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ABSTRACT

Diffusion models have emerged as powerful generative tools, rivaling GANs in
sample quality and mirroring the likelihood scores of autoregressive models. A
subset of these models, exemplified by DDIMs, exhibit an inherent asymmetry:
they are trained over T steps but only sample from a subset of T during genera-
tion. This selective sampling approach, though optimized for speed, inadvertently
misses out on vital information from the unsampled steps, leading to potential
compromises in sample quality. We refer to this phenomenon as “asymmetric
diffusion models”. To address this issue, we present the S2-DMs, which use an
innovative Lskip, meticulously designed to reintegrate the information omitted
during the selective sampling phase. The benefits of this approach are mani-
fold: it notably enhances sample quality, is exceptionally simple to implement,
necessitates minimal code modifications, and is flexible enough to be compatible
with various sampling algorithms. The S2-DMs achieves strong results on the CI-
FAR10 (32x32) and CelebA (64x64) datasets(e.g., FID scores of 8.01/6.41 in just
10 steps, surpassing the performance of DDIMs and PNDMs). Access to the code
and additional resources is provided in material.

1 INTRODUCTION

Generative models, especially deep generative models, play a foundational role in the machine learn-
ing domain(Karras et al. (2020); Oord et al. (2016)). Architectures like Variational Autoencoders
(VAEs; Kingma & Welling (2013)) and Autoregressive models(Van den Oord et al. (2016);Brown
et al. (2020); Salimans et al. (2017)), Generative Adversarial Networks (GANs; Goodfellow et al.
(2014); Yu et al. (2017); Hjelm et al. (2017);Fedus et al. (2018)), and Restricted Boltzmann Ma-
chines (RBMs; Hinton (2012)) have been at the forefront. VAEs, while providing a structured
probabilistic framework, occasionally yield blurry samples. GANs, acclaimed for their prowess in
generating high-resolution images, can face training instabilities(Adler & Lunz (2018); Gulrajani
et al. (2017); Karras et al. (2019)). RBMs, though seminal, find themselves overshadowed by more
recent architectures in scalability and performance. Against this backdrop, diffusion models, De-
noising diffusion probabilistic models(DDPMs; Ho et al. (2020); Sohl-Dickstein et al. (2015);Song
et al. (2020b)), have emerged as a compelling alternative, exhibiting unmatched capabilities in gen-
erating superior samples in diverse domains, from image synthesis to molecule design(Bengio et al.
(2014)).

However, diffusion models do come with challenges. Their inherently slow sampling speed, driven
by the multitude of necessary sampling steps, remains a significant concern. Recent research
has honed in on this computational bottleneck, with the goal of optimizing the sampling process
(Jolicoeur-Martineau et al. (2021), Nichol & Dhariwal (2021)). A significant breakthrough in this
area is the Denoising Diffusion Implicit Models (DDIMs; Song et al. (2020a)). DDIMs utilize a sub-
set sampling strategy, achieving faster performance by sampling from a smaller subset instead of the
entire set of steps. This method, due to its omission of certain steps, is coined ”skip-step sampling.”
Yet, this acceleration introduces an inconsistency between training and sampling. During training,
the model undergoes every step, but during sampling, some steps are selectively skipped, posing a
risk of information loss. Although DDIMs, with certain mathematical adjustments, have lessened
the adverse effects of this approach compared to DDPMs, they haven’t specifically addressed and
optimized for the missing intermediate information. Consequently, this challenge persists, leading
to the suboptimal performance of diffusion models during expedited sampling and hindering the
generation of high-quality samples.
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Figure 1: Sampling trajectory examples of DDPMs, DDIMs, and the S2-DMs. The ’real’ refers to
the actual transition trajectories between two distributions. The left side of the figure depicts the
sampling trajectories of different algorithms, where the dashed lines represent the trajectories of
other algorithms, and the solid lines denote those of our proposed algorithm. The xT denotes the
normal distribution, and x0 represents the data distribution. The process involves sampling from the
normal distribution and restoring it to the x0 data distribution via various algorithmic trajectories.

