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Abstract

Benefiting from high capacity for capturing complex temporal patterns, deep learn-
ing (DL) has significantly advanced time series forecasting (TSF). However, deep
models tend to suffer from severe overfitting due to the inherent vulnerability of
time series to noise and anomalies. The prevailing DL paradigm uniformly opti-
mizes all timesteps through the MSE loss and learns those uncertain and anomalous
timesteps without difference, ultimately resulting in overfitting. To address this,
we propose a novel selective learning strategy for deep TSF. Specifically, selective
learning screens a subset of the whole timesteps to calculate the MSE loss in opti-
mization, guiding the model to focus on generalizable timesteps while disregarding
non-generalizable ones. Our framework introduces a dual-mask mechanism to
target timesteps: (1) an uncertainty mask leveraging residual entropy to filter
uncertain timesteps, and (2) an anomaly mask employing residual lower bound
estimation to exclude anomalous timesteps. Extensive experiments across eight
real-world datasets demonstrate that selective learning can significantly improve the
predictive performance for typical state-of-the-art deep models, including 37.4%
MSE reduction for Informer, 8.4% for TimesNet, and 6.5% for iTransformer.

Code: https://github.com/GestaltCogTeam/selective-learning
https://github.com/GestaltCogTeam/BasicTS

1 Introduction

Time series forecasting (TSF) plays a crucial role in many real-world applications, such as traffic
flow prediction [26, 45, 43], weather forecasting [38, 65, 80, 12], and energy consumption planning
[33, 57]. The rapid advancement of deep learning (DL) has spurred breakthroughs in TSF, with
numerous deep models pushing the boundaries of predictive performance and becoming pivotal in
the field [81, 64, 82, 76, 35, 29].

Despite the strong capacity for capturing complex temporal patterns, deep TSF models are prone to
suffer from severe overfitting issues under certain scenarios due to the characteristics of real-world
time series data [42, 58, 7]. Unlike other data modalities such as natural language and images, time
series is inherently susceptible to noise and anomalies introduced by random exogenous factors
[28, 56, 31]. For example, industrial sensors are easily affected by noise from mechanical vibrations
and electromagnetic disturbances, and stock prices exhibit non-stationary fluctuations given the policy
interventions. These interference factors are challenging to model and typically change over time,
exhibiting uncertain and anomalous patterns at a specific range of timesteps. However, the current
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Figure 1: Left: When optimizing the model through MSE loss, our proposed selective learning
calculates MSE only on a subset of timesteps, while masking out uncertain and anomalous ones that
are non-generalizable. Right: Test MSE curves of iTransformer during training on the ETTh1 dataset
(prediction length F = 336). The model exhibits severe overfitting, but this is effectively mitigated
through selective learning, yielding an 8.1% reduction in test MSE with stable convergence.

DL paradigm treats each time step equally when training the models with regression loss functions
(e.g., MSE/MAE loss). This causes an overfitting issue when forcing models to learn uncertain and
anomalous timesteps unavailable to generalize, deteriorating models’ performance. For example,
iTransformer [29] encounters significant overfitting when trained on the ETTh1 dataset. As shown in
Figure 1 (right), its test MSE during training gradually increases after the third epoch.

To address these challenges, we propose selective learning, a novel learning strategy for deep TSF.
As illustrated in Figure 1 (left), the main idea of selective learning is to involve only generalizable
timesteps, a subset of the time series, in optimization and discard identified uncertain or anomalous
ones. In implementation, we propose a dual-mask mechanism to filter out non-generalizable timesteps
dynamically. (1) For uncertain timesteps, we introduce the entropy of the prediction residual
distribution as the uncertainty measure. With the sliding window sampling in time series, we
can obtain multiple samples of a predicted timestep under different historical windows, thereby
quantifying the entropy of the residual to serve as an indicator to filter out high-entropy ones. (2)
For anomalous timesteps, we train an estimation model to obtain the residual lower bound of each
timestep. By masking timesteps where current residuals are closest to the lower bound, it removes
non-generalizable anomalies dynamically while keeping to-be-learned timesteps.

