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Abstract

Building automatic extraction models for vi-
sually rich documents like invoices, receipts,
bills, tax forms, etc. has received significant at-
tention lately. A key bottleneck in developing
extraction models for new document types is
the cost of acquiring the several thousand high-
quality labeled documents that are needed to
train a model with acceptable accuracy. In this
paper, we propose selective labeling as a so-
lution to this problem. The key insight is to
simplify the labeling task to provide “yes/no”
labels for candidate extractions predicted by a
model trained on partially labeled documents.
We combine this with a custom active learning
strategy to find the predictions that the model
is most uncertain about. We show through ex-
periments on document types drawn from 3
different domains that selective labeling can re-
duce the cost of acquiring labeled data by 10×
with a negligible loss in accuracy.

1 Introduction

Visually rich documents such as invoices, receipts,
paystubs, insurance statements, tax forms, etc. are
pervasive in business workflows. The tedious and
error-prone nature of these workflows has led to
much recent research into machine learning meth-
ods for automatically extracting structured infor-
mation from such documents (Lee et al., 2022; Gar-
ncarek et al., 2021; Xu et al., 2021; Tata et al.,
2021; Wu et al., 2018; Sarkhel and Nandi, 2019).
Given a target document type with an associated
set of fields of interest, as well as a set of human-
annotated training documents, these systems learn
to automatically extract the values for these fields
from documents with unseen layouts.

A critical hurdle in the development of high-
quality extraction systems is the large cost of ac-
quiring and annotating training documents belong-
ing to the target types. The human annotators often
require training not only on the use of the annota-
tion tools but also on the definitions and semantics

of the target document type. The annotation task
can be tedious and cognitively taxing, requiring
the annotator to identify and draw bounding boxes
around dozens of target fields in each document.

This data efficiency requirement has not gone un-
noticed in the research literature on this topic. How-
ever, even with model pre-training (Xu et al., 2020,
2021), transfer learning from an out-of-domain la-
beled corpus (Torrey and Shavlik, 2010; Nguyen
et al., 2019), and data-programming (Ratner et al.,
2017; Zhang et al., 2022), empirical evidence sug-
gests that performing well on a new target docu-
ment type like procurement, banking, insurance,
mortgage, etc. still requires thousands of anno-
tated documents, amounting to hundreds of hours
of human labor (Zhang, 2021).

The cost of acquiring high quality labeled data
for hundreds of document types is prohibitively
expensive and is currently a key bottleneck. We
could apply active learning strategies to select a few
but informative documents for human review (Set-
tles, 2009), however the cost-reducing effect of this
approach is limited, as it requires annotating the
span in every selected document for every field.
Many of these annotations are repetitive, and of-
ten not very informative if a model can already
extract those fields easily. In fact, our initial ex-
periments with a document-level active learning
approach yielded modest results that cut down the
number of documents required to get to the same
level of quality as random selection by approxi-
mately 20%. In this paper, we propose a technique
called selective labeling that reduces this cost by
10×. The key insight is to combine two ideas: First,
we redefine and simplify the task performed by the
human annotators – rather than labeling every tar-
get field in every document by drawing bounding
boxes around their values, we ask them to simply
verify whether a proposed bounding box is cor-
rect. This binary “yes/no” annotation task is faster
and imposes a lighter cognitive burden on the an-



Figure 1: A classic annotation task: even labeling 9
fields in this toy invoice imposes a heavy cognitive bur-
den on the annotator, while real-world documents are
significantly more complicated (Red). A “yes/no” an-
notation task: presenting a proposed span and asking
the annotator to accept or reject the label is simpler,
quicker, and less prone to errors (Green).

notator (Boim et al., 2012; Blog, 2020; Ganchev
et al., 2007; Skeppstedt et al., 2017). Second, we
adapt existing active learning strategies to select
the examples (i.e., candidate extraction spans) that
the model is most uncertain in each round to anno-
tate. In other words, we consider active-learning at
the (document, field)-pair granularity rather than
at the document level granularity and choosing a
modeling approach that can easily deal with the
complexity resulting from the partially labeled doc-
uments this approach produces.

We interleave rounds of such human annotation
with training a model that is capable of consuming
partially labeled documents. In combination, our
proposed approach dramatically improves the effi-
ciency of the annotation workflow for this extrac-
tion task. In fact, through experiments on document
types drawn from multiple domains, we show that
selective labeling allows us to build models with
10× lower annotation cost while achieving nearly
the same accuracy as a model trained on several
thousand labeled documents. Note that our goal in
this paper is not to advance the state-of-the-art in
active learning, nor to propose a more data-efficient
model for extraction from layout-heavy documents.
Our main contribution is that we demonstrate that
a novel combination of an existing active-learning
strategy with an existing extraction model can be

used to dramatically cut down the primary bottle-
neck in developing extraction models for visually
rich documents.

