
LS3: Latent Space Safe Sets for Long-Horizon
Visuomotor Control of Sparse Reward Iterative Tasks

Albert Wilcox∗, Ashwin Balakrishna∗, Brijen Thananjeyan,
Joseph E. Gonzalez, Ken Goldberg

* equal contribution
{albertwilcox, ashwin balakrishna}@berkeley.edu

Abstract: Reinforcement learning (RL) has shown impressive success in explor-
ing high-dimensional environments to learn complex tasks, but can often exhibit
unsafe behaviors and require extensive environment interaction when exploration
is unconstrained. A promising strategy for learning in dynamically uncertain envi-
ronments is requiring that the agent can robustly return to learned safe sets, where
task success (and therefore safety) can be guaranteed. While this approach has
been successful in low-dimensions, enforcing this constraint in environments with
visual observations is exceedingly challenging. We present a novel continuous
representation for safe sets by framing it as a binary classification problem in a
learned latent space, which flexibly scales to image observations. We then present
a new algorithm, Latent Space Safe Sets (LS3), which uses this representation
for long-horizon tasks with sparse rewards. We evaluate LS3 on 4 domains, in-
cluding a challenging sequential pushing task in simulation and a physical cable
routing task. We find that LS3 can use prior task successes to restrict exploration
and learn more efficiently than prior algorithms while satisfying constraints. See
https://tinyurl.com/latent-ss for code and supplementary material.

Keywords: Reinforcement Learning, Imitation Learning, Safety

1 Introduction
Visual planning over learned forward dynamics models is a popular area of research in robotic
control from images [1, 2, 3, 4, 5, 6, 7], as it enables closed-loop, model-based control for tasks
where the state of the system is not directly observable or difficult to analytically model, such as the
configuration of a sheet of fabric or segment of cable. These methods learn predictive models over
either images or a learned latent space, which can then be used to plan actions which maximize some
task reward. While these approaches have significant promise, there are several open challenges in
learning policies from visual observations. First, reward specification is particularly challenging for
visuomotor control tasks, because high-dimensional observations often do not expose the necessary
features required to design dense, informative reward functions [8], especially for long-horizon
tasks. Second, while many prior reinforcement learning methods have been successfully applied to
image-based control tasks [9, 10, 11, 12, 13], learning policies from image observations often requires
extensive exploration due to the high dimensionality of the observation space and the difficulties in
reward specification, making safe and efficient learning exceedingly challenging.

One promising strategy for efficiently learning safe control policies is to learn a safe set [14, 15],
which captures the set of states from which the agent is known to behave safely, which is often
reformulated as the set of states where it has previously completed the task. When used to restrict
exploration, this safe set can be used to enable highly efficient and safe learning [14, 16, 17], as
exploration is restricted to states in which the agent is confident in task success. However, while
these safe sets can give rise to algorithms with a number of appealing theoretical properties such as
convergence to a goal set, constraint satisfaction, and iterative improvement [14, 16, 18], using them
for controller design for practical problems requires developing continuous approximations at the
expense of maintaining theoretical guarantees [17]. This choice of continuous approximation is a key
element in determining the applications to which these safe sets can be used for control.

University of California, Berkeley.

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://tinyurl.com/latent-ss

Unsafe PlanUnsafe Plan

Safe Plans

Latent Space Obstacle ()

Latent Space
Safe Set ()

1. Observe Image 2. Encode
Image

3. Sample Trajectories, Check Constraints, Sort by Value
Candidate Action

Plans

Figure 1: Latent Space Safe Sets (LS3): At time t, LS3 observes an image st of the environment. The image
is first encoded to a latent vector zt ∼ fenc(zt|st). Then, LS3 uses a sampling-based optimization procedure to
optimize H-length action sequences by sampling H-length latent trajectories over the learned latent dynamics
model fdyn. For each sampled trajectory, LS3 checks whether latent space obstacles are avoided and if the
terminal state in the trajectory falls in the latent space safe set. The terminal state constraint encourages the
algorithm to maintain plans back to regions of safety and task confidence, but still enables exploration. For
feasible trajectories, the sum of rewards and value of the terminal state are computed and used for sorting. LS3

executes the first action in the optimized plan and then performs this procedure again at the next timestep.

Prior works have presented approaches which collect a discrete safe set of states from previously
successful trajectories and represent a continuous relaxation of this set by constructing a convex hull
of these states [14] or via kernel density estimation with a tophat kernel function [17]. While these
approaches have been successful for control tasks with low-dimensional states, extending them to
high-dimensional observations presents two key challenges: (1) scalability: these prior methods
cannot be efficiently applied when the number of observations in prior successful trajectories is large,
as querying safe set inclusion scales linearly with number of samples it contains and (2) representation
capacity: both of these prior approaches do not scale well to high dimensional observations and are
limited in the space of continuous sets that they can efficiently represent. Applying these ideas to
visuomotor control is even more challenging, since images do not directly expose details about the
system state or dynamics that are typically needed for formal controller analysis [14, 16, 19].

