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Abstract001

Does the prior knowledge of the vision encoder002
constrain the capability boundary of Multi-003
modal Large Language Models (MLLMs)?004
While most existing research treats MLLMs as005
unified systems optimized through end-to-end006
training, the impact of vision encoder’s prior007
knowledge is seldom investigated. In this work,008
we introduce a novel metric, Ranke, to quan-009
tify the effect of prior knowledge of the vision010
encoder on MLLM performance. Our analy-011
sis reveals a positive correlation between prior012
knowledge and MLLM performance. More-013
over, we find that domain-specific fine-tuning014
using solely end-to-end visual question answer-015
ing (VQA) data is insufficient, particularly for016
entities with low inherent visual prior knowl-017
edge. To address this issue, we propose VisPRE018
(Vision Prior Remediation), a two-stage train-019
ing framework that explicitly incorporates prior020
knowledge at the vision encoder level. Exper-021
imental results demonstrate that augmenting022
vision encoder’s prior knowledge substantially023
boosts the visual understanding capabilities of024
MLLMs, offering a novel and effective strat-025
egy for improving performance, especially in026
scenarios involving uncommon visual entities.027

1 Introduction028

Multi-modal Large Language Models have029

emerged as a rapidly growing area of research.030

Combining the powerful capabilities of Large Lan-031

guage Models with the ability to process visual032

input, MLLMs excel in tasks such as image un-033

derstanding, VQA (Agrawal et al., 2016), image034

captioning, and visual instruction following. The035

development of models such as GPT-4o (OpenAI,036

2024), GPT-4V (OpenAI, 2023), and Claude-3.5037

(Anthropic, 2024) have demonstrated remarkable038

proficiency in advanced multi-modal understand-039

ing. Besides, open-source models like LLaVA (Liu040

et al., 2024b,a; Li et al., 2024a) series, Qwen2-VL041

(Wang et al., 2024), and InternVL2 (Chen et al.,042

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙 

Q: What activity is forbidden 
on this island?
A: Hunting

Q: In what country is 
this mountain located?
A: Switzerland

Q: What is the last recorded 
eruption date of it?
A: 1960

Q: What language is the 
etching on the gate written?
A: Arabic

Vision known, 
Language not known

Vision known, 
Language known

Vision not known, 
Language not known

Vision not known, 
Language known

Figure 1: Knowledge quadrants of a MLLM. “Vision
known” indicates that the vision encoder recognises the
entity in the image, while “Language known” indicates
that the language model possesses relevant information
about the entity. Only when both vision and language
are “known” can the MLLM achieve accurate compre-
hension and response generation.

2024b,a) are making significant strides, bridging 043

the gap in the field. 044

A pivotal challenge in advancing MLLMs is forg- 045

ing a seamless and robust alignment between vision 046

and language. One effective approach involves in- 047

tegrating an off-the-shelf external vision encoder 048

with a language model using a modality conversion 049

module (Alayrac et al., 2022; Li et al., 2023a,d; 050

Zhu et al., 2023; Dai et al., 2023; Bai et al., 2023; 051

Liu et al., 2024b; Li et al., 2022), which we refer to 052

as the modular approach. Compared to the mono- 053

lithic multi-modal approach (Team, 2024a; Luo 054

et al., 2024; Bavishi et al., 2023; Zhan et al., 2024), 055

which is built from scratch using multi-modal data, 056

the modular approach is more data-efficient and 057

achieves comparable performance. Despite these 058

advantages, the modular approach still faces chal- 059

lenges, as the vision and language components are 060
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Q: How many galleries does this 
museum have?

This is Timken Museum of Art

LLM five

Q: During what war was the altar 
of this church spared?

This is Marktkirche

LLM World War II

Q: During what war was the altar of this church spared?

Vision
Encoder

LLM

Connector

MLLM Performance

Vision Not known

Q: How many galleries 
does this museum have?

One

Q: During what war was the 
altar of this church spared?

LLM World war 2
Vision

Encoder

Vision known

I don’t know 
this museum…

LLM
Vision

Encoder

Vision known entity

Vision Not known 
entity

Qwen2-VL-7B

LLaVA-OneVision-7B

This is Marktkirche

I don’t know this 
museum…

Figure 2: Left: Current MLLM performance vs. vision prior knowledge. Current MLLMs demonstrate positive
correlation between vision prior knowledge and overall performance. Right: “Vision Known” and “Vision Not
Known” Entities. (1) For “vision known entities”, the vision encoder contains sufficient prior knowledge, enabling
MLLM answers correctly; (2) For “vision not known entities”, insufficient visual knowledge leads to MLLM failure.
We propose the Ranke metric to quantify vision encoder’s prior knowledge about specific entities, along with a
two-stage training framework to enhance encoder knowledge, expanding MLLM’s performance boundaries.

