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Abstract

Does the prior knowledge of the vision encoder
constrain the capability boundary of Multi-
modal Large Language Models (MLLMs)?
While most existing research treats MLLMs as
unified systems optimized through end-to-end
training, the impact of vision encoder’s prior
knowledge is seldom investigated. In this work,
we introduce a novel metric, Rank., to quan-
tify the effect of prior knowledge of the vision
encoder on MLLM performance. Our analy-
sis reveals a positive correlation between prior
knowledge and MLLM performance. More-
over, we find that domain-specific fine-tuning
using solely end-to-end visual question answer-
ing (VQA) data is insufficient, particularly for
entities with low inherent visual prior knowl-
edge. To address this issue, we propose VisPRE
(Vision Prior Remediation), a two-stage train-
ing framework that explicitly incorporates prior
knowledge at the vision encoder level. Exper-
imental results demonstrate that augmenting
vision encoder’s prior knowledge substantially
boosts the visual understanding capabilities of
MLLMs, offering a novel and effective strat-
egy for improving performance, especially in
scenarios involving uncommon visual entities.

1 Introduction

Multi-modal Large Language Models have
emerged as a rapidly growing area of research.
Combining the powerful capabilities of Large Lan-
guage Models with the ability to process visual
input, MLLMs excel in tasks such as image un-
derstanding, VQA (Agrawal et al., 2016), image
captioning, and visual instruction following. The
development of models such as GPT-40 (OpenAl,
2024), GPT-4V (OpenAl, 2023), and Claude-3.5
(Anthropic, 2024) have demonstrated remarkable
proficiency in advanced multi-modal understand-
ing. Besides, open-source models like LLaVA (Liu
et al., 2024b,a; Li et al., 2024a) series, Qwen2-VL
(Wang et al., 2024), and InternVL2 (Chen et al.,
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Figure 1: Knowledge quadrants of a MLLM. “Vision
known” indicates that the vision encoder recognises the
entity in the image, while “Language known” indicates
that the language model possesses relevant information
about the entity. Only when both vision and language
are “known” can the MLLM achieve accurate compre-
hension and response generation.

2024b,a) are making significant strides, bridging
the gap in the field.

A pivotal challenge in advancing MLLM:s is forg-
ing a seamless and robust alignment between vision
and language. One effective approach involves in-
tegrating an off-the-shelf external vision encoder
with a language model using a modality conversion
module (Alayrac et al., 2022; Li et al., 2023a,d;
Zhu et al., 2023; Dai et al., 2023; Bai et al., 2023;
Liu et al., 2024b; Li et al., 2022), which we refer to
as the modular approach. Compared to the mono-
lithic multi-modal approach (Team, 2024a; Luo
et al., 2024; Bavishi et al., 2023; Zhan et al., 2024),
which is built from scratch using multi-modal data,
the modular approach is more data-efficient and
achieves comparable performance. Despite these
advantages, the modular approach still faces chal-
lenges, as the vision and language components are
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Figure 2: Left: Current MLLM performance vs. vision prior knowledge. Current MLLMs demonstrate positive
correlation between vision prior knowledge and overall performance. Right: “Vision Known” and “Vision Not

Known” Entities. (1) For “vision known entities”

, the vision encoder contains sufficient prior knowledge, enabling
MLLM answers correctly; (2) For “vision not known entities”

, insufficient visual knowledge leads to MLLM failure.

We propose the Rank. metric to quantify vision encoder’s prior knowledge about specific entities, along with a
two-stage training framework to enhance encoder knowledge, expanding MLLM’s performance boundaries.

trained separately from distinct data distributions,
leading to an inherent misalignment in their knowl-
edge. To illustrate the importance of knowledge
alignment, we present a knowledge quadrant dia-
gram in Fig. 1, with the horizontal axis represent-
ing the knowledge held by the language model
and the vertical axis representing the knowledge
held by the vision encoder. Only when both com-
ponents possess necessary knowledge (in the “Vi-
sion known & Language known” quadrant) can
the multi-modal model accurately handle complex
cross-modal tasks (Li et al., 2023¢; Cheng et al.,
2024). Misalignment in knowledge from either the
vision or language side introduces limitations to the
model’s capabilities, making it essential to bridge
this gap to enhance the performance of multi-modal
models. Many existing studies focus on addressing
knowledge misalignment from the language per-
spective, expanding from “Vision known & Lan-
guage not known” to “Vision known & Language
known”. Some studies (Caffagni et al., 2024; Jiang
et al., 2024) enhance language model knowledge
with external documents related to images, while
CVLM (Li et al., 2024b) trains a “Visual Knowl-
edge Aligner” module to enrich text-based knowl-
edge associated with images. However, as a crucial
component of MLLM (Collins and Olson, 2014),
the vision encoder also possesses varying prior
knowledge about the real world, such as entities,
textures, and causality (Pinker, 1984; Cavanagh,
2011). But the impact of this vision prior knowl-
edge on MLLM capabilities remains unexplored,
leading to a natural question: How does vision
prior knowledge affect MLLM’s capability? In

this paper, we attempt to answer this question by
investigating the following research questions:

* Q1: How to measure prior knowledge in vision
encoders?

