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ABSTRACT

Knowledge Distillation (KD) has evolved from compressing large models to en-
hancing the performance of models with the same capacity. Multi-teacher distil-
lation extends this paradigm by amalgamating knowledge from multiple expert
models into a single student. Multi-teacher knowledge distillation aims to create a
powerful student model by amalgamating knowledge from multiple expert teachers.
However, existing frameworks constrain the student to learn exclusively from the
teachers’ representations, overlooking valuable supervisory signals inherent in
the data itself. In this work, we introduce Self-supervised Feature Aggregation
(SeFA), a novel paradigm that addresses this limitation by synergistically com-
bining multi-teacher distillation with self-supervised learning. SeFA formulates
the training as a multi-task learning problem, optimizing the student’s represen-
tations for both alignment with its teachers and performance on a data-driven,
self-supervised task. We conduct extensive evaluations across a diverse set of
tasks, including image classification, transfer learning, domain adaptation, image
retrieval, and dense prediction. SeFA consistently outperforms state-of-the-art
baselines, achieving average improvements of 6.11% on classification, 8.87% on
image retrieval, and 6.44% on dense prediction tasks. Beyond these empirical
gains, our comprehensive analysis demonstrates SeFA’s robustness across various
teacher combinations and architectures, establishing a more effective paradigm for
knowledge distillation.

1 INTRODUCTION

Since its introduction in computer vision, knowledge distillation (KD) has been adapted for a wide
range of applications. Early KD methods focused primarily on compressing the knowledge of a large
teacher model into a smaller student model for task-specific scenarios. Born-Again Networks (BAN)
Furlanello et al. (2018) introduced a new perspective by demonstrating that distillation between
models of equal size can also yield performance gains for vision models.

Traditional KD approaches, including BAN, typically rely on KL divergence or cross-entropy–based
loss functions, where the student learns to match the teacher’s output distribution. While effective
for task-specific distillation, these methods are less suited for learning a general purpose student.
More recent works address this by distilling from multiple teachers into a single student, often using
distance- or similarity-based losses to align feature representations. The goal in this setting is for
the student to inherit desirable priors from all teachers. These approaches fall under the category of
multi-teacher distillation. However, early multi-teacher distillation methods lacked mechanisms to
prevent dominance by a single teacher. UNIC (the existing state-of-the-art) Sariyildiz et al. (2024)
addressed this by introducing teacher-dropping regularization, where the student randomly zeroes out
the loss term associated with its closest teacher in normalized feature space. While this promotes
diversity among the learned representations, it does not guarantee that the resulting features are more
generalizable than those being suppressed. As a result, the student may still acquire non-beneficial
representations. This a key limitation of existing multi-teacher distillation approaches in computer
vision. In this work, we argue that self-supervised approaches, which capture task-agnostic and
non-trivial features, can serve as a complementary signal to multi-teacher distillation, guiding
the student toward more beneficial and generalizable representations.
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Figure 1: Overview of SeFA within the distillation framework using two teachers (Box A), where
DINO Caron et al. (2021) is used for self-supervised learning (Box B). t1 and t2 denote the two
teachers, with Aug1 and Aug2 representing the teacher-specific augmentations applied to t1 and t2,
respectively. The student encoder is denoted by fs, and ft refers to its exponential moving average
(EMA) copy, used exclusively for the self-supervised objective. Here, LD represents the distillation
loss LDistillation as defined in Eq. 5. dh1 and dh2 denote the two distillation heads that map the student
encoder’s representation to the corresponding teacher’s representation space. Meanwhile, sh1 and
sh2 represent the self-supervised heads used for the self-supervised objective. We further expand on
this figure in Appendix A. Post-training we utilize features from fs.

The improvement of multi-teacher distillation is of great interest especially because of the rise of
many pre-trained vision models. We conduct a comprehensive analysis of the improved multi-teacher
distillation process from multiple teachers, evaluating our models on various vision tasks, including
image-level classification, video segmentation, transfer learning, image retrieval, robustness and
adversarial classifications. Furthermore, we ablate student model size, number and size of teachers,
self-supervised loss used in conjunction with the multi-teacher distillation loss. To the best our
knowledge we are the first to provide a comprehensive study on how to pick teachers for multi-teacher
distillation for improved performance.

We begin in Section 3 by discussing the shortcomings of existing state-of-the-art vision based multi-
teacher distillation methods and presenting a theoretical perspective on their limitations. Section 5
then presents our empirical evaluation, where we compare the proposed approach against existing
state-of-the-art multi-teacher distillation baselines across coarse- and fine-grained classification,
image retrieval, and dense prediction tasks such as video instance segmentation. In Section 5.2,
we further characterize the behavior of our method under varying conditions using five different
general-purpose teachers, three distinct frameworks, and two student architectural configurations.

2 RELATED WORKS

In Buciluǎ et al. (2006) the authors showed that the knowledge from multiple models or an ensemble
model could be effectively transferred into a model of same or smaller capacity. In a typical distilation
setup, both the student and the teacher operate in the same domain and the student attempts to match
teacher’s representation. In the beginning, this approach was used to distill larger models into smaller
models, but Xie et al. (2020) suggested using student and teacher architectures of the same capacity.
Simultaneously, knowledge distillation eventually grew from one student trying to match one teacher
to multiple teachers. In early multi-teacher distillation methods, the common strategy was to match
the average predictions of multiple teachers. However, this approach limits the ability to exploit the
complementary nature of different teachers’ representations. Zuchniak (2023) provides an overview
of multi-teacher distillation, and proposes that instead of matching an ensemble of teachers, the
student can match the features of each individual teacher via some learned non-shared mapping
from the representation space of the student to each teacher. This has become of the basis of more
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recent works, such as Theia Shang et al. (2024), UNIC: Universal Classification Models Sariyildiz
et al. (2024), AM-RADIO: Agglomerative Vision Foundation Model Reduce All Domains Into One
Ranzinger et al. (2024), SAM-CLIP Wang et al. (2024), and Open-Vocabulary Segment Anything
Model (SAM) Yuan et al. (2024), aim to combine the semantics captured by Contrastive language
Image Pretraining (CLIP) Radford et al. (2021) with the localization capabilities of models like
DINOv2 Oquab et al. (2023) or SAM Kirillov et al. (2023).

Multi-teacher distillation assumes that when vision models are trained long enough on a substantial
amount of data they learn diverse and meaningful representations. Also, these representations can
be distilled from these models into a singular model of similar or lower capacity. This knowledge
transfer is achieved by minimizing a feature-similarity loss between the student and teachers. Common
objectives include Mean Squared Error (MSE), L1 loss, and Cosine Similarity. For example, Open-
Vocabulary SAM Yuan et al. (2024) adopts an MSE loss and SAM-CLIP Wang et al. (2024) employs
cosine similarity, while state-of-the-art methods like Theia Shang et al. (2024), AM-RADIO Ranzinger
et al. (2024), and UNIC Sariyildiz et al. (2024) use a compound loss that combines smooth L1 and
cosine similarity.

Since multi-teacher distillation is based on the assumption that different teachers have different
representations, hence alignment with one would mean misalignment with other teacher(s). Fur-
thermore, distilling all features without filtering or regularization could lead to features from one
teacher dominating and leading to a poor performing student method. UNIC Sariyildiz et al. (2024)
empirically studies this phenomenon and was the first multi-teacher distillation approach to introduce
a regularizer to mitigate dominance of one teacher’s features over others. They introduced teacher-
dropping regularization, wherein the most correlated teacher is randomly dropped to encourage the
student to learn a more diverse set of representations. We further discuss this in the Section 3.

3 METHOD

3.1 MOTIVATION

As mentioend in Section 1, SAM-CLIP Wang et al. (2024), Open-vocabulary SAM Yuan et al. (2024),
AM-RADIO Ranzinger et al. (2024), Theia Shang et al. (2024) only use similarity based losses such as
smooth-L1, cosine similarity or MSE for multi-teacher distillation. Current state-of-the-art approaches
such as UNIC Sariyildiz et al. (2024) typically rely on the traditional multi-teacher distillation
frameworks along with a regularizer. For instance, UNIC (Universal Classification) employs a
“teacher-dropping” regularizer, which encourages the student to learn from the least correlated teacher
under the assumption that this exposes it to novel and complementary knowledge. However, without
an explicit mechanism to evaluate which teacher representations are truly generalizable downstream,
this strategy risks promoting diversity at the expense of utility—potentially steering the student
toward a representation space that is diverse but suboptimal.

In UNIC Sariyildiz et al. (2024), for a given batch of data and a set of T teachers, UNIC begins by
computing a loss for each individual teacher i ∈ {1, . . . , T}. This similarity loss, Lsim, is formulated
as a weighted combination of cosine similarity and smooth L1 loss:

Lsim(x; i) = α · LCosineSim(ti(x), hti(z)) + (1− α) · LSmoothL1(ti(x), hti(z)), (1)

where hti(z) is the student’s prediction and ti(x) is the normalized output from teacher ti. As
noted in prior work (Heo et al., 2019), normalizing teacher outputs is crucial for ensuring a bal-
anced contribution from the ensemble. Next, UNIC generates a vector of teacher coefficients,
c = [c1, . . . , cT ], by first identifying the teacher with the maximum loss on a given batch,
t∗ = argmaxt∈{1,...,T} Lsim(x; t). The coefficients ct are then determined as shown in Equa-
tion equation 2:

ct =

{
1 if t = t∗

dt if t ̸= t∗
where dt ∼ Bernoulli(1− pdrop). (2)

This strategy guarantees that the teacher providing the strongest learning signal for a sample is always
included. The final loss, LUNIC, is the weighted sum of the per-teacher losses from Equation equa-
tion 1:

LUNIC =

T∑
i=1

ci · Lsim(x; i), (3)
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where the coefficients ci are treated as detached constants and do not contribute to the gradient
calculation.