Extensive experiments across eight real-world datasets show that selective learning achieves consistent
performance gains on six well-acknowledged deep models. It proves particularly effective for models
that are susceptible to overfitting, where it achieves a 37.4% reduction in MSE and for Informer
[81], and 15.6% in MSE for Crossformer [79]. Notably, selective learning maintains its benefits even
for state-of-the-art baselines, such as TimesNet [63] (8.4% MSE reduction) and iTransformer [29]
(6.5% MSE reduction). Furthermore, we conducted comparative analyses with alternative training
objectives in §5.4. The consistent leading performance of selective learning further demonstrates the
advantage of optimizing generalizable subsets over global sequence optimization.

In summary, our contribution is three-fold:

• We propose selective learning, a novel learning strategy for deep TSF to identify and expel
non-generalizable timesteps in optimization. It is the first trial to address the overfitting
issue from the timestep granularity in the field.

• Technically, we devise a tractable strategy by introducing a dual-mask mechanism to filter
out uncertain and anomalous timesteps dynamically during training.

• Our method is agnostic to deep learning backbones and examined across several real-
world datasets. The results demonstrate its effectiveness and show consistent performance
improvement over all baselines.
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2 Related Work

2.1 Deep Models for Time Series Forecasting

In recent years, numerous deep models have been proposed to capture complex dependencies in TSF.
Transformer-based models have gained significant attention for their ability to capture long-term
temporal dependencies through attention mechanisms [81, 64, 82, 74, 79, 35, 29]. For example,
Informer [81] introduces a ProbSparse attention to reduce the quadratic complexity. PatchTST [35]
splits time series into patches and employs a channel-independent strategy. iTransformer [29] embeds
each series independently to the variate token and applies self-attention to capture multivariate
correlations. In contrast to Transformers, CNN-based models [63, 32, 25] exhibit strong proficiency
in extracting local patterns. Typically, TimesNet [63] transforms time series into 2D tensors and
employs CNN to capture inter- and intra-period dependencies. Additionally, MLP-based models
offer efficient alternatives with lightweight architectures [44, 13, 55, 70, 76]. DLinear [76] leverages
a simple linear layer with decomposition, and TimeMixer [55] captures multi-scale information
through MLP layers. Our proposed selective learning can be easily applied to these deep models.

2.2 Training Strategies for Time Series Forecasting

The prevailing DL paradigm computes the regression loss (e.g., MSE/MAE) uniformly across all
timesteps, and some works have explored alternative training strategies. For example, iTransformer
[29] proposes a training strategy that randomly selects subsets of variables for large-scale multivariate
time series. Merlin [75] employs a knowledge distillation [15] strategy to enhance the model’s
robustness against data missing. These approaches are optimized for specific scenarios or tightly
coupled with model architectures, limiting their broader applicability. The most relevant work is
MTGNN [67], which applies the idea of curriculum learning [4] to TSF by progressively increasing
the prediction length during training. However, it overlooks that difficulty is not solely determined by
prediction length but is also influenced by intrinsic data characteristics. Selective learning addresses
this issue by masking non-generalizable timesteps while maintaining broad applicability.

Another line of work proposes alternative training objectives to replace the regression loss. For
example, Soft-DTW [8], DILATE [23], and TILDE-Q [24] align the shape between predictions and
target sequences under temporal distortions. FreDF [51] combines the MSE loss with a frequency
loss, mitigating the label correlation. PS loss [21] enhances the alignment by incorporating patch-wise
distribution information. These works focus on matching the shape or distribution in temporal or
frequency domain between sequences, but none have recognized that global alignment over the whole
sequence is not optimal, as certain timesteps in the target sequence are inherently non-generalizable.