* Q2: Does vision prior knowledge constrain
MLLM?

* Q3: How to transcend vision prior knowledge
limits?

To address these questions, we introduce Rank,
to quantify the vision encoder’s prior knowledge.
Through experiments with various model combi-
nations, we reveal a positive correlation between
MLLM performance and visual prior knowledge.
Fig. 2 (left) demonstrates the relationship between
current MLLM performance and vision prior. Fur-
thermore, we find that direct fine-tuning with end-
to-end VQA data is insufficient for improving
MLLM performance on low prior entities. Fig. 2
(right) illustrates the knowledge misalignment on
low prior entities. To overcome this limitation, we
propose a two-stage training framework that injects
vision prior knowledge into the vision encoder, re-
sulting in significant improvements in MLLM per-
formance. In summary, our main contributions are:

* We introduce the Rank. metric to quantify
a vision encoder’s prior knowledge, reveal-
ing a positive correlation between MLLM per-
formance and the encoder’s embedded visual
knowledge.

* Our analysis shows that domain-specific fine-
tuning with only end-to-end VQA data proves



insufficient, particularly for entities with low
vision prior knowledge.

* We propose a two-stage training framework
VisPRE (Vision Prior Remediation) that in-
jects prior knowledge at the vision encoder
level, significantly enhancing MLLM perfor-
mance, especially for entities with low vision
prior knowledge.

2 Vision Prior Measurement

Vision encoders are typically trained on extremely
large-scale data (from 400 million to 10 billion sam-
ples (Tong et al., 2024a)), often with undisclosed
data (e.g., OpenAl CLIP (Radford et al., 2021)),
making direct evaluation of vision priors from train-
ing data infeasible. Therefore, to answer Q1, we
shift our focus to evaluating observable behavioral
evidence - specifically, how effectively these en-
coders recognize visual entities. We thus propose
the Rank. metric, which quantifies an encoder’s
vision prior knowledge for a given entity e.

In this section, we begin by describing the modal-
ity alignment process in modular MLLMs, then for-
mulating the definition of vision prior knowledge.
Finally, we introduce the Rank, metric to quantify
this knowledge.

Modular MLLMs establish cross-modal under-
standing through an alignment process that maps
visual information to textual representations. For-
mally, given an input text prompt 7’4 and target im-
age Ip, where F represents the MLLM’s internal
representation function that maps inputs to hidden
states, the alignment process can be described as:

align

F(Ta,Ig) =55 F(Ty,T5)

1

where Tp ~ P(T|Ip) @

Here, Ts represents the generated text that pre-

serves the semantic content of /. Building upon

the Platonic representation hypothesis (Huh et al.,

2024), we posit that cross-modal alignment occurs

through a shared latent space Z. This allows us to
decompose the P(T'|Ip) as:

P(T|Ip) = Pusion(215) - Paign(T|2, Ip)

2€2 Vision prior

2
The latent representation z serves as an interme-
diary that connects the visual and textual domains.

While Pyiign (7|2, Ip) reflects the MLLM’s ability
to convert latent representation z into textual out-
put T', Pyision(z|Ip) represents the vision encoder’s
capability to transform image Ip into an appropri-
ate latent representation. Plision(z|/p) constitutes
what we define as vision prior knowledge—the en-
coder’s pre-existing understanding of visual entities
encoded in its parameters.

To quantify the inherent vision prior
Pyision(2]1p), we discretize the continuous
latent space Z into a set of entity-specific latent
representations. For a given image Ip, we
approximate P(z|Ip) by evaluating the probability
that the vision encoder correctly identifies an
entity within Ip. To achieve this, we propose
the Rank. metric, which measures how well the
encoder identifies a target entity e from visual
inputs, thereby evaluating the vision encoder’s
inherent prior knowledge. As shown in Fig. 3, for
an entity e, Rank, is computed as follows:

* Similarity scoring: For an image /. containing
entity e, compute the image-text similarity score
s; = ¢(Ie, Tj) using the vision encoder and its
corresponding text encoder, where {71, ..., T}, }
are textual descriptions of n candidate entities.

* Ranking: Rank the entities in descending or-
der based on their similarity scores {s;}"_;,
and record the position of the target entity e as
Rank,. If multiple images {Ie(l), oy Ie(m)} are
available for single entity e, compute Rank, for
each image separately and take the average:

where rank(¢(I.,T)) denotes the position of
¢(Ie,Te)) in ordered {s;}7_;. Lower Rank.
values indicate stronger visual prior knowledge,
with optimal performance when Rank, = 1.

