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Abstract. Effective communication of agent-based models is essential
for ensuring their usability and transparency. However, conventional doc-
umentation approaches often struggle to capture the dynamic execution
details of simulations, making it challenging to convey complex pro-
cesses clearly and accessibly. Moreover, ABMs frequently exhibit emer-
gent and unexpected behaviors resulting from multiple agent interac-
tions—dynamics that static model descriptions does not fully capture.
This paper presents a novel methodology for generating execution-based
narratives for ABMs using simulation logs and large language models.
By integrating process mining, Business Process Modeling Notation, and
automated narrative generation, the approach transforms raw simulation
data into coherent visual and textual artifacts that faithfully reflect the
model’s dynamic execution. Unlike conventional documentation—which
often relies on subjective assessments and demands significant effort from
modelers—this methodology minimizes subjectivity and reduces the ef-
fort required from modelers while promoting a more accessible approach
to model communication. To demonstrate its expressivity, we applied
the methodology to the Luneray Flu Model and successfully produced
artifacts such as process maps, business process diagrams, and narrative
explanations. This work offers a step toward improving transparency and
accessibility in ABM verification and communication.
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1 Introduction

Effective communication among model developers and stakeholders is essential
in modeling and simulation [11]. This is particularly true for agent-based mod-
els (ABMs), where a model’s value depends on the clarity with which its de-
sign and results are described to stakeholders [14]. Clear communication fosters
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better understanding, supports validation efforts, and enhances model repro-
ducibility [10]. However, the diverse and inconsistent methods used to describe
models—and the lack of assurance that the implementation, simulation, and
results align with the description—hinder stakeholder understanding and raise
concerns about model transparency [10]. Importantly, ABMs are characterized
by complex interactions among agents that often give rise to emergent behaviors
and unexpected outcomes [5]. These dynamic phenomena can remain hidden or
only partially described in traditional static documentation frameworks, such as
the ODD framework, which relies exclusively on exhaustive textual descriptions
[9]. Consequently, static descriptions may overlook critical aspects of a model’s
capabilities that only become apparent during execution.

Given these challenges, there is a need for innovative methods that align
model descriptions with the dynamic nature of model execution while minimiz-
ing modelers’ subjective bias. This paper presents a novel methodology for gen-
erating execution-based narratives for ABMs using simulation logs and large lan-
guage models (LLMs). The approach combines process mining to discover agent
workflows, visualization through Business Process Modeling Notation (BPMN),
and automated narrative generation with LLMs. This integration transforms raw
simulation data into coherent visual and textual artifacts that closely mirror the
model’s execution dynamics. By capturing the behaviors intrinsic to ABMs, our
methodology not only improves transparency but also supports model verifi-
cation and stakeholder engagement by providing accessible and accurate rep-
resentations of simulation processes. The remainder of the paper is structured
as follows: the Related Work section reviews existing contributions to model
descriptions in the context of model communication; the Methodology section
outlines the pipeline for automatically generating model descriptions using simu-
lation traces and LLMs; the Application section demonstrates the methodology
with a toy model; and the Discussion section analyzes the findings, identifies
limitations, and summarizes the contributions.

2 Related work

Model descriptions are vital artifacts in any modeling project, serving multiple
purposes: they facilitate communication, deepen comprehension, enable replica-
tion, and allow comparisons with other models [16]. The quality of these de-
scriptions is critical to the success of a project and the usability of its outputs.
However, one persistent challenge is balancing detail with readability. Compre-
hensive descriptions necessary for replication can be overwhelming for complex
models, while overly general descriptions risk omitting critical information or
creating inconsistencies with real-world systems. This balancing act remains a
significant barrier to improving model descriptions for ABMs.

One promising approach to address this issue is the use of narrative expla-
nations. In the work of [15], narrative explanations were employed to clarify
the results of generative simulation models, providing detailed accounts of key
events and processes during simulations. These narratives act as intermediaries
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between high-level summaries of system-level patterns and formal descriptions
of model structures, making them particularly useful for participatory modeling
projects. Similarly, [3] demonstrated the effectiveness of narrative explanations
(or scientific storytelling) in communicating complex human-environment inter-
actions within a transdisciplinary ABM. While these approaches show promise,
current methods rely heavily on manual efforts, which are time-consuming and
prone to bias and inconsistencies.

A persistent criticism of ABMs is the perception that they function as "black
box" systems, leading to hesitancy among researchers and stakeholders to adopt
them [6, 21]. While model documentations and narrative explanations are crucial
in addressing this issue, they often fall short due to the time-intensive nature
of documentation and the risk of oversimplifying complex dynamics. This un-
derscores the need for automated approaches to create descriptions that are
transparent, accessible to non-experts, and faithful to the model’s complexity,
while minimizing the effort required for their production.