3 Preliminaries

Notations For a multivariate time series with N variables, let Xt ∈ RN represent the t-th timestep.
Given a historical time series Xt−L:t = {Xt−L, Xt−L+1, · · · , Xt−1} ∈ RL×N , where L is the look-
back window size, the TSF task is to predict future values X̂t:t+F = {Xt, Xt+1, · · · , Xt+F−1} ∈
RF×N with forecasting window size F . Considering a historical time series X0:T ∈ RT×N for
training, the training dataset Dtrain = {(Xt−L:t,Xt:t+F )}T−F

t=L is constructed by a sliding window
approach with stride 1.

Problem Statement The current DL paradigm is to find the best mapping from the samples in
Dtrain, i.e., X̂t:t+F = f(Xt−L:t;θ), where f(·;θ) : RL×N → RF×N is a deep neural network
parameterized by θ. Mean squared error (MSE) measures the discrepancy between the prediction
X̂t:t+F and the ground truth Xt:t+F and is one of the commonly used loss functions to optimize θ:

LMSE(θ) =
1

N · F

F−1∑
i=0

||Xt+i − f(Xt−L:t;θ)i||2, (1)

θτ+1 = θτ − η∇θLMSE , (2)

where η is the learning rate. We use τ to denote the number of iterations during training, distinguishing
it from the timestep index t.
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Figure 2: (a) Overall framework of selective learning. (b) Uncertainty mask. (c) Anomaly mask.

4 Selective Learning

4.1 Overview of Selective Learning

We propose selective learning, a model-agnostic learning strategy for deep TSF to address the
overfitting issue. The main idea of selective learning is to calculate the MSE loss only on a subset of
timesteps. This enables models to focus selectively on generalizable timesteps while disregarding
non-generalizable ones. Figure 2 (a) illustrates the overall framework of selective learning. The
implementation details and workflow of selective learning are provided in Appendix C.3.

As illustrated in Figure 1 (left), we identify two critical categories of timesteps that degrade model
generalizability. (1) Uncertain timesteps. Primarily originating from inherent noise in time series
(e.g., signal disturbances [23]), they are characterized by high predictive uncertainty. Consequently,
the gradients at these timesteps update towards random directions, resulting in undesirable fitting to
the noise. (2) Anomalous timesteps. They are mainly caused by exogenous exceptional events (e.g.,
sensor malfunctions [73, 72]). The model’s predictions, though possibly confident, exhibit significant
errors. This forces the model to learn instance-specific features through biased gradient updates,
ultimately harming generalization.

To this end, we propose a dual-mask mechanism to dynamically filter out these non-generalizable
timesteps, as shown in Figure 2. Formally, we define selective learning as follows: Given a deep TSF
model f(·,θ) at τ -th iteration, we find a maskM(τ) ∈ {0, 1}F that constrains optimization only
over a subset of timesteps:

LSL(θ) =
1

N · |M(τ)|

F−1∑
i=0

||M(τ)(Xt+i − f(Xt−L:t;θ)i)||2, (3)

θτ+1 = θτ − η∇θLSL, (4)

whereM(τ) =M(τ)
u ∨M(τ)

a , and ∨ is the element-wise OR operator.M(τ)
u ,M(τ)

a ∈ {0, 1}F are
the uncertainty mask and anomaly mask, respectively. We will describe them in detail in the following
sections. Since uncertain and anomalous patterns do not necessarily appear synchronously across
all variables, we adopt the channel-independent strategy [35], generating masks for each variable
independently. For theoretical tractability, we will focus on the univariate case in subsequent analysis,
with natural extensibility to multivariate scenarios due to channel independence.
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4.2 Uncertainty Mask

We propose an entropy-based uncertainty masking approach for those timesteps that exhibit high
predictive uncertainty. Let ϵt = Xt − X̂t denote the residual of t-th timesteps. The differential
entropy of ϵt is