Driven by these observations, our research proposes a method that integrates the selective sampling
feature directly into the training process. In this manner, the model is primed to account for and
adapt to the information that might be missed during sampling. This approach not only ensures
remarkably quick sampling times but also preserves the quality and fidelity of the generated samples,
striking a balance between efficiency and performance. During training, the original loss function is
preserved. In parallel, a skip-step loss is introduced, measuring the discrepancy between the current
step’s prediction and the skip-step result. This skip-step loss is combined with the original loss using
a weighted mechanism. As a result, insights from the skip-step are seamlessly incorporated during
training, eliminating the need for extra adjustments during sampling (see Figure 1). This ensures the
production of top-tier samples under consistent conditions.

Empirical results demonstrate that when the skip-step loss is incorporated into the loss objective, the
S2-DMs deliver state-of-the-art performance in unconditional generation on CIFAR10 (Krizhevsky
et al. (2009)), outperforming DDIMs and PNDMs (Liu et al. (2022)) under comparable conditions.
Importantly, our findings indicate that this method permits the model to train with fewer steps while
still producing exceptional outcomes. The resulting FID score on CIFAR10 is an impressive 8.01
in just 10 steps. Similarly, its performance on CelebA surpasses that of DDIMs, registering an FID
score of 6.41 in 10 steps. The S2-DMs represent a leading-edge optimization technique addressing
the disparity between training and sampling in diffusion models. Furthermore, it’s noteworthy that
while this method is particularly effective for DDIMs, we also evaluated the sampling algorithm of
PNDMs and continued to see stellar results, underscoring the general applicability of our method to
various diffusion models. The key contributions of this work are:

1. Innovative Skip-Step Loss: We introduce a trailblazing skip-step loss, embedding the selec-
tive sampling modality directly within the training process. This method empowers models
to proactively navigate potential sampling information deficits, enhancing the quality of the
samples.

2. Simplicity of Implementation: The S2-DMs approach stands out not just for its efficacy but
also its simplicity. With minimal code alterations required, it offers a convenient solution
for both researchers and practitioners. Crucially, it’s adaptable to a range of sampling
algorithms.

3. Addressing Training-Sampling Disparity: Our research presents the inaugural method
specifically designed to mitigate the inherent training and sampling mismatch in diffusion
models. This strategy consistently showcases superior performance.

2 BACKGROUND

This study is based on DDPMs (Ho et al. (2020)) and DDIMs (Song et al. (2020a)), so a brief review
is in order. DDPMs specifies a prior Markov forward diffusion process, which gradually adds noise
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to the data over T steps. Refer to the background description of Watson et al. (2021). Following the
notation of (Ho et al. (2020)),

q(x0, ..., xT ) = q(x0)

n∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) = N (xt|
√
αtxt−1, 1− αtI), q(xt|x0) = N (xt|

√
ᾱtxt−1, 1− ᾱtI), (2)

where q(x0) represents the data distribution and 1− αt signifies the variance of the Gaussian noise
added at step t. For each t, we have αt = 1−βt and ᾱt =

∏t
s=1 αs. To facilitate the transformation

of noise back into data, DDPMs are trained to invert equation 1 with a model pθ(xt−1|xt). This
model is trained by optimizing a (possibly reweighted) evidence lower bound (ELBO).

Eq[DKL[q(xT |x0)||p(xT )] +

T∑
t=2

DKL[q(xt−1|xt, x0)||pθ(xt−1|xt
]− log pθ(x0|x1)]. (3)

DDPMs explicitly select the model for parameterization as

pθ(xt−1|xt) = q(xt−1|xt,
1√
āt

(xt −
√
1− ātϵθ(xt, t)))

= N (xt−1|
1

√
αt

(xt −
1− αt√
1− āt

ϵθ(xt, t)),
1− āt−1

1− āt
βtI).

(4)

In this framework, optimizing the ELBO corresponds to minimizing denoising score matching goals
as explained by Vincent (2011). Song et al. (2020a) introduced the DDIMs concept, a set of EL-
BOs complemented by forward diffusion processes and sampling mechanisms. These ELBOs, hav-
ing similar marginals as DDPMs, offer flexibility in determining posterior variances (Chen et al.
(2020)). Song et al. (2020a) emphasized crafting alternative ELBOs using a subset of original
timesteps S ⊂ {1, ..., T} with consistent marginals. This results in qS(xt|x0) = q(xt|x0) for ev-
ery t in S, permitting faster sampling processes compatible with pre-trained models by integrating
new timesteps. Their work also suggests the feasibility of creating a vast range of non-Markovian
processes, denoted as {qσ : σ ∈ [0, 1]T−1}, with each qσ maintaining marginals aligned with the
original progression.