2 Background

We first describe how a typical annotation task is
set up to acquire labeled documents. We point out
two major deficiencies with this approach before
outlining an alternative that takes advantage of the
characteristics of this domain. We then describe
the assumptions underlying our approach.

2.1 Annotation Workflow

2.1.1 Classic Annotation Workflow
Given a document type for which we want to learn
an extraction model, we begin by listing out the
fields that we want to extract, along with human-
readable descriptions, viz., “labeling instructions”.
We provide these instructions to human annotators
and present them with various document images
to label. The classic annotation task is to draw a
bounding box around each instance of any of the
target fields and label it with the corresponding
field name (Figure 1 Red Remarks). Typical docu-
ment types like paystubs have dozens of fields, and
each document may contain multiple pages.

The high cognitive burden of the classic annota-
tion workflow leads to two major drawbacks. First,
it makes training data collection extremely expen-
sive. In one annotation task for paystub-like docu-
ments with 25 target fields, the average time to label
each document was about 6 minutes. Scaling this
to hundreds of document types with thousands of
documents each would be prohibitively expensive.
Second, the resulting annotation quality is often
quite poor. We have observed systematic errors
such as missing labels for fields that occur infre-
quently in the documents or for instances that are in
the bottom third of the page. To obtain acceptable
training and test data quality, each document must
be labeled multiple times, further exacerbating the
annotation cost issue.

2.1.2 Proposed Annotation Workflow
We propose the following alternative to the classic
annotation workflow:

1. We speed up labeling throughput by simpli-
fying the task: rather than drawing bound-
ing boxes, we ask annotators to accept or re-
ject a candidate extraction. Figure 1 (Green



Remarks) illustrates how much easier this
“yes/no” task is compared to the classic one.

2. We further cut down annotation cost by only
labeling a subset of documents and only a
subset of fields in each document.

3. We use a model trained on partially labeled
documents to propose the candidate extraction
spans for labeling. This allows us to interleave
model training and labeling so that the model
keeps improving as more labels are collected.

4. We use a customized active learning strat-
egy to identify the most useful labels to col-
lect, viz., the candidate extraction spans about
which the model is most uncertain. In succes-
sive labeling rounds, we focus our labeling
budget on the fields that the model has not
yet learned to extract well, such as the more
infrequent ones.

In Section 5, we show empirical evidence that
this improved workflow allows us to get to nearly
the same quality as a model trained on 10k docs
by spending an order-of-magnitude less on data-
labeling. Note that naively switching the labeling
task to the “yes/no” approach does not cut down the
labeling cost – if we were to highlight every span
that might potentially be an amount and present an
“Is this the tax_amount?” question, with the dozens
of numbers that are typically present in an invoice,
this workflow will be much more expensive than
the classic one. A key insight we contribute is that
a model trained on a modest amount of data can
be used to determine a highly effective subset of
“yes/no” questions to ask.

2.2 Assumptions

We make the following four assumptions about the
problem setting:

1. We assume access to a pool of unlabeled doc-
uments. This is a natural assumption in any
work on managing cost of acquiring labeled
training data.

2. We assume the extraction model can be
trained on partially labeled documents.

3. We assume the model can generate candidate
spans for each field and a measure of un-
certainty – this is used to decide the set of
“yes/no” questions to present to the annotator.

Figure 2: Architecture of the candidate generator and
scorer of our document extraction model. The scoring
is done using a neural network model trained as a bi-
nary classifier.

4. The analysis in this paper uses empirical
measurements for labeling tasks on docu-
ments with roughly 25 fields to model the
costs of the traditional approach (6 minutes
per document, details in Appendix) and the
proposed approach (10 seconds per “yes/no”
question (Blog, 2020)). For more complex
documents the difference in the two costs may
be significantly higher.

Throughout this work, we use an extraction sys-
tem similar to the architecture described in (Ma-
jumder et al., 2020). As shown in Figure 2, this
architecture consists of two stages: candidate gener-
ation and candidate classification. In the first stage,
we generate candidates for each field according to
the type associated with that field. For example, the
candidates generated for the date of invoice field
would be the set of all dates in that invoice. The can-
didate generators for field types like dates, prices,
numbers, addresses, etc. are built using off-the-
shelf, domain agnostic, high-recall text annotation
libraries. The recall of candidate generation varies
across fields, e.g. high in dates and prices while
relatively low in addresses and names. Having a
candidate generator with low recall indeed limits
the recall of the final extractions for that field. In
the second stage, we score each candidate’s like-
lihood of being the correct extraction span for the
document and field it belongs to. This scoring is
done using a neural network model trained as a bi-
nary classifier. The highest-scoring candidate for a
given document and field is predicted as the extrac-
tion output for the document and field if it exceeds
a certain field-specific threshold.