The design of the UNIC loss function presents two fundamental limitations that hinder student
learning. First, it assumes teachers provide representations of uniform quality. In a realistic scenario
with one informative and one noisy teacher, a student aligning with the former would be heavily
penalized by its large loss against the latter. This can cause teacher-dropping mechanisms to discard
the wrong teacher, compelling the student to learn a corrupted representation. Second, the student’s
learning is entirely constrained to the teachers’ representations, precluding it from capturing valuable
information directly from the input data. To remedy these shortcomings, we introduce Self-supervised
Feature Aggregation (SeFA).

With SeFA the loss function to be as follows for a given input batch x:

Ltotal(x) = λ1LSSL(x) + (1− λ1)LDistillation(x) (4)

LDistillation(x) =

T∑
i=1

Lsim(x; i) (5)

Lsim(x; i) = [α× LCosineSim(ti(x), hti(z))] + [(1− α)× LSmoothL1(ti(x), hti(z))] (6)

In this reformulated loss, the student model is essentially solving a multi-task optimization problem
(Eq. 4). It must find a set of features that are effective for solving the self-supervised task LSSL as
well as structurally similar to the features of a strong pre-trained teacher LDistillation.

Existing multi-teacher distillation methods compel a student model to learn exclusively from teacher
representations. This approach overlooks a rich source of supervisory signal: the data itself. We argue
that by failing to mine this data-specific information, student models are unnecessarily constrained
and may fail to learn powerful, generalizable features.

To address this, we introduce a self-supervised learning (SSL) objective, which reframes the student’s
task as a multi-task optimization problem. The student must learn a feature representation that is
simultaneously: (1) structurally similar to the teacher’s features via a distillation loss, LDistillation, and
(2) effective for a pretext self-supervised task, via LSSL.

SSL is uniquely suited for this role. Its objective functions are designed to learn fine-grained, task-
agnostic semantic representations directly from the data. Moreover, mechanisms within modern
SSL techniques, such as contrastive or reconstruction objectives, inherently prevent representational
collapse to trivial solutions. Our central hypothesis is that this synergistic, multi-task approach
allows the student to learn robust representations that are both semantically rich and aligned with the
knowledge distilled from the teachers.

Our Contribution: In this paper, we argue that multi-teacher distillation approaches can benefit
from multi-tasking with self-supervised objectives. To this end, we propose Self-supervised Feature
Aggregation (SeFA), as introduced in the previous section. Similar to prior work in the field
Sariyildiz et al. (2024), we begin by training SeFA with two teachers in Section 5. We observe
that it consistently outperforms the existing state-of-the-art method UNIC across a variety of tasks.
Beyond the conventional scenario of distilling a smaller student from a larger teacher, SeFA enables
multi-teacher distillation in which the student can surpass its teachers on a wide range of computer
vision tasks. Additionally, in Section 5.2, we establish a framework for selecting optimal teacher
combinations in multi-teacher distillation.

4 EXPERIMENTAL SETUP

We start with a two-teacher multi-distillation setup. In each case we compare performance of the
trained student against best performing teacher as well as the existing state-of-the art multi-teacher
distilation method with teacher dropping regularization – UNIC Sariyildiz et al. (2024). With SeFA,
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Model ImageNet Acc.

Teacher Models
DINO ViT-S/16 76.09
AugReg ViT-S/16 76.50

SeFA DINO (ours) 77.92
SeFA UDI (ours) 78.30
SeFA iBOT (ours) 76.90

Table 1: Top-1 accuracy on the ImageNet-1K validation set for ViT-S/16 models trained with various
self-supervision techniques combined with multi-teacher distillation.

we argue that self-supervision alongside traditional multi-teacher distillation enhances regularization
in multi-teacher distillation. We start by incorporating a self-supervised objective alongside the
distillation loss. For the self-supervised component, we begin with DINO Caron et al. (2021) due
to its state-of-the-art performance and fine-grained control over feature clustering via temperature
scaling and the number of centroids. We ablate the choice of self-supervised regularizer in Section
5.2.

For the two teacher models we pick one self-supervised and a supervised model similar to Sariyildiz
et al. (2024). For the self-supervised model we pick a ViT-S/16 Dosovitskiy et al. (2020) trained
on ImageNet-1K using DINO Caron et al. (2021) for 800 epochs, and the second is a ViT-S/16
Dosovitskiy et al. (2020) trained on ImageNet-21K Ridnik et al. (2021) and ImageNet-1K Deng et al.
(2009) (a total of 15M images) using state-of-the-art fully supervised learning with augmentation
regularization (AugReg) Steiner et al. (2021). We then trained a ViT-S/16 using the above two
teachers with UNIC Sariyildiz et al. (2024) as well as with Self-supervisied Feature Aggregation
(denoted as SeFA) using the protocol mentioned in Section 4.

Models trained with self-supervised contrastive losses Caron et al. (2021); Zhou et al. (2022a); Su &
Ji (2024) tend to emphasize low-frequency signals and produce features that enable linear separability
based on semantic content Park et al. (2023). In contrast, large scale supervised models such as
Steiner et al. (2021); Touvron et al. (2022) tend to rely more heavily on high-frequency image details.
We pretrain a ViT S/16 using DINO and Augreg teachers on the ImageNet-1k dataset. To isolate the
effect of better features from larger models or from other datasets during multi-teacher distilation, we
train student and teacher models of same size and only using teachers trained on ImageNet datasets
i.e ImageNet-1k or models pretrained on the larger ImageNet-21k Ridnik et al. (2021) followed by
finetuning on ImageNet-1k. We further ablate the choice of the teacher models in Section 5.2.

Once pretrained, we train a linear layer on top of the frozen pre-trained student and use the perfor-
mance obtained via linear probing from the downstream tasks (described in section X) to evaluate the
effectiveness of our models and the baselines.This evaluates how linearly separable classes are in the
learned feature space: strong performance by a linear classifier trained on frozen features suggests
useful, transferable representations. Following prior work Caron et al. (2021); Chen* et al. (2021);
Oquab et al. (2023); Shang et al. (2024); Sariyildiz et al. (2024), we evaluate our pre-trained encoders
on ImageNet-1K validation set using a linear classifier. In addition we also study properties of the
resulting features for retrieval, object discovery and transfer-learning.

To further validate the above results and rule out potential overfitting to the ImageNet-1K dataset
Deng et al. (2009), we evaluate our pre-trained model on additional datasets, each justifying a
unique property.ImageNet-A Hendrycks et al. (2021b) measures robustness to natural adversarial
examples—real-world images that cause frequent misclassifications despite being semantically
correct—revealing vulnerabilities in decision boundaries. ImageNet-C Hendrycks & Dietterich (2019)
tests corruption robustness by applying common perturbations (e.g., noise, blur, weather effects),
showing how performance degrades under distribution shift. ImageNet-R Hendrycks et al. (2021a)
assesses out-of-distribution (OOD) robustness using artistic renditions (e.g., cartoons, paintings,
sketches), exposing reliance on photographic priors. ImageNetV2 Recht et al. (2019), collected a
decade later but with identical classes, indicates whether the encoder has learned durable semantic
concepts rather than overfitting to dataset-specific visual statistics.
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Implementation details For both UNIC and SeFA, we pretrain models on the ImageNet dataset
Deng et al. (2009) without labels. For fair comparison we use a batch size of 512 for 200 epochs,
distributed over 4 GPUs using ViT-S/16 Dosovitskiy et al. (2020). For each experiment we perform
random hyperparamter over five sets of hyperparameter for pre-training. To ensure a fair comparison,
encoder gradients are frozen and a linear classifier is trained on the output features of the frozen
network with a learning rate sweep over 45 values in [10, 10−4]. We pre-train using five different
hyperparameter configurations and then train a linear classifier for each, spanning 45 learning rates
resulting in a total of 225 comabinations. The best-performing model for each method and pre-training
epoch is selected from these 225 combinations, with results presented in Section 5.

Model IN1k-val IN-V2 IN-R IN-A IN-C (↓) Transfer

Teacher Models
DINO ViT-S/16 76.09 71.95 34.50 11.0 67.82 85.63
AugReg. ViT-S/16 76.50 71.77 35.73 16.83 68.69 86.85

Best Teacher 76.50 71.95 35.73 16.83 67.82 86.85
SeFA ViT-S/16 (ours) 77.92 73.87 37.71 11.57 64.66 87.23
UNIC ViT-S/16 71.17 67.07 27.71 8.23 71.30 84.06

Table 2: Top-1 accuracy on ImageNet and related datasets. Results are reported as percentages for all
datasets, except ImageNet-C where we use the normalized mean corruption error (mCE) Hendrycks
& Dietterich (2019). Higher values indicate better performance for accuracy, while lower values are
better for mCE.