qσ(x0, ..., xt) = q(x0)q(xT |x0)

T−1∏
t=1

qσ(xt|xt+1, x0), (5)

and where the posteriors are defined as

qσ(xt−1|xt, x0) = N (xt−1|
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ√
ᾱt

)
+

√
1− ᾱt−1 − σ2ϵθ, σ

2
t I). (6)

In their research, Song et al. (2020a) observed that the special case of employing all-zero variances,
termed as DDIMs(η = 0), persistently enhances the quality of samples in the short-step domain.
When amalgamated with an apt choice of timesteps for assessing the modeled score function, known
as strides, DDIMs(η = 0) sets a new benchmark in the realm of few-step diffusion model sampling,
especially with minimal inference step allocations. A pivotal advancement we bring is the enhance-
ment of sample quality by introducing skip information (i.e., the aforementioned subset) during
the training phase, ultimately establishing a novel diffusion model training paradigm. For a more
comprehensive discussion on the S2-DMs family, please refer to Section 3.

3 SKIP-STEP DIFFUSION MODELS

Acceleration approaches under DDIMs (Song et al. (2020a)) often employ skip-step sampling as
a strategy for acceleration. However, this approach inherently introduces non-smooth denoising,
leading to a potential decline in performance. This observation prompted us to re-evaluate the entire
training and sampling workflow. Intriguingly, we identified an asymmetry between the training and
sampling phases: the former proceeds in single steps, while the latter uses skip-step.

To enhance the efficacy of skip-step sampling, we devised a novel yet straightforward objective
function for the training phase. By incorporating this new objective into our original loss function
(Section 3.2), we achieved a symmetrical training effect. Ultimately, our model’s design remains
simple, and its performance meets our expectations (Section 4).
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3.1 ASYMMETRY IN ACCELERATED SAMPLING

Due to the slow sampling speed of diffusion models, extensive research has been conducted on
acceleration algorithms for these models, with DDIMs being the most prominent. In the original
paper, it was stated that a subset of the full T steps of the diffusion model was selected. This
subset forms an increasing sequence and is considerably shorter than the original T steps, leading
to a significant acceleration in the sampling process. Specifically, in its implementation, not all T
steps are sampled. Instead, 50-step and 100-step samplings are more prevalent, which are 10-20
times faster than the original 1000-step sampling. For instance, in the 100-step sampling, the model
samples at every 10th step, maintaining equal intervals between each sample. This method is termed
“skip-step sampling.”

Clearly, there’s an asymmetry between the behavior during training and sampling. During training,
the model is trained across all diffusion steps. In contrast, during sampling, it samples only a sub-
set of these steps using skip-step sampling. Consequently, information from intermediate steps is
overlooked, inevitably leading to a decline in model performance. We term this the “asymmetric
diffusion model.”

In the subsequent sections, we will present a technique to integrate skip-step information during
the training phase. This approach ensures that the trained model is more attuned to the skip-step
sampling process, culminating in what we call the “Skip-Step Diffusion Models.”

3.2 TRAINING WITH SKIP-STEP LOSS

We aim to introduce a novel skip-step loss function built upon the original one. The standard op-
timization function for diffusion models was presented in the DDPMs and subsequent diffusion
models predominantly utilize this foundational loss function,

L0 = Et,x0,ϵ||ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)||2. (7)

Initially, we assume that sampling is conducted every 10 steps, which aligns with the commonly
used DDIMs setting. This configuration allows us to reduce the sampling from the original 1000
steps to just 100 steps. Here, the skip-step setting corresponds to the sampling time, denoted as
skip=10(Subsequent experiments will explore the model performance with various skip values). We
will now introduce skip-step information, and for this purpose, we define αt

skip = αt ·αt−1 . . . αt−9.

