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Abstract
Text-to-image diffusion models (T2I) use a la-001
tent representation of a text prompt to guide002
the image generation process. However, the003
process by which the encoder produces the004
text representation is unknown. We propose005
the DIFFUSION LENS, a method for analyz-006
ing the text encoder of T2I models by gener-007
ating images from its intermediate representa-008
tions. Using the DIFFUSION LENS, we perform009
an extensive analysis of two recent T2I mod-010
els. Exploring compound prompts, we find that011
complex scenes describing multiple objects are012
composed progressively and more slowly com-013
pared to simple scenes; Exploring knowledge014
retrieval, we find that representation of uncom-015
mon concepts require further computation com-016
pared to common concepts, and that knowledge017
retrieval is gradual across layers. Overall, our018
findings provide valuable insights into the text019
encoder component in T2I pipelines.1020

1 Introduction021

The text-to-image (T2I) diffusion pipeline com-022

prises two main elements: the text encoder and023

the diffusion model. The text encoder converts a024

textual prompt into a latent representation, while025

the diffusion model utilizes this representation to026

generate the corresponding image. Several recent027

studies have delved into the internal workings of028

the diffusion model and the cross-attention mecha-029

nism that connects the two components (Tang et al.,030

2023; Hertz et al., 2023; Orgad et al., 2023; Chefer031

et al., 2023a). Yet, while the text encoder is a key032

component of the pipeline with a large effect on033

image quality and text–image alignment (Saharia034

et al., 2022), its internal mechanisms remain un-035

explored. Moreover, while there is a wide range036

of work that has analyzed general language model037

internals (Belinkov and Glass, 2019; Rogers et al.,038

2020; Madsen et al., 2022), these methods are not039

suitable for exploring fine-grained visual features.040

1Code and data are available at anonymized.

Figure 1: Visualization of the text encoder’s interme-
diate representations using the DIFFUSION LENS. At
each layer of the text encoder (in blue), the DIFFUSION
LENS takes the full hidden state, passes it through the
final layer norm, and feeds it into the diffusion model.

We propose the DIFFUSION LENS, a method for 041

analyzing the inner mechanism of the text encoder. 042

The DIFFUSION LENS uses intermediate represen- 043

tations of the prompt from various layers of the text 044

encoder to guide the diffusion process, resulting in 045

images that are clear, consistent, and easy to under- 046

stand for most layers (see Figure 1). Notably, the 047

DIFFUSION LENS relies solely on the pre-trained 048

weights of the model and does not depend on any 049

external modules. 050

We employ the DIFFUSION LENS to examine the 051

computational process of the text encoder in two 052

popular T2I models: Stable Diffusion (Rombach 053

et al., 2022) and Deep Floyd (StabilityAI, 2023). 054

Our investigation focuses on two main analyses: 055

the model’s capability of conceptual combination 056

and its memory retrieval process. For each analysis, 057

we either construct a tailored dataset to isolate a 058

specific phenomenon or utilize naturally occurring 059

human-written image captions. 060
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Figure 2: Insights gained from using DIFFUSION LENS. Conceptual combination (left): early layers often act
as a “bag of concepts”, lacking relational information which emerges in later layers. Memory Retrieval (right):
uncommon concepts gradually evolve over layers, taking longer to generate compared to common concepts.