3 Methodology

In this work, we present a three-part methodology for the automatic generation
of model narratives for any given discrete-time simulation.
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Fig. 1. Methodology for automatically generating ABM narratives

Figure 1 illustrates the proposed methodology. The primary objective is to
reveal the inner workings of the model without relying on its documentation.
To achieve this, we focused on extracting information directly from simulation
traces or logs using "process mining" [2]. We employed automated process dis-
covery, a key technique in process mining, to derive processes directly from these
logs and present them in the form of a process map. The discovered workflow
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is then further visualized using Business Process Model and Notation (BPMN)
to organize the process according to the agents that perform it. Subsequently,
a textual summary of the diagrams is generated and used as input for query-
ing the selected large language model (LLM). The methodology produces two
key artifacts: (1) process diagrams, including process maps (PM) and business
process diagrams (BPD), and (2) a simulation narrative.

3.1 Simulation Logging

The methodology begins by capturing simulation logs at each simulation step
during model execution, focusing on two types of information: (1) variables whose
values change during execution and (2) methods that are executed. Logging the
variables whose values change provides insights into which properties of the
agent evolve throughout the simulation, while capturing executed methods re-
veals the agent’s actions during the process. These elements were chosen for
logging because they directly reflect the simulation’s dynamic state transitions
and decision points, providing a comprehensive view of agent behavior. This
approach is not limited to a specific simulation platform; it can be applied to
any platform that supports discrete-time simulation. Since discrete-time simu-
lations inherently progress through distinct time steps, the logging of variable
changes and method executions can be consistently implemented, regardless of
the underlying architecture. In this study, we utilized the GAMA platform [22]
to maximize the use of readily available models and then integrated logging
capabilities within the platform.

case_id hd activity A time_stamp  hd value Ad resource v
2 [action]description.segregation_model 01/01/1970 01:00 nil nil
2 nil 01/01/1970 01:00 27846  [Variable]rng_usage.segregation_model
2 nil 01/01/1970 01:00 1601 [Variable]all_places.segregation_model
2 nil 01/01/1970 01:00 1601 [Variable]free_places.segregation_model
2 [action]initialize_places.segregation_model 01/01/1970 01:00 nil nil
2 nil 01/01/1970 01:00 1120 [Variable]number_of_people.segregation_model
2 [behavior]_internal_init49.people 01/01/1970 01:00 nil nil

Fig. 2. Example simulation log

Figure 2 presents sample entries from the simulation log. The column de-
tails are as follows: (1) "case id" field indicates the execution cycle for a single
experiment or the simulation replication for a batch experiment.; (2) "activity"
specifies the executed method in the format [<type>|<method name>.<agent
type>; (3) "time stamp" records the simulation clock; (4) "value" represents
the current value of the variable; and (5) "resource" provides information on the
variable that changed, formatted as [Variable|<variable name>.<agent type>.
For the activity type, in the context of the GAMA Modeling Language (GAML),
this can be either a behavior (referred to as a "reflex" in GAML) or an action.
Moreover, for log entries corresponding to methods, the ‘value’ and ‘resource’
fields are assigned ‘nil’, whereas for log entries corresponding to variables, the
‘activity’ field is assigned ‘nil’. The organization of the simulation log is based on
the minimum information required to describe an ‘event,” which, according to [2],
includes a case identifier, an activity name, and a timestamp. This information
is necessary to proceed to the next step of the methodology.
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3.2 Process Visualization

The subsequent step in the methodology focuses on generating process visualiza-
tions. This step begins with applying process discovery techniques to simulation
logs to derive a process model that accurately represents the observed process
behavior [1]. By treating simulation logs as event logs, the underlying simula-
tion processes are visualized as process maps (PM). These PMs are constructed
using the Directly-Follows Graph (DFG) algorithm, a widely supported process
discovery approach in process mining tools [1]. DFG represents processes as a
directed graph, where each node denotes an activity, and each directed edge
captures the sequence in which activities occur based on the order of entries in
the event log. Additional information captured includes transition likelihoods on
edges, computed based on the frequency of transitions, and node proportions,
which indicate the occurrence frequency of specific activities relative to the total
log entries.
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Fig. 3. Example PM (A) and its corresponding BPD (B)

