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Abstract

We present causal head gating (CHG), a scalable method for interpreting the
functional roles of attention heads in transformer models. CHG learns soft gates
over heads and assigns them a causal taxonomy—facilitating, interfering, or ir-
relevant—based on their impact on task performance. Unlike prior approaches
in mechanistic interpretability, which are hypothesis-driven and require prompt
templates or target labels, CHG applies directly to any dataset using standard next-
token prediction. We evaluate CHG across multiple large language models (LLMs)
in the Llama 3 model family and diverse tasks, including syntax, commonsense,
and mathematical reasoning, and show that CHG scores yield causal, not merely
correlational, insight validated via ablation and causal mediation analyses. We
also introduce contrastive CHG, a variant that isolates sub-circuits for specific task
components. Our findings reveal that LLMs contain multiple sparse task-sufficient
sub-circuits, that individual head roles depend on interactions with others (low mod-
ularity), and that instruction following and in-context learning rely on separable
mechanisms.

1 Introduction

Large language models (LLMs) [} 2, [3] represent state-of-the-art systems across a wide array
of domains, exhibiting remarkable generalization and problem-solving capabilities. Yet, as these
models grow in scale and complexity, they become increasingly opaque, making it more difficult
to understand, predict, or control their behavior, which raises concerns about safety and misuse
[4, 15, 6]. This has motivated a growing body of work on interpretability, which seeks to better
understand how LLMs learn and represent information, and how their responses can be shaped [7} |§]].
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Interest has focused in particular on transformer-based architectures [9] such as GPT [1], LLaMA
[3], Gemma [[10], and DeepSeek [2], in which the central processing blocks consist of multi-head
attention followed by multi-layer perceptrons. Here, there has been considerable research on the roles
of individual attention heads, which have been found to exhibit some level of human-interpretability
(L1l 2k 3.

Two broad categories of approaches dominate research on mechanistic interpretability in LLMs. The
first uses a trained mapping from latent representations to human-interpretable concepts, such as
syntactic features [[7, [14,[15]] or identifiable items (e.g., the Golden Gate Bridge [16]]). The second
uses causal interventions to identify portions of a single weight matrix or individual attention heads
responsible for a specific behavior [17,[18]. These approaches often focus on small portions of a
model, ‘zooming in’ [19] in an effort to interpret the role of a single computational subgraph. However,
in deep-learning models, computation is often distributed [20] and the role of one component is
dependent on another [21} 22, 23], making the behavior of such complex distributed systems difficult
to predict from an understanding of their parts alone [24].

To apply a distributed perspective to mechanistic interpretability, we introduce causal head gating
(CHG) which identifies a parametrically weighted set of heads that contribute to a model’s execution
of a given task. Given a dataset that defines a task, we fit a set of gating values for each attention head
that applies a soft ablation to its output using next-token prediction, so that task-facilitating heads
remain unaltered while any task-interfering heads are suppressed. Using a simple regularization
procedure that further separates irrelevant heads from those that facilitate or interfere with task
performance, CHG assigns meaningful scores to each attention head across an entire model according
to its task contribution. We use these scores to define a taxonomy of task relevance according to how
individual attention heads contribute to a model’s distributed computation of a given task, describing
each head as facilitating, interfering or irrelevant. In this respect, CHG offers an exploratory
complement to standard hypothesis-driven approaches to mechanistic interpretability, assigning
causal roles without relying on predefined hypotheses about what each head might be doing.

Beyond its conceptual contribution, CHG also offers several practical methodological advantages
over existing mechanistic interpretability tools. First, because CHG operates directly on next-token
prediction, it avoids the need for externally-provided labels [[7} 14} 15} [16]], controlled input-output
pairs [[7, 114, [15]], or rigid prompt templates [25} 12} |13]], which are often required for decoding and
interventional approaches. Second, CHG naturally accommodates complex target outputs, including
chain-of-thought reasoning [26], where the solution spans multiple intermediate steps. Finally, CHG
is highly scalable: it introduces only one learnable parameter per attention head and requires no
updates to the underlying model weights, so that the CHG parameters can be fitted in minutes using
gradient-based optimization, even for LLMs with billions of parameters. Thus, in settings where
analyzing complex dependencies between heads is important, it is feasible to fit large samples of
CHG values to estimate a distribution over gating values in a bootstrap fashion.

To test its efficacy, we apply CHG across a diverse set of tasks—mathematical, commonsense, and
syntactic reasoning—and across LLMs ranging from 1 to 8 billion parameters with varying training
paradigms. We use CHG to analyze not only where specific computations take place, but also how
distributed they are across attention heads, and how these patterns vary across different tasks and
models. We also validate the causal scores produced by CHG by comparing them against targeted
ablations as well as causal mediation analysis [12} [25], showing strong agreement between predicted
and observed effects. Finally, we extend CHG to a contrastive setting to identify distinct sub-circuits
that support instruction following versus in-context learning, suggesting that even semantically similar
tasks can be underpinned by separable mechanisms.