This work makes several contributions. First, we introduce a scalable continuous approximation
method which makes it possible to leverage safe sets for visuomotor policy learning. The key idea is to
reframe the safe set approximation as a binary classification problem in a learned latent space, where
the objective is to distinguish states from successful trajectories from those in unsuccessful trajectories.
Second, we present Latent Space Safe Sets (LS3), a model-based RL algorithm which encourages
the agent to maintain plans back to regions in which it is confident in task completion, even when
learning in high dimensional spaces. This constraint makes it possible to define a control strategy to
(1) improve safely by encouraging consistent task completion (and therefore avoid unsafe behavior)
and (2) learn efficiently since the agent only explores promising states in the immediate neighborhood
of those in which it was previously successful. Third, we present simulation experiments on 3
visuomotor control tasks which suggest that LS3 can learn to improve upon demonstrations more
safely and efficiently than prior algorithms. Fourth, we conduct physical experiments on a vision-
based cable routing task which suggest that LS3 can learn more efficiently than prior algorithms
while consistently completing the task and satisfying constraints during learning.

2 Related Work
2.1 Safe, Iterative Learning Control
In iterative learning control (ILC), the agent tracks a reference trajectory and uses data from controller
rollouts to refine tracking performance [20]. Rosolia et al. [21], Rosolia and Borrelli [18, 14] present
a new class of algorithms, known as Learning Model Predictive Control (LMPC), which are reference-
free and instead iteratively improve upon the performance of an initial feasible trajectory. To achieve
this, Rosolia et al. [21], Rosolia and Borrelli [18, 14] use data from controller rollouts to learn
a safe set and value function, with which recursive feasibility, stability, and local optimality can
be guaranteed given a known, deterministic nonlinear system or stochastic linear system under
certain regularity assumptions. However, a core challenge with these algorithms is that they assume
known system dynamics, and cannot be applied to high-dimensional control problems. Thananjeyan
et al. [17] extends the LMPC framework to higher dimensional settings in which system dynamics
are unknown and must be learned, but the visuomotor control setting introduces a number of new

2

challenges as learned system dynamics, safe sets, and value functions must flexibly scale to visual
inputs. Richards et al. [15] designs expressive safe sets for fixed policies using neural network
classifiers with Lyapunov constraints. In contrast, LS3 constructs a safe set for an improving policy
by optimizing a task cost function instead of uniformly expanding across the state space.

2.2 Model Based Reinforcement Learning

There has been significant recent progress in algorithms which combine ideas from model-based
planning and control with deep learning [22, 23, 24, 25, 26, 27]. These algorithms are gaining
popularity in the robotics community as they enable leaning complex policies from data while
maintaining some of the sample efficiency and safety benefits of classical model-based control
techniques. However, these algorithms typically require hand-engineered dense cost functions for
task specification, which can often be difficult to provide, especially in high-dimensional spaces.
This motivates leveraging demonstrations (possibly suboptimal) to provide an initial signal regarding
desirable agent behavior. There has been some prior work on leveraging demonstrations in model-
based algorithms such as Quinlan and Khatib [28] and Ichnowski et al. [29], which use model-
based control with known dynamics to refine initially suboptimal motion plans, and Fu et al. [24],
which uses demonstrations to seed a learned dynamics model for fast online adaptation using
iLQR [24]. Thananjeyan et al. [17], Zhu et al. [30] present ILC algorithms which rapidly improve
upon suboptimal demonstrations when system dynamics are unknown. However, these algorithms
either require knowledge of system dynamics [28, 29] or are limited to low-dimensional state
spaces [24, 17, 30] and cannot be flexibly applied to visuomotor control tasks.

2.3 Reinforcement Learning from Pixels

Reinforcement learning and model-based planning from visual observations is gaining significant
recent interest as RGB images provide an easily available observation space for robot learning [1, 31].
Recent work has proposed a number of model-free and model-based algorithms that have seen success
in laboratory settings in a number of robotic tasks when learning from visual observations [32, 33,
10, 34, 12, 13, 1, 35, 31]. However, two core issues that prevent application of many RL algorithms
in practice, inefficient exploration and safety, are significantly exacerbated when learning from
high-dimensional visual observations in which the space of possible behaviors is very large and the
features required to determine whether the robot is safe are not readily exposed. There has been
significant prior work on addressing inefficiencies in exploration for visuomotor control such as
latent space planning [2, 31, 35] and goal-conditioned reinforcement learning [13, 10]. However, safe
reinforcement learning for visuomotor tasks has received substantially less attention. Thananjeyan
et al. [36] and Kahn et al. [37] present reinforcement learning algorithms which estimate the likelihood
of constraint violations to avoid them [36] or reduce the robot’s velocity [37]. Unlike these algorithms,
which focus on presenting methods to avoid violating user-specified constraints, LS3 additionally
provides consistent task completion during learning by limiting exploration to the neighborhood of
prior task successes. This difference makes LS3 less susceptible to the challenges of unconstrained
exploration present in standard model-free reinforcement learning algorithms.