Then the role of L0 is to enable the model to learn the information at each step, which corresponds to
q(xt|xt−1). However, during the training phase, the corresponding sampling step is p(xt−skip|xt).
Hence, we consider it as a new skip-step loss function. During the training process of the model,
we aim to make qθ(xt|xt−skip) as close as possible to q(xt|xt−1). By doing so, when sampling
with skips, the model can produce outputs that are closely aligned with the corresponding positions,
thereby enhancing the quality of the output. Their formulations are as follows:

qθ(xt|xt−skip) =
√

αt
skipxt−skip +

√
1− αt

skipϵθ, (8)

q(xt|xt−1) =
√
αtxt−1 +

√
1− αtϵ. (9)

We can adopt the approach of the original loss function. Since αskipxt−skip and
√
αtxt−1 are

numerically very close and can be ignored, and our goal is to have the model fit ϵ, we can get the
following equation:

Lskip = Eϵ

∥∥∥√1− αtϵ−
√
1− α

t

skipϵθ

∥∥∥2 (10)

=
1√

1− αt
Et,x0,ϵ

∥∥∥∥∥∥ϵ−
√

1− αt
skip

√
1− αt

ϵθ
(√

αtx0 +
√
1− αtϵ, t

)∥∥∥∥∥∥
2

. (11)

Finally, to maintain consistency with the original loss function, we discarded the coefficients. Due
to the significant variations in

√
1− αt, the scale of Lskip can change dramatically, which could
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Figure 2: (a) Represents the asymmetric nature of DDIMs. Specifically, during the training phase,
every step is trained, while the sampling phase skips certain steps. (b) Represents the symmetry of
the S2-DMs. During the training process, not only is every step trained, but to maintain consistency
with the sampling phase, skip-step training is also conducted. (c) Represents the coordination of
the S2-DMs. That is, after incorporating skip-step training, the model becomes better adapted to
skip-step sampling, yielding superior results. It exhibits its best performance within a specific sym-
metric interval, without the need for strict symmetric sampling. Once the training concludes, the
sampling phase directly employs the step-skip approach, inherently encompassing the information
of the intermediate skipped steps.

lead to model training instability. To ensure a more stable value, we replaced the denominator with
the more stable

√
αt
skip.

Lskip = Et,x0,ϵ

∥∥∥∥∥∥ϵ−
√
1− αt

skip√
αt
skip

ϵθ
(√

αtx0 +
√
1− αtϵ, t

)∥∥∥∥∥∥
2

. (12)

Due to the modification of some weight values, it is essential to introduce an appropriate weight in
the subsequent sections to ensure the system functions properly. Currently, the value of this loss
function is stable and does not lead to collapse (see the experimental in section 4).

3.3 LOSS SCALING

Traditionally in the training of diffusion models, there is typically only one training objective, L0.
However, our proposed S2-DMs introduce a new training objective, Lskip. This necessitates a rea-
sonable weight to balance the two objectives. In subsequent experiments, we separately examined
the values of the two losses and found that the average value of Lskip is approximately 80-100 times
larger than that of L0. Therefore, when setting the weights, this scale difference must be taken into
account. We assigned a weight of τ to L0 and (1-τ ) to Lskip. With τ=0.99, we effectively balanced
the scales of L0 and Lskip, integrating them into a comprehensive training objective.

L = τL0 + (1− τ)Lskip. (13)

Finally, from the perspective of the training objective, its form is akin to a regularization term. The
design motivation is indeed to provide information compensation for the skip-step diffusion model,
thus constraining the model’s trajectory. This is somewhat analogous to the idea of regularization.
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3.4 TRAINING AND SAMPLING

Figure 2 highlights our method’s core, illustrating states: symmetric and coordinated. By integrating
skip-step data during training, the model gains a broader perspective, enhancing sampling perfor-
mance. While the model may lean towards symmetry, it’s not a prerequisite for optimal performance.
Peak efficacy is seen when nearing a symmetric form, termed ”coordinated”. This aligns with the
model utilizing both current and post-skip data for improved predictions. The model remains flexi-
ble, not restricted by the skip parameter, allowing diverse step sampling.

Incorporating Lskip during training doesn’t introduce a new sampling method but modifies the dif-
fusion model’s traditional training approach. In essence, models following the original diffusion
training can benefit from our method. Our tests, using different sampling algorithms on identically
trained models, consistently matched our predictions (see Experiment 4).