Our main contributions are fourfold:

1. We introduce causal head gating (CHG), a parametric, scalable method for identifying potentially
distributed, task-relevant sub-circuits in transformer models without requiring prompt templates or
labeled outputs, and extend it with contrastive CHG to isolate heads supporting specific sub-tasks.

2. We propose a simple causal taxonomy of heads—facilitating, interfering, and irrelevant—that
quantifies the effect of each on task performance using CHG-derived scores.

3. We use CHG to show that models contain multiple task-sufficient sub-circuits with varying degrees
of overlap, suggesting head roles are not fully modular but depend on interactions with other
heads.



4. We use CHG to show that instruction following and in-context learning rely on context-dependent
separable circuits at the head level, where CHG-guided gating can selectively suppress one mode
without substantially disrupting the other.

The accompanying repository for this paper can be found at https://github.com/andrewnam/
causal_head_gating.

2 Related Work

Representational decoders Representational decoders are models trained to map hidden activations
to externally labeled properties [[7,[14}[15], estimating the mutual information between representations
and those properties [27,28]. However, such probing results are difficult to interpret: simpler decoders
may underfit and miss relevant features (false negatives), while complex decoders may overfit and
learn spurious correlations (false positives) [29} 130], requiring complexity-accuracy tradeoffs to
contextualize results [30]. Moreover, although decodability indicates that a property is encoded in
the representation, it does not imply that the model uses that information for its task, highlighting a
correlational finding rather than a causal one [31]]. Finally, representational decoders require labeled
datasets, constraining their use to curated, predefined properties. For a comprehensive review of the
probing framework and its limitations, see [[27].

Sparse autoencoders (SAE) can be viewed as a related approach, where the autoencoder reconstructs
representations through a sparse bottleneck to reveal modular or interpretable features [[L6, 32].
However, like probing classifiers, their insights remain correlational and still depend on post hoc
labeling or interpretation, inheriting the same supervision bottleneck. In contrast, CHG performs
direct interventions on model components without external supervision and proposes sufficient sub-
circuits to the default unablated model, thereby identifying causal links between attention heads and
model behavior on a task.

Causal mediation analysis Causal mediation analysis (CMA) [33][34] is used to identify the func-
tional roles of specific attention heads by crafting controlled prompt pairs that isolate a hypothesized
behavior, then intervening on model components to measure their causal effect on outputs. For
instance, in the indirect-object-identification (IOI) task [25], sentences like “When Alice and John
went to the store, John gave a drink to...” are used to identify attention heads responsible for resolving
coreference. By patching specific head outputs from a source sentence into a structurally matched
target, and checking whether the model changes its prediction (e.g. “Alice” instead of “Mary”), CMA
localizes the relevant circuit. It has also uncovered head-level roles in function tracking [12]], symbol
abstraction [13]], and other structured settings [35]].

However, CMA relies on manually crafted prompt templates and clear mechanistic hypotheses, which
limits its scalability to more complex domains. In open-ended tasks like mathematical reasoning
[36, 137, 138]], the diversity of required knowledge makes it hard to design effective controlled inputs.
A single shared template is unlikely to accommodate even two prompts from the MATH dataset
[37)l, such as: “If Y cos*™# = 5, what is cos20?” and “The equation 2% + 2z = i has two
complex solutions; determine the product of their real parts.” Moreover, LLMs often solve such
problems most effectively via chain-of-thought reasoning [26]], which unfolds over multiple steps,
further complicating the use of a unified prompt structure.

Head ablations Despite the use of multiple heads being commonplace in transformer-based
architectures, it has been observed that multiple, and sometimes the majority of, heads can be entirely
pruned with minimal impact on model performance [39, 18} 40, 41]. Moreover, entire layers can
be pruned while retaining model performance [42] 43| 44]. However, existing works on pruning
attention heads have focused primarily on custom-trained small-scale transformers 39, (18} 40] or
BERT-based [45] models [41}!43]], and the literature is limited for modern causal LLMs such as GPT
[46l 1] and Llama [3]].