Our analysis of conceptual combination reveals061

various insights: (1) Complex prompts such as “A062

yellow pickup truck and a pink horse” require more063

computation to achieve a faithful representation064

compared to simpler prompts such as “A green cat”.065

(2) Complex representations are built gradually:066

as illustrated in Figure 2 (Left), images generated067

from early layer representations typically encode068

concepts separately or together without capturing069

their correct relationship, resembling more of a070

“bag of concepts”. Images from subsequent lay-071

ers encode the relationships more accurately. (3)072

The order in which objects emerge during compu-073

tation is influenced by either their linear or syn-074

tactic precedence in the sentence. Here, we find075

a difference between the two examined models:076

Deep Floyd’s text encoder, T5 (Raffel et al., 2020),077

shows a greater sensitivity to syntactic structure,078

while Stable Diffusion’s text encoder, CLIP (Rad-079

ford et al., 2021), tends to reflect linear order.080

Next, we investigate memory retrieval, and un-081

cover several key findings: (1) Common concepts,082

such as “Kangaroo”, emerge in early layers while083

less common ones, such as the animal “Dik-dik”,084

gradually emerge across the layers, with the most085

accurate representations predominantly occurring086

in the upper layers, as illustrated in Figure 2 (Right,087

top). (2) Fine details, like human facial features,088

materialize at later layers, as shown in Figure 2089

(Right, bottom). (3) Knowledge retrieval is gradual,090

unfolding as computation progresses. This obser-091

vation diverges from prior research on knowledge092

encoding in language models which characterizes093

knowledge as a localized attribute encoded in spe-094

cific layers (Geva et al., 2022; Meng et al., 2022;095

Arad et al., 2023). (4) Notably, there are discernible096

differences in memory retrieval patterns between097

the two text encoders: Deep Floyd’s T5 memory 098

retrieval exhibits a more incremental behavior com- 099

pared to Stable Diffusion’s CLIP. The disparities 100

uncovered through our analyses suggest that fac- 101

tors such as architecture, pretraining objectives, or 102

data may influence the encoding of knowledge or 103

language representation within the models. 104

Our contributions are summarized as follows: 105

• We develop the DIFFUSION LENS, a new in- 106

trinsic method for analyzing the intermediate 107

states of the text encoder within T2I pipelines. 108

• We conduct thorough experiments that reveal 109

insights on the computational mechanisms of 110

text encoders in the T2I pipeline. Our findings 111

shed light on how factors such as complexity, 112

frequency, and syntactic structure impact the 113

encoding process. 114

2 Diffusion Lens 115

Preliminiaries. Current text-to-images diffusion 116

models comprise two main components (Saharia 117

et al., 2022; Ramesh et al., 2022): a language model 118

used as a text encoder that takes the textual prompt 119

as input and produces latent representations; and 120

a diffusion model that is conditioned on the repre- 121

sentations from the text encoder and generates an 122

image from an initial input noise. 123

The language model in the T2I pipeline is typ- 124

ically a transformer model. Transformer models 125

consist of a chain of transformer blocks, each com- 126

posed of three sub-blocks: attention, multi-layer 127

perceptron, and layer norm (Vaswani et al., 2017). 128

We denote the transformer block at layer l as Fl. 129

The input to the model is a sequence of T word 130

embeddings, denoted as h0 = [h01, . . . , h
0
T ]. Then, 131

the output of the transformer block at layer l is a 132
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sequence of hidden states hl+1:133