To generate separate PMs for methods and variables, we first filtered the
logs and then conducted two distinct process discovery analyses. For the meth-
ods map, we retained only log entries where the activity field was not nil. Con-
versely, for the variables map, we retained only entries where the resource field
was not nil. Using the DFG algorithm, the filtered logs were processed sequen-
tially: for each pair of consecutive, distinct log entries, an edge was created,
while consecutive identical entries resulted in an incremented edge weight. For
example, as shown in Figure 2, after filtering out nil entries for the meth-
ods map, the log entry [action]description.segregation model is followed by
[action]initialize places.segregation model. Accordingly, Figure 3A displays an
edge connecting the nodes corresponding to these log entries. Additionally, be-
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cause the log file begins with [action]description.segregation model, an edge
from the START node to this entry was also created. Lastly, to enhance the
readability of the generated process map, we filtered out loops and retained only
edges with a weight of at least 0.05%.

In addition to the PM, we visualized the extracted process using Business
Process Model and Notation (BPMN)—the de facto standard for representing
business processes in a highly expressive graphical format [7]. BPMN provides
elements such as pools and lanes to organize processes according to the agents
that perform them. Using this notation, the resulting diagram features pools
that encompass all logged aspects of the simulation, while the lanes correspond
to each involved agent type. An example business process diagram (BPD) is pro-
vided in Figure 3B. In this example, the pool is named "schelling-act," represent-
ing the discovered process based on the action logs of the Schelling simulation,
while the lanes include a "people" lane—representing the sole agent type—and
a "segregation model" lane, which corresponds to the simulation environment.
This visualization aims to enhance the understanding of process interactions and
agent roles. The use of BPMN for communicating agent-based models (ABM)
to business users has also been explored in [17] and [18].

To achieve these transformations, we utilized the tools from the bupaR
ecosystem [12], a business process analysis toolkit for R, for process discov-
ery and visualization. The BPMN version of the PM was generated using the
BPMN 2.0 metamodel available in OpenBPMN [20], while Cardanit [8] was used
to generate a BPD that has been automatically layouted.

3.3 Narrative Generation

The final step in the methodology is narrative generation. The creation of this
artifact is motivated by the widely held notion that narratives enhance human
understanding by structuring events into narratives [4]. According to [15], a nar-
rative is defined as a means of explaining the sequences of events and interactions
within a system, integrating them into a coherent account to illustrate how pat-
terns emerge from those sequences. In our case, since the focus of our work is
on exposing the processes of a given ABM, we limit our definition of narrative
to textual descriptions that present the sequences of events and interactions in
a simulation model, describing its most important processes and variables.

To achieve this, we begin by automatically generating textual summaries
of the diagrams created in the previous step. These summaries serve as the
foundation for the narrative explanation and are produced with the context
length limit in mind—the maximum number of tokens that a large language
model (LLM) can process at one time. Next, we incorporate the LLM into the
methodology to generate narrative explanations based on these summaries. A
key requirement for producing a coherent narrative is that the method and
variable names in the ABM’s implementation code align with real-world terms
that accurately reflect what each represents, as this information is captured in
the simulation log and, in turn, reflected in the textual summaries. In this study,
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we employed the 7-billion-parameter language model developed by Mistral Al
[13] to generate the narrative explanation for the ABM.

Prompt Creation. To ensure that the LLM generates a coherent narrative,
we conducted prompt engineering to identify the most effective prompt. Since
the previous step produces four diagrams, resulting in four textual summaries,
we began with three user prompts. For the first prompt, we described the task
of creating narratives based on descriptions of the variables and processes of the
same simulation model that would be provided. We also specified the types of
descriptions expected: the first being a textual summary based on a directed
weighted graph, and the second based on a business process diagram. This ap-
proach ensured that the LLM had all the necessary information before generat-
ing a narrative, while also addressing the fact that this information could not be
combined into a single prompt due to the LLM’s context length limit. However,
after several tests, we noticed that the LLM struggled to retain the information
provided and generated from previous prompts, highlighting the limitation of
current LLMs in maintaining long-term coherence [4].

Action Log Variable Log Emphasis
PM BPD PM BPD
X X Actions executed in the simulation
and the connections between agent
actions
X X Agent variables that changed dur-

ing the simulation and interactions
between agents’ attributes
X X Transitions in the executed meth-
ods and agent variables
X X Structure of the simulation based
on agent attributes and behavior
Table 1. Combinations of textual summaries with corresponding narrative emphasis

Finally, we decided to consolidate all prompts into a single user prompt
for analyzing combinations of textual summaries (see Table 1). Simultaneously,
we switched from using a user prompt to a system prompt to optimize model
performance. Lastly, we appended the textual summaries to the prompt. Below
is the system prompt used to query the chosen LLM.