Head pruning has also been used to validate findings from other interpretability methods, such as
CMA [25, [13] or attention pattern analysis [[18]. In these studies, researchers first identify heads
believed to perform specific functions, then ablate them to test their causal impact. Such targeted
ablations often lead to disproportionate drops in performance, supporting the hypothesis that those
heads are functionally important.
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Most closely related to our work are differentiable masking and soft-gating approaches that learn
which attention heads to retain or suppress. In [47], the authors apply sparsity gating to identify
subcircuits and use the fitted parameters as weighting values in convex combinations for activation
patching. Similarly, [48]] learns scaling constants for each attention head, but uses the fitted values to
identify heads that are most suitable for fine-tuning. Thus, while methodologically similar, our work
is unique in applying the gating parameters to identify task-sufficient causal sub-circuits.

Others [18} 40| have opted for hard, binary ablations using the Gumbel-softmax trick [49}50], fitting
gating probabilities rather than weighting parameters. Although these Gumbel-based approaches
have been applied for causal circuit discovery in a similar spirit to our work, they suffer from a
fundamental limitation that CHG does not. Specifically, while Gumbel-based gating methods also
learn differentiable gates per head, they treat each head independently, effectively learning separate
Gumbel-Bernoulli distributions for head inclusion. This factorized formulation models only marginal
probabilities and cannot capture interdependencies between heads that jointly affect task performance.
In contrast, CHG jointly optimizes all gating coefficients under the model’s loss, capturing the full
range of interactions and contingencies between the attention heads. Because CHG is highly scalable,
it can be fit repeatedly across random seeds or subsets, effectively sampling from the space of sub-
circuits without assuming independence between heads. This enables estimation of the underlying
distribution over functional head configurations while preserving the joint statistical structure that
factorized gating approaches discard.

3 Our Approach: Causal Head Gating

Causal head gating is based on three ideas: applying multiplicative gates to attention heads to evaluate
their roles, using regularization to produce variation in the estimates of the gating parameters, and
constructing a taxonomy based on that variation. We introduce these ideas in turn.

3.1 Applying gates to attention heads

For a transformer with L layers and H attention heads, we define a gating matrix G' € [0, 1]2%H,
where Gy 5, scales the output of head A in layer ¢, just before the output projection matrix Wgo (shown
in red for an example head in Figure ). Given input hidden states X € R$4Xdmw each head
computes:

XWEMXWMT o
Ay, = softmax N s Ven=XW3", Zop =Gen - (AenVin)
k

where W“L, W;gh, Wf/ " ¢ Rmosaxdi gre Jearned projection matrices for queries, keys, and values.

The gating coefficient G 5, modulates the contribution of head h by scaling its output Z, ;, after
attention is applied but before the heads are combined (see Figure[Th). The gated outputs are then
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Figure 1: (a) Schematic of a single multihead attention block with CHG-determined gating attenuation
(in red). (b) Gate fitting trajectories for three heads on L.3.2-3BI with OpenMathInstruct2. When
fitting with A < 0 and A > 0, GT and G~ both stay near 1 for facilitating heads and near O for
interfering heads, but bifurcate to 1 and O respectively for irrelevant heads. (c) Gate values after
fitting.



Table 1: Causal taxonomy for head roles and corresponding gating patterns.

Role Description Gt G~ Metric Ablation Effect

Facilitating Supports task perfor- High High G~ Decreases task perfor-
mance mance

Interfering Interferes with task per- Low Low 1—G™T Increases task perfor-
formance mance

Irrelevant  Negligible impact on High Low G* x (1—G~) No effect on task per-
performance formance

concatenated and projected:
Output, = Concat(Zy 1, ..., Zeg)We, WL € RFdXdma

We fit G by freezing the parameters of the model My and minimizing the negative log-likelihood
(NLL) on a next-token prediction task with a regularization term specified below.

3.2 Producing variation through regularization

We add a regularization term to the objective that introduces a small but consistent gradient—clipped
to ensure NLL remains the dominant term—that nudges the gates for task-irrelevant heads toward 1
or 0 while leaving task-relevant ones relatively unaffected. The NLL optimizes towards improving
task performance, and tunes the heads by either increasing the gating values for task-facilitating heads
or decreasing the gating values for task-interfering heads. However, if a head does not affect task
performance, i.e. is task-irrelevant, then the expected gradient from the NLL is 0, which confounds
interpretation of task relevance when evaluating the tuned gating values: a gate G ;, may be close to
1 either because it is important for performing the task (causal), or because gating it has no effect
(incidental). We address this limitation by introducing an L-regularization term in our objective
function, with weight A that either nudges gates toward 1 for maximal density (A > 0) or toward 0
for maximal sparsity (A < 0):

L(G;My,D,N) =~ > log P(y | #;Mp,G) =AY o™ (Gin) D
(z,y)€D i,
Negative log-likelihood (NLL) Regularization

where My is the model being analyzed, y is the target text sequence for a given prompt x in dataset
D, and 0! is the clipped inverse-sigmoid function.