hl+1 = Fl(h
l) (1)134

The output representations of the last block, L,135

go through a final layer norm, denoted as lnf .136

Then, they condition the image generation process137

through cross-attention layers, resulting in an im-138

age I . We abstract this process as:139

I = Diff(lnf (h
L)) (2)140

Diffusion Lens. In a T2I pipeline with a text141

encoder of L layers, for layer l < L, we process142

the output of block l, including padding tokens,143

through the final layer norm. We condition the144

diffusion process on this output, as illustrated in145

Figure 1. Namely, we generate an image I from an146

intermediate layer l as follows:147

I = Diff(lnf (h
l)) (3)148

The final layer norm is a crucial step in generating149

coherent images (see Appendix A.3). It projects the150

representations into the cross-attention embedding151

space without the caveat of adding new information152

to the representation, as may happen with learned153

projections. This process generates an image rep-154

resenting the intermediate state of the text-encoder155

as interpreted by the diffusion model.156

3 Experimental Setup157

Models. The experiments are performed on Sta-158

ble Diffusion 2.1 (denoted SD, Rombach et al.,159

2022) and Deep Floyd (denoted DF, StabilityAI,160

2023). SD is an open-source implementation161

of latent diffusion (Rombach et al., 2022), with162

OpenCLIP-ViT/H (Ilharco et al., 2021) as the text-163

encoder. DF is another open-source implementa-164

tion of latent diffusion inspired by Saharia et al.165

(2022), with a frozen T5-XXL (Raffel et al., 2020)166

as the text encoder. We usually only report the re-167

sults on DF, unless there is a difference between168

the models, which we then discuss. The full results169

on SD are given in Appendix F.170

Data. Depending on the specific experiment, we171

either curate prompt templates and automatically172

generate a list of prompts from a collected list of173

concepts we are interested in investigating, or use174

a list of natural, handwritten prompts from COCO175

(Lin et al., 2015). The data for each experiment is176

detailed in the next sections. With each prompt, we177

generate images that are conditioned on representa-178

tions from every fourth layer in the model, which179

serves as a representative subset. This results in 7180

images for DF (which has 25 layers in total) and 6 181

images for SD (which has 24). We generate each 182

prompt using four seeds. 183

Evaluation. In every experiment we ask ques- 184

tions about the images at every layer, e.g., “Does 185

the prompt correspond to the generated image”; or, 186

if there are two objects in the prompt, “Does object 187

A appear in the generated image?”. We describe 188

the questions in detail for every experiment below. 189

To analyze the representation building process of 190

successful generations, we report our main find- 191

ings on cases where all the images from the last 192

layer align with the prompt. We separately analyze 193

model failures in Section 6. 194

We annotated the generated images using both 195

human annotators and GPT-4V (OpenAI, 2023). 196

For the human evaluation, we collected answers to 197

the questions by ten human annotators, with 10% 198

overlap to measure inter-annotator agreement. We 199

found a high agreement between GPT-4V and the 200

humans (Table 2, App. B). We provide the main 201

results based on the human annotations; however, 202

our results support the use of automatic annotation 203

to allow larger scale and reduced cost. Overall, 204

we collected answers to roughly 66, 560 questions, 205

37% of them by GPT-4V. For full details on the 206

annotation process, inter-annotator agreement, and 207

integration with GPT-4V, refer to Appendix B. 208

4 Conceptual Combination 209

T2I diffusion models are popular for their ability 210

to generalize beyond their training data, creating 211

composite concepts (Ramesh et al., 2022). Concep- 212

tual combination is the cognitive process by which 213

at least two existing basic concepts are combined 214

to generate a new higher-order, composite concept 215

(ling Wu and Barsalou, 2009). Conceptual combi- 216

nation is at the core of knowledge representation, 217

since it asks how the meaning of a complex phrase 218

connects to its component parts (Hampton, 2013), 219

e.g., “A cat in a box”. This section uses the DIFFU- 220

SION LENS to trace the process by which the text 221

encoder creates composite concepts. 222

4.1 Building complex scenarios 223

This study investigates the text encoder’s ability to 224

combine concepts at varying levels of complexity. 225

We utilize COCO classes (Lin et al., 2015) as a 226

diverse set of prompts with readily identifiable vi- 227

sual meanings. Each experiment commences with 228

a simple list of objects as prompts, progressively 229

increasing in complexity as outlined subsequently. 230
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Figure 3: Percentages of prompt-matching images
across various layers. As prompts become more com-
plex, DIFFUSION LENS has to utilize more layers to
extract a correct image.

Colors and conjunction. We compile three lists231

of prompts: (1) objects (e.g., “a dog”); (2) objects232

with color description (“a red dog”); and (3) two ob-233

jects with colors (“a red dog and a white cat”). To234

investigate how conceptual combination emerges235

through the layers, we annotated a random sample236

of 80 prompts,2 asking the following questions for237

each layer: (a) Does object X appear in the image?238

(b) Does color X appear in the image? (c) Does239

object X appear in the correct color? X is either the240

1st or the 2nd object, for a total of 6 questions.241

Physical relations. We compile two lists of242

prompts: (1) objects, (2) prompts describing two243

objects and a preposition: either “in” or “on”. For244

example, “A cat in a box”. We sample 40 prompts.245

We ask three questions: (a-b) Does object X appear246

in the image? and (c) Is object A in/on object B?247

Results248

The simpler the concept, the earlier it emerges.249

Figure 3 shows the percentage of images that cor-250

rectly generated the concepts for each category: an251

object, an object and a color, and two colored ob-252

jects. Prompts describing a single object emerge253

the earliest, between layers 4 and 16, while prompts254

containing a color descriptors emerge in layers255

16–20. Conjunction prompts emerge last, around256

layers 20–24. We observe a similar pattern for257

the preposition prompts, which we describe in Ap-258

pendix A.1. As demonstrated in Figure 4, “A cow”259

is fully represented by layer 8, while “A yellow dol-260

phin” does not correctly form until layer 16. Lastly,261

“A pink snail and an orange donut” only fully forms262

at much later layers, correctly matching the objects263

and colors at the final layer, 24.264

Complex representations are constructed grad-265

ually. We continue with the complex prompts of266

2In this experiment, human annotators annotated 40
prompts and GPT4-V annotated an additional 40.

Figure 4: Complex prompts take more computation
blocks to emerge.

Figure 5: The proportion of images where either the
object, the colors, or both were present, and where either
the objects or the colors were accurately represented.

two colored objects. Figure 5 aggregates the an- 267

swers to illustrate the behavior of either or both 268

objects appearing in intermediate layers. Colors 269

often emerge first, with both colors often emerging 270

in early layers in DF (in SD, the two objects appear 271

before two colors). A single object is also gradu- 272

ally represented in layers 4-12. Notably, while the 273

colors and one of the objects appear, the object is 274

not necessarily generated in the correct color. This 275

can be seen in the first example in Figure 6: While 276

a raccoon and a rocket do appear, and the image 277

contains both blue and pink elements, the rocket 278

is not blue until the final layer. In some cases, we 279

observe a mixture of concepts in early layers, as 280

seen in the second example of Figure 6. Similarly, 281

the bottom two examples in Figure 6 show prompts 282

composing two objects and a proposition. As with 283

colors, we observe that individual objects appear in 284

early layers but the correct relation emerges much 285

later. For example, “A cake on a cloud” generates 286

images of both a cake and a cloud, with different 287

relations; at layer 8 the cake is decorated with a 288

cloud and in layer 20 the clouds are depicted as 289

frosting. The correct relation is only generated at 290

the final layer. These patterns suggest that the early 291

layers of the text encoder behave like a “bag of 292

concepts”, with a representation for each concept 293
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Figure 6: Complex representations are constructed grad-
ually. In some cases, objects are mixed in early repre-
sentations. In other cases, only one of the objects appear
in early representations.