Pretrain ROxford RParis

M H M H

DINO 34.62 12.98 60.81 32.32
Augreg 28.94 9.71 63.41 38.24

Best Teacher 34.62 12.98 63.41 38.24
SeFA 36.57 14.43 63.5 35.6
UNIC 28.14 7.83 53.44 25.2

Table 3: Comparison of pretraining methods on
ROx and RPar under Medium (M) and Hard
(H) protocols using ViT-S/16 Dosovitskiy et al.
(2020).

Model Jm Fm (J&F)m

Teacher Models
DINO ViT-S/16 59.94 63.31 61.62
Augreg ViT-S/16 47.71 49.38 48.54

Best teacher 59.94 63.31 61.62
SeFA ViT-S/16 (ours) 60.36 64.20 62.28
UNIC ViT-S/16 53.82 57.78 55.92

Table 4: Mean region similarity Jm, contour ac-
curacy Fm, and combined (J&F)m on DAVIS
2017. using ViT-S/16 Dosovitskiy et al. (2020).

5 RESULTS

5.1 DINO SELF-SUPERVISION AS REGULARIZER

Following the setup in Section 4, we train a ViT-S/16 student on ImageNet-1k and compare our
proposed method, SeFA, against the state-of-the-art UNIC Sariyildiz et al. (2024) baseline. To
evaluate the learned representations, we use a linear probing protocol on the frozen features across a
comprehensive suite of benchmarks: the ImageNet-1k validation set, its variants (ImageNetV2, -R,
-A), and four transfer learning datasets. For robustness, we also report the mean Corruption Error
(mCE, lower is better) on ImageNet-C.

The results demonstrate that SeFA consistently outperforms the UNIC baseline across all ImageNet-
based classification tasks. More notably, SeFA surpasses the performance of both of its teacher
models on all benchmarks except ImageNet-A—a feat not achieved by UNIC. This highlights SeFA’s
ability not only to aggregate but also to refine and improve upon the knowledge distilled from its
teachers. To further analyze results on the ImageNet-A dataset, instead of linear probing we perform
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end-to-end finetuning for 100 epochs and observe the ImageNet-A accuracy increases to 19.85% with
an ImageNet1k-val accuracy of 79.96%. We present more results on end-to-end finetuning and the
protocol used in Appendix C.8.Consistent with prior work Caron et al. (2021); Chen* et al. (2021);
Zhou et al. (2022a); Oquab et al. (2023); Sariyildiz et al. (2024), in addition to standard ImageNet
classifications we also benchmark on image retrieval, object discovery and transfer-learning.

Transfer Learning. To assess the transferability of learned representations on ImageNet to other
major datasets, we follow the evaluation protocol described in Appendix C. Specifically, we freeze
the pretrained encoders and train a linear classifier on top of their features across four fine-grained
image classification datasets: CIFAR-10, CIFAR-100 Krizhevsky et al. (2009), Flowers-102 Nilsback
& Zisserman (2008), and IIIT-Pets Parkhi et al. (2012). After hyperparameter search, we present the
best accuracy of the linear classifier in Table 2. From here, we observe that similar to the classification
performance on ImageNet-1k and other ImageNet like datasets, our model improves performs better
than both teachers involved by 0.40%. Furthermore, it improves by 3.17% over existing state-of-art
for multi-teacher distillation i.e UNIC Sariyildiz et al. (2024).

Video Segmentation. We evaluate the frozen patch-level outputs of all the pre-trained models
mentioend in Section 2 using the DAVIS-2017 video instance segmentation benchmark Pont-Tuset
et al. (2017). Following prior work Caron et al. (2021); Zhou et al. (2022a); Su & Ji (2024),
segmentation across video frames is performed using a nearest-neighbor clustering between patch
embeddings of consecutive frames. This evaluation is conducted without any additional fine-tuning.
We present the results for Video Object detection in Table 4. Despite not optimized for dense
prediction tasks, our model achieves competitive results, suggesting that the learned representations
retain spatial structure. We observe that SeFA overall improves by video segmentation over best
performing teacher by 0.66% and by 6.36% over over existing state-of-art.

Image Retrieval. In Table 3, we present nearest-neighbor retrieval results using frozen pre-trained
backbones on the revisited Oxford-5k and Paris-6k datasets Radenović et al. (2018). We observe that
none of the teachers consistently performs best across both splits of the Oxford and Paris revisited
datasets. In contrast, our SeFA-trained ViT-S/16 achieves state-of-the-art performance on three out
of four metrics. Specifically, on the Oxford dataset, the SeFA ViT-S/16 improves by approximately
1.95 and 1.45 mAP on the medium and hard splits, respectively. Furtermore, SeFA improves over
existing state-of-art UNIC by approximately 7% and 10% on the Oxford and Paris revisited datasets
Radenović et al. (2018) respectively.

Model IN1k-val IN V2 IN-R IN-A IN-C (↓) Transfer

Teacher Models
DINO ViT-B/16 † 77.99 74.13 38.49 15.33 61.27 88.70
AugReg ViT-B/16 79.70 75.03 41.67 23.83 60.03 89.34

Best Teacher 79.70 75.03 41.67 23.83 60.03 89.34
SeFA ViT-B/16 (ours) 80.71 76.47 42.07 17.69 58.21 89.88
UNIC ViT-B/16 76.32 72.03 36.77 13.69 64.51 84.79

Table 5: Similar to Table 2, we report Top-1 accuracy on ImageNet and related datasets using ViT
B-16 Dosovitskiy et al. (2020). Results are given in percentage, except for ImageNet-C where we
use the normalized mean corruption error (mCE) Hendrycks & Dietterich (2019). Higher accuracy
values indicate better performance, while lower values are preferable for mCE.

5.2 ABLATION STUDY

In Section 5, we have already established that multi-teacher distillation with self-supervised reg-
ularization is a better approach for agglomerating multiple teachers into a single encoder for a
variety vision tasks such as transfer learning, classification, image retrieval and segmentation. In this
section, we probe further into SeFA to systematically understand nuances of using Self-supervision
as regularization with Multi-teacher Distillation.
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Pretrain ROxford RParis

M H M H

DINO 34.34 10.76 60.55 32.98
Augreg 28.29 9.67 60.13 35.56

Best Teacher 34.34 10.76 60.55 35.56
SeFA 36.38 13.42 64.72 37.36
UNIC 35.04 10.81 58.78 29.36

Table 6: Image retrieval results using ViT-B/16
with DINO self-supervision and multi-teacher
distillation.

Model Jm Fm (J&F)m

Teacher Models
DINO 60.6 63.9 62.3
Augreg 50.8 54.01 54.01

Best teacher 60.6 63.9 62.3
SeFA (ours) 60.7 64.01 62.4
UNIC 50.90 55.31 53.10

Table 7: Similar to Table 4, we provide metrics
on DAVIS 2017 using ViT B/16 using DINO
self-supervision with multi-teacher distillation.

Change in self-supervised framework for regularization To investigate whether other self-
supervised approaches can regularize an agglomerated encoder during multi-teacher distilation,
we keep the teachers and multi-teacher distillation loss constant while ablating the self-supervised
approach used for regularization in SeFA. In addition to DINO Caron et al. (2021), we evaluate
iBoT Zhou et al. (2022a) and UDI Su & Ji (2024). iBoT Zhou et al. (2022a) combines masked
image modeling with self-distillation objective of DINO Caron et al. (2021), while UDI Su & Ji
(2024) enriches representations through context-aligned semantic constraints via self-attention and
an additional class token (cls+) to produce multi-modal predictions in addition to the same DINO
Caron et al. (2021) objective. We present the results in Table 1. The results indicate that coupling
multi-teacher distillation with a self-supervised regularization loss improves performance over each
individual teacher used for distillation. We train DINO- and UDI-based SeFA for 200 epochs each,
and iBoT-based SeFA for 800 epochs. iBoT requires longer training to first optimize its contrastive
objective before effectively learning masked image modeling. Furthermore, DINO is the most
compute efficient to train followed by iBOT and UDI Su & Ji (2024).

Teacher Combination Pre-training + Linear CKA Similarity In1k Acc.(%)
100 PTE 200 PTE

High Similarity (CKA ≈ 0.8)
DINO + iBOT 76.57 76.75 0.8190 High 77.05
DINO + MUGS 75.80 75.93 0.8051 High 76.09
iBOT + MUGS 76.56 76.72 0.8117 High 77.05

Moderate Similarity (CKA ≈ 0.5)
DINO + AugReg 77.80 77.92 0.5082 Moderate 76.50
iBOT + AugReg 78.12 78.34 0.5243 Moderate 77.05
MUGS + AugReg 77.14 77.64 0.5066 Moderate 76.50

Low Similarity (CKA ≈ 0.2)
DINO + DeiT-III 78.87 79.33 0.2001 Low 79.80
iBOT + DeiT-III 78.96 79.41 0.2054 Low 79.80
AugReg + DeiT-III 78.33 78.87 0.1989 Low 79.80

Table 8: Top-1 Accuracy on the ImageNet-1K validation dataset using SeFA ViT-S/16 models
distilled from teacher pairs. Cells are green when student accuracy exceeds the best teacher, and red
otherwise. CKA values quantify representational similarity, with regimes defined as Low (CKA ≈
0.2), Moderate ( CKA ≈ 0.5), and High (CKA ≈ 0.8).