3 Problem Statement
We consider an agent interacting in a finite horizon goal-conditioned Markov Decision Processes
(MDP) which can be described with the tupleM = (S,G,A, P (·|·, ·), R(·, ·), µ, T). S and A are
the state and action spaces, P : S × A × S → [0, 1] maps a state and action to a probability
distribution over subsequent states, R : S × A × S → R is the reward function, µ is the initial
state distribution (s0 ∼ µ), and T is the time horizon. In this work, the agent is only provided with
RGB image observations st ∈ RW×H×3

+ = S, where W and H are the image width and height in
pixels, respectively. We consider iterative tasks, where the agent must reach a fixed goal set G ⊆ S as
efficiently as possible and the support of µ is small. While there are a number of possible choices of
reward functions that would encourage fast convergence to G, providing shaped reward functions can
be exceedingly challenging, especially when learning from high dimensional observations. Thus, as
in Thananjeyan et al. [17], we consider a sparse reward function that only indicates task completion:
R(s, a, s′) = 0 if s′ ∈ G and −1 otherwise. To incorporate constraints, we augmentM with an extra
constraint indicator function C : S → {0, 1} which indicates whether a state satisfies user-specified
state-space constraints, such as avoiding known obstacles. This is consistent with the modified CMDP
formulation used in [36]. We assume that R and C can be evaluated on the current state of the system,
but may be approximated using prior data for use during planning. We make this assumption because

3

Value FunctionLatent Space
Safe Set Goal Predictor

Constraint
Predictor

Observation Encoder

Latent Dynamics

Decoder

Start
Obstacle

Goal

Agent

Figure 2: LS3 Learned Models: LS3 learns a low-dimensional latent representation of image-observations
(Section 4.1) and learns a dynamics model, value function, reward function, constraint classifier, and safe set
for constrained planning and task-completion driven exploration in this learned latent space. These models are
then used for model-based planning to maximize the total value of predicted latent states (Section 4.3) while
enforcing the safe set (Section 4.2) and user-specified constraints (Section 4.3).

in practice we plan over predicted future states, which may not be predicted at sufficiently high
fidelity to expose the necessary information to directly evaluate R and C during planning.

Given a policy π : S → A, we define its expected total return inM as Rπ = Eπ,µ,P [
∑
tR(st, at)].

Furthermore, we define PπC(s) as the probability of future constraint violation (within time horizon T)
under policy π from state s. The objective is to maximize the expected return Rπ while maintaining
a constraint violation probability lower than δC . This can be written formally as follows:

π∗ = argmax
π∈Π

{Rπ : Es0∼µ [PπC(s0)] ≤ δC} (1)

We assume that the agent is provided with an offline dataset D of transitions in the environment of
which some subset Dconstraint (D are constraint violating and some subset Dsuccess (D appear in
successful demonstrations from a suboptimal supervisor. As in [36], Dconstraint contains examples of
constraint violating behaviors (for example from prior runs of different policies or collected under
human supervision) so that the agent can learn about states which violate user-specified constraints.

4 Latent Space Safe Sets (LS3)
We describe how LS3 uses demonstrations and online interaction to safely learn iteratively improving
policies. Section 4.1 describes how we learn a low-dimensional latent representation of image obser-
vations to facilitate efficient model-based planning. To enable this planning, we learn a probabilistic
forward dynamics model as in [26] in the learned latent space and models to estimate whether plans
will likely complete the task (Section 4.2) and to estimate future rewards and constraint violations
(Section 4.3) from predicted trajectories. In Section 4.4, we discuss how these components are
synthesized in LS3. Dataset D is expanded using online rollouts of LS3 and used to update all latent
space models (Sections 4.2 and 4.3) after every K rollouts. See Algorithm 1 and the supplement for
further details on training procedures and data collection.

Algorithm 1 Latent Space Safe Sets (LS3)

Require: offline dataset D, number of updates U
1: Train VAE encoder fenc and decoder fdec (Section 4.1) using data from D
2: Train dynamics fdyn, safe set classifier fS(Section 4.2), and the value function V goal indicator
fG , and constraint estimator fC (Section 4.3) using data from D.

3: for j ∈ {1, . . . , U} do
4: for k ∈ {1, . . . ,K} do
5: Sample starting state s0 from µ.
6: for t ∈ {1, . . . , T} do
7: Choose and execute at (Section 4.4)
8: Observe st+1, reward rt, constraint ct.
9: D := D ∪ {(st, at, st+1, rt, ct)}

10: Update fdyn, V , fG , fC , and fS with data from D.