Figure 3: The model training pipeline starts by inital
training (blue) the binary classifier using the small clas-
sically labeled dataset. We then selectively label (pur-
ple) a fixed number of candidates according to the bud-
get, which are then used to re-train (orange) the model
together with the initial dataset.

The ability to train on partially labeled docu-
ments is trivially true for this modeling approach
since it employs a binary classifier trained on the la-
beled candidates. This should be relatively straight-
forward for sequence labeling approaches, such as
(Xu et al., 2021), as well. Identifying a potential
span in the document to present as a “yes/no” ques-
tion to an annotator is an exercise in ranking the
candidates for each field. We expect that sequence
labeling approaches can be adapted to satisfy this
requirement, e.g., by using beam search to decode
the top few sequence labels. However, this is likely
more complex than the aforementioned approach,
and we leave this as an exercise for future work.

3 Selective Labeling Methodology

We first provide an overview of the selective la-
beling framework before describing various uncer-
tainty measures and ways to deal with the unique
characteristics of this setting, such as varying diffi-
culty for different fields.

3.1 Overview

Figure 3 provides a visual overview of our selec-
tive labeling workflow. We assume a scenario in
which a corpus of several thousand unlabeled docu-
ments Ud belonging to the target document type is
available and we can request annotations from a la-
beler for every unlabeled document di ∈ Ud which
consists of a set of candidates {cdi0 , cdi1 , cdi2 , ..., cdin }.
We begin by fully labeling a small randomly sam-
pled subset of documents Sd ⊆ Ud, say 50-250
documents, using the classic annotation workflow.
We learn an initial document extraction model
f(x|Sc), where Sc represents the candidate set

contained in Sd and we mark all the remaining
unlabeled candidates in Ud\Sd as U c. Our label-
ing workflow proceeds in rounds. In each round
j, the model is used to select candidates Sc

j from
U c and have them reviewed by human annotators.
The annotators answer a “yes/no” question either
accepting or rejecting this proposed label. As a
result, Sc = Sc ∪ Sc

j and U c = U c\Sc
j , meaning

the newly labeled examples are merged into the
training set and removed from the unlabeled set.
The model is retrained on Sc in each round and we
repeat this iterative labeling-and-training procedure
until we exhaust our annotation budget or reach our
target F1 score.

3.2 Measuring Uncertainty

We select the candidates that the model is most un-
certain about. In this work, we explored two met-
rics to quantify a model’s prediction uncertainty.
Score distance. This method assigns a metric to
each candidate based on the distance that the score
is from some threshold (Li and Sethi, 2006). More
formally, the uncertainty is 1−|score−threshold|.
For example, if the threshold is 0.5, this sug-
gests that the model is most uncertain of its pre-
dictions of scores close to 0.5, in either direc-
tion. This approach can also be interpreted as an
entropy-based uncertainty method, where we find
an optimal candidate x∗ so that x∗ = arg max

x
−

ΣiP (yi|x)log(P (yi|x)). In our binary classifica-
tion setting, yi = {0, 1} and candidates with scores
closer to 0.5 results in larger entropy.
Score variance. This method performs inference
on a candidate multiple times with the dropout
layer enabled and assigns the uncertainty metric as
the variance of the scores (Gal and Ghahramani,
2016; Kirsch et al., 2019; Ostapuk et al., 2019). An
alternative method trains multiple models indepen-
dently from one another and assigns the uncertainty
metric as the variance of the scores across all mod-
els (Seung et al., 1992). Note that empirically, we
observed this yields near identical results as the
dropout-based approach, so we only present find-
ings for the latter.

3.2.1 Score Calibration
Our model’s predicted scores tend to be un-
calibrated (as is very typical of neural networks
(Guo et al., 2017)), particularly in initial rounds and
for infrequent fields due to training data scarcity.
We calibrate scores in such a way that picking



a candidate with a calibrated score of, say, 0.6
yields a 60% probability that it has a positive la-
bel (Guo et al., 2017). Without loss of general-
ity, we use a modified version of histogram bin-
ning (Zadrozny and Elkan, 2001) and IsoRegC
(Zadrozny and Elkan, 2002) to accommodate the
highly non-uniform distribution of scores.

By calibrating the scores, threshold selection
becomes much more intuitive for the score-based
uncertainty metric. For example, if we specify a
threshold of 0.5, we expect that to mean we will
select candidates for which the model has a 50%
chance of classifying correctly across all fields.