Changing teacher combinations To study the impact of teacher diversity, we examine teachers
through the lens of representation similarity using linear Centered Kernel Alignment (CKA) Kornblith
et al. (2019) and using five diverse ViT-S/16 or equivalent foundation models - DINO Caron et al.
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(2021), iBOT Zhou et al. (2022a), MUlti-Granular Selfsupervised learning or MUGS Zhou et al.
(2022b), AugReg Steiner et al. (2021) and DeiT-III Touvron et al. (2022). CKA is a metric that
quantifies representational similarity between models, it ranges from 0 (no similarity) to 1 (perfect
similarity). We categorize teacher pairs into three regimes: (i) low similarity (CKA 0.2), (ii)
moderate similarity ( CKA 0.5), and (iii) high similarity (CKA 0.7). Our findings suggest that
self-supervised, regularized multi-teacher distillation performs best when teachers exhibit moderate
similarity, i.e., when CKA 0.5. We present these results in Table 8. We color code our models
as green if they surpass their teachers and red if they don’t. We observe that partial alignment of
representations yields the best results, as excessive similarity leads to redundant information, while
insufficient similarity introduces conflicting signals. We present additional results of classification,
image retrieval, transfer learning, video segmentation and results on other ImageNet dataset for
iBoT+AugReg and MUGS+AugReg multi-teacher distillation with DINO self-supervision for SeFA
in Appendix C.1.

Increasing the student size For our main results, we use a ViT-S/16 encoder. However, in Table 5,
we report results using a ViT-B/16 instead. All approaches are trained for 200 epochs following the
same experimental setup as described in Section 4 with a ViT-B/16 instead of a ViT-S/16. Consistent
with earlier observations, our method yields a significantly stronger pre-trained model using self-
supervision regulation for multi-teacher distillation than the existing state-of-the-art method UNIC
Sariyildiz et al. (2024) without the self-supervised regularization.1

Additional Results, Analysis, and Protocols. Further implementation details are provided in our
codebase2 and in Appendix A. We provide detailed evaluation protocols for classification, image
retrieval, and segmentation in Appendix B. Appendix C presents further results, including experiments
with varying numbers of teachers in multi-teacher distillation, SeFA benchmarks across classification,
image retrieval, and segmentation tasks, and comparisons of (AugReg + MUGS) and (AugReg +
iBOT) under DINO self-supervision with multi-teacher distillation. We further extend the discussion
on changing teacher combinations in Appendix C.1, considering teachers trained on datasets beyond
the ImageNet family and for ViT-B/16. Distilling a student model with the same capacity as the
teachers is considerably more challenging than distilling a smaller student using multiple teachers.
For our main results, we focus on the former scenario, with the latter explored in more detail in
Appendix C.4. Additionally, we provide ImageNet-1k validation classification accuracy comparisons
of SeFA with off-the-shelf models pre-trained using multi-teacher distillation in Appendix C.8.
We observe that SeFA outperforms the state-of-the-art by 1.54% on ImageNet classification while
utilizing the fewest student and teacher parameters. The relationship between self-supervision and
distillation is further discussed in Appendix D, and the limitations of SeFA are outlined in Appendix
E. Appendix F and G provides a qualitative analysis of the representation space, attention maps,
comparing SeFA with its DINO and AugReg teachers, as well as SeFA models trained with different
teacher combinations for ImageNet and real world images.

6 CONCLUSION

In this work, we introduced Self-supervised Feature Aggregation (SeFA), a novel framework that
advances the state of the art in multi-teacher distillation for vision models. As shown in Section 5,
SeFA goes beyond the traditional scenario of distilling a smaller student from a larger teacher: SeFA
enables multi-teacher distillation in which the student can outperform its teachers across a wide
range of computer vision tasks. SeFA transfers effectively without task-specific training, generalizes
to out-of-distribution data, and offers strong retrieval, demonstrating its ability to learn transferable,
domain-agnostic, and robust representations beyond its training setup. While SeFA achieves competi-
tive performance even with arbitrary teacher combinations, this property of surpassing teachers is
observed only when the teachers exhibit a linear CKA of approximately 0.5. Consolidating results
across a variety of student and teacher combinations, we find that SeFA consistently establishes new
state-of-the-art performance for multi-teacher distillation.

1We observe that, for image retrieval, the performance of ViT-B/16 drops compared to ViT-S/16, as ViT-B/16
tends to overfit on datasets smaller than 12 million images Alabdulmohsin et al. (2022).

2We will open-source our code upon acceptance of SeFA.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
International Conference on Computer Vision (ICCV), 2021.

Xi Chen, Xiao Wang, Soravit Changpinyo, Anthony J Piergiovanni, Piotr Padlewski, Daniel Salz,
Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled
multilingual language-image model. arXiv preprint arXiv:2209.06794, 2022.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. in 2021 ieee. In
CVF conference on computer vision and pattern recognition (CVPR), pp. 15745–15753, 2020.

Xinlei Chen*, Saining Xie*, and Kaiming He. An empirical study of training self-supervised vision
transformers. arXiv preprint arXiv:2104.02057, 2021.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. arXiv preprint arXiv:2309.16588, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks, 2018. URL https://arxiv.org/abs/1805.04770.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. ICCV,
2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. CVPR, 2021b.

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A
comprehensive overhaul of feature distillation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1921–1930, 2019.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMlR, 2019.

10

https://arxiv.org/abs/2209.06640
https://arxiv.org/abs/1805.04770


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

Xiaoxiao Li, Yuankai Qi, Zhe Wang, Kai Chen, Ziwei Liu, Jianping Shi, Ping Luo, Xiaoou
Tang, and Chen Change Loy. Video object segmentation with re-identification. arXiv preprint
arXiv:1708.00197, 2017.

Zheng Li, Xiang Li, Lingfeng Yang, Renjie Song, Jian Yang, and Zhigeng Pan. Dual teachers for
self-knowledge distillation. Pattern Recognition, 151:110422, 2024.

Yuxiang Lu, Shengcao Cao, and Yu-Xiong Wang. Swiss army knife: Synergizing biases in knowledge
from vision foundation models for multi-task learning. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
eePww5u7J3.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2023.

Namuk Park, Wonjae Kim, Byeongho Heo, Taekyung Kim, and Sangdoo Yun. What do self-
supervised vision transformers learn? arXiv preprint arXiv:2305.00729, 2023.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and
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A ADDITIONAL IMPLEMENTATION DETAILS

In Fig. 1, we provide a schematic illustration of SeFA. In Box A, we depict the multi-teacher
distillation setup employed in SeFA. Here, Aug1 and Aug2 denote teacher-specific augmentations
used to ensure proper preprocessing of images before feature extraction from the teachers. The
preprocessing follows the official implementation of each respective teacher. dh1 and dh2 represent
two distinct distillation heads that map the student representation (logits) us to each teacher’s
representation (logits) space. Structurally, these heads are similar to the self-supervised heads used in
DINO Caron et al. (2021). In Box B of the same figure, we illustrate the self-supervised component of
our approach. Since Fig. 1 depicts SeFA with DINO Caron et al. (2021), Box B corresponds to DINO
self-supervision. Here, t and t′ represent differential augmentations sampled from a distribution T ,
and sh1 and sh2 are the two self-supervised heads as described in Caron et al. (2021).

B EVALUATION PROTOCOLS

B.1 EVALUATION ON OTHER IMAGENET DATASETS

ImageNet-A Hendrycks et al. (2021b), ImageNet-C Hendrycks & Dietterich (2019), ImageNet-R
Hendrycks et al. (2021a), and ImageNetV2 Recht et al. (2019)

The ImageNet-V2 dataset Recht et al. (2019) was introduced to address the absence of a dedicated
test split in ImageNet and to quantify overfitting with respect to the original ImageNet validation
set Touvron et al. (2019; 2022). We select the best-performing linear probe from Section 5 and
evaluate it on ImageNet-V2 to assess generalization to a matched but independently collected
distribution.

In addition, we evaluate on the following challenging robustness benchmarks:

• ImageNet-A Hendrycks et al. (2021b): Contains naturally occurring, unmodified adversarial
examples that are easily misclassified by standard ImageNet-trained models.

• ImageNet-C Hendrycks & Dietterich (2019): Applies algorithmically generated corruptions
(e.g., noise, blur, weather, and digital distortions) to ImageNet images, testing corruption
robustness across severity levels.

• ImageNet-R Hendrycks et al. (2021a): Replaces natural photographs with artistic renditions,
cartoons, and other non-photographic styles, evaluating robustness to substantial distribution
shifts in texture and style.

Together, these benchmarks provide complementary perspectives on model generalization and robust-
ness under distribution shifts, natural adversarial inputs, and input corruptions.