trained separately from distinct data distributions,061

leading to an inherent misalignment in their knowl-062

edge. To illustrate the importance of knowledge063

alignment, we present a knowledge quadrant dia-064

gram in Fig. 1, with the horizontal axis represent-065

ing the knowledge held by the language model066

and the vertical axis representing the knowledge067

held by the vision encoder. Only when both com-068

ponents possess necessary knowledge (in the “Vi-069

sion known & Language known” quadrant) can070

the multi-modal model accurately handle complex071

cross-modal tasks (Li et al., 2023c; Cheng et al.,072

2024). Misalignment in knowledge from either the073

vision or language side introduces limitations to the074

model’s capabilities, making it essential to bridge075

this gap to enhance the performance of multi-modal076

models. Many existing studies focus on addressing077

knowledge misalignment from the language per-078

spective, expanding from “Vision known & Lan-079

guage not known” to “Vision known & Language080

known”. Some studies (Caffagni et al., 2024; Jiang081

et al., 2024) enhance language model knowledge082

with external documents related to images, while083

CVLM (Li et al., 2024b) trains a “Visual Knowl-084

edge Aligner” module to enrich text-based knowl-085

edge associated with images. However, as a crucial086

component of MLLM (Collins and Olson, 2014),087

the vision encoder also possesses varying prior088

knowledge about the real world, such as entities,089

textures, and causality (Pinker, 1984; Cavanagh,090

2011). But the impact of this vision prior knowl-091

edge on MLLM capabilities remains unexplored,092

leading to a natural question: How does vision093

prior knowledge affect MLLM’s capability? In094

this paper, we attempt to answer this question by 095

investigating the following research questions: 096

• Q1: How to measure prior knowledge in vision 097

encoders? 098

• Q2: Does vision prior knowledge constrain 099

MLLM? 100

• Q3: How to transcend vision prior knowledge 101

limits? 102

To address these questions, we introduce Ranke 103

to quantify the vision encoder’s prior knowledge. 104

Through experiments with various model combi- 105

nations, we reveal a positive correlation between 106

MLLM performance and visual prior knowledge. 107

Fig. 2 (left) demonstrates the relationship between 108

current MLLM performance and vision prior. Fur- 109

thermore, we find that direct fine-tuning with end- 110

to-end VQA data is insufficient for improving 111

MLLM performance on low prior entities. Fig. 2 112

(right) illustrates the knowledge misalignment on 113

low prior entities. To overcome this limitation, we 114

propose a two-stage training framework that injects 115

vision prior knowledge into the vision encoder, re- 116

sulting in significant improvements in MLLM per- 117

formance. In summary, our main contributions are: 118

• We introduce the Ranke metric to quantify 119

a vision encoder’s prior knowledge, reveal- 120

ing a positive correlation between MLLM per- 121

formance and the encoder’s embedded visual 122

knowledge. 123

• Our analysis shows that domain-specific fine- 124

tuning with only end-to-end VQA data proves 125
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insufficient, particularly for entities with low126

vision prior knowledge.127

• We propose a two-stage training framework128

VisPRE (Vision Prior Remediation) that in-129

jects prior knowledge at the vision encoder130

level, significantly enhancing MLLM perfor-131

mance, especially for entities with low vision132

prior knowledge.133

2 Vision Prior Measurement134

Vision encoders are typically trained on extremely135

large-scale data (from 400 million to 10 billion sam-136

ples (Tong et al., 2024a)), often with undisclosed137

data (e.g., OpenAI CLIP (Radford et al., 2021)),138

making direct evaluation of vision priors from train-139

ing data infeasible. Therefore, to answer Q1, we140

shift our focus to evaluating observable behavioral141

evidence - specifically, how effectively these en-142

coders recognize visual entities. We thus propose143

the Ranke metric, which quantifies an encoder’s144

vision prior knowledge for a given entity e.145

In this section, we begin by describing the modal-146

ity alignment process in modular MLLMs, then for-147

mulating the definition of vision prior knowledge.148

Finally, we introduce the Ranke metric to quantify149

this knowledge.150

Modular MLLMs establish cross-modal under-151

standing through an alignment process that maps152

visual information to textual representations. For-153

mally, given an input text prompt TA and target im-154

age IB , where F represents the MLLM’s internal155

representation function that maps inputs to hidden156

states, the alignment process can be described as:157

F(TA, IB)
align−−→ F(TA, T̂B)

where T̂B ∼ P (T |IB)
(1)158

Here, T̂B represents the generated text that pre-159

serves the semantic content of IB . Building upon160

the Platonic representation hypothesis (Huh et al.,161

2024), we posit that cross-modal alignment occurs162

through a shared latent space Z . This allows us to163

decompose the P (T |IB) as:164

P (T |IB) =
∑
z∈Z

Pvision(z|IB)︸ ︷︷ ︸
Vision prior

·Palign(T |z, IB)

(2)165

The latent representation z serves as an interme-166

diary that connects the visual and textual domains.167

While Palign(T |z, IB) reflects the MLLM’s ability 168

to convert latent representation z into textual out- 169

put T , Pvision(z|IB) represents the vision encoder’s 170

capability to transform image IB into an appropri- 171

ate latent representation. Pvision(z|IB) constitutes 172

what we define as vision prior knowledge—the en- 173

coder’s pre-existing understanding of visual entities 174

encoded in its parameters. 175

To quantify the inherent vision prior 176

Pvision(z|IB), we discretize the continuous 177

latent space Z into a set of entity-specific latent 178

representations. For a given image IB , we 179

approximate P (z|IB) by evaluating the probability 180

that the vision encoder correctly identifies an 181

entity within IB . To achieve this, we propose 182

the Ranke metric, which measures how well the 183

encoder identifies a target entity e from visual 184

inputs, thereby evaluating the vision encoder’s 185

inherent prior knowledge. As shown in Fig. 3, for 186

an entity e, Ranke is computed as follows: 187

• Similarity scoring: For an image Ie containing 188

entity e, compute the image-text similarity score 189

sj = ϕ(Ie, Tj) using the vision encoder and its 190

corresponding text encoder, where {T1, ..., Tn} 191

are textual descriptions of n candidate entities. 192

• Ranking: Rank the entities in descending or- 193

der based on their similarity scores {sj}nj=1, 194

and record the position of the target entity e as 195

Ranke. If multiple images {I(1)e , ..., I
(m)
e } are 196

available for single entity e, compute Ranke for 197

each image separately and take the average: 198

Ranke =
1

m

m∑
i=1

rank
(
ϕ(I(i)e , Te)