H(ϵt) =

∫
p(ϵt) ln p(ϵt)dt. (5)

Since training samples are constructed via sliding windows over X1:T , each timestep will be predicted
nt times in one epoch, where nt = min{t − L + 1, F}. Therefore, we can estimate the residual
distribution of ϵt using the most recent nt predictions. Let l(ψ|ϵt) be the likelihood model of the
residual, and we have

ψ̂ = argmax
ψ

l(ψ|ϵ(1)t , ϵ
(2)
t , · · · , ϵ(nt)

t ), (6)

Ĥ(ϵt) =

∫
l(ψ̂|ϵt) ln l(ψ̂|ϵt)dt, (7)

where ϵ
(i)
t is the i-th most recent prediction residual.

In practice, we assume that the residual ϵt ∼ N (µt, σ
2
t ), therefore we have

Ĥ(ϵt) =
1

2
ln(2πeσ̂2

t ), (8)

σ̂2
t =

1

nt

nt∑
i=1

(ϵ
(i)
t − ϵ̄t)

2 (9)

Since these residuals ϵ
(i)
t are computed at different training time τ , they originate from distinct

f(·,θτ ). Under Assumptions 2-4 (Appendix A.1), Theorem 1 provides an upper bound for the error
introduced by different θ.
Theorem 1 (Upper Bound for Variance Estimation Error ). The error bound between variance
estimation under distinct parameters σ̂2

t and that under identical parameters σ̂2
t (θτ ) satisfies:

|σ̂2
t − σ̂2

t (θτ )| ≤ 4LfRηG(2K − 1), (10)

where K is the number of iterations per epoch, and Lf , R,G are constants.

The proof is provided in Appendix A. According to Theorem 1, we can always control the estimation
error by choosing a sufficiently small learning rate η and a large batch size.

We employ a hard thresholding γu on the top-ru% residual entropy and obtain the uncertainty mask
M(τ)

u ∈ {0, 1}F satisfying

(M(τ)
u )t =

{
0, Ĥ(ϵt) > γu,

1, otherwise.
(11)

4.3 Anomaly Mask

Predictions for anomalous timesteps typically exhibit significantly larger residuals due to deviations in
ground truth values. The most intuitive solution is to mask timesteps with high |ϵt| to filter anomalies.
However, this naive approach suffers from a critical limitation: it indiscriminately excludes both
genuine anomalies and currently unlearned yet (but potentially generalizable) patterns, particularly
during the early stage of training when the learning process remains incomplete.

To overcome this limitation, we draw inspiration from practices in other fields [34, 48, 27, 50], and
define S(Xt) as the deviation between the residual and its theoretical lower bound ϵLB

t :

S(Xt) = |Xt − f(X;θ)t)| − ϵLB
t . (12)

This formulation enables a key separation: Anomalous timesteps exhibit elevated residual lower
bounds, resulting in comparatively small S(X) values. In contrast, unlearned timesteps demonstrate
larger S(X) values due to significant gaps between current residuals and their theoretical minima.
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In practice, we train a lightweight model g(·;ϕ) on Dtrain to estimate the residual lower bound,
thereby estimating S(Xt) by:

Ŝ(Xt) = |Xt − f(X;θ)t)|︸ ︷︷ ︸
residual ϵt

− |Xt − g(X;ϕ)t|︸ ︷︷ ︸
estimated LB ϵ̂LB

t

. (13)

The details of the estimation model are discussed in Appendix C.3. Analogous to the uncertainty
mask, we employ a hard thresholding γa to filter out the top-ru% of timesteps with the smallest
Ŝ(Xt) and obtain the anomaly maskM(τ)

a ∈ {0, 1}F :

(M(τ)
a )t =

{
0, Ŝ(Xt) < γa,

1, otherwise.
(14)

Notably, instead of using the estimated residual lower bound as a static masking criterion, S(Xt)
can dynamically adjust the masking based on the current predictions. This approach offers two key
advantages: (1) Static masking significantly alters the distribution ofDtrain, thereby introducing bias,
whereas dynamic masking adapts the mask during training to mitigate this in expectation. (2) For
rare but critical extreme events (e.g., extreme weather) [10, 78] that are less generalizable, dynamic
masking first learns the most generalizable timesteps and gradually attempts to learn timesteps
previously considered anomalies. See Appendix E.2 for detailed discussions.