We fit G twice: once with A > 0 to encourage retention (G™), and once with A < 0 to encourage
removal (G7). To ensure that the heads are aligned across both optimizations, we first fit G with
A = 0 to establish a shared initialization (see Figure , so that any differences between G* and G~
reflect only the effect of the regularization and not divergent optimization paths.

3.3 Constructing a taxonomy of task relevance

The G and G~ matrices allow us to interpret the functional role of each head. To formalize this, we
introduce a causal taxonomy (Table|[I)) in which each head is assigned one of three roles—facilitating,
interfering, or irrelevant—based on its predicted impact on model performance under ablation.
Facilitating heads positively contribute to performance, while ablating them degrades it. Conversely,
interfering heads negatively contribute to performance, while ablating them improves it. Finally,
irrelevant heads have negligible effect, with ablation leaving performance effectively unchanged.

We instantiate this taxonomy using the fitted CHG matrices G+ and G ~, which reflect head behavior
under opposing regularization pressures. Facilitation is measured by G~ : heads that remain active
despite pressure to suppress are likely necessary for the task. Interference is measured by 1 — G
heads that are suppressed even under encouragement to remain are likely harmful. Irrelevance is
measured via G~ ® (1 — G7), identifying heads that vary in gate values based on regularization.
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Figure 2: Difference in target log-probability when sequentially setting individual gates in G to
1 and O in order of facilitation, irrelevance, and interference scores. The horizontal axis shows
the number of heads ablated in descending score order. Positive values indicate task improvement,
negative values indicate degradation, and values near zero indicate no effect. Note that not all heads
in the top 50 necessarily have high absolute scores.

4 Experiments and analyses

4.1 Causal roles of attention heads

We begin by reporting experiments that evaluated the causal taxonomy presented in Table[T] across
four variants of the Llama 3 LLM [3]]: L3.1-8B, a pre-trained 8B-parameter model; L3.2-3B, a
3B-parameter model distilled from Llama-3.1-70B (not used in this paper); L3.2-3BI, an instruction-
tuned version of Llama-3.2-3B; and L3.2-1B, a 1B-parameter model distilled from L3.1-8B. For
each model, we fit CHG matrices on three task types performed over distinct datasets: mathematical
reasoning from OpenMathInstruct2 [38]], syntactic reasoning from the subset labeled “syntax” in
BIG-Bench [51]], and commonsense reasoning from CommonsenseQA [52]. We fit CHG matrices
independently for each model-dataset pair across 10 random seeds.

We first test whether the causal scores align with the taxonomy’s predictions about performance.
Specifically, the taxonomy predicts that, when ablated, attention heads scoring highly on facilita-
tion, irrelevance, or interference should decrease, leave unchanged, or increase the model’s task
performance, respectively. To test this, we sort heads in descending order by each causal metric
and evaluate the model using the G matrix while toggling each head to 0 or 1 in order of its score.
While both G and G~ match the context in which scores were computed, we use G as it retains
more heads, providing a more interpretable baseline for ablation. We then compare the retained and
ablated masks by the model’s log-probability of the target sequence, expecting the resulting change
in log-probability to follow the predicted pattern. As shown in Figure[2] these interventions match
the predicted patterns: the difference in target log-probability is negative when progressively ablating
facilitating heads, near 0 when ablating irrelevant heads, and positive when ablating interfering heads,
up until the set of interfering heads is exhausted.

4.2 Distribution of causal roles

Having validated the causal scores using targeted ablations, we next analyze how they are distributed
across models and tasks. Figure [3p shows that for each task, the distribution of head roles is highly
consistent across all four model variants. This holds despite large differences in model size (1B to
8b) and training setup (pretraining, distillation, instruction tuning). We quantify these similarities by
computing Pearson correlations between head scores across all model pairs for each task and causal
metric, yielding 54 model pairs, all of which show high agreement with a minimum correlation of
94.92% and an average of 99.2%. Across tasks, however, we observe notable differences, with the
math dataset standing out in particular. For syntax and commonsense reasoning, most heads are
irrelevant—63.0% and 64.6% have irrelevance scores > 0.5, respectively—with only a sparse subset
of facilitating heads (25.6% and 27.4% with facilitation scores > 0.5), suggesting that compact,
redundant circuits are sufficient for these tasks. In contrast, mathematical reasoning activates a much
larger fraction of facilitating heads: 52.6% have facilitation scores > 0.5, while only 39.0% are
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Figure 3: CHG score distributions and consistency. (a) Empirical cumulative distribution of CHG
scores across all attention heads, showing the proportion of heads with scores below a given threshold
for facilitation, irrelevance, and interference. (b) Aggregated CHG scores on L3.2-3BI, where red
and green color channels represent interference (1 — G™T) and facilitation (G ™), respectively. Colors
are combined using RGB rules: black indicates irrelevance (low in both), and yellow indicates both
facilitation and interference (high in both). Always aggregates using the minimum across seeds
(highlighting consistent effects); Any uses the maximum (highlighting any effect across seeds).