4.1 Learning a Latent Space for Planning
Learning compressed representations of images has been a popular approach in vision based control
to facilitate efficient algorithms for planning and control which can reason about lower dimensional

4

inputs [2, 35, 6, 38, 39, 31]. To learn such a representation, we train a β-variational autoencoder [40]
on states in D to map states to a probability distribution over a d-dimensional latent space Z . The
resulting encoder network fenc(z|s) is then used to sample latent vectors zt ∼ fenc(zt|st) to train a
forward dynamics model, value function, reward estimator, constraint classifier, safe set, and combine
these elements to define a policy for model-based planning. Motivated by Laskin et al. [41], during
training we augment inputs to the encoder with random cropping, which we found to be helpful in
learning representations that are useful for planning. For all environments we use a latent dimension
of d = 32, as in [2] and found that varying d did not significantly affect performance.

4.2 Latent Safe Sets for Model-Based Control

LS3 learns a binary classifier for latent states to learn a latent space safe set that represents states
from which the agent has high confidence in task completion based on prior experience. Because the
agent can reach the goal from these states, they are safe: the agent can avoid constraint violations by
simply completing the task as before. While classical algorithms use known dynamics to construct
safe sets, we approximate this set using successful trajectories from prior iterations. At each iteration
j, the algorithm collects K trajectories in the environment. We then define the sampled safe set at
iteration j, Sj , as the set of states from which the agent has successfully navigated to G in iterations
0 through j of training, where demonstrations trajectories are those collected at iteration 0. We
refer to the dataset collecting all these states as Dsuccess. This discrete set is difficult to plan to with
continuous-valued state distributions so we leverage data from Dsuccess (data in the sampled safe set),
data from D\Dsuccess (data outside the sampled safe set), and the learned encoder from Section 4.1 to
learn a continuous relaxation of this set in latent space (the latent safe set). We train a neural network
with a binary cross-entropy loss to learn a binary classifier fS(·) that predicts the probability of a
state st with encoding zt being in Sj . To mitigate the negative bias that appears when trajectories
that start in safe regions fail, we utilize the intuition that if a state st+1 ∈ Sj then it is likely that
st is also safe. To do this, rather than just predict 1Sj , we train fS with a recursive objective to
predict max(1Sj , γSfS(st+1)). The relaxed latent safe set is parameterized by the superlevel sets of
fS, where the level δS is adaptively set during execution: SjZ = {zt|fS(·)(zt) ≥ δS}.

4.3 Reward and Constraint Estimation

In this work, we define rewards based on whether the agent has reached a state s ∈ G, but we need
rewards that are defined on predictions from the dynamics, which may not correspond to valid real
images. To address this, we train a classifier fG : Z → {0, 1} to map the encoding of a state to
whether the state is contained in G using terminal states in Dsuccess (which are known to be in G) and
other states in D. However, in the temporally-extended, sparse reward tasks we consider, reward
prediction alone is insufficient because rewards only indicate whether the agent is in the goal set, and
thus provide no signal on task progress unless the agent can plan to the goal set. To address this, as
in prior MPC-literature [17, 16, 14, 8], we train a recursively-defined value function (details in the
supplement). Similar to the reward function, we use the encoder (Section 4.1) to train a classifier
fC : Z → [0, 1] with data of constraint violating states from Dconstraint and the constraint satisfying
states in D \ Dconstraint to map the encoding of a state to the probability of constraint violation.

4.4 Model-Based Planning with LS3

LS3 aims to maximize total rewards attained in the environment while limiting constraint violation
probability within some threshold δC (equation 1). We optimize an approximation of this objective
over an H-step receding horizon with model-predictive control. Precisely, LS3 solves the following
optimization problem to generate an action to execute at timestep t:

argmax
at:t+H−1∈AH

Ezt:t+H

[
H−1∑
i=1

fG(zt+i) + V π(zt+H)

]
(2)

s.t. zt ∼ fenc(zt|st) (3)
zk+1 ∼ fdyn(zk+1|zk, ak) ∀k ∈ {t, . . . , t+H − 1} (4)

P̂
(
zt+H ∈ Sj−1

Z

)
≥ 1− δS (5)

P̂(zt+i ∈ ZC) ≤ δC ∀i ∈ {0, . . . ,H − 1} (6)

5

Figure 3: Experimental Domains: LS3 is evaluated on 3 long-horizon, image-based, simulation environments:
a visual navigation domain where the goal is to navigate the blue point mass to the right goal set while avoiding
the red obstacle, a 2 degree of freedom reacher arm where the task is to navigate around a red obstacle to reach
the yellow goal set, and a sequential pushing task where the robot must push each of 3 blocks forward a target
displacement from left to right. We also evaluate LS3 on a physical, cable-routing task on a da Vinci Surgical
Robot, where the goal is to guide a red cable to a green target without the cable or robot arm colliding with the
blue obstacle. This requires learning visual dynamics, because the agent must model how the rest of the cable
will deform during manipulation to avoid collisions with the obstacle.

In this problem, the expectations and probabilities are taken with respect to the learned, probabilistic
dynamics model fdyn(zt+1|zt, at). The optimization problem is solved approximately using the cross-
entropy method (CEM) [42] which is a popular optimizer in model-based RL [43, 17, 16, 44, 36].