5 Experiments

5.1 Experimental Setup

Datasets We thoroughly evaluate the effectiveness of the proposed selective learning on 8 real-
world datasets, including Electricity, Exchange, Weather, ILI, and 4 ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2), which have been extensively used for benchmarking [42, 64, 37]. A detailed
description of the datasets is provided in Appendix C.1.

Baselines Selective learning is a model-agnostic training strategy, and it is compatible with any
deep TSF models. We carefully select six well-acknowledged deep models as the baselines, including
Transformer-based models (Informer [81], Crossformer [79], PatchTST [35], iTransformer [29]),
CNN-based models (TimesNet [63]), and MLP-based models (TimeMixer [55]). See Appendix C.2
for the introduction to the baselines. We select DLinear [76] as the estimation model for all baselines,
and we further discuss the effects of different estimation models in §5.5.

Experimental Settings All baselines follow the same experimental setup with prediction lengths
F ∈ {24, 36, 48, 60} for ILI and F ∈ {96, 192, 336, 720} for others [63]. We search for the look-
back window L and report the best results. For fair evaluation, when training baselines with selective
learning to enhance their performance, we follow their original hyperparameter settings and only
tune the masking ratios ra and rn. We utilize Adam [20] for the model optimization. We evaluate the
performance of all baselines using two commonly used metrics, MSE and MAE. All experiments are
implemented with PyTorch and conducted on 8 NVIDIA GeForce RTX 4090 24GB GPUs.

5.2 Main Results

Table 1 shows the forecasting results with and without selective learning. The results are averaged
over three runs. The lower MSE/MAE indicates a more accurate prediction. Our comprehensive
evaluations demonstrate that selective learning consistently enhances model performance in all 192
cases (see full results in Appendix G.1). Selective learning proves particularly impactful for early-
generation architectures that are susceptible to overfitting, where it achieves an average reduction of
37.4% in MSE and 25.4% in MAE for Informer [81] (66.8% MSE and 42.6% MAE reduction in the
ETTm2 dataset), and 15.6% in MSE and 10.5% in MAE for Crossformer [79]. Notably, it maintains
its benefits even for state-of-the-art baselines, such as iTransformer [29] (6.5% MSE and 4.4% MAE
reduction) and TimeMixer [55] (4.3% MSE and 3.3% MAE reduction), where the improvements
persist in models already equipped with RevIN [19]. This confirms that selective learning provides
additional performance gains over existing distribution shift mitigation techniques.

6



Table 1: Comparison of forecasting results without/with selective learning (SL). We use prediction
lengths F ∈ {24, 36, 48, 60} for ILI and F ∈ {96, 192, 336, 720} for other datasets. Results are
averaged from all prediction lengths. Better results are in bold, and ∆ denotes the improvements
caused by selective learning. Full results of ETTh2 and ETTm1 are provided in Appendix G.1.