In Algorithm 1 and 2, we illustrate the training and sampling procedures of the S2-DMs. The training
process, compared to the standard diffusion models, only involves an additional computation of
Lskip . This computation is straightforward. In our code repository, one can see that only a few lines
of the entire code were modified to achieve all changes, making it easy to implement and facilitating
follow-up by other researchers. The sampling procedure follows the standard DDIMs sampling.
As skip-step information was incorporated during the training, no modifications are required in the
sampling process. This allows for the generation of higher-quality samples, making it user-friendly.

Algorithm 1 S2-DMs Training process.
1: repeat
2: x0 ∼ q(x0);
3: t ∼ Uniform(1, ..., T );
4: ϵ ∼ N (0, I);
5: L0 = ∇θ||ϵ− ϵθ||2;

6: Lskip = ∇θ||ϵ−
√

(1−αskip)√
αskip

ϵθ||2;

7:
Take gradient descent step on:
(1− τ) · L0 + τ · Lskip;

8: until convergence is achieved

Algorithm 2 S2-DMs sampling with DDIMs.

1: repeat
2: xT ∼ N (0, 1);
3: for t = T, ..., 1 do
4: if t > 0 : σ ∼ N (0, I)

else : σ = 0 ;

5:
xt−1 =

√
ᾱt−1

(
xt−

√
1−ᾱtϵθ√
ᾱt

)
+
√

1− ᾱt−1 − σ2ϵθ + σ2ϵ ;
6: end for
7: until convergence is achieved

4 EXPERIMENTS

In this section, we demonstrate that the S2-DMs outperform DDIMs(Song et al. (2020a)) and
PNDMs(Liu et al. (2022)) in image generation with the same number of steps. The S2-DMs re-
quires fewer iterations to produce images of high quality. Moreover, the latent variables in the
images generated by the S2-DMs retain a high level of image features, allowing for interpolation
within the latent space.

In consideration of computational resources, our experiments utilized the CIFAR10 dataset with a
resolution of 32×32 and the CelebA dataset with a resolution of 64×64. For the training setup, we
adopted the same architecture(He et al. (2016); Ronneberger et al. (2015); Kingma & Ba (2014)) as
provided in the official DDIMs repository. We also ensured that all parameters were kept consistent,
guaranteeing the reproducibility of our experiments. On the hardware front, both datasets were
trained on two NVIDIA A100 GPUs. The CIFAR10 and CelebA datasets were trained for one day
and two days respectively. Model performance was evaluated based on the FID(Heusel et al. (2017);
Jolicoeur-Martineau et al. (2020)). Specifically, our evaluation method was also in strict accordance
with the DDIMs repository, where we sampled 50,000 images and computed the FID against real
images. To further ensure reproducibility, we fixed the random seed in our experiments, making all
results replicable.

4.1 SAMPLE QUALITY AND ABLATION EXPERIMENT

In Table 1 and 2, we evaluate the quality of samples generated by models trained on the CIFAR10
and CelebA datasets, measured using the FID as the evaluation metric. We default to skip = 10 and
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Table 1: FID scores for the S2-DMs against baseline methods trained on CIFAR10(32x32) with
the Lskip. DDIMs1 and PNDMs was training for 600K/400K iterations. DDIMs2 was trained for
800K/600K iterations. For the S2-DMs(DDIMs) and S2-DMs(PNDMs), we set skip = 10, while
other parameters remained consistent, and it was trained for 600K/400K iterations.

Models \ # samplesteps S 10 20 50 100 200 500 1000

DDIMs1 18.32 11.67 8.07 6.33 5.38 4.59 4.54
DDIMs2 18.18 11.59 7.94 6.24 5.25 4.58 4.46

S2-DMs(DDIMs) 15.63 9.88 6.75 5.61 4.87 4.30 4.21
Other

PNDMs 13.67 7.61 4.87 3.99 3.67 3.56 3.42
S2-DMs(PNDMs) 12.01 6.54 4.36 3.77 3.55 3.43 3.26

Table 2: FID scores for the S2-DMs against baseline methods trained on CelebA(64x64) with the
Lskip.