The objective function is the expected sum of future rewards if the agent executes at:t+H−1 and
then subsequently executes π (equation 2). First, the current state st is encoded to zt (equation 3).
Then, for a candidate sequence of actions at:t+H−1, an H-step latent trajectory {zt+1, . . . , zt+H} is
sampled from the learned dynamics fdyn (equation 4). LS3 constrains exploration using two chance
constraints: (1) the terminal latent state in the plan must fall in the safe set (equation 5) and (2) all
latent states in the trajectory must satisfy user-specified state-space constraints (equation 6). ZC
is the set of all latent states such that the corresponding observation is constraint violating. The
optimizer estimates constraint satisfaction probabilities for a candidate action sequence by simulating
it repeatedly over fdyn. The first chance constraint ensures the agent maintains the ability to return to
safe states where it knows how to do the task withinH steps if necessary. Because the agent replans at
each timestep, the agent need not return to the safe set: during training, the safe set expands, enabling
further exploration. In practice, we set δS for the safe set classifier fS adaptively as described in
the supplement. The second chance constraint encourages constraint violation probability of no
more than δC . After solving the optimization problem, the agent executes the first action in the plan:
π(zt) = at where at is the first element of a∗t:t+H−1, observes a new state, and replans.

5 Experiments
We evaluate LS3 on 3 robotic control tasks in simulation and a physical cable routing task on the
da Vinci Research Kit (dVRK) [45]. Safe RL is of particular interest for surgical robots such as
the dVRK due to its delicate structure, motivating safety, and relatively imprecise controls [17, 46],
motivating closed-loop control. We study whether LS3 can learn more safely and efficiently than
algorithms that do not structure exploration based on prior task successes.

5.1 Comparisons

We evaluate LS3 in comparison to prior algorithms that behavior clone suboptimal demonstrations
before exploring online (SACfD) [47] or leverage offline reinforcement learning to learn a policy
using all offline data before updating the policy online (AWAC) [48]. For both of these comparisons
we enforce constraints via a tuned reward penalty of λ for constraint violations as in [49]. We also
implement a version of SACfD with a learned recovery policy (SACfD+RRL) using the Recovery
RL algorithm [36] to use prior constraint violating data to try to avoid constraint violating states. We
then compare LS3 to an ablated version without the safe set constraint (just binary classification (BC))
in equation 5 (LS3 (−Safe Set)) to evaluate if the safe set promotes consistent task completion and
stable learning. Finally, we compare LS3 to an ablated version of the safe set classifier (Section 4.2)
without a recursive objective, where the classifier is just trained to predict 1Sj (LS3 (BC SS)). See
the supplement for details on hyperparameters and offline data used for LS3 and prior algorithms.

5.2 Evaluation Metrics
For each algorithm on each domain, we aggregate statistics over random seeds (10 for simulation
experiments, 3 for the physical experiment), reporting the mean and standard error across the seeds.

6

0 50 100 150 200 250
Training Trajectories

100

90

80

70

60

50

Re
wa

rd

Pointbot Navigation

0 50 100 150 200 250
Training Trajectories

100

90

80

70

60

50
Reacher

0 100 200 300 400 500
Training Trajectories

150

125

100

75

50

25
Sequential Pushing

Demonstrations SACfD AWAC SACfD + RRL LS3 (BC SS) LS3 (SS) Ours: LS3

Figure 4: Simulation Experiments Results: Learning curves showing mean and standard error over 10 random
seeds. We see that LS3 learns more quickly than baselines and ablations. Although SACfD and SACfD+RRL
converge to similar reward values, LS3 is much more sample efficient and stable across random seeds.

We present learning curves that show the total sum reward for each training trajectory to study how
efficiently LS3 and the comparisons learn each task. Because all tasks use the sparse task completion
based rewards defined in Section 3, the total reward for a trajectory is the time to reach the goal
set, where more negative rewards correspond to slower convergence to G. Thus, for a task with task
horizon T , a total reward greater than −T implies successful task completion. The state is frozen
in place upon constraint violation until the task horizon elapses. We also report task success and
constraint satisfaction rates for LS3 and comparisons during learning to study (1) the degree to which
task completion influences sample efficiency and (2) how safely different algorithms explore. LS3

collects K = 10 trajectories in between training phases on simulated tasks and K = 5 in between
training phases for physical tasks, while the SACfD and AWAC comparisons update their parameters
after each timestep. This presents a metric in terms of the amount of data collected across algorithms.