3.3 Sampling Candidates

Once the uncertainty metric is calculated for each
candidate in the unlabeled set, the next step is to se-
lect a subset of those candidates for human review.
The most obvious method is to select the top-k can-
didates, thereby selecting the candidates for which
the model is most uncertain. In practice, this can
lead to sub-optimal results when the model finds
many examples for which it is uncertain but may
in fact be very similar to one another. The most
common approach to break out of this trap is to
introduce some notion of diversity in the sampling
methodology (Gao et al., 2020; Ishii et al., 2002).
Combining Top-k and Random Sampling. A
common method is to reallocate the k budget in
each round so that a portion of that budget goes
towards the top candidates by uncertainty (ensur-
ing we get labels for the most uncertain candidates)
and the remaining budget goes towards a random
sample of candidates from the unlabeled set (en-
suring that some amount of diversity is included in
each round). We take a simple approach is to se-
lect the top-k′ candidates by the uncertainty metric,
where k′ < k, and then randomly sample k − k′

candidates from the remaining unlabeled dataset.
Capping Candidates for Each Document and
Field. An important observation we make about
the extraction problem is the following: While a
given field typically has multiple candidates in ev-
ery document, there are usually few positives per
document compared to the number of negatives.
For example, there are usually many dates in an
invoice, and typically only one of them is the date
of invoice. The uncertainty metrics we defined in
Section 3.2 do not take into account this relation-
ship between labels. We leverage this intuition to
increase sample diversity by capping the number of

Domain # Fields Splits # Docs # Candidates

Supply Chain 18

Initial-50 50 11.8K
Initial-100 100 24.5K
Initial-250 250 58.7K

Test 5,019 1.2M
Hidden-label 10,000 2.4M

Retail Finance 11
Initial-100 100 76.0K

Test 849 1.2M
Hidden-label 4,000 5.6M

Tax Forms 24
Initial-100 100 13.4K

Test 1,498 1.0M
Hidden-label 7,500 5.1M

Table 1: Statistics of datasets in three domains.

candidates selected from the same document and
field. After ordering the candidates by the chosen
uncertainty metric, if we were to simply select the
top-k candidates, we might end up selecting too
many candidates for the same document and field.
Instead, we select at most m candidates for each
document and field, m being a tunable hyperpa-
rameter we can adjust on a per-field basis. This
ensures that we spread the annotation budget over
more documents and fields.

3.4 Automatically Inferring Negatives

After candidates have been selected and labeled,
we merge the newly-labeled candidates into our
training set. At this point, there is another oppor-
tunity to draw additional value from the unlabeled
corpus by utilizing the structure of the extraction
problem, in particular, for fields that are defined in
the domain’s schema to only have a single value per
document (such as a document identifier, statement
date, amount due, etc.). The key insight here is
that when a positive label is revealed via selective
labeling, we can infer negative labels for some re-
maining candidates in the document. If the schema
indicates that a particular field is non-repeating,
we can automatically infer that all of that field’s
remaining candidates in the document are negative.

4 Datasets and Setups

To evaluate the performance of our proposed meth-
ods, we use datasets belonging to three different
domains, summarized in Table 1. The number of
fields varies across domains, e.g., the Tax Forms
dataset has more than twice the fields as the Retail
Finance dataset. We use hidden-label datasets in-
stead of real unlabeled datasets and simulate the la-
beling procedure by revealing the labels of the can-
didates from the hidden-label datasets. We leverage
Average E2E Max F1 to evaluate the methods. Fur-
ther explanations and experimental setups can be
found in the Appendix.



Figure 4: Best performing Selective Labeling as com-
pared to Initial which is trained on just 100 documents
and Full Labeling in which the hidden-label dataset
(used in Selective Labeling) is fully used in training.

5 Results

In this section, we provide evidence to prove that
selective labeling reduces the annotation cost by
10X in different domains and analysis to support
the design choices including number of selection
rounds, selection and sampling strategies.

5.1 Best Performance on Different Domains
We train three initial models on a randomly sam-
pled and labeled set of 100 documents for each
domain. For example, as shown in Figure 4, the
initial model for the Supply Chain domain achieves
0.547 F1 on the test dataset. We fine-tune the ini-
tial model on a fully labeled 10k document dataset
(i.e., the hidden-label set from Table 1, in which for
the purposes of this analysis we use its true labels),
resulting in an F1 score of 0.705. The performance
gap between these two models is thus 0.158.

Starting from the same initial model, we apply
our best selective labeling strategy (which we dis-
cuss in the following sections) to reveal the labels
from a subset of candidates that comprises only
10% of the annotation cost of fully labeling the
hidden-label dataset. For the Supply Chain do-
main, this achieves an F1 score of 0.687, which
closes the performance gap by 89%. Similarly, we
close the gap by 88% and 92% for the Retail Fi-
nance and Tax Forms domains, respectively. This
demonstrates that our method can dramatically de-
crease the annotation cost without sacrificing much
performance and can be generalized well to other
document types.

5.2 Selection Metrics
In Figure 5a we plot per-round performance of
two selection metrics in the Supply Chain domain
given the same set of documents and annotation

budget (i.e, 10% cost) and using the top-k sampling
methodology. We observe that not only is com-
puting score distances as the uncertainty indicator
much more computationally efficient than variance-
based metrics (10× faster), but it also significantly
outperforms the latter as well. As we exhaust the
budget over time, the advantage of score distance
becomes more obvious.

