296 0.3872 0.5884 0.4670
Left atrial enlargement 0.7949 0.4000 0.3336 0.3638
Left ventricular hypertrophy 0.7404 0.5932 0.4410 0.5059
Artificial pacemaker rhythm 0.9804 0.6564 0.6995 0.6773
Intraventricular conduction delay 0.9578 0.1085 0.1655 0.1311
Complete right bundle branch block 0.9674 0.8351 0.7607 0.7962
Complete left bundle branch block 0.9737 0.4138 0.8571 0.5581
Flat T wave 0.8808 0.5251 0.5849 0.5534
Inverted T wave 0.9355 0.5065 0.4140 0.4556
ST-T abnormality 0.9122 0.8242 0.6239 0.7102
Poor R wave progression 0.9339 0.4179 0.6062 0.4947
Abnormal Q wave 0.9553 0.0234 0.0420 0.0300
Anterior wall myocardial infarction 0.9314 0.0422 0.3226 0.0746
Lateral wall myocardial infarction 0.9423 0.0382 0.2778 0.0671
Inferior wall myocardial infarction 0.9380 0.1887 0.4348 0.2632
Anterior septal myocardial infarction 0.9426 0.1771 0.4551 0.2549
Ventricular premature contraction 0.9163 0.3149 0.3242 0.3195
Frequent ventricular premature contraction 0.9751 0.4298 0.3190 0.3662
Ventricular bigeminy 0.9777 0.1020 0.3409 0.1571
Ventricular tachycardia 0.9665 0.0000 0.0000 0.0000
Couplet of ventricular premature contractions 0.9672 0.0314 0.1034 0.0482
Atrial fibrillation 0.9685 0.8971 0.8700 0.8833

5.4 Appendix: ROC curves276

277

278
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284

285

5.5 Evaluation on data from a different medical institution286

We performed inference using data from a medical institution different from the one used for training287

in the paper, in order to examine the degradation in performance caused by differences in data288

distribution. Note that the dataset from this institution did not include any positive cases for Left289

Atrial enlargement or Frequent ventricular premature contractions.290

Table 6: Results of the different institutions
Metric Original dataset Different dataset
Hamming Loss 0.0680 ↓ 0.0536 ↓
Precision (Micro) 0.4898 ↑ 0.4601 ↑
Recall (Micro) 0.5165 ↑ 0.5107 ↑
F1 Score (Micro) 0.5028 ↑ 0.4841 ↑
Jaccard Index 0.3495 ↑ 0.3360 ↑

10



Table 7: Classification performance for each label of different dataset
Label Accuracy Precision Recall F1-score
lowEF 0.9264 0.5483 0.4504 0.4946
Normal 0.8793 0.8056 0.6121 0.6956
Prolonged QT 0.9531 0.3803 0.1421 0.2069
Tall T wave 0.9878 0.1471 0.1667 0.1563
Left axis deviation 0.9443 0.3804 0.5243 0.4409
Left atrial enlargement 0.9110 0.0000 0.0000 0.0000
Left ventricular hypertrophy 0.7525 0.4535 0.3595 0.4011
Artificial pacemaker rhythm 0.9660 0.4909 0.3649 0.4186
Intraventricular conduction delay 0.9724 0.0833 0.1905 0.1159
Complete right bundle branch block 0.9649 0.8281 0.6901 0.7528
Complete left bundle branch block 0.9812 0.3333 0.8444 0.4780
Flat T wave 0.8922 0.5204 0.5141 0.5172
Inverted T wave 0.9420 0.4643 0.4333 0.4483
ST-T abnormality 0.9257 0.7807 0.5848 0.6687
Poor R wave progression 0.9527 0.4007 0.6859 0.5059
Abnormal Q wave 0.9740 0.0172 0.0169 0.0171
Anterior wall myocardial infarction 0.9570 0.0407 0.2188 0.0686
Lateral wall myocardial infarction 0.9581 0.1043 0.3036 0.1553
Inferior wall myocardial infarction 0.9570 0.1477 0.3939 0.2149
Anterior septal myocardial infarction 0.9663 0.1489 0.4200 0.2199
Ventricular premature contraction 0.9567 0.4213 0.4601 0.4399
Frequent ventricular premature contraction 0.9798 0.0000 0.0000 0.0000
Ventricular bigeminy 0.9835 0.0909 0.3158 0.1412
Ventricular tachycardia 0.9703 0.0000 0.0000 0.0000
Coupled ventricular premature contraction 0.9740 0.0364 0.3077 0.0650
Atrial fibrillation 0.9783 0.8721 0.8766 0.8743

5.6 Appendix: ROC curves of different data291
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