ETTh1 ETTm2 Electricity Exchange Weather ILI

Method MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Informer 1.289 0.917 1.485 0.919 0.342 0.420 1.520 0.985 0.337 0.374 4.953 1.544
+SL 0.538 0.534 0.494 0.527 0.292 0.386 0.814 0.712 0.273 0.299 3.997 1.360
∆ -58.3% -41.8% -66.8% -42.6% -14.4% -8.21% -46.4% -27.8% -19.1% -20.1% -19.3% -11.9%
Crossformer 0.455 0.465 0.588 0.528 0.182 0.277 0.755 0.649 0.226 0.284 3.982 1.342
+SL 0.431 0.441 0.370 0.408 0.168 0.264 0.527 0.525 0.213 0.265 3.681 1.285
∆ -5.33% -5.22% -37.1% -22.7% -7.71% -4.87% -30.1% -19.2% -5.97% -6.61% -7.56% -4.26%
PatchTST 0.427 0.433 0.271 0.329 0.167 0.262 0.342 0.396 0.228 0.262 2.076 0.921
+SL 0.410 0.417 0.252 0.312 0.165 0.258 0.337 0.384 0.225 0.250 1.905 0.895
∆ -4.10% -3.70% -6.83% -5.32% -1.05% -1.53% -1.46% -3.10% -1.32% -4.77% -8.26% -2.74%
TimesNet 0.499 0.486 0.289 0.343 0.198 0.301 0.382 0.429 0.248 0.284 2.493 1.028
+SL 0.429 0.439 0.258 0.316 0.191 0.294 0.363 0.413 0.239 0.271 2.154 0.931
∆ -14.0% -9.67% -10.7% -7.74% -3.29% -2.33% -4.97% -3.73% -3.54% -4.58% -13.6% -9.36%
iTransformer 0.458 0.457 0.273 0.332 0.164 0.257 0.364 0.413 0.235 0.269 1.909 0.914
+SL 0.415 0.425 0.256 0.313 0.157 0.249 0.343 0.399 0.229 0.257 1.710 0.857
∆ -9.29% -6.90% -6.40% -5.51% -4.27% -2.92% -5.78% -3.45% -2.87% -4.28% -10.4% -6.24%
TimeMixer 0.443 0.445 0.265 0.323 0.163 0.259 0.348 0.400 0.230 0.276 2.163 0.932
+SL 0.411 0.421 0.251 0.309 0.160 0.254 0.335 0.394 0.226 0.268 2.026 0.895
∆ -7.11% -5.40% -5.01% -4.26% -2.15% -2.12% -3.60% -1.38% -1.74% -2.81% -6.37% -4.06%

5.3 Zero-shot Forecasting

We conducted zero-shot forecasting experiments to evaluate the generalization benefits of selective
learning across different datasets. Following prior works [83, 17, 5], we trained the models on dataset
DA and assessed on unseen dataset DB without further training. As shown in Table 2, selective
learning consistently enhance the performance of the baselines across diverse datasets in zero-shot
forecasting, demonstrating its generalization advantage. Notably, in challenging generalization
scenarios (ETTh2→ETTh1 and ETTm2→ETTm1), selective learning achieves significant improve-
ments, with MSE reduced by 22.6% and MAE by 14.5% on average. Furthermore, in cases like
ETTh1→ETTh2 and ETTm1→ETTm2, the results outperforms training from scratch on the target
dataset, underscoring the benefits of selective learning.

Table 2: Zero-shot forecasting results on ETT datasets without/with selective learning. DA → DB

denotes that the model was trained on DA and tested on DA. The results are averaged from all
prediction lengths. Better results are in bold, and red indicates a better result than training from
scratch on DB without selective learning.

Method TimesNet iTransformer TimeMixer
w/o +SL w/o +SL w/o +SL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1→ETTh2 0.469 0.465 0.419 0.439 0.421 0.434 0.394 0.420 0.424 0.438 0.389 0.416
ETTh1→ETTm2 0.359 0.397 0.351 0.389 0.322 0.371 0.310 0.359 0.313 0.360 0.300 0.352
ETTh2→ETTh1 0.828 0.642 0.595 0.517 0.622 0.555 0.501 0.487 0.679 0.568 0.560 0.510
ETTm1→ETTh2 0.483 0.485 0.465 0.469 0.447 0.456 0.428 0.444 0.441 0.453 0.434 0.445
ETTm1→ETTm2 0.321 0.363 0.288 0.339 0.276 0.334 0.271 0.326 0.275 0.326 0.267 0.319
ETTm2→ETTm1 0.727 0.578 0.459 0.448 0.554 0.498 0.443 0.439 0.451 0.466 0.428 0.425