Models \ # samplesteps S 10 20 50 100 200 500 1000

DDIMs1 13.15 9.29 6.40 5.24 4.58 4.18 4.07
DDIMs2 13.12 9.25 6.34 4.63 4.18 4.15 4.06

S2-DMs(DDIMs) 11.97 8.12 5.29 4.18 3.65 3.25 3.13
Other

PNDMs 12.59 8.72 6.00 4.89 4.30 4.12 3.43
S2-DMs(PNDMs) 11.40 7.58 4.94 3.91 3.38 3.01 2.94

compare our results with DDIMs. As expected, by incorporating skip-step information, the model is
able to capture a broader scope of knowledge, leading to an improved sample quality. We observed
that the S2-DMs consistently produces higher quality samples than DDIMs and PNDMs across dif-
ferent sampling steps. Moreover, the advantage of the S2-DMs becomes even more pronounced with
shorter trajectories. This demonstrates that the diffusion model enhanced by our training algorithm
contributes to the improvement of sample quality. Moreover, it is not limited to DDIMs sampling
methods but is also applicable to other accelerated sampling approaches. Thus, other models only
need a few lines of training code modifications to benefit from the performance boost this method of-
fers, without any additional changes. An intriguing phenomenon we noticed, and is also depicted in
Table 1, is that by adding Lskip, the model requires fewer training steps to achieve excellent perfor-
mance. We speculate that the inclusion of skip-step information accelerates the model’s convergence
rate.

In Figure 3, we demonstrate the influence of different skip-step information on the model, conducted
on the same datasets(more data details in Table 5). We adopt {50, 10, 2} as skip-step intervals for
the model. As anticipated, incorporating more distant skip-step information allows the model to
achieve a broader perspective in fewer generative trajectories, resulting in higher quality samples.
However, we discovered that the relationship between skip-step information and the quality of the
sampling step is not strictly symmetric. For instance, with skip = 50, one would expect the best
performance at step = 50. Yet, the experiments do not consistently confirm this expectation: it
holds true for CelebA but not for CIFAR10. This highlights the harmony and symmetry we men-
tioned. After adding skip-step information, the model’s training and sampling processes become
more harmonized, leading to superior sample quality. Still, there’s a notion of symmetry where,
within a symmetric interval, the quality of generated samples peaks.

In Figure 4 and 5, we showcase samples from the CIFAR10 and CelebA datasets generated by mod-
els with the same number of sampling steps but different architectures. For DDIMs and PNDMs,
when the number of sampling steps is limited, the quality of the generated samples is inferior to
those from the S2-DMs. Furthermore, as the skip setting increases, the quality of the samples pro-
duced improves, with richer details in the generated images. For example, in CIFAR10, the second
and fourth columns depict images of boats and cars respectively, indicating that the S2-DMs can
generate highly accurate images in just 10 steps, while DDIMs produces blurry images, requiring
more steps to achieve high-quality results. Similarly, in CelebA, the third column showcases images
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of a male subject. The S2-DMs produce a clear hat for him, whereas DDIMs still renders a rather
blurry hat. Moreover, the details generated by PNDMs are also less compared to those by the S2-
DMs. The difference is indeed substantial. This underscores that the S2-DMs significantly improves
sample quality with fewer sampling steps. This underscores the S2-DMs’s significant enhancement
in sample quality with fewer sampling steps.

(a) CIFAR10 (b) CelebA

Figure 3: FID scores for the step ablation on CIFAR10 and CelebA. The impact of skip steps on the
model was examined by varying the skip values among {50, 10, 2} based on DDIMs.

Figure 4: CIFAR10 and CelebA samples with difference models in {10, 20, 50, 100} steps.

Figure 5: CIFAR10 and CelebA samples with difference models in {10, 20, 50, 100} steps.

4.2 INTERPOLATION AND GENERATION CONSISTENCY

Given that the S2-DMs is based on the deterministic generation process of DDIMs(Song et al.
(2020a)) and PNDMs(Liu et al. (2022)), it also exhibits the semantic interpolation effects observed
in implicit models(Mohamed & Lakshminarayanan (2016)), such as GANs. In Figure 6, we dis-
play the interpolation results of the S2-DMs under different skip-step settings. From the figure, it
can be discerned that simple interpolation in xT can lead to semantically meaningful interpolations
between two samples. Moreover, the generated samples at skip = 50 demonstrate superior quality
and finer details, as exemplified by the 5th to 7th images, where the light and shadow effects on
the faces are also effectively reproduced. In contrast, at skip = 2, the model closely resembles the
original DDIMs, resulting in a loss of sample detail. Additionally, the figure illustrates that even
models trained with different skip-step settings, when conditioned on the same xT encoding, still
produce fairly consistent samples.
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Figure 6: Interpolation of samples from the S2-DMs in 10 steps. The α represents the weight used
for interpolation, moving from left to right.