)
. (3) 199

where rank(ϕ(Ie, Te)) denotes the position of 200

ϕ(Ie, Te)) in ordered {sj}nj=1. Lower Ranke 201

values indicate stronger visual prior knowledge, 202

with optimal performance when Ranke = 1. 203

3 Experiments 204

In this section, we explore the three proposed re- 205

search questions. In Section 3.1, we describe the 206

overall experimental setup. In Section 3.2, we ver- 207

ify the relationship between MLLM and the prior 208

knowledge of its vision encoder. From Section 3.3 209

to Section 3.4, we show the insufficiency of end-to- 210

end fine-tuning and propose a training framework 211

to transcend vision prior knowledge limits. 212
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II Entity DImg A Entity B Entity AEntity E Entity C

II Entity BImg B Entity A Entity EEntity D Entity C

Images of entity Candidate entities 𝑅𝑅𝑙𝑙𝑙𝑙𝑘𝑘𝑒𝑒

4

1

same

same

Figure 3: Illustration of metric Ranke. For a target
entity e, we compute cross-modal similarity scores be-
tween its vision representations (extracted by vision
encoder) and text representations of all candidate enti-
ties (extracted by corresponding text encoder). The rank
of entity e among these candidates defines its Ranke.
In this example, while Image A depicts Entity A, en-
tity A achieves 4th-highest similarity score, resulting in
Ranke = 4.

3.1 Experiment Setting213

Models. To systematically examine the impact214

of vision encoder’s prior knowledge on MLLM215

performance across different vision encoders and216

base LLM combinations, we train nine MLLMs217

from scratch based on an encoder-projector-LLM218

architecture. For the vision encoder, we use widely219

adopted encoders in MLLMs, including OpenAI220

ViT-L-14 (Radford et al., 2021), SigLIP ViT-SO-14221

(Zhai et al., 2023), and DFN ViT-H-14 (Fang et al.,222

2023). For base LLM, we select the LLaVA-1.5223

language model, Vicuna-7B-v1.5 (Chiang et al.,224

2023), and recent open-source models, Llama-3.1-225

Instruct-7B (Dubey et al., 2024) and Qwen-2.5-226

Instruct-7B (Team, 2024b).227

Datasets. To evaluate MLLMs under different228

vision priors, we require a VQA dataset that meets229

two conditions: (1) it provides entity annotations230

covering a wide range of prior knowledge—from231

extremely rare to very common entities; (2) it in-232

cludes entity-centric visual questions and answers233

for MLLM performance assessment. Here, rare234

entities refer to those that appear infrequently or235

not at all in the vision encoder’s training data, mak-236

ing them difficult for the vision encoder to recog-237

nize accurately. The Encyclopedia-VQA (Mensink238

et al., 2023) dataset fulfills both requirements. With239

extensive entity annotations covering up to 16.7k240

entity categories, it captures both common and rare241

entities and poses a hard challenge for MLLMs242

with its knowledge-based VQA questions.243

Training. We conducted training on a 8×A800244

GPUs. Initially, we pre-trained the model on the245

LLaVA (Liu et al., 2024b) dataset to develop an246

MLP projector aligned with selected vision en- 247

coder. For fine-tuning phase, we sampled 10% 248

of the LLaVA instruction tuning dataset and inte- 249

grated it with additional fine-tuning data to opti- 250

mize computational efficiency while maintaining 251

performance quality. 252

Metrics and Evaluation. We use Llama-3.1- 253

70B (Dubey et al., 2024) to judge model responses, 254

denoted as a function g(·) that takes the question, 255

entity, ground truth answer, and model output as 256

input, returning true if the answer is correct. Using 257

this, we define entity accuracy Acce for each entity 258

e as the fraction of correct responses among all 259

related questions: 260

Acce =
1

Ne

Ne∑
i=1

1 [g(yi, ŷi) = true] (4) 261

where Ne is the number of questions for entity 262

e, yi is the ground truth answer and other question 263

information, and ŷi is the model’s output. The 264

overall dataset accuracy Accmacro is calculated as 265

the macro-average of all entity accuracies. Details 266

of the evaluation configurations are in Appendix B. 267

3.2 Vision Prior Constrains MLLM 268

Performance 269

To investigate Q2: “Does vision prior knowl- 270

edge constrain MLLM?”, we first categorize en- 271

tities into two types: those “vision encoder knows” 272

and those “vision encoder doesn’t know” then ob- 273

serve MLLM performance across both categories. 274

Through our proposed Ranke metric, we mea- 275

sure the vision encoder’s knowledge of entities in 276

Encyclopedia-VQA, where a lower Ranke indi- 277

cates greater knowledge. For MLLM performance, 278

we test accuracy in answering entity-related ques- 279

tions in Encyclopedia-VQA. 280

Our study aims to address knowledge misalign- 281

ment where MLLM capabilities are limited by the 282

vision encoder. Therefore, we retain only cases 283

where the LLM component possesses adequate en- 284

tity knowledge, regardless of the vision encoder’s 285

knowledge. Specifically, we prompt the MLLM 286

with “This is {entity name}” rather than the actual 287

image; if the MLLM answers correctly, we retain 288

this case. Additionally, we discovered a number of 289

cases where MLLMs provide correct answer with- 290

out image description or actual image. We attribute 291

this to the MLLM’s dependency on question for- 292

mat (Jiang et al., 2024). We eliminated this subset 293
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Figure 4: MLLM Performance distribution across different Ranke intervals. Performance of all MLLMs
decreases as Ranke increases across three encoder configurations. The Vicuna-CLIP model shows an 87%
performance drop from 0 < Ranke < 500 to Ranke > 3000, indicating correlation between performance and
vision prior knowledge. This relationship is non-linear with a critical threshold. We marked this threshold by a
vertical line in the figure—green on the left indicating sufficient prior knowledge for reasoning, and red on the right
showing insufficient knowledge causing sharp performance decline.