5.4 Comparison with Other Training Objectives

Our proposed selective learning exhibits strong compatibility. It is completely model-agnostic and
can be applied to any deep learning architecture with various normalization methods [19, 11, 14].
Moreover, it maintains compatibility with learning strategies such as curriculum learning for TSF
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Table 3: Comparison between selective learning (SL) and other training objectives with iTransformer
as backbone. The results are averaged from all prediction lengths. The best results are in bold, and
the second-best are underlined. Full results are provided in Appendix G.2.

Training objective SL PS FreDF TILDE-Q MSE

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.415 0.425 0.427 0.440 0.450 0.455 0.432 0.439 0.458 0.457

ETTm2 0.257 0.315 0.264 0.320 0.262 0.319 0.263 0.319 0.273 0.332

Exchange 0.343 0.399 0.366 0.409 0.376 0.413 0.369 0.414 0.364 0.413

Weather 0.229 0.257 0.233 0.265 0.239 0.274 0.232 0.262 0.235 0.269

[67, 42]. However, selective learning operates on point-wise training objectives. In this section,
we compare our selective learning with alternative non-point-wise training objectives, including
shape-based (TILDE-Q [24]), frequency-based (FreDF [51]), and distribution-based (PS loss [21])
objectives. As shown in Table 3, selective learning consistently achieves superior performance. These
results demonstrate that training the model by global alignment over whole sequences, whether
in shape or distribution, in the temporal or frequency domain, proves suboptimal, validating the
effectiveness of selective learning.

5.5 Ablation Study and Hyperparameter Analysis

Ablation Study To study the effectiveness of the components of selective learning, we conduct
an ablation study covering: (1) removing either mask from the dual-mask mechanism, and (2)
replacing the dual-mask mechanism with random masking with the same masking ratio. The results
in Table 4 demonstrate that the model with full selective learning consistently achieves the best
performance. Removing either mask leads to significant performance degradation across all four
datasets, indicating that both masks contribute essential and distinct functionalities in filtering out
non-generalizable patterns. Additionally, replacing the dual-mask mechanism with random masking
reduces model performance to levels comparable to or worse than the unmasked counterparts. This
suggests that randomly attending to a subset of timesteps fails to enhance the model’s performance
and generalizability. The effectiveness of selective learning fundamentally stems from our dual-
mask mechanism, which directs model attention to generalizable timesteps while filtering out
non-generalizable ones.

Table 4: Ablation results for selective learning with iTransformer as backbone. The results are
averaged from all predicted lengths. Full ablation results are provided in Appendix G.3.

Dataset ETTh1 ETTm2 Electricity Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Selective Learning 0.415 0.425 0.257 0.315 0.157 0.249 0.229 0.257

w/o Uncertainty mask 0.436 0.443 0.265 0.322 0.162 0.256 0.232 0.266
Anomaly mask 0.431 0.438 0.266 0.323 0.159 0.252 0.234 0.267

Replace Random mask 0.457 0.460 0.274 0.332 0.165 0.261 0.237 0.269

Effects of Masking Ratio After validating the effectiveness of the dual-mask mechanism through
ablation studies, we further investigate the effects of the masking ratios. When investigating a
particular mask, we vary its masking ratio while fixing the other masking ratio at 0. The results are
shown in Figure 3. We can observe that larger masking ratios demonstrate superior performance
on highly non-stationary datasets (ETTh1 and Exchange). This indicates severe overfitting in such
datasets, where models benefit from focusing selectively on the most generalizable patterns. In
contrast, datasets exhibiting periodic patterns (Weather) show improved performance with smaller
masking ratios. Besides, it can be observed that on the Exchange dataset, the 90% anomaly masking
ratio yields peak performance. This occurs because market-induced non-generalizable anomalies
in this dataset exert significantly greater influence than noise. However, in most scenarios, the best
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Figure 3: Forecasting results under different masking ratios. The prediction length is 336.

results are achieved by a combination of two masking strategies, the ratios of which constitute critical
hyperparameters of selective learning. Detailed guidelines for selecting optimal ratios are provided in
the appendix C.4.