B.2 TRANSFER LEARNING

To evaluate the transferability of pre-trained features, we follow previous work Caron et al. (2021);
Oquab et al. (2023); Sariyildiz et al. (2024); Zhou et al. (2022a); Chen* et al. (2021) and train a linear
classifier on popular transfer datasets such as CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009),
Oxford Flowers-102 Nilsback & Zisserman (2008), and Oxford-IIIT Pets Parkhi et al. (2012). These
datasets are particularly important for transfer learning evaluation because:

• CIFAR-10/100: Provide standardized benchmarks for general object recognition with 10
and 100 classes respectively. Their difficulty stems from low-resolution (32×32) images
and significant intra-class variation, testing the encoder’s ability to extract discriminative
features from limited visual information.

• Oxford Flowers-102: Challenges models with fine-grained classification among 102 flower
species, where subtle visual differences between classes require highly discriminative
features. The dataset’s long-tailed distribution and limited samples per class (minimum 40
images) add to the difficulty.

• Oxford-IIIT Pets: Evaluates performance on fine-grained pet recognition with 37 categories,
complicated by varying animal poses, lighting conditions, and occlusions. The need to
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distinguish between similar breeds makes this particularly challenging for feature quality
assessment.

We use a frozen pre-trained encoder, and train a linear classifier on top of feature outputs from the
frozen encoder and a learning rate sweep across 45 values in [10, 10−4].

B.3 DENSE PREDICTION TASKS

To understand the dense prediction capabilities of our ImageNet-pretrained model, we extend evalua-
tion to the Densely Annotated VIdeo Segmentation (DAVIS) dataset Pont-Tuset et al. (2017). This
benchmark is critically important for assessing:

• Spatiotemporal Feature Transfer: DAVIS tests whether image-trained features generalize
to video understanding, requiring temporal consistency in segmentation across frames—a
key challenge absent in static image tasks.

• Fine-grained Semantics: The dataset’s multiple annotated objects per sequence (average
2.3 per frame) and fine structures (e.g., animal fur, thin objects) demand high-resolution
feature discrimination, pushing the limits of pretrained encoders.

• Dynamic Scene Robustness: Challenges like fast motion (average 24.5px/frame displace-
ment) and severe inter-object occlusion Li et al. (2017) stress-test the model’s ability to
maintain object identity and boundaries under deformation.

The task involves segmenting specific objects via nearest-neighbor retrieval, which is more challeng-
ing than image segmentation beacuse in some cases DAVIS objects occupy a very small frame area,
exacerbating feature localization demands. Furthermore a lot of frames contain occlusions, requiring
features to disentangle semantics.

Following Caron et al. (2021); Zhou et al. (2022a); Su & Ji (2024), we report three metrics:

• Region similarity Jm: Measures IoU under motion, sensitive to temporal drift.

• Contour accuracy Fm: Evaluates boundary precision for thin structures.

• Combined (J&F)m: Balanced assessment of holistic segmentation quality.

B.4 IMAGE RETRIEVAL

”In Image Retrieval, the task is to return a ranked list of database images most similar to a given query,
typically involving fine-grained landmark instance recognition using frozen pre-trained features. The
revisited Oxford and Paris datasets Radenović et al. (2018) are critical for evaluating generalization
under real-world variations, with challenges including:

• Viewpoint/lighting shifts (Hard split contains 60% more extreme variations than Medium)

• Partial occlusions and crop artifacts, testing feature robustness

• Fine-grained distinctions (e.g., different facade details in Paris buildings)

Following Caron et al. (2021); Zhou et al. (2022a), we report Mean Average Precision (mAP) on
Medium (M) and Hard (H) splits.

.

C ADDITIONAL RESULTS

C.1 CHANGING TEACHER COMBINATION FOR VIT B/16

In Section 5.2, we analyzed the effect of varying teachers for ViT-S/16 in SeFA. We observed that
all teachers contributed useful features, enabling the student to achieve competitive performance.
Notably, moderately aligned teachers facilitated multi-teacher distillation, allowing the SeFA-trained
student to outperform the teachers used during pre-training. In this section, we extend this analysis to
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AugReg DINO

SeFA ViT

Figure 2: t-SNE visualizations for AugReg, DINO (top row), and SeFA ViT (bottom row). We
observe that some clusters occupy similar positions across all three representation spaces (e.g., the
orange and dark brown clusters). In contrast, other clusters, such as the blue and dark green clusters,
show that SeFA is more closely aligned with AugReg.

ViT-B/16. Similar to Table 8, Table 9 presents results for ViT-B/16 students distilled using teachers
of the same capacity.Consistent with the findings in Section 5.2, moderately aligned teachers yield
better student performance than fully aligned or poorly aligned teachers. Moreover, we identify that
the optimal range of alignment lies between 0.50 and 0.54 on the linear CKA scale.

C.2 IMPROVING ADVERSARIAL CLASSIFICATION PERFORMANCE ON IMAGENET-A

In Section 5, we demonstrated that SeFA-trained models outperform both strongly supervised and
self-supervised teachers across most benchmarks, with the exception of ImageNet-A. We now extend
this analysis by evaluating the performance of a pre-trained student model under a linear probing
followed by finetuning (LP-FT) protocol. Specifically, we first train a linear probe on top of the
frozen backbone, then select the best-performing probe and unfreeze the backbone for end-to-end
finetuning over 100 epochs. This LP-FT strategy preserves the pre-trained representation space of the
student while enabling more effective adaptation Kumar et al. (2022). We additionally benchmark
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Teacher Combination Pre-training + Linear CKA Similarity In1k Acc.(%)
200 PTE

DINO + CLIP1 79.30 0.5915 High 79.76
DINO + SigLIP2 80.14 0.5705 High 82.57
DINO + AugReg 80.71 0.5401 Moderate 79.70
DINO + DeiT-III 81.85 0.3987 Low 83.60
DINO + CLIP3 80.30 0.3313 Low 85.73

Table 9: Top-1 Accuracy on the ImageNet-1K validation dataset using SeFA ViT-B/16 models
distilled from teacher pairs. Cells are green when student accuracy exceeds the best teacher, and red
otherwise. CKA values quantify representational similarity, with regimes defined as Low (CKA ≈
0.2), Moderate ( CKA ≈ 0.5), and High (CKA ≈ 0.8). Here, CLIP1 represents CLIP Radford et al.
(2021) train on the LAION5B dataset Beaumont (2022), SigLIP2 represents SigLIP Zhai et al. (2023)
train on the WeBLI dataset Chen et al. (2022), and CLIP3 represents CLIP Radford et al. (2021) train
on the YFCC dataset Thomee et al. (2016)

these LP-FT models on ImageNet-A. As shown in Table 10, LP-FT consistently enhances robustness:
SeFA not only achieves higher accuracy on ImageNet-1k but also surpasses the best-performing
teacher on ImageNet-A by approximately 3%. These results underscore that end-to-end finetuning
further strengthens SeFA’s robustness to adversarial noise.

Model IN-1k IN-A
Teacher models
AugReg 76.50 16.83
SeFA models
AugReg + DINO 79.96 19.85
AugReg + MUGS 79.92 19.43
AugReg + iBOT 80.20 19.87

Table 10: Comparison of teacher and SeFA models with the ViT-S/16 architecture after end-to-end
finetuning on ImageNet-1k, followed by evaluation of the finetuned models on ImageNet-A.

C.3 SCALING NUMBER OF TEACHERS

In Section 5, we study knowledge distillation using only two teachers. Here, we expand from two to
three teachers by incorporating ViT S/16 AugReg alongside ViT S/16 iBOT and DINO. We observe
that iBOT and DINO teachers exhibit very high CKA values (≈ 0.8), while AugReg shows moderate
similarity with both DINO and iBOT (≈ 0.5).

Our key findings reveal that: (1) when teachers have moderate similarity (AugReg+DINO or Au-
gReg+iBOT), the student surpasses its teachers; (2) with highly similar teachers (DINO+iBOT), the
student underperforms relative to the teachers; but (3) adding a moderately-aligned teacher (AugReg)
to highly-similar pairs stabilizes the student and improves representation learning.

Notably, while the three-teacher combination (AugReg+iBOT+DINO) yields a student that improves
over all individual teachers, it does not outperform the student trained solely on iBOT and AugReg.

C.4 SCALING TEACHER CAPACITY

Distilling a student model with the same capacity as the teachers is considerably more challenging
than distilling a smaller student using multiple teachers. We have already established SeFA’s state-
of-the-art performance over existing approaches in Section 5, Appendix C.5, and Appendix C.6. In
Table 12, we report results for distilling a smaller student from larger teacher models. Specifically,
SeFA ViT-Small trained using ViT-Base teachers outperforms the equivalent SeFA ViT-Small trained
using ViT-Small teachers by approximately 0.35%.
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Model Linear Pre-training + Linear

100 PTE 200 PTE

Teacher Models
DINO ViT-S/16t1 76.09 - -
iBOT ViT-S/16t2 77.05 - -
AugReg ViT-S/16t3 76.50 - -

SeFA ViT-S/16 (t1 + t2) - 76.57 76.75
SeFA ViT-S/16 (t1 + t3) - 77.80 77.92
SeFA ViT-S/16 (t2 + t3) - 78.12 78.34
SeFA ViT-S/16 (t1 + t2 + t3) - 77.96 78.1

Table 11: Top-1 accuracy on the ImageNet-1k validation set for SeFA-based multi-teacher distillation
using multiple teachers. We observe that the degree of alignment between teachers is more important
than the sheer number of teachers: two moderately aligned teachers outperform three teachers of the
same model size.