from our analysis. Fig. 4 illustrates the relationship294

between MLLM accuracy and Ranke295

Finding 1: MLLM performance correlates296

positively with vision prior knowledge. As shown297

in Fig. 4, across all three encoder choices, MLLM298

performance consistently declines as entity Ranke299

increases. For the CLIP encoder, from the interval300

0 < Ranke < 500 to Ranke > 3000, Vicuna’s301

performance drops by 87%, Llama3.1’s by 100%,302

and Qwen-2.5’s by 21%. In SigLIP encoder ex-303

periments, overall performance declines by about304

50% across all three models from the leftmost to305

the rightmost interval, while for the DFN encoder,306

the decline reaches 100%.307

Notably, CLIP-Vicuna MLLM does not exhibit308

a significant performance decline until Ranke309

reaches 3000. The phenomenon is also observed in310

the SigLIP and DFN configurations. This threshold311

effect suggests that the positive correlation between312

vision prior knowledge and MLLM performance313

is not strictly linear, but rather exhibits a mutation314

beyond a critical point. We posit that this stems315

from the vision encoder holding a known status for316

entities below a certain Ranke threshold, mean-317

ing it can still provide sufficient prior knowledge318

for the MLLM to answer entity-related questions.319

Once Ranke exceeds this threshold, the vision en-320

coder no longer provides adequate prior knowledge,321

resulting in a sharp drop in MLLM performance.322

Considering that LLM part of MLLM possesses323

adequate knowledge about all entities here, it is the324

vision encoder of MLLM that constrains the overall325

performance on entities beyond the threshold.326

3.3 Shortcomings of End-to-end Finetuning 327

To investigate Q3: “How to transcend vision prior 328

knowledge limits?”, we implement a typical solu- 329

tion as our baseline—finetuning MLLMs on end- 330

to-end domain-specific VQA data. Following es- 331

tablished MLLM finetuning approaches (Liu et al., 332

2024b,a), we freeze the vision encoder parameters 333

and only tune the LLM component. This setup 334

enables the LLM parameters to compensate for 335

limitations in vision prior knowledge. 336

Vision Encoder LLM
Number of (Q, A) pairs Number of

entitiesTrain Test

OpenAI ViT-L-14
Vicuna-7B 1877 531 90

Llama3.1-8B 2305 624 106
Qwen2.5-7B 2345 645 109

SigLIP ViT-SO-14
Vicuna-7B 2290 615 106

Llama3.1-8B 2669 717 123
Qwen2.5-7B 2614 705 118

DFN ViT-H-14
Vicuna-7B 1914 531 90

Llama3.1-8B 2339 615 105
Qwen2.5-7B 2291 618 105

Table 1: Dataset Statistics. We report the number of
(question, answer) pairs for each dataset split across
different encoder-language model combinations. Each
corresponding train-test pair shares the same entities.

We constructed our finetuning dataset from 337

Encyclopedia-VQA. Following the method in Sec- 338

tion 3.2, we retained questions that MLLMs an- 339

swered correctly when prompted with “This is {en- 340

tity_name}” instead of the actual image. After 341

calculating Ranke across the dataset, we observed 342

naturally different Ranke distributions across en- 343

coders. To balance the distribution of entities with 344

varying levels of prior knowledge, we sampled 345

entities to create more uniform rank distributions 346

for validation. We then divided each subset into 347

training and test sets containing the same entities 348
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Figure 5: Perception-tuning and Knowledge-tuning
underperform on low-prior (high Ranke) entities.
The figure illustrates performance improvements com-
pared to Zero-shot: Perception-tuning shows a signif-
icant drop for Qwen-2.5 when Ranke > 3000. Simi-
larly, Knowledge-tuning leads to notable performance
declines for both Qwen-2.5 and Llama-3.1 in the low-
prior range (Ranke > 3000).