3 Experiments

In this section, we explore the three proposed re-
search questions. In Section 3.1, we describe the
overall experimental setup. In Section 3.2, we ver-
ify the relationship between MLLM and the prior
knowledge of its vision encoder. From Section 3.3
to Section 3.4, we show the insufficiency of end-to-
end fine-tuning and propose a training framework
to transcend vision prior knowledge limits.
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Figure 3: Illustration of metric Rank.. For a target
entity e, we compute cross-modal similarity scores be-
tween its vision representations (extracted by vision
encoder) and text representations of all candidate enti-
ties (extracted by corresponding text encoder). The rank
of entity e among these candidates defines its Rank..
In this example, while Image A depicts Entity A, en-
tity A achieves 4th-highest similarity score, resulting in
Rank. =4.

3.1 Experiment Setting

Models. To systematically examine the impact
of vision encoder’s prior knowledge on MLLM
performance across different vision encoders and
base LLM combinations, we train nine MLLMs
from scratch based on an encoder-projector-LLM
architecture. For the vision encoder, we use widely
adopted encoders in MLLMs, including OpenAl
ViT-L-14 (Radford et al., 2021), SigLIP ViT-SO-14
(Zhai et al., 2023), and DFN ViT-H-14 (Fang et al.,
2023). For base LLM, we select the LLaVA-1.5
language model, Vicuna-7B-v1.5 (Chiang et al.,
2023), and recent open-source models, Llama-3.1-
Instruct-7B (Dubey et al., 2024) and Qwen-2.5-
Instruct-7B (Team, 2024b).

Datasets. To evaluate MLLMs under different
vision priors, we require a VQA dataset that meets
two conditions: (1) it provides entity annotations
covering a wide range of prior knowledge—from
extremely rare to very common entities; (2) it in-
cludes entity-centric visual questions and answers
for MLLM performance assessment. Here, rare
entities refer to those that appear infrequently or
not at all in the vision encoder’s training data, mak-
ing them difficult for the vision encoder to recog-
nize accurately. The Encyclopedia-VQA (Mensink
et al., 2023) dataset fulfills both requirements. With
extensive entity annotations covering up to 16.7k
entity categories, it captures both common and rare
entities and poses a hard challenge for MLLMs
with its knowledge-based VQA questions.

Training. We conducted training on a 8xA800

GPUgs. Initially, we pre-trained the model on the
LLaVA (Liu et al., 2024b) dataset to develop an

MLP projector aligned with selected vision en-
coder. For fine-tuning phase, we sampled 10%
of the LLaVA instruction tuning dataset and inte-
grated it with additional fine-tuning data to opti-
mize computational efficiency while maintaining
performance quality.

Metrics and Evaluation. We use Llama-3.1-
70B (Dubey et al., 2024) to judge model responses,
denoted as a function g(-) that takes the question,
entity, ground truth answer, and model output as
input, returning true if the answer is correct. Using
this, we define entity accuracy Acc, for each entity
e as the fraction of correct responses among all
related questions:

N,
1 = .

Acce = E 1(g(yi, 9i) = true]  (4)
€ =1

where N, is the number of questions for entity
e, y; is the ground truth answer and other question
information, and ¢; is the model’s output. The
overall dataset accuracy AcCmacro 1S calculated as
the macro-average of all entity accuracies. Details
of the evaluation configurations are in Appendix B.

3.2 Vision Prior Constrains MLLM
Performance

To investigate Q2: “Does vision prior knowl-
edge constrain MLLM?”, we first categorize en-
tities into two types: those “vision encoder knows”
and those “vision encoder doesn’t know” then ob-
serve MLLM performance across both categories.
Through our proposed Rank. metric, we mea-
sure the vision encoder’s knowledge of entities in
Encyclopedia-VQA, where a lower Rank, indi-
cates greater knowledge. For MLLM performance,
we test accuracy in answering entity-related ques-
tions in Encyclopedia-VQA.

Our study aims to address knowledge misalign-
ment where MLLM capabilities are limited by the
vision encoder. Therefore, we retain only cases
where the LLM component possesses adequate en-
tity knowledge, regardless of the vision encoder’s
knowledge. Specifically, we prompt the MLLM
with “This is {entity name}” rather than the actual
image; if the MLLM answers correctly, we retain
this case. Additionally, we discovered a number of
cases where MLLMs provide correct answer with-
out image description or actual image. We attribute
this to the MLLM’s dependency on question for-
mat (Jiang et al., 2024). We eliminated this subset



0.6 0.45 0.84
0.5 0.38 0.70
0.4 0.31 0.56
$0.3 0.24 0.42
<
0.2 0.17 0.28
0.1 0.10 0.14
0.0 0.03 0.00
0 500 1000 1500 2000 2500 3000 0 2300 4600 6900 92001150013800 0 2000 4000 6000 80001000012000
(a) CLIP Rank (b) SigLIP Rank (c) DFN Rank
Vicuna Qwen-2.5 —— Llama-3.1