SeFA
Student Teachers In1k Acc

(%)

ViT Tiny/16 DINO (ViT Small/16)
AugReg (ViT Small/16) 71.91

ViT Small/16 DINO (ViT Base/16)
AugReg (ViT Base/16) 78.27

ViT Base/16 iBOT (ViT Large/16)
AugReg (ViT Large/16) 81.68

Table 12: Top-1 Accuracy on the ImageNet-1K validation dataset. For each SeFA model mentioned
we use the DINO self-supervised objective with the multi-teacher distillation loss for 200 epochs of
pre-training followed by linear probing for 100 epochs.

To further understand the significance of the results for ViT-Tiny, we compare it with UNIC, the
baseline DINO, and the state-of-the-art self-supervised approach for small architectures without
distillation—SSLight Tan et al. (2023)—in Table 13. We observe that SeFA-trained ViT-Tiny
substantially outperforms the comparable multi-teacher distillation method UNIC. Moreover, it
achieves a notable improvement of 2.41% over SSLightTan et al. (2023). These results further
demonstrate SeFA’s effectiveness in training small-capacity student models relative to their teachers.

Approach Student
Arch. Teachers In1k Acc

(%)

DINO
Caron et al. (2021) ViT Tiny/16 - 66.7

DINO SSLight
Tan et al. (2023) ViT Tiny/16 - 69.5

UNIC
Sariyildiz et al. (2024) ViT Tiny/16 DINO (ViT Small/16)

AugReg (ViT Small/16) 61.89

SeFA ViT Tiny/16 DINO (ViT Small/16)
AugReg (ViT Small/16) 71.91

Table 13: Top-1 Accuracy on the ImageNet-1K validation dataset for ViT Tiny/16 backbone. For all
experiments the student has been pre-trained for 200 epochs, followed by linear probing.
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C.5 IBOT+AUGREG WITH DINO

From Table 8, we observe that teacher pairings with moderate alignment—(DINO + AugReg), (iBOT
+ AugReg), and (MUGS + AugReg)—yield students that surpass their teachers. While Section 5
presents results for (DINO + AugReg), here and in Section C.6 we focus on (iBOT + AugReg) and
(MUGS + AugReg) using multi-teacher distillation combined with DINO self-supervised loss (ViT
S/16).

For the iBOT + AugReg combination, we find that—similar to DINO + AugReg—the student con-
sistently outperforms both teachers across all ImageNet and transfer learning benchmarks, except
for ImageNet-A. We observe that end-to-end finetuning considerably improves ImageNet-A perfor-
mance as discussed in Appendix C.2.Tables 15 and 16 show results for image retrieval and video
segmentation, respectively. In retrieval Table 15, the student fails to surpass either teacher, likely due
to iBOT’s weaker baseline performance compared to DINO. However, for video segmentation, the
student consistently outperforms both teachers.

Model INt-r IN-A IN-C (↓) IN V2 Transfer

Teacher Models
iBOT 36.83 12.53 64.32 73.43 85.40
Augreg. 35.73 16.83 68.69 71.77 86.85

Best Teacher 36.83 16.83 64.32 73.43 86.85
SeFA (ours) 38.85 12.27 63.26 74.57 87.15
UNIC 28.42 6.64 76.27 66.12 81.95

Table 14: iBoT + AugReg Teacher using DINO

Pretrain ROxford RParis

M H M H

Augreg 28.94 9.71 63.41 38.24
iBOT 33.55 10.55 58.47 31.23

Best Teacher 33.55 10.55 63.41 38.24
SeFA 38.22 14.49 63.03 35.53
UNIC 29.24 8.86 57.2 28.86

Table 15: Comparison of pretraining methods
on ROx and RPar under Medium (M) and
Hard (H) protocols. iBoT + AugReg Teacher
using DINO.

Model Jm Fm (J&F)m

Teacher Models
iBOT 60.05 62.51 61.28
Augreg 47.71 49.38 48.54

Best teacher 60.05 62.51 61.28
SeFA (ours) 60.09 63.56 61.82
UNIC 52.77 55.49 54.13

Table 16: Mean region similarity Jm, con-
tour accuracy Fm, and combined (J&F)m
on DAVIS 2017.iBoT + AugReg Teacher us-
ing DINO.

C.6 MUGS+AUGREG WITH DINO

In this section, we evaluate the student model trained with MUGS + AugReg teachers using DINO
self-supervised loss and multi-teacher distillation. We assess performance across three tasks, with
results shown in:

• Table 17 for image classification

• Table 18 for image retrieval

• Table 19 for video segmentation

Consistent with the (DINO + AugReg) and (iBOT + AugReg) teacher pairs, our analysis reveals two
key findings:
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• The student achieves superior classification performance on all benchmarks except ImageNet-
A. End-to-end finetuning as described in Appendix C.2, improves ImageNet-A classification
of SeFA distilled from Augreg and iBOT to 19.87%.

• For video segmentation, it consistently outperforms both teachers.

However, in image retrieval—similar to the (iBOT + AugReg) case—the student only surpasses
its teachers on the Revisited-Oxford dataset. This limitation stems from MUGS’s weaker baseline
retrieval performance, analogous to iBOT’s subpar retrieval capability compared to DINO.

Model IN-R IN-A IN-C (↓) IN V2 Transfer

Teacher Models
MUGS ViT-S/16 35.67 9.79 65.32 70.84 86.47
Augreg. ViT-S/16 35.73 16.83 68.69 71.77 86.85

Best Teacher 35.73 16.83 65.32 71.77 86.85
SeFA ViT-S/16 (ours) 38.56 10.55 63.79 73.80 87.35

Table 17: Mugs + AugReg Teacher using DINO

C.7 CHANGING λ1 IN LOSS EQUATION 4

From Equation 4, the coefficient λ1 controls the relative importance of multi-teacher distillation
versus DINO self-supervision. In Table 20, we ablate different values of λ1 to study this trade-off.
We observe that accuracy degrades when λ1 is set either too high or too low. A large λ1 emphasizes
the self-supervised objective, reducing the influence of the multi-teacher signal and limiting the
ability of the student to distill useful priors. Conversely, a small λ1 overemphasizes distillation,
encouraging the student to mimic teachers without sufficient filtering, which leads to diverse but less
discriminative features.

C.8 COMPARISON WITH ARBITRARY MODELS

We provide a comparison with contemporary knowledge distillation approaches in Appendix Table
22, focusing on methods that use a comparable ViT-B/16 student architecture. It is important to
note the key differences in training: AM-RADIO Ranzinger et al. (2024) utilizes a custom ViT-B/16
variant, while SAK Lu et al. (2025) introduces a mixture of experts via a trainable router to combine
teachers. With the exception of AM-RADIO, all other baselines are trained on ImageNet-1K, often
leveraging very large teacher networks. Our key finding is that SeFa, despite being distilled from
a combination of smaller and more efficient teachers, achieves superior performance. This result
underscores a significant advantage of our selective feature aggregation strategy. We also scale SeFA’s
teachers from two ViT-B to ViT-L networks. We observe that SeFA improves further by 1% on IN-1k
validation.

C.9 BACKGROUND DEPENDENCE

Deep neural network for visual tasks rely on both foreground objects and image backgrounds. Even
when the correct foreground object is present, such models often make incorrect predictions when the
image background is changed, and they are especially vulnerable to adversarially chosen backgrounds
Xiao et al. (2020). To systematically study this background reliance, we utilize the ImageNet-9
(IN9) dataset, which includes nine coarse-grained classes and seven variants created by mixing
foregrounds and backgrounds from different images. Four of these variants—Only-FG (O.F.), Mixed-
Same (M.S.), Mixed-Rand (M.R.), and Mixed-Next (M.N.)—retain the original foreground while
modifying the background. The remaining three—No-FG (N.F.), Only-BG-B (O.BB.), and Only-BG-
T (O.BT.)—mask the foreground entirely. To quantify a model’s dependence on background signals,
we use the BG-GAP metric, defined as the accuracy difference between the MIXED-SAME and
MIXED-RAND variants. A smaller BG-GAP indicates reduced reliance on background information
for correct predictions, which is desirable for robust object recognition. As shown in Table 21,
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Method ROxford RParis

M H M H

AugReg 28.94 9.71 63.41 38.24
MUGS 32.35 10.35 58.35 30.48

Best Teacher 32.35 10.35 63.41 38.24
SeFA-DINO 35.84 11.84 61.65 33.33

Table 18: Image retrieval mAP (%) on ROxford (ROx) and RParis (RPar) under Medium (M) and
Hard (H) evaluation protocols.

Model Jm Fm (J&F)m

MUGS ViT-S/16 58.92 62.85 60.88
AugReg ViT-S/16 47.71 49.38 48.54

Best Teacher 58.92 62.85 60.88
SeFA ViT-S/16 (ours) 60.05 63.44 61.74

Table 19: Video segmentation performance on DAVIS 2017 showing mean region similarity (Jm),
contour accuracy (Fm), and their combination.