but with different questions. Dataset statistics are349

presented in Table 1, with detailed construction350

methodology in Appendix A.351

Successful knowledge-based VQA requires352

three essential MLLM capabilities: (1) recognizing353

entities in images; (2) possessing relevant knowl-354

edge about these entities; and (3) utilizing this355

knowledge to answer questions. As the LLM com-356

ponent already contains adequate entity knowledge,357

MLLM performance can be enhanced through two358

approaches: (1) improving visual entity recogni-359

tion and (2) optimizing knowledge utilization for360

question answering.361

To explore these approaches, we develop362

two distinct types of finetuning data: (1)363

Perception-tuning data, where we transform orig-364

inal Encyclopedia-VQA questions into perception-365

focused queries such as What is this image about?366

and (2) Knowledge-tuning data, which pre-367

serves the original questions from Encyclopedia-368

VQA. Detailed construction methodologies for369

both datasets are provided in Appendix A.370

Finding 2: Domain-specific finetuning with371

only end-to-end VQA data is insufficient, par-372

ticularly for entities with low visual prior knowl-373

edge. Fig. 5 illustrates the accuracy improvements374

of Perception-tuning and Knowledge-tuning mod-375

els compared to Zero-shot baselines under CLIP376

encoder configuration. As shown in Figure (a),377

after Perception-tuning, Qwen-2.5 performance de-378

creased in the Ranke > 3000 range, while Vicuna 379

and Llama-3.1 showed no improvement. As shown 380

in Figure (b), after Knowledge-tuning, Qwen-2.5 381

and Llama3.1’s performance decreased for approxi- 382

mately 33% in the Ranke > 3000 range compared 383

to Zero-shot. The comprehensive experimental re- 384

sults across all nine encoder-language model com- 385

binations are shown in Table 2. 386

3.4 Vision Prior Remediation 387

In previous sections, we established that MLLM 388

performance correlates positively with vision prior 389

knowledge, and that end-to-end fine-tuning yields 390

insufficient. Based on these findings, we propose 391

VisPRE, a training framework that injects entity- 392

related prior knowledge at the vision encoder level 393

to enhance MLLM performance. The specific pro- 394

cess of our training framework is illustrated in 395

Fig. 6, which comprises two key stages: 396

• Remedy Encoder: We first reformat the 397

Perception-tuning data into (image, entity_name) 398

pairs, and then fine-tune the vision encoder along- 399

side the text encoder using contrastive loss. This 400

stage enhances the encoder’s prior knowledge of 401

entities present in the Perception-tuning data. 402

• Instruction Tuning: We incorporate the fine- 403

tuned encoder into the MLLM architecture and 404

perform end-to-end fine-tuning of the entire 405

model using Knowledge-tuning data. This stage 406

aligns the trained vision encoder with the base 407

LLM and stimulates the model’s knowledge of 408

entities. 409

To systematically evaluate VisPRE, we establish 410

several baselines: Zero-shot, Perception-tuning, 411

and Knowledge-tuning from Section 3.2. Ad- 412

ditionally, we include Knowledge-tuning* and 413

Mix-tuning*, where the asterisk (*) denotes un- 414

freezing the vision encoder parameters during 415

fine-tuning. Mix-tuning represents a combination 416

of Knowledge-tuning and Perception-tuning data. 417

The evaluation results are presented in Table 2. 418

Finding 3: Remediating prior knowledge at 419

the vision encoder level is effective. Perception- 420

tuning shows only marginal improvements over 421

Zero-shot performance, occasionally even degrad- 422

ing results. Knowledge-tuning yields limited gains, 423

with Knowledge-tuning* showing only modest im- 424

provement over standard Knowledge-tuning. Mix* 425

doesn’t exceed Knowledge* performance. In con- 426

trast, our VisPRE framework outperforms all base- 427
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Vision
Encoder

Text
Encoder

ℒ𝑁𝑁𝑁𝑁𝑁𝑁

Remedy Encoder

...

...

Q: What is the image about?
 A: Upper Canada Village 

Q: What building is this?
 A: Armier Tower

Vision Prior Remedy Training Framework

Remedy
Encoder

Tokenize & Embedding

LLM
Projector

What kind of collection is 
in this castle?

This castle mainly 
houses art collection, 
including historical 
artifacts, paintings, 
sculptures, and 
various decorative arts.

Q: What building is this?
 A: Armier Tower

...

Figure 6: Overview of our proposed VisPRE framework. Our framework enriches the vision encoder with
entity-specific prior knowledge by first extracting (image, entity_name) pairs from Perception-tuning data and then
finetuning the vision encoder using contrastive loss. The enhanced encoder is subsequently integrated into the
MLLM, which is further fine-tuned on Knowledge-tuning data.

Vision Encoder LLM Zero-shot Perception Knowledge Knowledge* Mix* VisPRE(Ours)

OpenAI ViT-L-14

Vicuna-7B 51.22 49.91 54.05 53.48 55.37 56.31
Llama3.1-8B 37.82 39.26 45.67 45.99 44.71 48.24
Qwen2.5-7B 46.05 48.84 54.57 56.59 53.49 54.42

SigLIP ViT-SO-14

Vicuna-7B 52.03 53.66 53.66 57.24 57.07 57.89
Llama3.1-8B 38.91 37.66 41.28 41.84 41.42 41.28
Qwen2.5-7B 36.45 36.31 41.13 41.42 42.84 44.54

DFN ViT-H-14

Vicuna-7B 59.07 58.70 63.33 64.97 62.90 66.85
Llama3.1-8B 38.70 39.84 45.08 46.99 45.69 48.29
Qwen2.5-7B 40.45 38.10 43.33 44.66 46.76 43.69

Table 2: Results on 9 MLLM combinations. Our method outperforms finetuning approaches including Perception-
tuning, Knowledge-tuning, Knowledge-tuning* and Mix-tuning*, demonstrating that our method significantly
enhances MLLM performance through prior remediation. We mark the best result in bold for each model, and *
indicates unfreezing the vision encoder parameters during fine-tuning.

Figure 7: VisPRE outperforms on all Ranke levels.
The figure shows performance gains over Zero-shot:
With the CLIP encoder, all three models demonstrate
improvements across different Ranke entities, espe-
cially for low-prior (high Ranke) entities.

lines, achieving superior results in six of nine428

model combinations. As shown in Fig. 7, VisPRE429

improves MLLM performance across all Ranke430

entities, particularly those with low vision pri-431

ors, demonstrating clear advantages over alterna-432

tive tuning approaches in Fig. 5. These results433

confirm that enhancing encoder prior knowledge434

substantially expands MLLM capabilities.435

4 Case Study 436

Here we present an illustrative example. As shown 437

in the upper left of Fig. 8, we input an image of 438

the Portuguese Synagogue with the entity-related 439

question: “Where were this synagogue’s books 440

sent in 1979?”. For (1) LLM: The MLLM cor- 441

rectly answers when receiving only the textual de- 442

scription “This is Portuguese Synagogue” instead 443

of the actual image, indicating the LLM compo- 444

nent possesses knowledge about this entity. For (2) 445

MLLM (Original): With image input, the MLLM 446

fails to answer correctly. We calculated this en- 447

tity’s Ranke as 516, indicating low prior knowl- 448

edge in the visual encoder. (3) MLLM (SFT), de- 449

spite end-to-end fine-tuning, still fails since the vi- 450

sual encoder’s prior knowledge remains unchanged. 451

Our training framework, VisPRE, first injects prior 452

knowledge into the visual encoder, elevating the 453

entity’s Ranke to 10, then conducts end-to-end 454
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E: Eureka

Q: What was done to this 
ship after it sunk?