"You are provided with detailed descriptions of a complete simulation execu-
tion for an agent-based model. Your task is to: (1) Analyze interactions through
careful examination of the interactions between processes and agents within the
model; (2) Identify key transitions by highlighting crucial transitions and impor-
tant paths within the simulation; and (3) Develop a comprehensive narrative that
explains the overall purpose and mechanism of the agent-based model, the prob-
able applications of the model in real-world or theoretical contexts, and the key
insights and takeaways derived from the analysis of interactions and transitions.
Below are the descriptions: "
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4 Application

To demonstrate the methodology, we applied it to one of the toy and pedagogi-
cal models available on the GAMA platform—a simple susceptible-infected (SI)
model simulating the spread of flu in the city of Luneray, Normandy, France [22].
In this model, people agents move from building to building via the road net-
work, and infected individuals can transmit the flu to their neighboring agents.
According to the model’s description, five key modeling choices guide its imple-
mentation: (1) People move along the roads from building to building; (2) People
use the shortest path to travel between buildings; (3) All individuals move at a
constant speed; (4) Upon arriving at a building, people stay there for a specific
period of time; and (5) Infected individuals are never cured.

Results. To collect the simulation logs, we conducted a batch simulation con-
sisting of six runs, each comprising 600 cycles. Each run involved 2,147 people
agents and was executed with identical parameter settings, with log files recorded
at each cycle throughout the simulation. This approach ensures that the result-
ing process represents a general overview rather than the outcome of a single
simulation. In total, we obtained six log files, each averaging 150 MB. After ap-
plying automated process discovery, we generated a process map (PM) from the
action log files, as shown in Figure 4A, and the corresponding business process
diagram (BPD) is presented in Figure 4B.
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Fig. 4. (A) PM derived from simulation action logs; (B) Corresponding BPD of A; and
(C) Actual implementation code for the "people" agent type

Since there is only one main agent type in the simulation — the people
agent — the generated BPD displays two lanes (see Figure 4B). The first lane,
labeled model6 model, represents the simulation environment, corresponding
to the simulation model’s actual name ("model6") as defined in the implemen-
tation code. The second lane, labeled people, represents the only agent type
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present in the simulation. In the diagram, the START node connects to the
[behavior] internal init31 method in the model6 model lane, which is respon-
sible for instantiating the agents. Following instantiation, the next method is
[behavior|stay, indicating that the first action executed by the agents is "stay."
Moreover, the infect method is directly connected to the END node, as the log
file shows that the final recorded event before termination is an infect method. To
further clarify the interconnections depicted in the diagram, Figure 4C presents
the implementation code for the people agent type.

Afterward, textual summaries of the diagrams were automatically generated
and used to complete the prompt for querying the LLM to produce a narrative.
As discussed in the previous section, multiple narratives can be generated based
on the textual summaries. In this paper, we present the narrative derived from
the textual summaries based on the BPD and PM of the action logs, shown in
Figure 5.

Comprehensive Narrative

Overall Purpose and Mechanism

The agent-based model appears to simulate the behavior of individuals (people) in response to an infectious process. The simulation begins with the START
event, which triggers the _internal_init31 task executed by model6_model. This initialization leads directly to the stay state for the people actor.

From the stay state, individuals can transition to either the infect or move states. The infect state represents a scenario where an individual becomes infected
and has a high likelihood (0.8013) of staying in that state. However, there is also a low likelihood (0.1987) of moving from the infect state to the move state.

The move state indicates that individuals are mobile and can transition back to the infect state with a moderate likelihood (0.4369) or stay in the stay state
with a similar likelihood (0.4517). The stay state allows for transitions back to either the infect or move states, with moderate and low likelihoods respectively.

Probable Applications
This model can be applied in various I- Id and ical contexts:

« Epidemiology : Simulating the spread of infecti i within a
« Urban Planning : Understanding how mobility patterns affect disease transmission.
« Public Health Policy : Evaluating the effectiveness of interventions that encourage staying at home versus moving around.

Key Insights and Takeaways
1.Initialization Phase : The model starts with an initialization phase (_internal_init31) that sets individuals to a stay state, suggesting a controlled or
quarantined starting condition.
2.Infection Dynamics : The high likelihood of staying in the infect state indicates that once infected, individuals are likely to remain so for some time.
3. Mobility Impact : The moderate transition probabilities between move, stay, and infect states highlight the complex interplay between mobility and
infection risk.
4.End State : The absence of a direct transition from infect to END (weight = 0.0) suggests that the model does not account for recovery or removal from
the infectious state, which could be a limitation.
Overall, this agent-based model provit a k for und ing how individual and transitions between states can influence the spread of
an infection within a population. The insights gained can inform strategies to mitigate disease transmission by adjusting mobility patterns and intervention
measures.