λ1 Accuracy (%)

0.30 77.32
0.40 77.61
0.50 77.80
0.60 77.50
0.65 77.31
0.70 77.04

Table 20: Effect of varying λ1 on ImageNet-1K accuracy for SeFA using AugReg and DINO teachers
with DINO self-supervision and multi-teacher distillation trained for 100 epochs using ViT S/16.

we observe that multi-teacher distillation, when regularized by self-supervision (SeFA), results in
the smallest accuracy drop across background variants, highlighting its effectiveness in mitigating
background sensitivity. We further analyze SeFa in Appendix G.

Metric DINO AugReg UNIC SeFA ViT

original 96.00% 96.25% 93.83% 96.52%
mixed same 89.33% 85.75% 80.57% 89.14%
only fg 89.38% 84.99% 74.89% 89.78%
mixed rand 81.38% 78.00% 69.56% 81.56%
mixed next 79.40% 76.17% 66.20% 79.38%
no fg 51.60% 53.06% 45.80% 52.96%
only bg b 22.47% 21.98% 15.28% 19.36%
only bg t 17.63% 17.16% 15.11% 16.07%

BG-gap (↓) 7.95% 7.75% 11.01% 7.58%

Table 21: ImageNet-9 Benchmark Results (ViT-S/16 Variants). All metrics represent accuracy.
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D SELF-SUPERVISION AND KNOWLEDGE DISTILLATION

Knowledge distillation plays a central role in many state-of-the-art self-supervised learning frame-
works, particularly through the mechanism of self-distillation. In this setup, a student model learns
from a teacher model, which is periodically updated as an exponential moving average of the student.
Between updates, both models are trained to produce consistent predictions across different augmen-
tations of the same input. This framework not only encourages the emergence of explicit clustering
structures but also allows fine-grained control over the clustering behavior via parameters such as the
number of centroids and temperature settings—ultimately facilitating the formation of semantically
meaningful image abstractions.

However, popular self-distillation approaches like DINO Caron et al. (2021) and SimSiam Chen &
He (2020) operate primarily at the image level, thereby limiting their ability to capture fine-grained
semantics. To address this limitation, more recent work such as iBOT Zhou et al. (2022a) and DINOV2
Oquab et al. (2023) has incorporated image-level masked image modeling objectives to promote
finer granularity in representation learning. From the perspective of the information bottleneck (IB)
principle, methods such as DINO and iBOT Zhou et al. (2022a) are susceptible to over-compressionSu
& Ji (2024). This compression largely stems from aggressive prediction sharpening between the
teacher and student models—a mechanism essential to prevent representational collapse but one that
also constrains the information retained in learned features, thus compromising generalization.

To overcome these challenges, recent methods like Unsqueezed Distillation-based Self-Supervision
(UDI) Su & Ji (2024) build upon the IB principle with explicit clustering objectives. Similar to the
addition to additional [cls] tokens as registers Darcet et al. (2023), UDI introduces an additional class
token to circumvent the information bottleneck. This enables the model to preserve richer semantic
content. This design offers both improved generalization and enhanced control over the clustering
process, advancing the state-of-the-art in self-supervised representation learning.

Use of self-supervision and knowledge has been previously studied by In Xu et al. (2020), the authors
train a large teacher in a supervised manner, followed by self-supervised distillation to a smaller
student. They argue that self-supervision is largely ineffective for smaller architectures, motivating
the use of a single larger teacher for distillation. In contrast, SeFA enables distillation from pre-trained
architectures into students of the same capacity. Furthermore, SeFA optimizes a multi-task loss
that jointly combines self-supervision and distillation, whereas Xu et al. (2020) employs a two-step
process, applying one stage for pure supervision and another for self-supervision.

In addition to the approaches discussed in Section 2, other methods, such as Li et al. (2024), perform
multi-teacher distillation; however, instead of using pre-trained teacher models, they use differently
parameterized copies of the student. This approach extends the self-distillation paradigm employed
in state-of-the-art self-supervised methods, including DINO Caron et al. (2021), iBOT Zhou et al.
(2022a), and UDI Su & Ji (2024), among others.

E LIMITATIONS

Although SeFA improves performance beyond that of the teachers used during pretraining, this
improvement occurs only when there is a moderate degree of alignment between teachers (linear
CKA 0.50–0.54). In cases of very high or very low similarity, SeFA falls short of matching the
teacher’s performance. Achieving a “one model for all tasks” would require the model to actively
identify and refine only globally useful features, independent of the alignment between teachers.
Additionally, due to computational constraints, we train self-supervised approaches with a relatively
small batch size (128 images per GPU). Self-supervised methods generally benefit from larger batch
sizes; consequently, further performance gains could likely be achieved with sufficiently large batches.

F ATTENTION MAPS

F.1 QUALITATIVE ANALYSIS OF ATTENTION MAPS ACROSS AUGREG, DINO, AND SEFA

We provide a comparative analysis of attention maps for three models: AugReg, DINO, and SeFA (a
student distilled from AugReg and DINO). For each attention map, we present (from left to right) the
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Model Params Teacher Params Data Teachers Linear

AM-RADIO ViT-B/16
Ranzinger et al. (2024)

118M ∼3.2B DataComp-1B

DFN CLIP ViT-H/14
SigLIP 400M
DINOv2-g-reg
SAM-H

78.24

THEIA ViT-B/16∗

Shang et al. (2024)
86M ∼1.23B IN-1K

DINOv2 ViT-L/14
ViT-H/14
CLIP ViT-L/16

75.2

THEIA ViT-B/16
Shang et al. (2024)

86M ∼1.23B IN-1K
DINOv2 ViT-L/14
ViT-H/14
CLIP ViT-L/16

72.1

SAK ViT-B/16
Lu et al. (2025)

134M ∼0.26B IN-1K
DINOV2 ViT-B/16
SAM ViT-B/16
CLIP ViT-L/16

79.16

SeFA ViT-S/16 (ours) 22M ∼0.17B IN-1K
DINO ViT-B/16
AugReg ViT-B/16

78.26

SeFA ViT-B/16 (ours) 86M ∼0.17B IN-1K
DINO ViT-B/16
AugReg ViT-B/16

80.70

SeFA ViT-B/16 (ours) 86M ∼0.61B IN-1K
iBOT ViT-L/16
AugReg ViT-L/16

81.68

Table 22: Comparison of ImageNet-1k accuracy after linear probing between AM-RADIO, THEIA,
SAK and SeFA ViT-B/16, including pretraining data and total teacher parameters.

original image, followed by clustering of the attention map tokens, and then the representations from
all attention heads. Attention maps are visualized across multiple heads in the last transformer block,
highlighting the regions each model focuses on during inference.

F.1.1 AUGREG: SPARSE, LOCAL DISCRIMINATIVE FOCUS

• Fish Image (Rows 1 and 2 of Fig. 3): AugReg primarily attends to the spine of the fish,
ignoring the human subject and the broader context.

• Cat (Row 3 of Fig. 3): Sparse activations are seen around the cat’s forehead and eyes, with
no coverage of the full object.

• Wheat Stalk (Row 5 of Fig. 4): Attention is narrowly focused on the center of the stalk,
failing to incorporate contextual cues from the background.

These patterns suggest AugReg learns highly localized, discriminative parts, suitable for classification
but less so for tasks requiring holistic understanding.

F.1.2 DINO: SEMANTIC, OBJECT-CENTRIC REPRESENTATIONS

• Cat Image (Row 3 of Fig. 3): Attention covers the entire head and both eyes, showing
semantically grouped attention across relevant features.

• Meerkat (Row 4 of Fig. 3): The full body structure, including the torso and head, is
captured, indicating strong object-level understanding.

• Butterfly (Row 5 of Fig. 3): DINO consistently captures both wings and antennae, often
with symmetry across heads.
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DINO’s attention is more structured and holistic, enabling better transfer to downstream tasks such as
segmentation and detection.

F.1.3 SEFA: MULTI-GRANULAR INTEGRATION FROM TEACHERS

• Fish Image (Rows 1 and 2 of Fig. 3): SeFA blends DINO’s global coverage of the fish
with AugReg’s sharper focus on the fins.

• Butterfly (Row 5 of Fig. 3): Both wings are symmetrically captured, similar to DINO, but
with finer resolution of local regions.

• Train (Row 1 of Fig. 4): Attends to the front and body edges, combining AugReg’s
part-specific and DINO’s structural awareness.

• Jumping Person (Row 3 of Fig. 4): SeFA highlights multiple body parts (head, arms, legs)
with stronger local contrast.

• Traffic Scene (Row 4 of Fig. 4): Attention includes traffic poles, houses, and
cars—capturing more than AugReg and refining DINO’s broader coverage.

SeFA exhibits multi-scale attention, suggesting successful distillation of complementary features
from both teachers. We also present attention maps of (AugReg + DINO) SeFA trained ViT S/16 on
real world images in Fig. 7. We observe that SeFA is able to discern fine grained details images.

• Focus on Salient Objects: The attention maps consistently exhibit a strong localization on
the most distinct features within the images. For instance, attention is clearly concentrated on
the two dogs in the first row, the frying pan in the third row, and the branded cup in the sixth
row. This suggests the ViT model effectively learns features relevant to high-information
content regions.

• Attention Head Specialization: The sequence of attention maps (representing different
attention heads) indicates a degree of functional specialization. Different heads capture
varied visual features or structural aspects of the scene. In the case of the streetlight (Row 4),
initial heads may capture the overall structure, while subsequent heads may focus intensely
on the verticality of the pole or the light source itself.