Table 2: Percent of heads with facilitation (F) or interference (N) scores > 0.5 across all seeds
(always) or in at least one seed (any).

L3.2-1B L3.2-3B L3.2-3BI L3.1-8B
F N F N F N F N

Always 1.2 0.2 1.5 0.1 07 00 1.4 00
Any 72.1 572 679 513 728 56.1 685 592
Always 39 00 45 00 30 00 18.7 0.6
Any 56.6 410 754 524 682 557 603 222
Always 383 04 246 13 183 0.1 253 1.0
Any 81.1 26.0 75.1 138 744 472 750 212

Task Agg

Syntax
Common Sense

Math

irrelevant, likely reflecting the task’s higher complexity and need for broader sub-circuitry to support
multi-step, latent computations.

It is also worth noting that, across all tasks, 84.0% of heads are marked as facilitating or interfering
(score > 0.5) in at least one seed, yet only a small fraction are consistently facilitating or interfering
across all seeds (Figure ). In syntax and commonsense tasks, most models have fewer than 5% of
heads that are always facilitating and virtually none that are always interfering (Table[2). In contrast,
math reveals more rigid and consistent circuitry, with up to 38.3% of heads consistently facilitating
and 1.3% consistently interfering. These patterns suggest that individual attention heads may not
have modular, context-independent roles, but instead participate in a flexible ensemble of overlapping
sub-circuits, in which their function depends on the configuration of others [53]].

4.3 Comparison with causal mediation analysis

CMA, like CHG, aims to identify attention heads that facilitate task execution, though it does so in a
more hypothesis-driven manner. Framed in signal detection terms, CMA and CHG are complementary.
CMA exhibits high precision but relatively low sensitivity: while many facilitating heads may go
undetected (false negatives), those it does identify are reliably task-relevant (few false positives).
Conversely, CHG is biased toward sensitivity over precision. This suggests that heads identified by
CMA should also be identified (as showing strong facilitation) under CHG. We test this by comparing



CHG to the results of two former studies using CMA, replicating their methods to identify attention
heads with specific computations: heads that encode task information in function vectors [12] and
heads that perform symbolic reasoning [[13].

For function vectors, we use the six in-context learning tasks used in [12]]: ‘antonym’, ‘capitalize’,
‘country-capital’, ‘English-French’, ‘present-past’, and ‘singular-plural’. Each prompt is presented
in an in-context learning (ICL) [46]] format consisting of 10 input-output examples using a “Q: X\n
A:Y” template, followed by a query to be answered. To perform CMA, we corrupt the prompt by
randomly shuffling example outputs to induce mismatched pairs, then patch individual head outputs
with clean activations to identify which heads recover performance—interpreting high recovery as
evidence of causal mediation.

We apply a similar logic to symbolic reasoning tasks from [13]], where the goal is to generalize abstract
identity rules such as ABA (“flow"Started"flow”) or ABB (“flow”Started"Started’”). We deploy the
same CMA procedure used in [[13] to identify the three-stage symbolic processing mechanism that
was reported: (1) symbol abstraction heads that abstract symbols (“A” or “B”) away from the actual
tokens in the in-context examples; (2) symbolic induction heads that operate over the abstracted
symbols to induce the symbol for the missing token in the query; (3) retrieval heads that retrieve the
actual token based on the induced symbol to complete the query. To screen heads of each type, we
construct prompt pairs in which either the same token is assigned to different symbols (“A” or “B”)
or tokens are swapped while preserving the same rule, and patch activations at certain token positions
between them. Attention heads that steer model behavior towards specific hypotheses about the three
head types after patching (either converting the abstract rule or altering the actual token) are labeled
as mediating. We conduct all experiments on the Llama-3.2-3B-Instruct model.
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Figure 4: Task-facilitation scores versus (a) average indirect effect for function vector tasks and (b)
CMA scores for symbolic reasoning tasks, showing significant heads by type (abstraction, induction,
retrieval) and using the maximum CMA score across types for insignificant heads.