5.3 Domains

In simulation, we evaluate LS3 on 3 vision-based continuous control domains that are illustrated
in Figure 3. We evaluate LS3 and comparisons on a constrained visual navigation task (Pointmass
Navigation) where the agent navigates from a fixed start state to a fixed goal set while avoiding a
large central obstacle. We study this domain to gain intuition and visualize the learned value function,
goal/constraint indicators, and safe set in Figure 2. We then study a constrained image-based reaching
task (Reacher) based on [50], where the objective is to navigate the end effector of a 2-link planar
robotic arm to a yellow goal position without the end-effector entering a red stay out zone. We then
study a challenging sequential image-based robotic pushing domain (Sequential Pushing), in which
the objective is to push each of the 3 blocks forward on the table without pushing them to either
side and causing them to fall out of the workspace. Finally, we evaluate LS3 with an image-based
physical experiment on the da Vinci Research Kit (dVRK) [51] (Figure 3), where the objective is to
guide the endpoint of a cable to a goal region without letting the cable or end effector collide with an
obstacle. The Pointmass Navigation and Reaching domains have a task horizon of T = 100 while
the Sequential Pushing domain and physical experiment have task horizons of T = 150 and T = 50
respectively. See the supplement for more details on all domains.

5.4 Simulation Results

We find that LS3 is able to learn more stably and efficiently than all comparisons across all simulated
domains while converging to similar performance within 250 trajectories collected online (Figure 4).
LS3 is able to consistently complete the task during learning, while the comparisons, which do not
learn a safe set to structure exploration based on prior successes, exhibit much less stable learning.
Additionally, in Table 1 and Table 2, we report the task success rate and constraint violation rate of
all algorithms during training. We find that LS3 achieves a significantly higher task success rate than
comparisons on all tasks. We also find that LS3 violates constraints less often than comparisons on the
Reacher task, but violates constraints more often than SACfD and SACfD+RRL on the other domains.
This is because SACfD and SACfD+RRL spend much less time in the neighborhood of constraint
violating states during training due to their lower task success rates. Because they do not efficiently
learn to perform the tasks, they do not violate constraints as often. We find that the AWAC comparison
achieves very low task performance. While AWAC is designed for offline reinforcement learning, to
the best of our knowledge, it has not been previously evaluated on long-horizon, image-based tasks
as in this paper, which we hypothesize are very challenging for it.

7

Table 1: Task Success Rate over all Training Episodes: We present the mean and standard error of training-
time task completion rate over 10 random seeds. We find LS3 outperforms all comparisons across all 3 domains,
with the gap increasing for the challenging sequential pushing task.

SACFD AWAC SACFD+RRL LS3 (−SS) LS3

POINTMASS NAVIGATION 0.363± 0.068 0.312± 0.093 0.184± 0.053 0.818± 0.019 0.988± 0.004
REACHER 0.502± 0.072 0.255± 0.089 0.473± 0.056 0.736± 0.025 0.870± 0.024
SEQUENTIAL PUSHING 0.425± 0.064 0.006± 0.003 0.466± 0.065 0.366± 0.030 0.648± 0.049

Table 2: Constraint Violation Rate: We report mean and standard error of training-time constraint violation
rate over 10 random seeds. LS3 violates constraints less than comparisons on the Reacher task, but SAC and
SACfD+RRL achieve lower constraint violation rates on the Navigation and Pushing tasks, likely due to spending
less time in the neighborhood of constraint violating regions due to their much lower task success rates.

SACFD AWAC SACFD+RRL LS3 (−SS) LS3

POINTMASS NAVIGATION 0.006± 0.002 0.104± 0.070 0.001± 0.001 0.019± 0.006 0.005± 0.001
REACHER 0.146± 0.039 0.398± 0.107 0.142± 0.031 0.247± 0.027 0.102± 0.027
SEQUENTIAL PUSHING 0.033± 0.003 0.138± 0.028 0.054± 0.006 0.122± 0.031 0.107± 0.016

0 20 40 60
Training Trajectories

50

40

30

20

Re
wa

rd

Physical Cable Routing

SACfD SACfD + RRL LS30.0

0.2

0.4

0.6

0.8
Task Success Rate

SACfD SACfD + RRL LS30.000
0.025
0.050
0.075
0.100
0.125
0.150

Constraint Violation Rate

Demonstrations SACfD SACfD + RRL LS3

Figure 5: Physical Cable Routing Results: We present learning curves, task success rates and constraint
violation rates with a mean and standard error across 3 random seeds. LS3 learns a more efficient policy than the
demonstrator while still violating constraints less than comparisons, which are unable to learn the task.

We find LS3 has a lower success rate when the safe set constraint is removed (LS3(−Safe Set)) as
expected. The safe set is particularly important in the sequential pushing task, and LS3 (−Safe Set)
has a much lower task completion rate than LS3. LS3 without the recursive classification objective
from Section 4.2 (LS3 (BC SS)) has similar performance to LS3 on the navigation environment,
but learns substantially more slowly on the Reacher environment and performs significantly worse
than LS3 on the more challenging Pushing environment as the learned safe set is unable to exploit
temporal structure to distinguish safe states from unsafe states. See the supplement for details on
experimental parameters and offline data used for LS3 and comparisons and ablations studying the
effect of the planning horizon and threshold used to define the safe set.