5.3 Sampling Methodology
Figure 5b compares performance across different
sampling methodologies. As one might expect,
pure random sampling is far worse than any other
approach – we believe the initial model is confident
in predicting a large quantity of candidates (espe-
cially the negatives), and randomly sampling from
them does not obtain much useful knowledge.

The top-k strategies produce much more im-
pressive results. Furthermore, we observe in later
rounds that injecting some diversity via random-
ness achieves slightly better performance than the
vanilla top-k approach. We believe this mimics the
aggregation of exploitation (top-k) and exploration
(random) processes, proven to be beneficial in rein-
forcement learning applications (Ishii et al., 2002).
This also confirms our suspicion that top-k alone
can lead us into selecting many uncertain examples
which are in fact very similar to one another.

5.4 Multi-round Setting
In Figure 5c, we compare 5 learning curves, each
of which denotes selecting the same number of
candidates in total (10% annotation cost) over a
different number of rounds. For example, the 16-
round experiment selects 1

16 of the total budget in
each round, while the 1-round experiment utilizes
the entire budget in a single round.

As we increase the total number of rounds, the
model tends to yield better extraction performance
until it peaks at about 12 rounds. This finer-grained
strategy usually performs better than coarser ones
but the gains become marginal at a higher number
of rounds. Interestingly, we find that using up just
half the budget in the first 8 rounds of a 16-round
experiment achieves slightly better performance
than exhausting the entire budget in the 1-round
experiment. This comparison underscores the im-
portance of employing a multi-round approach.

5.5 Ablation Study
Table 2 presents an ablation study to understand
the impact of different diversity strategies. SL rep-



(a) (b) (c)

Figure 5: Performance comparisons between (a) selection metrics, (b) sampling approaches, and (c) the rate at
which we exhaust the budget through different number of rounds of selective labeling. The x-axis denotes the
percentage of the total selective labeling budget consumed. The results are about the Supply Chain dataset.

Models Avg E2E Max F1 (std.) ∆

SL 0.671 (0.006) -
SL+CS 0.679 (0.005) +1.2%
SL+CC 0.675 (0.005) +0.6%
SL+AIN 0.683 (0.009) +1.8%
SL+CS+CC+AIN 0.687 (0.005) +2.1%

Table 2: Ablation Study. SL denotes selective labeling
utilizing the top-k sampling and score distance metric.
CS, CC, and AIN represent calibrating scores, capping
candidates and automatically inferring negatives.

resents a 12-round selective labeling method using
top-k sampling on the score distance metric. We
separately add one feature at a time to test the effec-
tiveness of calibrating scores (CS), automatically
inferring negatives (AIN) and capping candidates
(CC). Results show that every feature improves
the model, but we achieve the largest improvement
when applying all features in SL+CS+CC+AIN.
It is reasonable to conclude that increasing diversity
intelligently helps us select more useful candidates
than relying on the uncertainty metric alone.

5.6 Initial Labeled Dataset Size
Given the dependence of the selective labeling
method on an initially labeled small dataset, it is
imperative that we evaluate how the approach is
affected by the number of documents in this initial
dataset. We experiment with initial datasets of 50,
100, and 250 documents in the Supply Chain do-
main using our best selective labeling strategy and
a budget equivalent of 10% cost of annotating the
“unlabeled” dataset.

Figure 6 indicates that the size of the initial
dataset greatly impacts the performance of the
model trained solely on those initial training sets,
but has starkly less of an impact once we apply
selective labeling. We close the performance gap

Figure 6: Comparison among three initial dataset sizes
in the Supply Chain domain. We present the same three
approaches as in Figure 4: Initial is trained on the ini-
tial dataset alone, Selective Labeling selects the equiv-
alent of 10% annotation cost in candidates, and Full
Labeling fine-tunes from the initial model on the full
hidden-label data.

by 77%, 89%, and 87%, for initial dataset sizes of
50, 100, and 250, respectively. We can conclude
that selective labeling is capable of finding use-
ful candidates to significantly improve the model
performance even at a cost of only 10% of the an-
notation budget. And it is not surprising that the
selective labeling gains may suffer when the initial
dataset is too small (e.g. 50).

Note that the model can extrapolate to fields that
are not present in the initial set of documents. For
each document type, a schema is defined to include
all types of fields that users may be interested in.
The model can generate candidates no matter if the
field exists in the initial document set or not, as
long as the field is included in the schema.

5.7 Per-field Extraction Analysis
We examine the extraction performances of eight
fields from the Supplier Chain document type in



Figure 7: Per-field comparison among Initial, Selective Labeling and Full Labeling. Initial is trained on the initial
dataset alone, Selective Labeling selects the equivalent of 10% annotation cost in candidates, and Full Labeling
fine-tunes from the initial model on the full hidden-label data.