Figure 4: MLLM Performance distribution across different Rank, intervals. Performance of all MLLMs
decreases as Rank. increases across three encoder configurations. The Vicuna-CLIP model shows an 87%
performance drop from 0 < Rank. < 500 to Rank. > 3000, indicating correlation between performance and
vision prior knowledge. This relationship is non-linear with a critical threshold. We marked this threshold by a
vertical line in the figure—green on the left indicating sufficient prior knowledge for reasoning, and red on the right
showing insufficient knowledge causing sharp performance decline.

from our analysis. Fig. 4 illustrates the relationship
between MLLM accuracy and Rank,

Finding 1: MLLM performance correlates
positively with vision prior knowledge. As shown
in Fig. 4, across all three encoder choices, MLLM
performance consistently declines as entity Rank.
increases. For the CLIP encoder, from the interval
0 < Ranke < 500 to Rank. > 3000, Vicuna’s
performance drops by 87%, Llama3.1’s by 100%,
and Qwen-2.5’s by 21%. In SigLIP encoder ex-
periments, overall performance declines by about
50% across all three models from the leftmost to
the rightmost interval, while for the DFN encoder,
the decline reaches 100%.

Notably, CLIP-Vicuna MLLM does not exhibit
a significant performance decline until Rank.
reaches 3000. The phenomenon is also observed in
the SigL.IP and DEN configurations. This threshold
effect suggests that the positive correlation between
vision prior knowledge and MLLM performance
is not strictly linear, but rather exhibits a mutation
beyond a critical point. We posit that this stems
from the vision encoder holding a known status for
entities below a certain Rank, threshold, mean-
ing it can still provide sufficient prior knowledge
for the MLLM to answer entity-related questions.
Once Rank. exceeds this threshold, the vision en-
coder no longer provides adequate prior knowledge,
resulting in a sharp drop in MLLM performance.
Considering that LL.M part of MLLM possesses
adequate knowledge about all entities here, it is the
vision encoder of MLLM that constrains the overall
performance on entities beyond the threshold.

3.3 Shortcomings of End-to-end Finetuning

To investigate Q3: “How to transcend vision prior
knowledge limits?”, we implement a typical solu-
tion as our baseline—finetuning MLLMs on end-
to-end domain-specific VQA data. Following es-
tablished MLLM finetuning approaches (Liu et al.,
2024b,a), we freeze the vision encoder parameters
and only tune the LLM component. This setup
enables the LLM parameters to compensate for
limitations in vision prior knowledge.

Number of (Q, A) pairs Number of

Vision Encoder LLM (it
Train Test entities

Vicuna-7B 1877 531 90

OpenAl ViT-L-14  Llama3.1-8B 2305 624 106

Qwen2.5-7B 2345 645 109

Vicuna-7B 2290 615 106

SigLIP ViT-SO-14 Llama3.1-8B 2669 717 123

Qwen2.5-7B 2614 705 118

Vicuna-7B 1914 531 90

DFEN ViT-H-14  Llama3.1-8B 2339 615 105

Qwen2.5-7B 2291 618 105

Table 1: Dataset Statistics. We report the number of
(question, answer) pairs for each dataset split across
different encoder-language model combinations. Each
corresponding train-test pair shares the same entities.

We constructed our finetuning dataset from
Encyclopedia-VQA. Following the method in Sec-
tion 3.2, we retained questions that MLLMs an-
swered correctly when prompted with “This is {en-
tity_name}” instead of the actual image. After
calculating Rank, across the dataset, we observed
naturally different Rank,. distributions across en-
coders. To balance the distribution of entities with
varying levels of prior knowledge, we sampled
entities to create more uniform rank distributions
for validation. We then divided each subset into
training and test sets containing the same entities
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Figure 5: Perception-tuning and Knowledge-tuning
underperform on low-prior (high Rank.) entities.
The figure illustrates performance improvements com-
pared to Zero-shot: Perception-tuning shows a signif-
icant drop for Qwen-2.5 when Rank, > 3000. Simi-
larly, Knowledge-tuning leads to notable performance
declines for both Qwen-2.5 and Llama-3.1 in the low-
prior range (Rank. > 3000).

but with different questions. Dataset statistics are
presented in Table 1, with detailed construction
methodology in Appendix A.

Successful knowledge-based VQA requires
three essential MLLM capabilities: (1) recognizing
entities in images; (2) possessing relevant knowl-
edge about these entities; and (3) utilizing this
knowledge to answer questions. As the LLM com-
ponent already contains adequate entity knowledge,
MLLM performance can be enhanced through two
approaches: (1) improving visual entity recogni-
tion and (2) optimizing knowledge utilization for
question answering.

To explore these approaches, we develop
two distinct types of finetuning data: (1)
Perception-tuning data, where we transform orig-
inal Encyclopedia-VQA questions into perception-
focused queries such as What is this image about?
and (2) Knowledge-tuning data, which pre-
serves the original questions from Encyclopedia-
VQA. Detailed construction methodologies for
both datasets are provided in Appendix A.