Antecedent first Antecedent second

Model 1st noun 2nd noun 1st noun 2nd noun

DF (T5) 50.8% 33.87% 35.50% 51.60%
SD (Clip) 58.4% 23.80% 54.90% 27.90%

Table 1: The percentage of prompts in each group where
the antecedent noun (either the first or the second noun
mentioned) appeared earlier.

but no clear relations between them.294

4.2 Syntactic dependencies295

To investigate the order in which different objects296

emerge, we focus on the association between syn-297

tactic depth and the appearance order of nouns.298

Specifically, we explore whether, in a dependency299

path where noun A precedes noun B, noun A ap-300

pears at earlier layers through DIFFUSION LENS.301

Using 63K prompts from COCO that we parsed302

with Stanza (Qi et al., 2020), we filtered for in-303

stances with two nouns per prompt and analyzed304

the dependency relations between the nouns. We305

categorized the data based on the linear position306

of the antecedent and generated images with 40307

random samples from each group. For each genera-308

tion and intermediate layer, and each object X, we309

queried whether object X appears in the image.310

Results. First, we sometimes observe a “race”311

between the nouns: in 11.9% of the cases in DF, the312

object that appears in an earlier layer disappears at a313

later layer, while the other object takes dominance.314

See Appendix A.2 for examples.315

Second, Table 1 presents information on the or-316

der of generation for both models, revealing that 317

the sequence in which objects emerge during the 318

computation process is determined by either their 319

linear or their syntactic precedence, depending on 320

the particular text encoder. In DF’s T5 text en- 321

coder, slightly over half of the instances feature 322

the antecedent appearing at an earlier layer than 323

the descendant, with a smaller fraction showing 324

the opposite, and the rest indicating simultaneous 325

appearances. This holds true regardless of linear 326

order. Conversely, in SD’s Clip, the first noun tends 327

to appear before the second more frequently, irre- 328

spective of the syntactic role. 329

While the two models differ in multiple respects 330

(architecture, pretraining data, training objective, 331

and more), it is intriguing to observe that T5, 332

trained on a language modeling objective, demon- 333

strates a greater awareness of syntactic structure 334

compared to Clip – a model trained to align pairs 335

of prompts and images without a specific language 336

modeling objective. This discrepancy points to a 337

possible impact of training objectives on the mod- 338

els’ representation building process. 339

5 Memory Retrieval 340

Text-to-image diffusion models are able to re- 341

trieve information of many concepts (Ramesh et al., 342

2022), encompassing entities like notable individu- 343

als, animals, and more. Memory retrieval—the re- 344

call of stored information—involves a constructive 345

process rooted in the interactive dynamics between 346

memory trace features and retrieval cue character- 347

istics (Smelser et al., 2001). In this section, we 348

leverage the DIFFUSION LENS to scrutinize the 349

memory retrieval mechanism in the text encoder. 350

5.1 Common and Uncommon Concepts 351

We investigate whether there is a difference in the 352

generation process for prompts describing common 353

and uncommon concepts, using a list of common 354

and uncommon animals.3 Commonality in this 355

context does not refer to the commonality of an 356

animal in the world, but rather to its commonal- 357

ity in the training data. As a proxy to measure 358

commonality in the training data, we utilized the 359

average daily view statistics of Wikipedia pages 360

from October 2022 to October 2023. An animal 361

was deemed “common” if it had an average of 1500 362

visits per day on its Wikipedia page (e.g., kanga- 363

3We use animal species as we found that models can cor-
rectly generate images of uncommon species, unlike uncom-
mon objects and celebrities.
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Figure 7: Common vs. uncommon animals across lay-
ers. Common animals emerge at much earlier layers.

roo), while one having fewer than 800 visits per364

day was deemed “uncommon”. We verified this365

distinction by examining the frequencies of species366

names in the LAION2B-en dataset (Schuhmann367

et al., 2022), extracted by Samuel et al. (2024),368

and found that the frequency of common species369

was greater than that of uncommon species with370

statistical significance (Appendix D).371

Since the model may have seen the uncommon372

animals less frequently during training, their gener-373

ation may take longer. We annotate each image by374

asking if the specific animal in the prompt appears375

in the generated image.376

Results. As summarized in Figure 7, common377

concepts emerge early, as early as layer 8 out of 24.378

In contrast, uncommon concepts gradually become379

apparent across the layers, with accurate images380

generated primarily at the top layers.381

5.2 Gradual Retrieval of Knowledge382

To delve deeper into the knowledge retrieval pro-383

cess, we pose additional questions for uncommon384

animal: (a) Is there an animal in the image? (b)385

Does the image feature an X? where X is the infor-386

mal “category”4 of the animal, such as “mammal”387

and “bird”. (c) Does the image depict the exact388

animal in the prompt?389

Results. Figure 8 illustrates incremental knowl-390

edge extraction, beginning with a general animal,391

progressing to a more specific animal within the392

same category, and reaching a representation of the393

particular animal mentioned in the prompt.394

Though the plot for SD reveals a similar pattern395

(Appendix F), qualitative analysis reveals distinct396

knowledge retrieval patterns between the two mod-397

els: In the case of DF’s T5, knowledge retrieval398

is gradual, unfolding as computation progresses399

4We chose to use an informal taxonomy as the animal
kingdom taxonomy is a complex subject under research and
debate, and its terms are not common to the general population
and, hence, likely less present in the T2I training data.

Figure 8: Subset of layers encoding different features in
the process of uncommon animal generation.

Figure 9: Incremental progression in DF versus early
knowledge representation in SD.