• Structure and Contextual Cues: While focusing on objects, the attention is not strictly
confined. Maps often include dimmer, spread-out patterns over the background (e.g.,
pavement, sky). This suggests the model integrates contextual information and scene
layout (as seen in Row 2, the outdoor bench scene) alongside object-specific details.

• Localized Distillation Efficacy: The sharp, well-delineated nature of the attention masks
is a testament to the efficacy of the SeFA-trained distillation. The Self-Attention-based
Feature Aggregation method appears to successfully transfer a clean and interpretable
localization ability from the teacher model, leading to robust feature isolation even on
challenging, real-world smartphone captures.

F.1.4 SUMMARY TABLE OF OBSERVATIONS

Observation AugReg DINO SeFA
Sparse, part-based attention ✓ – ✓
Global object coverage – ✓ ✓
Background/context sensitivity – ✓ ✓
Fine-grain + structure integration – – ✓

Table 23: Qualitative summary of attention behavior across models.

F.1.5 CONCLUSION

SeFA inherits AugReg’s sharp, localized cues and DINO’s global, object-centric semantics. This
results in diverse and robust representations that generalize well across tasks requiring fine-to-coarse
granularity. Visual evidence across varied samples supports the success of multi-teacher distillation
in producing semantically rich attention behavior.
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G FURTHER ANALYSIS OF SEFA

To better understand the synergy between the two teachers—AugReg and DINO ViT-S/16—and the
student ViT-S/16 trained with Self-supervised Feature Aggregation (SeFA), we compute Normalized
Mutual Information (NMI) and Silhouette scores using features extracted from frozen backbones
on the ImageNet-1k validation set. Normalized Mutual Information (NMI) and Silhouette score
serve as two fundamental metrics for evaluating clustering quality in the context of representation
learning. NMI quantifies the extent to which the clustering structure corresponds to the ground-truth
class labels, with higher values reflecting stronger consistency with label assignments and a more
discriminative organization of the learned features. The Silhouette score, in contrast, evaluates both
the cohesion within clusters and the degree of separation between them by comparing the average
intra-cluster distance to the closest inter-cluster distance. A higher Silhouette score therefore indicates
that samples are more tightly grouped within their respective clusters and more distinctly separated
from neighboring clusters, reflecting clearer boundaries and more compact structure in the feature
space learned by the model.

To visualize the feature space of the frozen encoders, we generate t-SNE visualizations on 20,000
images from the validation set for AugReg ViT-S/16, DINO ViT-S/16, and the student model SeFA
ViT-S/16. AugReg, which is trained with labels first on ImageNet-21k and subsequently on ImageNet-
1k, achieves the highest NMI (0.8114) and Silhouette score (0.0595). Its t-SNE projection reveals
tight and well-separated clusters, reflecting strong alignment with class labels—behavior expected
from a well-trained supervised neural network. In contrast, DINO, trained in a fully self-supervised
manner without access to labels, attains a lower NMI (0.7786) and Silhouette score (0.0502). The
corresponding t-SNE visualization exhibits more scattered clusters that are nevertheless semantically
organized, capturing meaningful similarities among samples but with looser and less sharply defined
class boundaries. The SeFA student model, distilled jointly from AugReg and DINO, displays a
hybrid cluster structure. While certain clusters retain the compactness characteristic of AugReg,
others exhibit the spread typical of DINO. Its NMI (0.7796) and Silhouette score (0.0499) are closer to
DINO’s values, suggesting that the student has not simply averaged the representations of its teachers
but has instead synthesized complementary strengths from both. Through its non-linear optimization
procedure, SeFA achieves a balance between label-consistent discriminability and semantic flexibility,
effectively integrating features inherited from AugReg and DINO.

Furthermore, we compute Centered Kernel Alignment (CKA) values on top of frozen backbone
features of AugReg, DINO and SeFA ViT-S/16. Centered Kernel Alignment (CKA) is a robust
metric for comparing the similarity of feature representations learned by different neural networks. It
quantifies how structurally aligned two sets of activations are, even if they differ in dimensionality
or undergo transformations like rotation or scaling. Unlike simpler measures, CKA is invariant
to such transformations and provides a normalized score between 0 and 1, making it well-suited
for analyzing representational similarity across models, layers, or training settings. This makes it
especially valuable in settings like model distillation, where understanding how closely a student
mimics its teachers is crucial.

The CKA values (Centered Kernel Alignment) reveal the structural relationships between the feature
representations of the models. The student model SeFA exhibits a very high CKA score with DINO
(0.8744), indicating that its learned representations are strongly aligned with those of DINO. In
contrast, its similarity with AugReg is moderate (0.5734), suggesting that while SeFA incorporates
some class discriminative structure from AugReg, it is far more influenced by the semantic feature
space of DINO. Furthermore, the relatively low CKA between DINO and AugReg (0.5082) highlights
the fundamental difference in their representational structures: DINO’s self-supervised semantic orga-
nization contrasts with AugReg’s label-driven and class-specific characteristics. These relationships
confirm that SeFA is not simply blending its teachers but is instead leaning heavily toward DINO,
structurally aligning its features with DINO’s while partially retaining some supervised traits from
AugReg.
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CKA SeFA AugReg
AugReg 0.5734 1.0
DINO 0.8744 0.5082

Table 24: CKA similarity scores between teacher
models.

Model NMI Silhouette Score
SeFA 0.7796 0.0449
AugReg 0.8114 0.0595
DINO 0.7786 0.0502

Table 25: Comparison of NMI and Silhouette
scores across models.

G.1 COMPARING STUDENT TRAINED WITH TEACHER COMBINATIONS

G.1.1 PERCEPTUAL DIFFERENCES ACROSS EXAMPLES

We highlight qualitative differences across a range of visual concepts. Below are observations on
specific examples from the attention visualizations:

• Dog Running (Row 1 of Fig. 5): MUGS shows stable focus across heads (e.g., ears, legs,
eyes), DINO covers the entire foreground with some irrelevant patches, and iBOT varies in
quality — some heads capture facial regions, others are diffuse.

• Two White Dogs (Row 2 of Fig. 5): MUGS provides precise attention centered on the dogs,
including their heads and body contours. DINO activates large background areas. iBOT
focuses on the dogs but has noisy, inconsistent attention across heads.

• Flower with Insect (Row 3 of Fig. 5)): DINO captures both the insect and the leaf but lacks
spatial focus, while MUGS produces tight attention and clustering over the insect. iBOT
detects the insect but exhibits noisy heads with less confident boundaries.

• Train (Row 4 of Fig. 5): DINO attends to both the train and tracks, while MUGS tightly
segments the nose and front. iBOT shows partial attention, but heads often ignore key
structural elements.

• White Van (Row 5 of Fig. 5): MUGS produces structured patch groups for headlights and
grill. DINO distributes attention over the background and wheels. iBOT often fails to focus
centrally, with heads highlighting disconnected regions.

• Two brown Dogs (Row 1 of Fig. 6): MUGS exhibits clear attention on both cubs. DINO’s
attention is split and background-heavy. iBOT shows mid-level focus but lacks fine localiza-
tion.

• Clock and Bottle (Row 2 of Fig. 6): MUGS clearly separates the circular clock and the
vertical bottle in both patch segmentation and attention heads. DINO’s attention is diffuse
over the wall texture. iBOT shows partial coverage but with less structural awareness.

• Green Plant (Row 3 of Fig. 6): MUGS attention is tightly aligned with the butterfly and
flower, producing clean clusters. DINO spreads attention across the leaves. iBOT captures
key parts but misses finer details.

Summary of Observations Table 26 summarizes what each distilled model captures well and what
it tends to miss.

Table 26: Qualitative comparison of distilled models trained with AugReg.

Model Captures Well Misses
AugReg+DINO Context and object jointly; diverse

multi-head perspectives
Less spatial compactness; noisy
patch clustering

AugReg+MUGS Fine object boundaries; highly se-
mantic patch grouping; consistent
across heads

Less emphasis on background con-
text

AugReg+iBOT Moderate object focus; some dis-
criminative attention patterns

Inconsistent heads; weaker bound-
ary precision; coarse clusters
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H LLM USAGE

LLMs have so far been used primarily for cleaning and improving textual content.
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Figure 3: Visualizations of attention maps for SeFA trained with different teachers (AugReg+DINO),
(AugReg+MUGS) and (AugReg+iBOT). We provide further visualizations in Table 6.
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Figure 4: Visualizations of attention maps for SeFA trained with different teachers (AugReg+DINO),
(AugReg+MUGS) and (AugReg+iBOT). We provide further visualizations in Table 6.
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Figure 5: Visualizations of attention maps for SeFA trained with different teachers (AugReg+DINO),
(AugReg+MUGS) and (AugReg+iBOT). We provide further visualizations in Table 6.
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Figure 6: Continued visualizations of attention maps from Table 5 for SeFA trained with different
teachers (AugReg+DINO), (AugReg+MUGS) and (AugReg+iBOT).
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Figure 7: Attention map visualizations for SeFA-trained ViT-S/16 models distilled from ViT-S/16
teachers on real-world images captured with a smartphone camera.
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