LLM:
raised 

MLLM(Origin): 
Restored 

MLLM(SFT): 
Restored 

Ours*: 
Raised 

E: Liberty Bridge

Q: What happened to this 
bridge during nato bombing?

LLM:
Destroyed 

MLLM(Origin): 
Nothing 

MLLM(SFT): 
Nothing 

Ours*: 
Destroyed 

E: Ferry Field

Q: What sport did michigan 
wolverines play at here?

LLM:
Football 

MLLM(Origin): 
Track 

MLLM(SFT): 
Track 

Ours*: 
Football 

E: North Breakwater Dome

Q: Is this lighthouse rising 
or falling into the sea?

LLM:
Rising 

MLLM(Origin): 
Falling 

MLLM(SFT): 
Falling 

Ours*: 
Rising 

E: Upper Canada Village

Q: In what century is this 
village set?

LLM:
19th 

MLLM(Origin): 
1800 

MLLM(SFT): 
1800 

Ours*: 
19th 

E: Portuguese Synagogue

Q: Where were this synagogue's 
books sent in 1979?

LLM:
Israel 

MLLM(Origin): 
Library 

MLLM(SFT): 
library 

Ours*: 
Israel 

E: Tasmajdan Park

Q: In what year was this 
park bombed again?

LLM:
1999 

MLLM(Origin): 
1994 

MLLM(SFT): 
1945 

Ours*: 
1999 

E: Nyon Castle

Q: In what canton is this 
castle located?

LLM:
Vaud 

MLLM(Origin): 
Switzerland 

MLLM(SFT): 
Upper 

Ours*: 
Vaud 

E: Rosary Basilica

Q: How is the nave of this 
church surmounted?

LLM:
Dome 

MLLM(Origin): 
Steeple 

MLLM(SFT): 
Steeple 

Ours*: 
Dome 

OpenAI ViT-L-14

SigLIP ViT-SO-14

DFN ViT-H-14

Figure 8: Examples of Vicuna-7b’s responses with different encoders. When prompted with image description,
the LLM answers correctly, demonstrating adequate knowledge of image entities. However, the original (Origin)
and fine-tuning with Knowledge-tuning data (SFT) MLLM fails to answer, highlighting the limitations of its vision
encoder. With VisPRE(Ours*), the model answer accuratly. For additional cases, refer to Appendix C.

fine-tuning. Consequently, (4) Ours* overcomes455

the visual encoder’s limitations and correctly an-456

swers the question.457

5 Related Works458

Multi-modal Large Language Models.459

MLLMs incorporate visual features into lan-460

guage models, enabling them to perform a wide461

range of visual tasks. The current MLLM imple-462

mentations can be classified into two categories.463

(1) Monolithic MLLMs. Tokenizing different464

modal inputs uniformly and training the model465

from scratch (Team, 2024a; Bavishi et al., 2023;466

Chen et al., 2024b; Zhan et al., 2024), which is467

computationally expensive. (2) Modular MLLMs.468

Utilizing pre-trained vision-language models469

(e.g., CLIP (Radford et al., 2021), SigLIP (Zhai470

et al., 2023), DINOv2 (Oquab et al., 2023)) to471

obtain visual representations of images, and then472

train MLLMs through cross-modal data, aligning473

the visual features provided by vision encoder474

to language model’s embedding space. This475

method is more data-efficient and widely used by476

open-source MLLMs (e.g., Flamingo (Alayrac477

et al., 2022), BLIP2 (Li et al., 2023b), LLaVA478

(Liu et al., 2024b), Qwen-VL (Bai et al., 2023),479

InternVL2 (Chen et al., 2024b)). Our work focuses480

on modular multimodal models. While most works481

treat modular MLLM as a unified system, our482

research focuses on the impact of vision encoder483

part on the language model part.484

Cross-modality Alignment. With increasing 485

adoption of Modular MLLMs, research focuses 486

on the relationship between vision encoders and 487

MLLM performance. Tong et al. (2024b) found 488

CLIP (Radford et al., 2021) and corresponding 489

MLLMs have similar performance trends across 490

visual modalities, indicating CLIP features cause 491

MLLM deficiencies in these modes, and addressed 492

these by introducing DINOv2 (Oquab et al., 2023) 493

features. Yang et al. (2024) proposed cross-modal 494

alignment metrics to measure vision encoder per- 495

formance, fitting a binary quadratic polynomial that 496

predicts MLLM performance using that encoder. 497

Different from previous works, our research offers 498

a novel perspective, demonstrating that MLLM 499

performance correlates positively with its vision 500

encoder’s prior knowledge. 501

6 Conclusion 502

In this paper, we introduce Ranke to quantify 503

prior knowledge in vision encoder. We find that 504

MLLM’s performance is positively correlated with 505

prior knowledge of vision encoder, and end-to-end 506

finetuning MLLM yields insufficient on improving 507

low prior entity performance. To address this is- 508

sue, we propose VisPRE training framework that 509

enhances MLLM’s performance by increasing the 510

prior knowledge within the vision encoder. Our 511

study demonstrates a novel pathway for enhancing 512

MLLM performance, offering substantial value for 513

applications involving uncommon entities. 514
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Limitations515