Figure 7 (initial dataset size is 100) to better un-
derstand where selective labeling works well. The
recall of candidate generation for these fields varies
from 30% to 99% showing that selective labeling
works even when candidate generation is not per-
fect. We observe that the big gap between Initial
and Full Labeling is almost completely closed by
selective labeling in fields such as date_of_delivery
and customer_name. Unsurprisingly, the algorithm
results in strong improvements for fields where
the initial model hasn’t seen enough examples.
For frequent fields such as date_invoiced and in-
voice_number, the initial model performs well, and
there is not much room for improvement. Conse-
quently, few candidates are selected and the result-
ing Selective Labeling model remains competitive
on these fields.

6 Related Work
Form Extraction. There have been numerous re-
cent studies on information extraction for form-like
documents. Existing approaches either individually
categorize every text span in the document (Ma-
jumder et al., 2020; Zhang et al., 2021) or formulate
the task into a sequence modeling problem (Aggar-
wal et al., 2020; Lee et al., 2022; Garncarek et al.,
2021; Xu et al., 2021) and encode texts, layouts,
and visual patterns into feature space. While these
approaches produce state-of-the-art extraction sys-
tems, they require large amounts of labeled training
data to do so. We do not propose a new model archi-
tecture but instead, focus on the cost of acquiring
labeled data for such extraction models.
Active Learning. We refer to (Settles, 2009; Fu
et al., 2013; Ren et al., 2021) for an extensive re-
view of the literature. Two popular approaches for
requesting annotation are uncertainty-based selec-
tion (Ko et al., 1995; Culotta and McCallum, 2005)
and committee-based selection (Gal and Ghahra-

mani, 2016; Kirsch et al., 2019; Bengar et al., 2021).
Researchers seek to increase the diversity by forc-
ing the selection to cover a more representative set
of examples (Yang et al., 2017; Yin et al., 2017;
Sener and Savarese, 2018) or incorporating discrim-
inative learning (Gissin and Shalev-Shwartz, 2019).
Researchers have studied combining active learn-
ing with deep learning. Most of the advanced strate-
gies such as Coreset (Sener and Savarese, 2018),
Dropout (Gal and Ghahramani, 2016), Discrimina-
tive Active Learning (Gissin and Shalev-Shwartz,
2019). (Zhang et al., 2017; Prabhu et al., 2019; Sid-
dhant and Lipton, 2018; Zhang and Plank, 2021;
Yuan et al., 2020; Ash et al., 2020; Yin et al., 2017;
Shui et al., 2020) studies deep active learning on
various NLP tasks. While we don’t focus on invent-
ing new active learning methods, we are the first to
customize existing methods to reduce annotation
costs in form-like document extraction.

7 Conclusion and Future Work
We propose selective labeling that dramatically
cuts down the primary dataset annotation bottle-
neck in developing extraction models for visually
rich documents. There are several future avenues
for investigation. First, we simplified the annota-
tion task to a binary “yes/no” question. Another
approach is to allow the annotator to either accept
the candidate annotation, or correct it – either by
deleting it or by adjusting the bounding box. For
certain text fields it can be valuable to adjust spans
to include/exclude details like salutations from a
name field (“Mr.”, “Dr.” etc.) or names from an
address. The cost model for such an option is
more complex than “yes/no”, but can be used to
build on the results in this paper. Second, many
recent approaches (Xu et al., 2021; Lee et al., 2022)
treat this as a sequence-labeling problem and use
a layout-aware language model. Adapting selec-



tive labeling to a sequence-labeling model requires
tackling several problems: a) getting uncertainty
estimates for a given span from a sequence labeling
model, b) training a sequence labeling model us-
ing partially labeled documents, and c) optionally,
eschewing candidate-generators entirely and gen-
erating both candidate-spans and their uncertainty
estimates form the sequence labeling model. We
hope to explore the multiple ways to tackle each of
these problems in future work.

8 Limitations

Within the scope of this paper, the proposed method
is limited to utilizing combinations of candidate
generators and scorers. As explained in Section 7,
many recent attractive approaches treat document
extraction as a sequence labeling problem using a
layout-aware language model. This model family
is attractive because it does not require a candidate
generator. However, constructing selective labeling
on sequence labeling models is not a simple task,
as we must figure out how to obtain an uncertainty
estimate for each span from a sequence labeling
model, how to define spans without a candidate
generator, and how to train the model with partially
labeled documents, etc.