5.5 Physical Results

In physical experiments, we compare LS3 to SACfD and SACfD+RRL (Figure 5) on the physical cable
routing task illustrated in Figure 3. We find LS3 quickly outperforms the suboptimal demonstrations
while succeeding at the task significantly more often than both comparisons, which are unable to learn
the task and also violate constraints more than LS3. We hypothesize that the difficulty of reasoning
about cable collisions and deformation from images makes it challenging for prior algorithms to
make sufficient task progress as they do not use prior successes to structure exploration. See the
supplement for details on experimental parameters and offline data used for LS3 and comparisons.

6 Discussion and Future Work
We present LS3, a scalable algorithm for safe and efficient policy learning for visuomotor tasks.
LS3 structures exploration by learning a safe set in a learned latent space, which captures the set of
states from which the agent is confident in task completion. LS3 then ensures that the agent can plan
back to states in the safe set, encouraging consistent task completion during learning. Experiments
suggest that LS3 can safely and efficiently learn 4 visuomotor control tasks, including a challenging
sequential pushing task in simulation and a cable routing task on a physical robot. In future work, we
are excited to explore further physical evaluation of LS3 on safety critical visuomotor control tasks
and applications to systems with dynamic constraints on velocity or acceleration.

8

Acknowledgments
This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI
Research (BAIR) Lab, the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS
”People and Robots” (CPAR) Initiative. The authors were supported in part by the Scalable Collabo-
rative Human-Robot Learning (SCHooL) Project, an NSF National Robotics Initiative Award, and by
donations from Google and Toyota Research Institute and equipment grants from PhotoNeo, Nvidia,
and Intuitive Surgical. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the sponsors. We
thank our colleagues who provided helpful feedback, especially Suraj Nair, Zaynah Javed and Daniel
Brown. Ashwin Balakrishna was supported by an NSF GRFP.

References
[1] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based

deep reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568,
2018.

[2] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. Proc. Int. Conf. on Machine Learning, 2019.

[3] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. K. Tanwani, N. Jamali, K. Yamane, S. Iba,
and K. Goldberg. Visuospatial foresight for multi-step, multi-task fabric manipulation. Proc.
Robotics: Science and Systems (RSS), 2020.

[4] I. Lenz, R. A. Knepper, and A. Saxena. Deepmpc: Learning deep latent features for model
predictive control. In Robotics: Science and Systems. Rome, Italy, 2015.

[5] S. Nair and C. Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks via
visual subgoal generation. Proc. Int. Conf. on Learning Representations, 2019.

[6] S. Nair, S. Savarese, and C. Finn. Goal-aware prediction: Learning to model what matters. In
Proceedings of the 37th International Conference on Machine Learning, pages 7207–7219,
2020.

[7] K. Pertsch, O. Rybkin, F. Ebert, C. Finn, D. Jayaraman, and S. Levine. Long-horizon visual
planning with goal-conditioned hierarchical predictors. Proc. Advances in Neural Information
Processing Systems, 2020.

[8] S. Tian, S. Nair, F. Ebert, S. Dasari, B. Eysenbach, C. Finn, and S. Levine. Model-based visual
planning with self-supervised functional distances. Proc. Int. Conf. on Learning Representations,
2021.

[9] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications.

[10] A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning with
imagined goals. Proc. Advances in Neural Information Processing Systems, 2018.

[11] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 2016.

[12] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-
ishnan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement learning for vision-
based robotic manipulation. Conf. on Robot Learning (CoRL), 2018.

[13] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering
self-supervised reinforcement learning. Proc. Int. Conf. on Machine Learning, 2020.

[14] U. Rosolia and F. Borrelli. Learning model predictive control for iterative tasks. a data-driven
control framework. IEEE Transactions on Automatic Control, 2018.

[15] S. M. Richards, F. Berkenkamp, and A. Krause. The lyapunov neural network: Adaptive
stability certification for safe learning of dynamical systems. In Conference on Robot Learning,
pages 466–476. PMLR, 2018.

9

[16] B. Thananjeyan, A. Balakrishna, U. Rosolia, J. E. Gonzalez, A. Ames, and K. Goldberg.
Abc-lmpc: Safe sample-based learning mpc for stochastic nonlinear dynamical systems with
adjustable boundary conditions, 2020.

[17] B. Thananjeyan, A. Balakrishna, U. Rosolia, F. Li, R. McAllister, J. E. Gonzalez, S. Levine,
F. Borrelli, and K. Goldberg. Safety augmented value estimation from demonstrations (saved):
Safe deep model-based rl for sparse cost robotic tasks. IEEE Robotics and Automation Letters,
5(2):3612–3619, 2020.

[18] U. Rosolia and F. Borrelli. Sample-based learning model predictive control for linear uncertain
systems. CoRR, abs/1904.06432, 2019. URL http://arxiv.org/abs/1904.06432.

[19] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In Conference on Decision and Control (CDC), 2017.