The primary limitation of our study is the current516

unavailability of VQA datasets with comprehensive517

rare entity annotations. While our study explores518

MLLMs’ capabilities when confronted with uncom-519

mon entities—those inadequately represented in520

visual encoders’ pretraining data, most established521

entity-annotated datasets like S3VQA (Jain et al.,522

2021) predominantly feature common entities. To523

address this challenge, we leveraged the Encyclo-524

pedia VQA (Mensink et al., 2023) dataset with its525

diverse collection of 16.7k entity types, providing526

a sufficient foundation to identify and analyze less527

familiar entities. Nevertheless, our findings would528

benefit from additional specialized datasets explic-529

itly focused on uncommon entities, which would530

enable a more granular analysis of visual encoders’531

boundary capabilities and offer complementary in-532

sights to our current observations.533

Ethics Statement534

Our study utilizes MLLMs for knowledge-based535

VQA tasks. MLLMs may reflect biases present in536

the training data. Additionally, the VQA data used537

in our research includes pictures of landscapes and538

related knowledge questions, which may lead the539

model to generate offensive content. In this regard,540

we suggest users to examine the generated outputs541

cautiously in real-world applications.542
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A Datasets764

Here we describe the detailed construction pro-765

cess of our dataset. Based on Encyclopedia-VQA766

(Mensink et al., 2023), we constructed Knowledge-767

tuning and Perception-tuning datasets for each768

encoder-language model combination to validate769

Finding 2.770

A.1 Preprocess771

Question Filtering. First, we focus on improv-772

ing the parts where MLLM’s capabilities are lim-773

ited by the vision encoder. Therefore, we only774

retained questions that could be answered by the775

corresponding LLM when prompted with “This is776

{entity_name}” instead of the actual image. Next,777

to ensure that there were no duplicate or similar778

questions for the same entity across training and779

test sets, we deduplicated the dataset based on (en-780

tity_name, answer) pairs. Finally, we only retained781

entities with three or more corresponding questions782

to ensure sufficient questions for dividing into train-783

ing and validation sets.784

Prior Calculation. We calculated Ranke for all785

entities in the filtered dataset. We examined the dis-786

tribution of Ranke calculated using different types787

of encoders (CLIP (Radford et al., 2021), SigLIP788

(Zhai et al., 2023), DFN (Fang et al., 2023)) across789

the dataset, as shown in Fig. 10. We found signifi-790

cant variations in Ranke distributions among dif-791

ferent encoders. CLIP’s Ranke values were mostly792

concentrated in the range of Ranke < 400, with793

entity counts increasing as Ranke decreased; In794

contrast, SigLIP’s Ranke distribution is more uni-795

form, with at least 10 entities present across most796

Ranke intervals; DFN’s Ranke distribution was797

similar to CLIP’s, with most values concentrated798

in the range of Ranke < 400.799

Entity Sampling. For SigLIP, we divided Ranke800

into intervals of size 1000 and sampled 10 enti-801

ties from each interval. For CLIP and DFN, using802

the same sampling strategy as SigLIP would re-803

sult in insufficient sampling of entities in dense804

intervals, making it difficult to distinguish differ-805

ent levels of prior knowledge in these regions.806

Therefore, we adopted a sampling method that807

approximates the original distributions of CLIP808

and DFN. We sampled 10 entities from intervals809

of 0 < Ranke <= 2, 2 < Ranke <= 4,810

4 < Ranke <= 8, ..., 512 < Ranke <= 1024,811

Ranke > 1024, ensuring that the sampled distri-812

bution approximates the original distribution while813

Knowledge-tuning dataset
Q: Is this lighthouse rising 
or falling into the sea?
A: Rising

Perception-tuning dataset
Q: What is this image 
about?
A: North Breakwater Dome

Figure 9: Knowledge-tuning and Perception-tuning
datasets

retaining all entities with low prior knowledge to 814

reflect the relationship between entity prior knowl- 815

edge and model performance. Finally, we retained 816

the questions corresponding to the sampled entities 817

and divided the dataset into training and test sets, 818

with statistical information shown in Table 1. 819

A.2 Construction 820

For Knowledge-tuning dataset, we use the origi- 821

nal question and answer from the Encyclopedia- 822

VQA dataset. For Perception-tuning dataset, we 823

replace the original question in the Knowledge- 824

tuning dataset with cognitive question like “What is 825

this image about?” and substitute the answers with 826

the entity text corresponding to the image. Exam- 827

ples of Knowledge-tuning and Perception-tuning 828

datasets are shown in Fig. 9. 829

B Evaluation Settings 830

We employ Llama-3.1-70B (Dubey et al., 2024) 831

to evaluate the accuracy of MLLM’s responses 832

to VQA questions. Specifically, we provide 833

Llama-3.1-70B with the question, entity name 834

(wikipedia_title in prompt), ground truth an- 835

swer, and MLLM’s response. The model outputs 836

true to indicate a correct answer and false to in- 837

dicate an incorrect answer. The prompt template 838

is shown in Fig. 11, with the few_shot_examples 839

shown in Fig. 12. 840

C More Cases 841

In Fig. 13, we demonstrated Vicuna-7B’s responses 842

under different encoder configurations. Here in 843

Fig. 13, we show examples of responses from 844

Llama-3.1-7B and Qwen-2.5-7B under different 845

encoders. 846
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(a) Vicuna

(b) Qwen-2.5

(c) Llama-3.1

Figure 10: The Ranke distribution of entities calculated using three different encoders. Here we show the entities
that (a)Vicuna, (b)Qwen-2.5 and (c)Llama-3.1 could answer after using text prompts instead of entity images. We
can see that the Ranke distributions for both CLIP and DFN are concentrated in intervals near the left side, while
SigLIP’s Ranke distribution is relatively uniform.
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Prompt for Llama-3.1 evaluation