We understand the limitation of the availability
of datasets. We are currently unable to open-source
them since the datasets contain proprietary informa-
tion (such as vendors and suppliers) that prevent us
from sharing publicly. We use internal datasets in
this work because they reflect the real-world needs
of our institution and its customers better than pub-
lic datasets. Compared to the few available public
datasets, such as FUNSD (Jaume et al., 2019) and
CORD (Park et al., 2019), our internal datasets
are reflective of real-world data set sizes, which
are appropriate for model training and selective
labeling, and have more realistic document com-
plexity (considering the rich schema, layout-rich
documents, diverse templates, high-quality OCR
results and token level annotation). Additionally,
we list all important information needed to repro-
duce the methods in the Appendix, including the
annotation strategies, model dependencies, and se-
lected hyperparameters.
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A Appendix

A.1 Experimental Setups
To explore how the size of the initial labeled dataset
impacts our methods, we create three initial splits
for the Supply Chain domain with 50, 100, and 250
documents. In all of our experiments, we split the
train set into 80-20 training-validation sets. The
validation set is used to pick the best model by
AUC-ROC, and we use the test split to report the
performance metrics. We train using the Rectified
Adam (Liu et al., 2020) optimizer and measure
AUC-ROC on the validation set to decide whether
to trigger early stopping after 3 epochs of no im-
provement. The binary classifier has 330k param-
eters and each set of experiments trained within
4 hours on a NVIDIA Tesla P100 GPU. We ap-
ply grid search to tune the hyperparameters. The
most performant hyperparameter values are listed
in Table 3.

A.2 Evaluation Metrics
We evaluate our methods by measuring the over-
all extraction system’s performance on the test set
using the maximum F1 averaged across all fields,
denoted as “Average E2E Max F1” in (Majumder
et al., 2020). Here we define the “Average E2E
Max F1” metric in sufficient detail. “F1” is the
harmonic mean of precision and recall. By varying
the threshold at which we operate the binary field
classifier, we vary precision and recall, and thus the
F1. “Maximum F1” simply refers to the highest
F1 that we can achieve with a trained field classi-
fier – put another way, this is the point along the
precision-recall curve at which the F1 score is high-
est. We take the “maximum F1” of each field in the
schema and average them to compute the “Average
E2E Max F1”, thereby providing a single metric
by which we can evaluate overall performance. We
optimize for macro F1 which weighs each field
equally irrespective of frequency since macro F1
is the typical goal for most extraction applications.
Every reported F1 score is further averaged over
10 independent runs to account for variability. All
F1 scores are generated by comparing the extrac-
tions with the ground truth. If a field has a poor
candidate generator, its final recall can obviously
not exceed the recall of the candidate generator.

A.3 Annotation Budgets
We acquired stats from our team of annotators on
how long the classic annotation takes for various

Hyperparameter Range explored Best performer
learning rate 0.0001-0.1 0.001
dropout rate 0.1-0.5 0.1
batch size {64, 128, 256} 128
top-k′ uncertain candidates 0.7-1.0k 0.9k
m candidates each field doc 1-3 1

Table 3: Hyperparameter selection.

document types. We found it averaged 6-8 min for
an annotator to label a single-page document with
fewer than 20 fields while it averaged 10-30 min
for an annotator to label a multi-page document
with 25 fields. So we picked a very conservative
value (6 min) as the estimated time of labeling one
document in this paper. We employ two annotation
methods: the classic annotation method, which is
always applied to the initial training set, and the
proposed “yes/no” method, which is applied during
the selective labeling procedure on the unlabeled
dataset. The annotation budget is computed based
on the time needed to annotate a full document
and to answer a yes/no question. Targeting 10% of
the cost to fully label the unlabeled dataset via the
classic annotation method, translates to selectively
labeling 36k, 14k, and 27k “yes/no” questions for
Supply Chain, Retail Finance, and Tax Forms do-
mains according to the estimation of same amount
of annotation hours. If we bootstrap the model
using the classic annotation workflow on a small
number of documents, we simply subtract that cost
from the budget for selective annotation.

A.4 Imperfect Candidate Generation

We believe that the problem of imperfect candi-
date generation requires more discussion. We build
our Selective Labeling framework on the model
architecture introduced in (Majumder et al., 2020;
Tata et al., 2021) where they have already demon-
strated that high-recall candidate generators can be
built (and are in use) for many fields like numbers,
prices, dates, names of people, places organiza-
tions (using canned named-entity annotators), ad-
dresses (using canned address detectors), alphanu-
meric strings (canned regexes), etc. We denote the
recall of candidate generation as coverage (to dis-
tinguish this from recall of extractions) and present
this for a few fields in Table 4. For simple fields,
the coverage is indeed in the 90s (date_of_delivery,
purchase_order), but for other fields it is lower.
Having a candidate generator with low coverage
indeed limits the recall of the final extractions and
therefore the final F1 score for that field. A key



Field Coverage F1 w/o SL F1 w/ SL ∆

date_of_delivery 0.932 0.690 0.759 10.00%
purchase_order 0.992 0.884 0.963 8.94%

customer_address 0.484 0.293 0.363 23.89%
customer_name 0.715 0.526 0.621 18.06%

Table 4: The F1 performance comparison between w/o
Selective Labeling and w/ Selective Labeling on four
fields. (Coverage: Candidate Generator Recall)