As predicted, CMA-identified heads tend to exhibit high facilitation scores under CHG in both
domains (Figure ). To quantify this, we compare the CHG facilitation scores of CMA-identified
heads—those with three standard deviations above the mean in function vector tasks or with statistical
significance in ABA/ABB tasks [[13]—to the remaining ones. Since facilitation and irrelevance
depend on the specific sufficient circuit identified by CHG, a head may appear irrelevant in one run
but facilitating in another if multiple circuits exist. To account for this, we fit 10 CHG masks per
function vector task and 20 per ABA/ABB task, and compute each head’s maximum facilitation score
across runs—capturing whether it participates in any sufficient circuit. We find significantly greater
facilitation among mediating heads in both the function vector tasks (¢(23.05) = 8.52, p < 107%)
and the ABA/ABB tasks (£(53.77) = 11.18, p < 10~ 15), supporting the relationship between CMA
and CHG-identified task relevance.

4.4 Contrastive Causal Head Gating

The results above indicate that CHG effectively distinguishes among facilitating, irrelevant, and
interfering attention heads. However, as an exploratory method, it lacks the granularity to charac-



terize the specific functions of these subnetworks. For instance, consider the ‘antonym’ task from
Section 43| presented in an in-context learning (ICL) format with 10 examples and a single-word
response, as defined in [12]]. To perform this task successfully, the model must not only generate the
appropriate antonym of a given word, but also infer the task itself from the 10 input-output pairs in
the prompt. Thus, a minimal circuit of task-facilitating heads will contain both those involved in task
inference and those involved in antonym production, and CHG cannot distinguish between the two.
This becomes more pronounced as task complexity increases, as in the OpenMathInstruct2 dataset,
where the minimal circuit must jointly support diverse sub-tasks, including English comprehension,
mathematical reasoning, chain-of-thought processing, and LaTeX generation.

To address this, we introduce a simple extension of CHG that not only identifies facilitating heads for
a given task but also isolates the sub-circuit responsible for a particular sub-task. We generate parallel
variants of the same task that share all features except for a controlled difference in the required
operation, allowing us to isolate the corresponding sub-circuits. In doing so, we take a step toward a
hypothesis-driven approach, decomposing the task into sub-steps while remaining agnostic to the
mechanistic implementations For example, the antonym task can be constructed as an ICL task using
the default format from [12]], or as an instruction-following task where the model is presented with
the task description “Given an input word, generate the word with opposite meaning”. By comparing
the resulting attention circuits, we can disentangle components responsible for task inference from
those involved in antonym generation.

Furthermore, rather than simply applying CHG to each version and directly comparing the results, we
propose a combined approach that fits a single mask with a joint objective to forget one variant of the
task while retaining the other, so that the resulting gate matrix suppresses heads uniquely necessary
for one variant but dispensable for the other:

LGMg N = Y logP(yr |zp) —log P(yr | zr) = AD o ' (Gia) ()
4,J

(TRYR,TF,YF)

where log P(y | ) denotes the log-probability of target sequence y given prompt = under model
M with gating matrix G, the sum ranges over matched tuples (zg, yr, zF, yr) of the retention and
forget variants that differ only in task formulation, and A > 0. To stabilize the gradient, we clip the
inverse-sigmoid as in Eq.[I]as well as the difference in log-probability.

We evaluate this method using the six function vector tasks from Section [4.3] leveraging the natural
language task descriptions provided in to construct instruction-based variants. For each problem,
we replace the 10-shot word-pair examples with a prompt containing the task instruction and a single
example. We then fit the contrastive causal head gating (CCHG) mask to forget the ICL variant
of five tasks while retaining the instruction-based format, holding out the sixth task for evaluation.
If task inference from examples, instruction-following, and task execution are indeed mediated
by separable circuits, this analysis should disable example-based generalization while preserving
instruction-based performance. We perform our experiments in both directions (forgetting ICL while
retaining instruction-following, and vice versa), using each of the six tasks as the held-out evaluation
task. All experiments were conducted on the LLaMA-3.2-3B-Instruct model.
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Figure 5: Task accuracy under CCHG. Columns indicate held-out evaluation tasks and rows indicate
the retained prompt format. Bar color shows the evaluation prompt format. “Default” and “gated”
indicate whether CCHG is applied during evaluation. Error bars indicate 95% CI.



As shown in Figure 5] the CCHG masks generalize to the held-out task. When the model is induced to
forget task inference from ICL examples across five tasks, its target task accuracy drops to zero on the
ICL variant of the held-out task while in most cases remaining well above zero—and often close to
the unablated baseline—on the instruction-based variant. A similar pattern emerges when forgetting
is applied using the instruction-based format: performance collapses on instruction prompts while
generally remaining intact for example-based ones.