You are an expert evaluator tasked with assessing the correctness of model predictions. Your job is
to determine if a given prediction is correct based on the provided information. Follow these strict
guidelines:

1. You will be given four pieces of information:
- Question: The original question asked
- Wikipedia_title: The title of the Wikipedia article that corresponds to the knowledge base for the
question
- Answer: The correct answer(s) to the question, possibly including multiple candidates separated
by "|"
- Prediction: The model’s prediction to be evaluated

2. Understand that the question is specifically about the entity described in the Wikipedia_title.

3. Compare the prediction to the answer(s), taking into account the context of the question and the
Wikipedia_title.

4. Apply these strict criteria:
- The prediction must be accurate and specific.
- If there are multiple candidate answers separated by "|", the prediction must match at least one of
them to be considered true.
- For numerical answers, the prediction must be within 10% of at least one correct answer to be
considered true.
- For categorical or descriptive answers, the prediction must match the key concepts or categories
in at least one of the provided answers.
- Partial or vague answers that don’t fully capture the specificity of any correct answer should be
considered false.
- Pay close attention to units, specificity, and context provided in the question, Wikipedia_title, and
answer(s).

5. Your response must be exactly one word:
- Output "true" if the prediction meets all the criteria for correctness.
- Output "false" if the prediction fails to meet any of the criteria.

6. Do not provide any explanations or additional comments.

{few_shot_examples}

Remember, your task is to evaluate the correctness of the prediction based on all the information
provided. Be strict in your assessment, but consider all given correct answers. Respond only with
"true" or "false".

Question: {question}
Wikipedia_title: {wikipedia_title}
Answer: {answer}
Prediction: {prediction}
Evaluation:

Figure 11: Complete prompt for evaluating MLLM responses using Llama-3.1-70B. We prompt the model to
determine whether a prediction is correct by examining the question, wikipedia_title (entity name), and
answer. The model outputs true for correct predictions and false for incorrect ones. The few_shot_examples are
shown in Fig. 12
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Few-shot examples

Examples:
Question: Along with the mojave desert, in what desert is this plant found?
Wikipedia_title: Acmispon rigidus
Answer: Sonoran Desert
Prediction: Sonoran
Evaluation: true

Question: How many people can this stadium host?
Wikipedia_title: Mercedes-Benz Stadium
Answer: 71,000 | 75,000
Prediction: 73,000
Evaluation: true

Question: When was this novel first published?
Wikipedia_title: To Kill a Mockingbird
Answer: 1960
Prediction: 1962
Evaluation: false

Figure 12: few_shot_examples in prompt for Llama-3.1 evaluation. We provide three examples to help the model
understand the evaluation requirements.

E: Namacpacan Church

MLLM(SFT):
Italy

Ours*:
Philippines

LLM:
Philippines

MLLM(Origin):
England

Q: In what country is this church located?

E: Hoher Peienberg

MLLM(SFT):
Skiing

Ours*:
Hiking

LLM:
Hiking

MLLM(Origin):
Skiing

Q: This mountain is a popular 
destination for what?

E: Buduruvagala

MLLM(SFT):
India

Ours*:
Sri lanka

LLM:
Sri Lanka

MLLM(Origin):
India

Q: In what country is this rock located?

E: Ekeby Church

MLLM(SFT):
12th

Ours*:
14th

LLM:
14th

MLLM(Origin):
13th

Q: Along with the 13th and 18th centuries, from 
what century do murals decorate this church?

E: Al Bidya Mosque

MLLM(SFT):
Brick

Ours*:
Stone

LLM:
Stone

MLLM(Origin):
Brick

Q: What material was used to build this 
mosque?

E: Amaliehaven

MLLM(SFT):
Paris

Ours*:
Copenhagen

LLM:
Copenhagen

MLLM(Origin):
Paris

Q: In which city is this park located?

E: Chindia Tower

MLLM(SFT):
Flute

Ours*:
Oriental

LLM:
Oriental

MLLM(Origin):
Trumpet

Q: According to paul of aleppo, what 
type of music was played in this tower?

E: Christ Church

MLLM(SFT):
Romanesque

Ours*:
Anglican

LLM:
Anglican

MLLM(Origin):
Roman catholic

Q: : What type of church is this church?

E: Palau Sant Jordi

MLLM(SFT):
United states

Ours*:
Spain

LLM:
Spain

MLLM(Origin):
United states

Q: In what country is this arena located?

E: Palazzo Balbi

MLLM(SFT):
Above

Ours*:
In pairs

LLM:
In pairs

MLLM(Origin):
Above

Q: How are the doric columns arranged 
around the windows of this palace?

E: Fort York

MLLM(SFT):
18th

Ours*:
19th

LLM:
19th

MLLM(Origin):
18th

Q: What century's military life is 
featured in the this fort museum?

E: Domfelsen

MLLM(SFT):
United states

Ours*:
Germany

LLM:
Germany

MLLM(Origin):
Australia

Q: In what country is this mountain 
located?

OpenAI ViT-L-14 SigLIP ViT-SO-14 DFN ViT-H-14
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1
Q

w
en
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Figure 13: We present examples of Llama-3.1 and Qwen-2.5’s responses under three encoder setups. When
prompted with text to identify objects in the image, the LLM provides correct answers, demonstrating its knowledge
of image entities. In contrast, the MLLM (Origin) fails to respond correctly, highlighting the limitations of its vision
encoder. Even after fine-tuning with Knowledge-type VQA data (MLLM SFT), the model still cannot provide
accurate answers, revealing the constraints of fine-tuning. Finally, with our Remedy Encoder, the model delivers
accurate responses, demonstrating that our method effectively expands the MLLM’s visual priors.
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