(Figure 9). Layers generate animal, mammal, and 400

ultimately construct a representation of the specific 401

animal. However, SD’s text encoder, Clip, does 402

not display a similar progression of retrieval. The 403

model establishes the representation less gradually: 404

The first layer with a meaningful image already 405

closely resembles the final animal, with subsequent 406

layers mainly refining its characteristics. These 407

differences echo the syntactic findings in Section 408

4.2. They suggest that pretraining objectives, data, 409

or model architecture might influence information 410

organization, leading to distinct memory retrieval 411

patterns. 412

Figure 10: Intricate details are refined gradually.
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5.3 Gradual refinement of features413

As the computation progresses, both accuracy and414

realistic representation significantly improve with415

refining details at each step. This progression is416

evident in Figure 10 (top row), as seen in the grad-417

ual refinement of the “Tarsier” image. A similar418

trend occurs in the representation construction of419

human subjects, with facial features undergoing420

refinement for a more faithful portrayal (Figure421

10, rows 2+3). To systematically assess this phe-422

nomenon, we compiled a list of 30 celebrities, us-423

ing DIFFUSION LENS to generate images from in-424

termediate representations in the text encoder. For425

each prompt and generated image, we ask: (a) Is426

there a person in the image? (b) Does the per-427

son align with the celebrity’s (self-identified) gen-428

der? (c) Does the person exhibit the celebrity’s429

style (hair, clothing, etc.)? (d) Is the individual in430

the image distinctly recognizable as the specified431

celebrity based on facial features?432

Results. Figure 11 quantifies the step-by-step433

construction of the representation, culminating in434

its maximum resemblance to the celebrity. The435

integration of distinct features follows a hierarchi-436

cal pattern, progressing from broad characteristics437

(such as the overall human form) to finer details438

(specifically, facial features), which become evi-439

dent only in the final layers.440

Discussion. Our results on the gradual retrieval441

and refinement of knowledge suggest an alterna-442

tive perspective on how knowledge is encoded in443

language models. This viewpoint is different from444

recent work suggesting that models utilize a key–445

value memory structure, where facts are local to446

specific layers (Geva et al., 2022; Meng et al., 2022;447

Arad et al., 2023). Our results indicate that some448

information is distributed across layers, allowing449

for a gradual retrieval of knowledge rather than a450

retrieval at a particular point in the model. This451

aligns with earlier research proposing hierarchical452

representations in vision models (Zeiler and Fergus,453

2014; Zhou et al., 2014; Bau et al., 2017).454

6 Analyzing Model Failures455

In this section, we delve into cases where the T2I456

model fails to generate images that align with the457

input prompt. We focus on prompts describing458

two entities with different colors, as these prompts459

lead to the highest failure rate in our experiments.460

Examples for failure cases are shown in figure 12.461

Examining the output images, the failures look sim-462

Figure 11: The distribution of feature granularity across
layers in generated images.

Figure 12: Examples of failure cases of T2I models
(right). Using the DIFFUSION LENS (left) we can ob-
serve different patterns. In the first case (top row), the
model is able to correctly generate each entity separately,
but fails to combine them in the final layer. On the other
hand (bottom row), the model is unable to generate a
green bear in any of the intermediate representations.

ilar: in both cases one or more entity was generated 463

in the wrong color. However, using the DIFFUSION 464

LENS, we reveal two different failure patterns: In 465

the first example (“A green cat and a blue rocket”), 466

both the blue rocket and the green cat are gener- 467

ated separately successfully in intermediate layers, 468

while final output image fails to combine them into 469

a single image. This suggests that the failure stems 470

from an unsuccessful combination of the two con- 471

cepts. In the second example (“A black bird and a 472

green bear”), the bear consistently appears black 473

across all intermediate layers, signifying that the 474

model struggles to generate a green bear through- 475

out the encoding process of the text. A possible 476

explanation is that black bear is a type of animal, 477

which might mean that the phrase “black bear” is 478

common in the training data, thus the appearance of 479

the phrase “black” in the prompt biases the model 480

towards generating black bears. This analysis re- 481

veals two types of failures that occur in compound 482

prompts: either (1) the model fails at coupling a 483

particular concept and color because it is biased 484

towards another color, or that (2) the model can suc- 485

cessfully couple each concept and color but fails to 486

combine them. 487

We inspect how often the two types of failures 488

appear. Here, we examine only prompts that failed 489
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to generate a correct image for at least 75% of the490