Fig. 5. Generated narrative for the Luneray Flu model

Verification. To verify the consistency of the visualized processes, we manually
compared the PM with the implementation code, as shown in Figure 4C. Since
the GAMA platform typically executes an agent’s code in a procedural manner,
we observe that the first action for most agents is the "stay" reflex. However,
if the condition target = nil is not met, the agent proceeds to execute the next
reflex. The subsequent reflexes are the "move" reflex, followed by the "infect"
reflex, provided that the conditions for each reflex are satisfied. As the generated
diagram represents the entire simulation execution, internal connections between
the various actions are observed. For instance, one agent might end its cycle with
the "move" reflex, while another agent of the same type (or species) may begin
its next cycle with the "infect" reflex. These internal connections reflect the
different processes that run concurrently during the simulation. However, since
"aspect" functions in the GAMA platform do not represent an agent’s behavior
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but rather describe how the agent is displayed, they are neither reflected in the
visualization nor stored in the simulation log.

To evaluate the integrity of the narrative, we compared the differences be-
tween the source text and the LLM-generated text using Jaccard Similarity
measure [19]. This metric has previously been used in [4] to evaluate the narra-
tive generation capabilities of LLMs. For the Jaccard coeflicient, we determined
a 53.60% similarity, indicating that the input and generated narratives share
approximately half of their elements. This result is ideal, as we aim for the nar-
rative not only to provide simulation explanations but also to make inferences
that provide insights into the simulation.

2,200

2,000
1,800

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
time

& stay - move & infect

Fig. 6. Distribution of the people agents executing specific methods over time

To assess the fidelity of the generated narrative, we examined whether its
insights aligned with simulation observations. According to the narrative, during
the initialization phase, people agents are more likely to execute the "stay"
method simultaneously. This observation is supported by the visualizations from
a single execution of the Luneray Flu model, as shown in Figure 6. At the
beginning of the simulation, all people agents execute the "stay" method, and
this behavior gradually declines until around the 30th cycle, as indicated by the
green trend. Regarding infection dynamics, the narrative suggests that once a
people agent becomes infected, it is likely to remain infected. This trend is also
evident in the simulation results—Figure 6 shows that once an agent executes
the infect method, it continues to do so in subsequent cycles. Additionally, the
narrative correctly identifies that the model does not account for recovery or
removal from the infectious state. This aligns with the modeling assumption
stated during implementation: "Infected individuals are never cured." These
observations confirm that the generated narrative provides valid insights, even
though the input data does not explicitly specify these trends and constraints.

5 Discussion

The example provided in the previous section illustrates how the methodol-
ogy—using simulation logs to automatically generate ABM narratives—can of-
fer a more transparent and accessible description of an agent-based model. This
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methodology produces three key artifacts: process map (PM), business process
diagrams (BPD), and simulation narratives.

PMs provide an overview of how processes are executed during simulation
by revealing critical methods and variables. Although clutter and information
overload can be expected in visualizations of large, complex models, this issue can
be mitigated by filtering nodes to include only those with weights within specific
thresholds. Similarly, BPDs, derived from PMs, provide a structured view of
agent interactions and relationships, aligning with the agent-based modeling
paradigm. In addition to their role as standalone visual artifacts, BPDs and
PMs are crucial for creating an effective prompt for the LLM. The structured
and filtered representations provided by the PMs and BPDs distill the essential
elements of the simulation—such as event sequences, critical transitions, and
inter-agent interactions—into a concise and context-rich format. The generated
narrative, which is grounded in both the implementation code and the simulation
execution, complements these visualizations by offering an accessible description
of the model. It helps viewers interpret the visualizations when they become
overwhelming, thus ensuring a comprehensive understanding of the simulation.
Together, the visualizations and the narrative form a robust foundation for a
detailed description of the agent-based model, with the fully automated process
significantly minimizing the effort required to produce these artifacts.

These artifacts enhance the understanding of simulation models across di-
verse audiences by serving as communication tools for stakeholders, comple-
mentary documentation for modelers, and structured narratives for researchers.
While currently limited to representing agent workflows based on modified vari-
ables and executed functions, future improvements—such as logging critical in-
put parameters and linking them to observable outputs—could further refine
their utility. Nonetheless, the integration of BPDs, PMs, and generated nar-
ratives significantly contributes to better model communication by providing
a structured overview of processes, inter-agent interactions, and key variables,
thereby enhancing model’s transparency and accessibility.
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