Interestingly, while degradation is often small for the retained prompt format, this pattern is not
consistent across all tasks. For example, when the gating matrix is fitted to retain ICL and forget
instruction-following, the ‘singular-plural’ task shows only a small drop in ICL accuracy (98% —>
92%) but a complete failure on instruction prompts (98% — 0%). When this setup is reversed—fitted
to retain instruction-following and forget ICL—accuracy on ICL drops from 98% to 0%, while
instruction accuracy drops more modestly (98% — 21%). Across the 6 tasks, 3 (‘country-capital’,
‘English-French’, ‘present-past’) remain robust as held-out tasks under instruction prompts, and 4
(‘capitalize’, ‘English-French’, ‘present-past’, ‘singular-plural’) do so under ICL prompts.

Thus, our results indicate that the circuits for instruction following and ICL may be separable at the
head level. However, this separability also depends on the task, suggesting that task execution circuits
may share heads with those used for task understanding and representation.

5 Discussion

In this work, we introduced Causal Head Gating (CHG), a flexible and scalable method for identifying
causally relevant attention heads in large language models. CHG assigns each head a graded score
for facilitation, interference, or irrelevance based on its effect on task performance, going beyond
correlational or observational analyses. These scores predict performance changes under targeted
ablations, confirming that facilitation, interference, and irrelevance scores capture causal impact.
Crucially, it does so using next-token prediction alone, thereby avoiding reliance on labeled data or
handcrafted prompts, making it broadly and easily applicable. Moreover, CHG requires no finetuning
or auxiliary decoder model, and introduces only one parameter per head, allowing it to run in minutes
even on billion-scale models. To validate our method, we demonstrated that existing works within
the mechanistic interpretability literature successfully corroborate our findings using, and that the
ICL and instruction-following circuits revealed using contrastive CHG successfully generalize across
tasks.

Interestingly, across the range of models and tasks we investigated, we observed that attention
heads form task-sufficient sub-circuits with low overlap. Moreover, a single head may vary in its
relevance across multiple runs depending on which others are active, reflecting the distributed and
context-dependent nature of computation in LLMs, and in rare cases, a head may even receive
low G but high G~ scores within the same run. We hypothesize that this variability reflects an
interaction-dependent landscape in which causal roles shift with circuit configuration. While these
complexities may appear messy, we view them as a strength of CHG, revealing the redundancy and
interdependence that underlie emergent model behavior. Because CHG is highly scalable, it can be
repeatedly applied to estimate distributions over gating values, providing a bootstrapped view of
redundant and contingent sub-circuits with greater fidelity to the model’s underlying dependency
structure.

While CHG provides a lightweight and scalable approach for exploratory analysis, requiring only a
dataset and no model finetuning or supervision, it is not designed to reveal the precise computations
performed by individual heads. Instead, CHG offers a complementary first-pass diagnostic tool
that identifies candidate heads or sub-circuits with consistent causal influence, guiding where more
granular, hypothesis-driven methods such as causal mediation or activation patching can be applied.
In this way, CHG provides a practical entry point into large-scale causal interpretability, mapping
functional dependencies that subsequent analyses can examine in greater detail.

We hope that our work encourages further exploration of causal structure in language models as a
foundation for more mechanistic understanding. Future work may build on these tools to develop
circuit-level explanations of how models implement complex behaviors.
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6 Technical Appendices and Supplementary Material

6.1 Datasets

For each dataset, we split the full set into three partitions: an example set, a training set, and a
validation set. Example problems were selected from the top K shortest prompt-solution sequences
after tokenization. One example was randomly drawn from the example set to be included in each
training/validation prompt to help align model responses with the task format. For multiple-choice
datasets, answer options were randomly shuffled and labeled with capital letters (A, B, C, ...), and the
target answer was the correct letter.

OpenMathlInstruct2 We used the OpenMathInstruct-2_train_1M subset. We filtered out
problems marked as having no solution, removed duplicate prompts (even if their solutions differed),
and retained the 55,050 shortest prompt-solution pairs by total tokenized length. From this, we
selected 50 examples, 50,000 training problems, and 5,000 validation problems. Each prompt began
with the instruction: “For each problem, explain your reasoning step by step and use LaTeX for all
mathematical expressions. Indicate your final answer using \boxed{...}.”

CommonsenseQA  We selected 10 problems for the example set, then split the remaining data into
a 90% / 10% training/validation split.

BIG-Bench syntax We included all tasks labeled ‘syntax’ in BIG-Bench: ‘linguistic mappings’,
‘tense’, and ‘subject-verb-agreement’. The ‘linguistic mappings’ category consisted of five subtasks,
each with its own instruction:

* Past tense: “Convert the verb to its past tense form.”

* Plural: “Convert the noun to its plural form.”

* Pronoun replacement: “Replace the repeated name with the correct pronoun.”
* Question formation: “Convert the statement into a yes/no question.”