generations from the final layer. For each entity,491

we count the number of times it appeared in the492

correct color in at least one early layer. We find493

that for 40% of the failure cases in DF (70% in SD),494

at least one of the entities did not appear at all in495

images from earlier layers (type 1). The remianing496

set of failures had the correct color for each of the497

objects appear at some point in the computation498

(type 2). An additional breakdown of failure cases499

per experiment can be found at Appendix C.500

7 Related Work501

Interpreting language models. A wide range of502

work has analyzed language model internals. We503

briefly mention a few directions and refer to ex-504

isting surveys (Belinkov and Glass, 2019; Rogers505

et al., 2020; Madsen et al., 2022). Probing clas-506

sifier are used to analyze whether internal repre-507

sentations correlate with external properties (e.g.,508

Ettinger et al., 2016; Hupkes et al., 2018). How-509

ever, probing has various inherent flaws such as510

memorization (Belinkov, 2022), and requires costly511

annotations for fine-grained analysis like the visual512

characteristics of a specific animal species or per-513

son. Interventions in representations measure how514

they impact a model’s prediction (e.g., Vig et al.,515

2020; Elazar et al., 2021; Meng et al., 2022), and516

while they offer powerful insights, they are also517

challenging to design (Zhang and Nanda, 2023)518

and limited in scope. In contrast, the DIFFUSION519

LENS proposes a simple yet generic mechanism to520

visually interpret intermediate representations with-521

out requiring additional data or training, enabling522

exploration of fine-grained visual features.523

Another influential approach is the Logit Lens524

(nostalgebraist, 2020), which projects intermediate525

representations of language models onto a proba-526

bility distribution over the vocabulary space. The527

logit lens captures the internal computation of the528

language model, and the flow of information across529

modules (Geva et al., 2022; Katz and Belinkov,530

2023; Pal et al., 2023). This line of work has fo-531

cused on auto-regressive decoder language mod-532

els. Inspired by this idea, we propose using the533

diffusion module in T2I pipelines to visualize inter-534

mediate prompt representations, revealing the text535

encoder’s computation process.536

Interpreting vision–language models. Com-537

pared to unimodal models, research on inter-538

pretability in multimodal vision–language models539

is rather limited. Goh et al. (2021) found multi-540

modal neurons responding to specific concepts in 541

CLIP (Radford et al., 2021) and Gandelsman et al. 542

(2023) decomposed CLIP’s image representations 543

into text-based characteristics. 544

Tang et al. (2023) were the first to propose a 545

method to interpret T2I pipelines, by analyzing the 546

influence of input words on generated images via 547

cross-attention layers. Chefer et al. (2023b) decom- 548

posed textual concepts, focusing on the diffusion 549

component. In contrast, our work investigates the 550

under-explored text encoder in T2I pipelines. Un- 551

like previous methods, the DIFFUSION LENS re- 552

veals gradual processes within the model, not fo- 553

cusing only on the final output. 554

8 Discussion and Conclusion 555

We introduce the DIFFUSION LENS, a novel 556

method to analyze language models within T2I 557

pipelines. Our approach deconstructs the T2I 558

pipeline by examining the output of each block 559

within the text encoder, thereby providing a deeper 560

insight into language-to-visual concept translation. 561

We are the first, to our knowledge, to propose a 562

method to interpret the text encoder and its internal 563

computation process in the context of T2I models. 564

Given that the text encoder is a crucial compo- 565

nent of T2I models, enhancing its interpretability 566

contributes to a deeper understanding of the entire 567

generation process. We showcased the method’s po- 568

tential by analyzing two open-source text encoders 569

used in T2I pipeline across diverse topics. 570

Our work contributes to a growing body of 571

work on analyzing how models process information 572

across various components. The DIFFUSION LENS 573

may have many potential applications as a first 574

method of its kind, including similar applications 575

to prior interpretability techniques such as improv- 576

ing model efficiency (Din et al., 2023; Dalvi et al., 577

2020) and tracing factual associations in language 578

models, facilitating more accurate model editing 579

methods (Meng et al., 2022; Arad et al., 2023). 580

Other future directions using the DIFFUSION 581

LENS may aid in identifying points of failure in 582

the computation process or remove undesired traits 583

from early layers such as hallucinations, toxicity, 584

or incorrect factual knowledge. Lastly, while we 585

focused on entire blocks, our approach paves the 586

way for visualizing individual sub-block compo- 587

nents such as individual MLPs, attention heads, 588

and residual connections. 589
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Limitations590

While the DIFFUSION LENS provides a method591

to interpret the intermediate representations of the592

text encoder of T2I models, there are several limi-593

tations.594

First, we are limited by the number of publicly595

available and open source T2I models and their cor-596

responding text encoders. Extending our method597

to interpret other language models, whether or not598

they are used in T2I pipelines, offers a promising599

direction for future research.600

Additionally, most of our experiments utilized601

automatically generated prompts, used to iso-602

late and investigate specific effects. Such syn-603

thetic prompts are often less complex compared604

to prompts written by humans, and follow specific605

patterns. Although we experimented with a set of606

natural prompts, further exploration using a wider607

range of prompts could provide deeper insights into608

the behavior of text encoders in T2I models.609

Lastly, the DIFFUSION LENS requires further an-610

notation in order to derive large-scale conclusions.611

In this work, we relied on human and automatic an-612

notation to answer questions on specific attributes613

of the generated images. This limitation stems from614

using images as the output of our method, however,615

we believe using images results in richer and more616

complex interpretations.617

Ethics Statement618

In this work, our primary objective is to enhance619

the transparency of text-to-image models. While620

not the focus our analyses, the DIFFUSION LENS621

has the potential to unveil biases within these mod-622

els. We anticipate that our work will contribute623

positively to the ongoing discourse on ethical prac-624

tices in text-to-image models. At present, we do625

not foresee major ethical concerns arising from our626

methodology.627
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A Additional Results865

A.1 Prepositions866

We explore prepositions in prompts. We investigate867

how prompts, including certain relations, affect868

the generation process. These prompts are com-869

plex, challenging the compositional understanding870

of the T2I model. In particular, we examine the871

prepositions "on" and "in". Figure 13 illustrates872

the percentage of images that correctly generated873

the concepts for two categories: objects alone and874

objects with specified relation. Our findings reveal875

that prompts involving only one of the objects tend876

to perform well in the early layers of the model.877

However, more intricate prompts, including both878

objects and a relational context, emerge only in879

later layers of the model.880

Figure 13: The proportion of images where either the
objects, or objects with prepositions, were accurately
represented.