5 RELATED WORK

Denoising Diffusion Probabilistic Models (DDPMs; Ho et al. (2020)) and Noise Conditional Score
Networks (NCSNs; Song & Ermon (2019)) are notable for their sample quality, comparable to
GANs. While DDPMs optimize a variational lower bound, NCSNs target score matching over a
Parzen density estimator. Both models employ a denoising autoencoder across noise levels and
use Langevin dynamics for sampling. The shared approach requires multiple iterations for optimal
sample quality. Recent advancements aim to decrease DDPMs’ inference steps through dynamic
SDE solvers and programming algorithms. However, challenges like the disparity between log-
likelihood reduction and FID(Heusel et al. (2017), Szegedy et al. (2016)) remain in some models.

DDIMs(Song et al. (2020a)) emerges as an implicit generative model, wherein samples are uniquely
defined by latent variables. This lends DDIMs properties akin to GANs and invertible flows, in-
cluding the capability to produce semantically meaningful interpolations. Conceived from a purely
variational standpoint, DDIMs sidesteps the constraints of Langevin dynamics, potentially explain-
ing its superior sample quality compared to DDPMs in fewer iterations. The sampling paradigm
of DDIMs also echoes the concepts found in neural networks with continuous depth. Additionally,
other innovative methods have been introduced to further refine DDPMs sampling, such as reverse
SDEs with unique coefficients, ”corrector” steps, and probability flow ODEs. As the exploration
of efficient sampling in diffusion models continues, our research stands on the shoulders of these
pioneering works, aiming to push the boundaries of what’s achievable in generative models.

6 CONCLUSION AND FUTURE WORK

We propose the Skip-Step Diffusion Models, a diffusion model that achieves higher quality samples
solely by adding skip-step information during the training process, with no modifications required
in the sampling procedure. We demonstrate how to incorporate skip-steps into the loss function
during training and how to determine the weight between the newly added loss and the original loss
function. Our results qualitatively and quantitatively show that the S2-DMs significantly enhance
the sample quality of image generation. Our approach successfully explores adding skip-step infor-
mation to the training process, allowing the model to reach a symmetrical state and consequently
achieve improved sample quality.

Our findings found a new direction for future research. The asymmetry between the training and
sampling procedures of diffusion models can be studied, ensuring that the trained models align more
closely with the sampling process. This results in obtaining high-quality samples, ensuring that even
with fewer sampling steps, the model still generates high-quality outputs. Perhaps this presents an
effective solution to the challenge diffusion models face in balancing sampling speed and sample
quality. In the future, we will continue to research how to incorporate better skip-step information,
ensuring the model aligns even more with its sampling process, and achieving higher quality samples
in fewer sampling steps.
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A EXPERIMENAL DETAILS

In this section, we include more details about the training and sampling of the S2-DMs. All the
experiments are run on two NVIDIA A100 GPUs.

A.1 TRAINING

Our experiments were conducted on the CIFAR10 and CelebA. Since the original size of the CelebA
dataset is not 64x64, we followed Song’s approach by first center-cropping the CelebA images and
then resizing them to 64x64 dimensions. During model training, we set the batch size to 128 and
employed the Adam optimizer. On the CIFAR10 and CelebA datasets, we iterated for 600K and
400K times respectively, even though the typical number of iterations stated is 800K/600K. To in-
vestigate this effect, the main text also showcases experimental results from training for 800K/600K
iterations. Finally, the images generated by the model were compared with a dataset of 50,000
images for FID calculation.

To ensure the repeatability of our experiments, we uniformly adopted the random seed 1234 from
Song’s repository by default. Additionally, on the CIFAR10 dataset, we refrained from utilizing
multi-threading, guaranteeing that the reproducibility of the experiments would not be compromised
by hardware randomness.

We quantitatively investigated the training overhead of the model. All results were measured on
two NVIDIA A100 graphics processors. In Table 3, we report the time consumption and memory
usage for each iteration on the CIFAR10 and CelebA datasets. As can be observed, the introduction
of Lskip increased the training overhead of the model. However, it did not significantly extend the
overall training time. We believe that compared to the substantial performance improvement, the
added overhead is acceptable.