Finding 2: Domain-specific finetuning with
only end-to-end VQA data is insufficient, par-
ticularly for entities with low visual prior knowl-
edge. Fig. 5 illustrates the accuracy improvements
of Perception-tuning and Knowledge-tuning mod-
els compared to Zero-shot baselines under CLIP
encoder configuration. As shown in Figure (a),
after Perception-tuning, Qwen-2.5 performance de-

creased in the Rank. > 3000 range, while Vicuna
and Llama-3.1 showed no improvement. As shown
in Figure (b), after Knowledge-tuning, Qwen-2.5
and Llama3.1’s performance decreased for approxi-
mately 33% in the Rank. > 3000 range compared
to Zero-shot. The comprehensive experimental re-
sults across all nine encoder-language model com-
binations are shown in Table 2.

3.4 Vision Prior Remediation

In previous sections, we established that MLLM
performance correlates positively with vision prior
knowledge, and that end-to-end fine-tuning yields
insufficient. Based on these findings, we propose
VisPRE, a training framework that injects entity-
related prior knowledge at the vision encoder level
to enhance MLLM performance. The specific pro-
cess of our training framework is illustrated in
Fig. 6, which comprises two key stages:

* Remedy Encoder: We first reformat the
Perception-tuning data into (image, entity_name)
pairs, and then fine-tune the vision encoder along-
side the text encoder using contrastive loss. This
stage enhances the encoder’s prior knowledge of
entities present in the Perception-tuning data.

¢ Instruction Tuning: We incorporate the fine-
tuned encoder into the MLLM architecture and
perform end-to-end fine-tuning of the entire
model using Knowledge-tuning data. This stage
aligns the trained vision encoder with the base
LLM and stimulates the model’s knowledge of
entities.

To systematically evaluate VisPRE, we establish
several baselines: Zero-shot, Perception-tuning,
and Knowledge-tuning from Section 3.2. Ad-
ditionally, we include Knowledge-tuning* and
Mix-tuning*, where the asterisk (*) denotes un-
freezing the vision encoder parameters during
fine-tuning. Mix-tuning represents a combination
of Knowledge-tuning and Perception-tuning data.
The evaluation results are presented in Table 2.

Finding 3: Remediating prior knowledge at
the vision encoder level is effective. Perception-
tuning shows only marginal improvements over
Zero-shot performance, occasionally even degrad-
ing results. Knowledge-tuning yields limited gains,
with Knowledge-tuning* showing only modest im-
provement over standard Knowledge-tuning. Mix*
doesn’t exceed Knowledge* performance. In con-
trast, our VisPRE framework outperforms all base-
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Figure 6: Overview of our proposed VisPRE framework. Our framework enriches the vision encoder with
entity-specific prior knowledge by first extracting (image, entity_name) pairs from Perception-tuning data and then
finetuning the vision encoder using contrastive loss. The enhanced encoder is subsequently integrated into the

MLLM, which is further fine-tuned on Knowledge-tuning data.

Vision Encoder LLM Zero-shot  Perception Knowledge Knowledge* Mix* VisPRE(Ours)
Vicuna-7B 51.22 49.91 54.05 53.48 55.37 56.31
OpenAl ViT-L-14 Llama3.1-8B 37.82 39.26 45.67 45.99 44.71 48.24
Qwen2.5-7B 46.05 48.84 54.57 56.59 53.49 54.42
Vicuna-7B 52.03 53.66 53.66 57.24 57.07 57.89
SigLIP ViT-SO-14 Llama3.1-8B 38.91 37.66 41.28 41.84 41.42 41.28
Qwen2.5-7B 36.45 36.31 41.13 41.42 42.84 44.54
Vicuna-7B 59.07 58.70 63.33 64.97 62.90 66.85
DEN ViT-H-14 Llama3.1-8B 38.70 39.84 45.08 46.99 45.69 48.29
Qwen2.5-7B 40.45 38.10 43.33 44.66 46.76 43.69

Table 2: Results on 9 MLLM combinations. Our method outperforms finetuning approaches including Perception-
tuning, Knowledge-tuning, Knowledge-tuning* and Mix-tuning*, demonstrating that our method significantly
enhances MLLM performance through prior remediation. We mark the best result in bold for each model, and *
indicates unfreezing the vision encoder parameters during fine-tuning.
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Figure 7: VisPRE outperforms on all Rank, levels.
The figure shows performance gains over Zero-shot:
With the CLIP encoder, all three models demonstrate
improvements across different Rank. entities, espe-
cially for low-prior (high Rank.) entities.

lines, achieving superior results in six of nine
model combinations. As shown in Fig. 7, VisPRE
improves MLLM performance across all Rank,
entities, particularly those with low vision pri-
ors, demonstrating clear advantages over alterna-
tive tuning approaches in Fig. 5. These results
confirm that enhancing encoder prior knowledge
substantially expands MLLM capabilities.