A.2 Race between objects881

Figure 15 presents examples of “race” between the882

objects in the prompts: one object appears first, and883

then disappears at a later layer to make room for884

the other object, before finally emerging again in885

the top layers.886

A.3 Final layer norm necessity887

In the DIFFUSION LENS process, we pass the out-888

put of block l through the last layer norm lnf . How-889

ever, we examine the option to bypass the lnf layer890

and directly connect to the components of the dif-891

fusion model. As Figure 16 demonstrates, images892

generated without the final layer normalization are893

meaningless. The final layer norm thus plays a894

crucial role in generating meaningful images. It895

highlights the necessity of the lnf layer within DIF-896

FUSION LENSpipeline. A similar finding has been897

observed in the LogitLens (nostalgebraist, 2020)898

and TunedLens (Belrose et al., 2023).899

B Annotation Process 900

The results in this paper rely on human annota- 901

tors to determine the presence of different concepts 902

in the generated images. We employed a team of 903

ten professional full-time annotators using the Dat- 904

aloop platform , in accordance with institutional 905

regulations. The annotator teams was based in In- 906

dia, and were paid a rate of 8 USD per hour, in 907

accordance with laws in India. 908

Each annotator received the instructions in Fig- 909

ure 17. The annotators were given the instruction 910

to be liberal towards a positive answer. We manu- 911

ally validated each question, making sure the con- 912

cepts in the question are not abstract (e.g., “beauti- 913

ful”), and that the answer should be clear for each 914

case. For each experiment, we duplicate 10% of the 915

images, and ask an additional annotator the same 916

questions, used to calculate inter annotator agree- 917

ment. For experiments containing rare animals and 918

celebrities, annotators were given reference images 919

from google. 920

We provide our main results based on the hu- 921

man annotations. We chose to use human anno- 922

tations since the existing automatic methods are 923

limited. CLIP as an image classifier was shown to 924

fail when required to explicitly bind attributes to 925

objects (Ramesh et al., 2022; Yamada et al., 2022), 926

and exploratory experiments we performed with 927

BLIP (Li et al., 2023) showed similar issues. 928

We found a high agreement between GPT-4V 929

(OpenAI, 2023) and the human annotators on most 930

tasks and questions, as shown in Table 2. For one 931

experiment – two colored objects – we found a 932

high variance using the human annotations and thus 933

extended it to further annotations using GPT4-V. 934

C Model Failures 935

Figure 18 shows the percentage of failures for each 936

experiment that had over 10 failures. We split 937

failures to two types: complete failures when no 938

layer generated a correct image through DIFFU- 939

SION LENS, and cases when at least one layer gen- 940

erated a correct image, but the top layer led to a 941

failure (success then failure). 942

Generally, the percentage of failure cases (to- 943

tal height of each bar) is low, from 10% to 25% 944

for most categories. Prompts about two colored 945

objects have a higher failure rate. Importantly, in 946

many failure cases, the representations in earlier 947

layers lead to a correct generation via our method. 948

Notably, in simple prompts (relations and colored 949
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Figure 14: Example generations from all layers

Figure 15: A sequential “race” between two objects
in the sentence, where one initially appears before the
other, only to subsequently vanish and make room for
the latter object.

objects), about 80% of the failures had successful950

generations at earlier layers. See Figure 19 for951

an example. Once more constraints are imposed952

(two colored objects), we have a lower rate of early953

success. Finally, for knowledge-related tasks (fa-954

mous people, unfamiliar animals), there are very955

few cases of early success turned to failure. Pre-956

sumably, when the model fails, it is mostly because957

Figure 16: Example generations from DIFFUSION
LENS with and without the final layer norm.

it does not encode the information at all. 958

D Animals Experiment: Implementation 959

Details 960

D.1 Animal classes used 961

To measure the gradual knowledge retrieval, one 962

of the questions we ask in the experiment on un- 963

familiar animals is whether the image contains an 964

animal of class X, where we vary X according to 965

an informal, popular taxonomy that the specific 966
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Inter annotator agreements Agreements with automatic annotations

Question type #annotations f1 cohen’s kappa #annotations f1 cohen’s kappa

One object presence (out of 2) 416 72.5% 48.2% 1381 80.6% 63.8%
Relation correct 208 73.7% 61.4% 1319 81.3% 70.1%
One Color presence 208 76.9% 60.7% 1671 85.3% 85.9%
Familiar animals presence 52 94.7% 87.2% 789 85.5% 67.2%
Unfamiliar animals presence 104 84.6% 81.3% 1019 84.3% 72.4%
Unfamiliar animals class presence 260 73.2% 59.5% 1012 91.2% 81.3%
Syntactic structures correct (coco) 357 80.6% 69.7% 2962 80.0% 59.5%

Table 2: A table of agreement between human annotators (left) and between human and automatic annotations
averaged over both models. Overall, we see a high agreement between the human annotators and between the human
and automatic annotations. For human agreement - the lowest Kappa score is for one object presence, probably due
to the ambiguity in early layers, where there is a mix of both objects. For example in fig 5, second line, layer 12.