Cost
Supplier Chain Retail Finance Tax Forms
F1 gap closed F1 gap closed F1 gap closed

SL

0% 0.547 0.0% 0.644 0.0% 0.773 0.0%
10% 0.687 88.6% 0.678 91.9% 0.836 88.7%
20% 0.704 99.4% 0.682 102.7% 0.844 100.0%
30% 0.706 100.6% 0.686 113.5% 0.845 101.0%

FL 100% 0.705 100.0% 0.681 100.0% 0.844 100.0%

Table 5: Comparisons of the extraction performance
and gap closed by SL when consuming different anno-
tation costs on three datasets. SL 0%, 10%, and FL
100% correspond to the Initial, Selective Labeling, and
Full Labeling stats in Figure 4. (SL: Selective Labeling,
FL: Full Labeling)

contribution of this paper is that even with imper-
fect candidate generation, that is, on fields with low
candidate coverage, Selective Labeling allows us to
deliver big improvements to the final extraction F1
score for that field. See F1 scores before and after
selective labeling for fields in the Supply Chain
dataset in Table 4.

For simple extraction types such as pur-
chase_order (numbers) and date_of_delivery
(dates), Selective Labeling can improve their extrac-
tion performance by 10%, thanks to high candidate
generation coverage. For fields with low candidate
generation coverage such as customer_name and
customer_address, Selective Labeling is still able
to find the uncertain candidates and dramatically
improve their extraction F1 by 24% and 18% re-
spectively. Finally, even with perfect candidate gen-
eration (100% coverage), naively using candidate-
level labeling (yes/no questions) instead of the clas-
sic annotation workflow ends up being more ex-
pensive. As we explain in Section 2.1.2, this is
because we typically see dozens of candidates for
many fields, and answering yes/no for each of these
candidates ends up taking longer than the classic
annotation workflow.

A.5 Increasing Annotation Budget
We gradually increased the annotation budget and
observed the corresponding results in Table 5. Here
we compared the extraction performance and gap
closed using 10% (same as stats in Figure 4), 20%,

and 30% of the annotation budget. If our goal is to
close the gap by about 90%, then 10% of the label-
ing cost is enough to achieve the goal (for all three
data sets). If our goal is to close the gap by 99%,
then 20% of the labeling cost is sufficient for three
datasets. The performance of selective labeling
can even exceed the full labeling setup (see results
for 30% of the labeling cost). We believe that’s
because noisy annotations exist in the full dataset
and our Selective Labeling algorithm avoids select-
ing a few incorrect annotations that can confuse
the model especially when the model has already
determined predictions with low uncertainty that
are contrary to the ground-truth annotation.

A.6 Candidate Generator

As explained in Section 2.2, we use an extrac-
tion system similar to the architecture described
in (Majumder et al., 2020). As shown in Figure 2,
this architecture consists of two stages: candidate
generation and candidate classification. Candidate
generators are used to identify potential values for
a given field. The generators use a cloud-based ser-
vice1 to identify text spans in the OCR text that are
instances of the corresponding type. The system
leverages an internal library2 of text annotators that
was developed for web-search tasks. These text
annotators are used to extract features from text
that can be used to identify potential values for a
field. In addition to the internal text annotators, the
system may also use several open-source entity de-
tection libraries. These libraries are used to detect
common types of entities, such as names, dates,
currency amounts, numbers, addresses, URLs, etc.
Entities are identified by matching text against pat-
terns that are known to represent these entities. For
example, any date that is found in an invoice is con-
sidered a possible value for any of the date fields in
the target schema, such as invoice_date, due_date,
and delivery_date.

A.7 Neural Scoring Model

To predict whether an extraction candidate is a
valid value for a given target field, the scorer model
takes the target field and the extraction candidate as
input and outputs a prediction score. The model is
trained and evaluated as a binary classifier, which
means that it predicts whether an extraction can-

1cloud.google.com/natural-language
2NLTK: https://www.nltk.org/

cloud.google.com/natural-language
https://www.nltk.org/


didate is valid or invalid. The features of each
extraction candidate used in the scorer model are
its neighboring words and their relative positions.
The model learns a dense representation for each
extraction candidate using a simple self-attention
based architecture. This representation captures the
semantics of the extraction candidate. The model
also learns dense representations for each field in
the target schema. These representations capture
the semantics of the fields. Based on the learned
candidate and field representations, each extrac-
tion candidate is scored based on the similarity to
its corresponding field embedding. The model is
trained as a binary classifier using cross-entropy
loss. The target labels are obtained by compar-
ing the candidate to the ground truth. Details of
the model architecture can be found in (Majumder
et al., 2020).