4 Case Study

Here we present an illustrative example. As shown
in the upper left of Fig. 8, we input an image of
the Portuguese Synagogue with the entity-related
question: “Where were this synagogue’s books
sent in 19797”. For (1) LLM: The MLLM cor-
rectly answers when receiving only the textual de-
scription “This is Portuguese Synagogue” instead
of the actual image, indicating the LLM compo-
nent possesses knowledge about this entity. For (2)
MLLM (Original): With image input, the MLLM
fails to answer correctly. We calculated this en-
tity’s Rank, as 516, indicating low prior knowl-
edge in the visual encoder. (3) MLLM (SFT), de-
spite end-to-end fine-tuning, still fails since the vi-
sual encoder’s prior knowledge remains unchanged.
Our training framework, VisPRE, first injects prior
knowledge into the visual encoder, elevating the
entity’s Rank. to 10, then conducts end-to-end
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Nothing »( | Destroyed ‘/ Track

Figure 8: Examples of Vicuna-7b’s responses with different encoders. When prompted with image description,
the LLM answers correctly, demonstrating adequate knowledge of image entities. However, the original (Origin)
and fine-tuning with Knowledge-tuning data (SFT) MLLM fails to answer, highlighting the limitations of its vision
encoder. With VisPRE(Ours*), the model answer accuratly. For additional cases, refer to Appendix C.

fine-tuning. Consequently, (4) Ours* overcomes
the visual encoder’s limitations and correctly an-
swers the question.

5 Related Works

Multi-modal Large Language Models.
MLLMs incorporate visual features into lan-
guage models, enabling them to perform a wide
range of visual tasks. The current MLLM imple-
mentations can be classified into two categories.
(1) Monolithic MLLMs. Tokenizing different
modal inputs uniformly and training the model
from scratch (Team, 2024a; Bavishi et al., 2023;
Chen et al., 2024b; Zhan et al., 2024), which is
computationally expensive. (2) Modular MLLMs.
Utilizing pre-trained vision-language models
(e.g., CLIP (Radford et al., 2021), SigL.IP (Zhai
et al., 2023), DINOv2 (Oquab et al., 2023)) to
obtain visual representations of images, and then
train MLLMs through cross-modal data, aligning
the visual features provided by vision encoder
to language model’s embedding space. This
method is more data-efficient and widely used by
open-source MLLMs (e.g., Flamingo (Alayrac
et al., 2022), BLIP2 (Li et al., 2023b), LLaVA
(Liu et al., 2024b), Qwen-VL (Bai et al., 2023),
InternVL2 (Chen et al., 2024b)). Our work focuses
on modular multimodal models. While most works
treat modular MLLM as a unified system, our
research focuses on the impact of vision encoder
part on the language model part.

Cross-modality Alignment. With increasing
adoption of Modular MLLMs, research focuses
on the relationship between vision encoders and
MLLM performance. Tong et al. (2024b) found
CLIP (Radford et al., 2021) and corresponding
MLLMs have similar performance trends across
visual modalities, indicating CLIP features cause
MLLM deficiencies in these modes, and addressed
these by introducing DINOv2 (Oquab et al., 2023)
features. Yang et al. (2024) proposed cross-modal
alignment metrics to measure vision encoder per-
formance, fitting a binary quadratic polynomial that
predicts MLLM performance using that encoder.
Different from previous works, our research offers
a novel perspective, demonstrating that MLLM
performance correlates positively with its vision
encoder’s prior knowledge.

6 Conclusion

In this paper, we introduce Rank. to quantify
prior knowledge in vision encoder. We find that
MLLM’s performance is positively correlated with
prior knowledge of vision encoder, and end-to-end
finetuning MLLM yields insufficient on improving
low prior entity performance. To address this is-
sue, we propose VisPRE training framework that
enhances MLLM’s performance by increasing the
prior knowledge within the vision encoder. Our
study demonstrates a novel pathway for enhancing
MLLM performance, offering substantial value for
applications involving uncommon entities.



Limitations

The primary limitation of our study is the current
unavailability of VQA datasets with comprehensive
rare entity annotations. While our study explores
MLLMS’ capabilities when confronted with uncom-
mon entities—those inadequately represented in
visual encoders’ pretraining data, most established
entity-annotated datasets like S3VQA (Jain et al.,
2021) predominantly feature common entities. To
address this challenge, we leveraged the Encyclo-
pedia VQA (Mensink et al., 2023) dataset with its
diverse collection of 16.7k entity types, providing
a sufficient foundation to identify and analyze less
familiar entities. Nevertheless, our findings would
benefit from additional specialized datasets explic-
itly focused on uncommon entities, which would
enable a more granular analysis of visual encoders’
boundary capabilities and offer complementary in-
sights to our current observations.

Ethics Statement

Our study utilizes MLLMs for knowledge-based
VQA tasks. MLLMs may reflect biases present in
the training data. Additionally, the VQA data used
in our research includes pictures of landscapes and
related knowledge questions, which may lead the
model to generate offensive content. In this regard,
we suggest users to examine the generated outputs
cautiously in real-world applications.
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A Datasets

Here we describe the detailed construction pro-
cess of our dataset. Based on Encyclopedia-VQA
(Mensink et al., 2023), we constructed Knowledge-
tuning and Perception-tuning datasets for each
encoder-language model combination to validate
Finding 2.