On this project, you will have to annotate sets of 50 images.
For each set, you will have a yes or no question. The
questions are written at the start of each task name. They
end with a “?”. The latter part of the name is in “[ ]” and
is not relevant for the questions. For convenience, we start
the question with the statement itself, therefore “dog in
the image?” means “Is there a dog in the image?” The
questions vary from simple questions like “Is there a dog in
the image?” to more complicated questions like “Is there a
red bird on a green boat?”. The images are generated by AI,
and might not be realistic. You should answer if the image
might be interpreted as the question asks. Examples at the
end of this file.

Figure 17: Annotation guidelines.

Figure 18: Many cases display successful generations
from earlier layers before turning into failures.

animal belongs to. Note that although it does not967

faithfully represent the scientific view on the ani-968

mals we generate, it is more suitable to observe a969

model that was trained on data that was taken from970

the wide internet.971

To verify the distinction between familiar and972

unfamiliar animal species we preformed a Mann-973

Whitney U rank test (Mann and Whitney, 1947) on974

the frequencies of species names in the LAION2B-975

en dataset (Schuhmann et al., 2022), commonly976

used in the training process of T2I models which977

was computed by (Samuel et al., 2024). We found978

that the frequency of familiar species was greater979

Figure 19: DIFFUSION LENS reveals a correct image
generation at a middle layer, while the final image fails
to fully represent the prompt.

than that of unfamiliar species with a confidence 980

level of 95%. 981

D.2 The full list of animals 982

Familiar animals: Beagle, German Shepherd, 983

Labrador Retriever, Dachshund, Bulldog, Ragdoll, 984

Kangaroo, Chicken, Owl, Eagle, Salmon, Catfish, 985

Cod, Orca, Komodo dragon, King cobra, Platypus, 986

Narwhal, Ostrich, cougar. 987

Unfamiliar animals: Aye-aye, Dik-dik, Tarsier, 988

Gerenuk, Jerboa, Babirusa, Saola, Galago, Vervet, 989

guppy, Celestial Pearl Danio, Herring, Pike, Wall- 990

eye, Grebe, Spoonbill, Bee-eater, Taipan, ,Copper- 991

head, Anilius, Skink, Bearded Dragon, Ladybug, 992

Scarab, Blue morpho, Cloudless sulphur, Giant 993

anteater 994

E Implementation Details 995

We implemented our code using Pytorch (Paszke 996

et al., 2019) and Huggingface libraries (Wolf et al., 997

2020; von Platen et al., 2022). For each experi- 998

ment, we generated four images (different seeds) 999

for each layer, and we report the standard divi- 1000

sion over the seeds in all plots. We use Stable 1001

Diffusion v2-1 (CreativeML Open RAIL++-M Li- 1002

cense) (Rombach et al., 2022) and Deep Floyd 1003

(DeepFloyd-IF-License) (StabilityAI, 2023). We 1004
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ran the experiments on the following GPUs: Nvidia1005

A40, RTX 6000 Ada Generation, RTX A4000 and1006

GeForce RTX 2080 Ti.1007

Our code is available in the supplementary mate-1008

rial.1009

E.1 Dependency parsing implementation1010

We conducted a syntactic structure analysis using1011

Stanza (Qi et al., 2020), a Python package. Stanza1012

provides tools for obtaining parts of speech (POS)1013

and syntactic structure dependency parse. To per-1014

form this analysis, we executed a Stanza pipeline1015

designed for English. This pipeline returns the to-1016

kenized form, POS, lemmatization, and syntactic1017

dependency parsing for a given prompt. We didn’t1018

customize any additional parameters and utilized1019

the default settings during the analysis.1020

F Results on Stable Diffusion1021

To complement the results in the main paper, we1022

provide Figures A.1, 20–25 from Stable Diffusion.1023

Figure 20: Many cases display successful generations
from earlier layers before turning into failures.

Figure 21: The percentage of images, from each cate-
gory, for which the prompt matches the generated im-
age, across different intermediate layers. As the prompt
is more complex, it takes more layers for DIFFUSION
LENS to be able to extract a correct image.

Figure 22: The proportion of images where either the
object, the colors, or both were present, and where either
the objects or the colors were accurately represented.

Figure 23: Familiar vs. unfamiliar animals across layers.
Familiar animals emerge in much earlier layers.

Figure 24: Subset of layers encoding different features
in the process of unfamiliar animal generation.
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Figure 25: The distribution of feature granularity across
layers in generated images.

Figure 26: The proportion of images where either the
objects, or objects with prepositions, were accurately
represented.
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