» Sentence negation: “Convert the statement into a negative sentence.”

The ‘tense’ task used the instruction: “Modify the tense of a given sentence.”

The ‘subject-verb-agreement’ task used the instruction: “Choose the grammatically correct verb form
that agrees with the subject of the sentence.”

Each task or subtask was treated independently for splitting and prompt generation. We allocated
10 examples per subtask, with a 90% / 10% split over the remainder into training and validation.
Example problems used in prompts were always drawn from the same subtask as the target problem.

Function vector tasks We included six tasks: ‘antonym’, ‘capitalize’, ‘country-capital’, ‘english-
french’, ‘present-past’, and ‘singular-plural’. Each task was used in two formats: 10-shot in-
context learning (ICL) prompts with 10 input-output pairs, and instruction-based prompts using task
descriptions from [12]]:

* Antonym: “Given an input word, generate the word with opposite meaning.”

* Capitalize: “Given an input word, generate the same word with a capital first letter.”

* Country-Capital: “Given a country name, generate the capital city.”

* English-French: “Given an English word, generate the French translation of the word.”

* Present-Past: “Given a verb in the present tense, generate the verb’s simple past inflection.”
* Singular-Plural: “Given a singular noun, generate its plural inflection.”

We allocated 10 examples per task, and split the remaining data into 90% training and 10% validation.
Example problems used in prompts matched the format (ICL or instruction) of the task being
evaluated.

Symbolic reasoning (ABA/ABB) : We procedurally generated symbolic reasoning prompts fol-
lowing the A*B”A and A*B”B templates from [13]. using 4 in-context examples per prompt. Each
prompt was generated by selecting 10 random tokens—=8 assigned to the 4 examples and 2 used in
the query. We used individual tokens rather than full words, since multi-token words often behave
similarly: once the first token is generated, the model tends to complete the rest automatically,
reducing the task to token-level pattern recognition.
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6.2 Training details

Causal head gating For each model and task, we first fit a CHG matrix G with A = 0 for 500
gradient updates with a batch size of 64 samples. G was initialized with random values sampled
uniformly between 0 and 1. We used the Adam optimizer [54] for optimization using an initial
learning rate of 0.1 with a linear decay that terminates with a learning rate of 0.01. After fitting G
with A = 0, we fit G and G~ using G as the initial conditions and A = +0.1 for 500 gradient
updates with an initial learning rate of 0.5 and a terminal learning rate of 0.1. We clipped the
regularization term at 4.

Contrastive causal head gating For each model and task pair, we fit a CCHG matrix G with
A = —0.1, clipping the regularization term at 4 and the log-probability difference at 5. We fitted G
over 500 gradient updates with a batch size of 64 using the Adam optimizer with an initial learning
rate of 0.1 with a linear decay that terminates with a learning rate of 0.01.

6.3 Hardware and compute

For all our experiments, we used 128 GB of CPU RAM and a single Nvidia H100 GPU at a time.
Each run of CHG (1,500 gradient updates) took between 15 minutes and 1 hour, depending on
the model and dataset. Each run of CCHG (500 gradient updates) took approximately 5 minutes.
We estimate that all experiments reported in this paper can be completed in under 100 GPU hours.
Preliminary or failed experiments required negligible additional compute and are not included in the
total.
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NeurlIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim in the abstract and introduction that CHG offers causal insight into
individual attention heads in LLMs, which we substantiate using ablation analysis and
comparison to CMA. We also claim that instruction following and ICL are separable at
the head level, which we show using CCHG. Lastly, we claim that LLMs contain multiple
sparse sub-circuits that are individually sufficient for different tasks, which we show in our
consistency analysis.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses key limitations in the Discussion section, including CHG’s
inability to explain why heads matter, occasional divergence between G and G, and the
context-dependent variability in head roles across runs.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the CHG algorithm, datasets, model
variants, and evaluation methods (e.g., ablation, CMA comparisons). The precise methods
for reproducing the CMA results are better described in the original papers. Hyperparameters
and additional procedural details are included in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: The accompanying repository can be found at https://github.com/
andrewnam/causal_head_gating. We also note that the models and datasets used in our
paper are publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and evaluation details, hyperparameters, and optimizer settings
can be found in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports t-test results for CMA comparisons and includes 95%
confidence intervals in the CCHG evaluation plots
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on compute resources are provided in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that all aspects of
our research fully comply.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents foundational interpretability methods without direct ap-
plication or deployment, and we do not foresee societal impacts resulting from its current
scope.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks, as it uses only publicly available models and
datasets and does not release any new high-risk assets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are cited in the paper.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our study is applied directly to LLMs and is central to our methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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