A.1 Preprocess

Question Filtering. First, we focus on improv-
ing the parts where MLLM'’s capabilities are lim-
ited by the vision encoder. Therefore, we only
retained questions that could be answered by the
corresponding LLM when prompted with “This is
{entity_name}” instead of the actual image. Next,
to ensure that there were no duplicate or similar
questions for the same entity across training and
test sets, we deduplicated the dataset based on (en-
tity_name, answer) pairs. Finally, we only retained
entities with three or more corresponding questions
to ensure sufficient questions for dividing into train-
ing and validation sets.

Prior Calculation. We calculated Rank, for all
entities in the filtered dataset. We examined the dis-
tribution of Rank, calculated using different types
of encoders (CLIP (Radford et al., 2021), SigL.IP
(Zhai et al., 2023), DEN (Fang et al., 2023)) across
the dataset, as shown in Fig. 10. We found signifi-
cant variations in Rank,. distributions among dif-
ferent encoders. CLIP’s Rank, values were mostly
concentrated in the range of Rank. < 400, with
entity counts increasing as Rank. decreased; In
contrast, Sigl.IP’s Rank, distribution is more uni-
form, with at least 10 entities present across most
Rank, intervals; DFN’s Rank, distribution was
similar to CLIP’s, with most values concentrated
in the range of Rank, < 400.

Entity Sampling. For Sigl.IP, we divided Rank.
into intervals of size 1000 and sampled 10 enti-
ties from each interval. For CLIP and DFN, using
the same sampling strategy as SigL.IP would re-
sult in insufficient sampling of entities in dense
intervals, making it difficult to distinguish differ-
ent levels of prior knowledge in these regions.
Therefore, we adopted a sampling method that
approximates the original distributions of CLIP
and DFN. We sampled 10 entities from intervals
of 0 < Rank., <= 2, 2 < Rank, <= 4,
4 < Rank., <=8, ..., 512 < Rank. <= 1024,
Rank. > 1024, ensuring that the sampled distri-
bution approximates the original distribution while
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Knowledge-tuning dataset
Q: Is this lighthouse rising
or falling into the sea?

A: Rising

Perception-tuning dataset
Q: What is this image
about?

A: North Breakwater Dome

Figure 9: Knowledge-tuning and Perception-tuning
datasets

retaining all entities with low prior knowledge to
reflect the relationship between entity prior knowl-
edge and model performance. Finally, we retained
the questions corresponding to the sampled entities
and divided the dataset into training and test sets,
with statistical information shown in Table 1.

A.2 Construction

For Knowledge-tuning dataset, we use the origi-
nal question and answer from the Encyclopedia-
VQA dataset. For Perception-tuning dataset, we
replace the original question in the Knowledge-
tuning dataset with cognitive question like “What is
this image about?” and substitute the answers with
the entity text corresponding to the image. Exam-
ples of Knowledge-tuning and Perception-tuning
datasets are shown in Fig. 9.

B Evaluation Settings

We employ Llama-3.1-70B (Dubey et al., 2024)
to evaluate the accuracy of MLLM’s responses
to VQA questions. Specifically, we provide
Llama-3.1-70B with the question, entity name
(wikipedia_title in prompt), ground truth an-
swer, and MLLM’s response. The model outputs
true to indicate a correct answer and false to in-
dicate an incorrect answer. The prompt template
is shown in Fig. 11, with the few_shot_examples
shown in Fig. 12.

C More Cases

In Fig. 13, we demonstrated Vicuna-7B’s responses
under different encoder configurations. Here in
Fig. 13, we show examples of responses from
Llama-3.1-7B and Qwen-2.5-7B under different
encoders.
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Figure 10: The Rank, distribution of entities calculated using three different encoders. Here we show the entities
that (a)Vicuna, (b)Qwen-2.5 and (c)Llama-3.1 could answer after using text prompts instead of entity images. We
can see that the Rank,. distributions for both CLIP and DFN are concentrated in intervals near the left side, while
SigLIP’s Rank, distribution is relatively uniform.



Prompt for Llama-3.1 evaluation

You are an expert evaluator tasked with assessing the correctness of model predictions. Your job is
to determine if a given prediction is correct based on the provided information. Follow these strict
guidelines:

1. You will be given four pieces of information:

- Question: The original question asked

- Wikipedia_title: The title of the Wikipedia article that corresponds to the knowledge base for the
question

- Answer: The correct answer(s) to the question, possibly including multiple candidates separated
by "|"

- Prediction: The model’s prediction to be evaluated

2. Understand that the question is specifically about the entity described in the Wikipedia_title.

3. Compare the prediction to the answer(s), taking into account the context of the question and the
Wikipedia_title.

4. Apply these strict criteria:

- The prediction must be accurate and specific.