[20] D. A. Bristow, M. Tharayil, and A. G. Alleyne. A survey of iterative learning control. IEEE
control systems magazine, 2006.

[21] U. Rosolia, X. Zhang, and F. Borrelli. A Stochastic MPC Approach with Application to Iterative
Learning. 2018 IEEE Conference on Decision and Control (CDC), 2018.

[22] M. Deisenroth and C. Rasmussen. PILCO: A model-based and data-efficient approach to policy
search. In Proc. Int. Conf. on Machine Learning, 2011.

[23] I. Lenz, R. A. Knepper, and A. Saxena. DeepMPC: Learning deep latent features for model
predictive control. In Robotics: Science and Systems, 2015.

[24] J. Fu, S. Levine, and P. Abbeel. One-shot learning of manipulation skills with online dynamics
adaptation and neural network priors. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2016.

[25] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch. Plan online, learn offline:
Efficient learning and exploration via model-based control. In Proc. Int. Conf. on Machine
Learning, 2019.

[26] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In Proc. Advances in Neural Information Processing
Systems, 2018.

[27] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. In Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2018.

[28] S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control. In International
Conference on Robotics and Automation, pages 802–807 vol.2, 1993.

[29] J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg. Deep learning can accelerate grasp-
optimized motion planning. Science Robotics, 5(48), 2020.

[30] Z. Zhu, N. Pivaroa, S. Gupta, A. Gupta, and M. Canova. 2021.

[31] M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino, and D. Kragic. Latent space
roadmap for visual action planning of deformable and rigid object manipulation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2020.

[32] A. A. Rusu, M. Večerı́k, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell. Sim-to-real robot
learning from pixels with progressive nets. In Conference on Robot Learning, pages 262–270.
PMLR, 2017.

[33] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. A. Ojea, E. Solowjow, and S. Levine. Deep rein-
forcement learning for industrial insertion tasks with visual inputs and natural rewards. Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2020.

[34] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine. End-to-end robotic reinforcement
learning without reward engineering. Proc. Robotics: Science and Systems (RSS), 2019.

10

http://arxiv.org/abs/1904.06432

[35] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine. Solar: Deep struc-
tured representations for model-based reinforcement learning. In International Conference on
Machine Learning, pages 7444–7453. PMLR, 2019.

[36] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan, M. Hwang, J. E. Gonzalez,
J. Ibarz, C. Finn, and K. Goldberg. Recovery rl: Safe reinforcement learning with learned
recovery zones. NeurIPS Deep Reinforcement Learning Workshop, 2020.

[37] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine. Uncertainty-aware reinforcement
learning for collision avoidance. CoRR, 2017.

[38] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn. Universal planning networks. Proc. Int.
Conf. on Machine Learning, 04 2018.

[39] B. Ichter and M. Pavone. Robot motion planning in learned latent spaces. IEEE Robotics and
Automation Letters, 4(3):2407–2414, 2019. doi:10.1109/LRA.2019.2901898.

[40] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerch-
ner. beta-vae: Learning basic visual concepts with a constrained variational framework. Proc.
Int. Conf. on Learning Representations, 2017.

[41] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning
with augmented data. 2020. arXiv:2004.14990.

[42] R. Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and computing in applied probability, 1(2):127–190, 1999.

[43] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In Proc. Advances in Neural Information Processing
Systems, 2018.

[44] J. Zhang, B. Cheung, C. Finn, S. Levine, and D. Jayaraman. Cautious adaptation for reinforce-
ment learning in safety-critical settings. In International Conference on Machine Learning,
pages 11055–11065. PMLR, 2020.

[45] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P. DiMaio. An open-
source research kit for the da Vinci surgical system. In Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2014.

[46] D. Seita, S. Krishnan, R. Fox, S. McKinley, J. Canny, and K. Goldberg. Fast and reliable
autonomous surgical debridement with cable-driven robots using a two-phase calibration proce-
dure. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2018.

[47] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. Proc. Int. Conf. on Machine Learning,
2018.

[48] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets, 2021.

[49] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy optimization. In Proc.
Int. Conf. on Learning Representations, 2019.

[50] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez,
T. Lillicrap, and N. Heess. dm-control: Software and tasks for continuous control, 2020.

[51] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P. DiMaio. An open-
source research kit for the da vinci® surgical system. In 2014 IEEE international conference
on robotics and automation (ICRA), pages 6434–6439. IEEE, 2014.

11

http://dx.doi.org/10.1109/LRA.2019.2901898

	Introduction
	Related Work
	Safe, Iterative Learning Control
	Model Based Reinforcement Learning
	Reinforcement Learning from Pixels

	Problem Statement
	Latent Space Safe Sets (LS3)
	Learning a Latent Space for Planning
	Latent Safe Sets for Model-Based Control
	Reward and Constraint Estimation
	Model-Based Planning with LS3

	Experiments
	Comparisons
	Evaluation Metrics
	Domains
	Simulation Results
	Physical Results

	Discussion and Future Work