Table 3: Training time (s) per iteration on the S2-DMs.

Dataset/Model CIFAR/DDIMs CelebA/DDIMs CIFAR/S2-DMs CelebA/S2-DMs

Time per iter(s) 0.0025 0.0048 0.0031 0.0056
Memory per GPU(G) 4.83 15.55 4.83 15.56

A.2 SAMPLING

In Table 4, we showcase the time required for the S2-DMs to sample with {10, 20} steps on different
datasets. We believe that within this range, the trade-off between performance and time cost is
optimal.

Table 4: Sample total times (s) on the S2-DMs. Sampling 50K samples, each iteration is 10K/2K in
CIFAR10/CelebA.

Datasets-samplesteps CIFAR-10 CIFAR-20 CelebA-10 CelebA-20

Total Times(s) 675 1305 1483 2904

It’s worth noting that when we trained and sampled the original DDIMs model on CelebA using
mixed-precision training, we encountered issues related to gradient explosion. However, this prob-
lem did not arise when employing the same mixed-precision training with the S2-DMs. We plan to
investigate this issue further. For now, we believe it leans more towards engineering and hardware-
related challenges.

In Table 5, we provide detailed numerical results of ablation experiments with different values of
skip. The best results are highlighted in bold. From the table data, it’s evident that with smaller
sample steps, the larger the skip, the better the model performs, as it gets closer to the symmetric
interval at this point.
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Table 5: FID scores for the stpe ablation on CIFAR10 and CelebA. The impact of skip steps on the
model was examined by varying the skip values among {50, 10, 2} based on DDIMs.

Models \ # samplesteps S 10 20 50 100 200 400 1000

CIFAR10(32×32)

S2-DMs50 8.01 6.44 6.86 7.31 7.65 7.92 8.19
S2-DMs10 15.63 9.88 6.75 5.61 4.87 4.30 4.21
S2-DMs2 17.92 11.00 7.34 5.85 5.06 4.37 4.26

Celeba(64×64)

S2-DMs50 6.41 3.99 3.99 4.73 5.57 6.34 6.62
S2-DMs10 11.97 8.12 5.29 4.18 3.65 3.25 3.13
S2-DMs2 12.43 8.73 6.00 4.80 4.13 3.77 3.71

A.3 FEWER SAMPLESTEPS

Given the astonishing performance of the model with a skip value of 50 at fewer steps, we decided
to try even fewer sampling steps. We selected some images for comparison with DDIMs (as shown
in Figure 7 and 8). We are satisfied with the generated results, and they still outperform DDIMs.

B EXTENDED SAMPLES

We provide extended samples of the S2-DMs trained on CIFAR10 and CelebA. In order to demon-
strate the effects of different sampling methods under different settings, we randomly selected sev-
eral images for display among the images generated by the model.

B.1 CIFAR10

We visualize the samples produced by different methods. In Figure 9 to Figure 12, we provide
samples from models on CIFAR10 in 10 steps.

B.2 CELEBA

In Figure 13 to Figure 16, we provide samples from models on CelebA in 10 steps.
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(a) DDIMs (b) S2-DMs

Figure 7: Sampling results for DDIMs and the S2-DMs50 on CIFAR10 in 5 steps.
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(a) DDIMs (b) S2-DMs

Figure 8: Sampling results for DDIMs and the S2-DMs50 on CelebA in 5 steps.
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Figure 9: More samples from the CIFAR10 with the S2-DMs2 in 10 steps. FID=17.92.
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Figure 10: More samples from the CIFAR10 with the S2-DMs10 in 10 steps. FID=15.63.
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Figure 11: More samples from the CIFAR10 with the S2-DMs50 in 10 steps. FID=8.01
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Figure 12: More samples from the CIFAR10 with the S2-DMs10(PNDMs) in 10 steps. FID=12.01.
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Figure 13: More samples from the CelebA with the S2-DMs2 in 10 steps. FID=12.43.
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Figure 14: More samples from the CelebA with the S2-DMs10 in 10 steps. FID=11.97.

21



Under review as a conference paper at ICLR 2024

Figure 15: More samples from the CelebA with the S2-DMs50 in 10 steps. FID=6.41.
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Figure 16: More samples from the CelebA with the S2-DMs10(PNDMs) in 10 steps. FID=11.40.
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