- If there are multiple candidate answers separated by "|", the prediction must match at least one of
them to be considered true.

- For numerical answers, the prediction must be within 10% of at least one correct answer to be
considered true.

- For categorical or descriptive answers, the prediction must match the key concepts or categories
in at least one of the provided answers.

- Partial or vague answers that don’t fully capture the specificity of any correct answer should be
considered false.

- Pay close attention to units, specificity, and context provided in the question, Wikipedia_title, and
answer(s).

5. Your response must be exactly one word:
- Output "true" if the prediction meets all the criteria for correctness.
- Output "false" if the prediction fails to meet any of the criteria.

6. Do not provide any explanations or additional comments.
{few_shot_examples}

Remember, your task is to evaluate the correctness of the prediction based on all the information
provided. Be strict in your assessment, but consider all given correct answers. Respond only with
"true" or "false".

Question: {question}
Wikipedia_title: {wikipedia_title}
Answer: {answer}

Prediction: {prediction}
Evaluation:

Figure 11: Complete prompt for evaluating MLLM responses using Llama-3.1-70B. We prompt the model to
determine whether a prediction is correct by examining the question, wikipedia_title (entity name), and
answer. The model outputs true for correct predictions g1d false for incorrect ones. The few_shot_examples are
shown in Fig. 12



Few-shot examples

Examples:

Question: Along with the mojave desert, in what desert is this plant found?
Wikipedia_title: Acmispon rigidus

Answer: Sonoran Desert

Prediction: Sonoran

Evaluation: true

Question: How many people can this stadium host?
Wikipedia_title: Mercedes-Benz Stadium

Answer: 71,000 | 75,000

Prediction: 73,000

Evaluation: true

Question: When was this novel first published?
Wikipedia_title: To Kill a Mockingbird
Answer: 1960

Prediction: 1962

Evaluation: false

Figure 12: few_shot_examples in prompt for Llama-3.1 evaluation. We provide three examples to help the model
understand the evaluation requirements.

OpenAl ViT-L-14 SigLIP ViT-SO-14 DFN ViT-H-14

L] E: Buduruvagala E: Al Bidya Mosque
Q: What material was used to build this

mosque?

E: Namacpacan Church

Q: In what country is this rock located?
LLM: MLLM(Origin): LLM: MLLM(Origin):

Sri Lanka J India X | Stone J Brick X
MLLM(SFT): Ours*: | MLLM(SFT): Ours*:

India X Sri lanka J Brick X Stone J

E: Ekeby Church E: Amaliehaven

Q: In what country is this church located?
LLM: MLLM(Origin):
Philippines “ England x
MLLM(SFT): Ours*:

Italy X Philippines J

E: Hoher Peienberg

Llarqa-3.1

Q: This mountain is a popular
destination for what?

LLM: MLLM(Origin):
Hiking J Skiing X
MLLM(SFT): Ours*:

Skiing X Hiking \/

—| E: Chindia Tower

Q: Along with the 13th and 18th centuries, from
what century do murals decorate this church? e

LLM: MLLM(Origin): ; LLM: MLLM(Origin):
14th J 13th x S, - — Copenhagen J Paris X

| MLLM(SFT): Ours*: MLLM(SFT): Ours*:
12th X 14th Paris X Copenhagen J
E: Fort York

Q: What century's military life is
featured in the this fort museum?

Q: In which city is this park located?

E: Palau Sant Jordi

Q: According to paul of aleppo, what

type of music was played in this tower? Q: In what country is this arena located?

LLM: MLLM(Origin): LLm: MLLM(Origin): LLM: MLLM(Origin):
" Oriental J Trumpet X Spain J United states 19th J 18th X
H MLLM(SFT): Ours*: MLLM(SFT): Ours*: MLLM(SFT): Ours*:
"T‘ Flute x Oriental J United states Spain J 18th X 19th J
c
[
2 79N E: Christ Church . E: Palazzo Balbi | E: Domfelsen
d Q: How are the doric columns arranged Q: In what country is this mountain

Q: : What type of church is this church?

around the windows of this palace? located?

LLM: MLLM(Origin):
Germany J Australia x
MLLM(SFT): Ours*:

United states Germany J

M v MLLM(Origin): g LLM: MLLM(Origin):
Anglican J Roman catholi In pairs J Above X

MLLM(SFT): Ours*: MLLM(SFT): Ours*:
Romanesque X Anglican J Above X In pairs J

Figure 13: We present examples of Llama-3.1 and Qwen-2.5’s responses under three encoder setups. When
prompted with text to identify objects in the image, the LLM provides correct answers, demonstrating its knowledge
of image entities. In contrast, the MLLM (Origin) fails to respond correctly, highlighting the limitations of its vision
encoder. Even after fine-tuning with Knowledge-type VQA data (MLLM SFT), the model still cannot provide
accurate answers, revealing the constraints of fine-tuning. Finally, with our Remedy Encoder, the model delivers
accurate responses, demonstrating that our method effectively expands the MLLM’s visual priors.
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