Figure 4: Forecasting performance with iTransformer
as backbone and various estimation models. The re-
sults are averaged from all prediction lengths.

Effects of Estimation Model In the ex-
periments above, we employed DLinear as
the lightweight estimation model. In this
section, we investigate the effects of differ-
ent estimation models. We fix the iTrans-
former as the backbone model and addition-
ally compare three estimation models: MLP,
TimeMixer, and iTransformer. The results
are shown in Figure 4. We can observe that:
For highly non-stationary datasets (ETTh1
and Exchange), simpler models demonstrate
superior performance; Conversely, datasets
exhibiting periodic patterns (Weather) ben-
efit from more complex estimation models.
Despite this, the choice of the estimation
model has a limited overall impact on per-
formance, underscoring the robustness of
the selective learning.

5.6 Learning Curve Analysis

In Figure 1, we initially illustrated iTransformer’s training dynamics, highlighting selective learning’s
capacity to mitigate overfitting. To further validate this, Figure 5 presents additional learning curves
on the ETTh1 dataset. While all three models exhibit varying degrees of overfitting, their counter-
parts trained with selective learning achieve stable convergence and superior performance. This
demonstrates the efficacy of selective learning in mitigating overfitting and enhancing generalizability.
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Figure 5: Test MSE curve on the ETTh1 dataset. The prediction length is 336.
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6 Conclusion

In this work, we introduced selective learning, a novel strategy to mitigate overfitting in deep TSF
by selectively computing regression loss on generalizable timesteps. Our dual-mask mechanism,
comprising an uncertainty mask (based on residual entropy) and an anomaly mask (leveraging residual
lower-bound estimation), dynamically filters non-generalizable timesteps, allowing models to focus
on robust patterns. Extensive experiments across eight real-world datasets validate that selective
learning improves predictive accuracy and model generalizability. The scope of this work is currently
constrained to in-domain time series forecasting. Future work can investigate the generalization to
diverse time series analysis tasks (e.g., classification, imputation) and explore pretraining strategies
for time series foundation models. See Appendix F for limitations discussion and future directions.
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A Proofs

A.1 Assumptions

Assumption 2 (Lipschitz Continuity). We assume that f reserves the Lipschitz continuity w.r.t. θ,
i.e., ∀θ1,θ2 ∈ Θ satisfying

||f(X;θ1)− f(X;θ2)|| ≤ Lf ||θ1 − θ2||, (15)

where Lf is the Lipschitz constant.

Justification It can be ensured by the Lipschitz-continuous activations of the neural network and
the continuously differentiable MSE loss.

Assumption 3 (Bounded Prediction Residual). We assume that there exists a constant R > 0 such
that

|ϵt| ≤ R, ∀t ∈ {1, . . . , T}. (16)

Justification Empirically, residuals often follow a light-tailed distribution, where extreme deviations
are rare. Therefore, there exists a finite high-probability bound.

Assumption 4 (Bounded Gradient). We assume that there exists a constant G > 0 such that

||∇θτL|| < G, ∀τ ∈ Z+. (17)

Justification The boundedness of gradients is ensured by Lipschitz-continuous activations and
weight constraints of the neural network, preventing explosive updates and ensuring stable optimiza-
tion. Gradient clipping can further enforce it.

A.2 Proof of Theorem 1

Proof. Let τi denote the training time corresponding to the i-th most recent prediction residual ϵ(i)t ,
such that ϵt(θτi) ≡ ϵ

(i)
t .

|σ̂2
t − σ̂2

t (θτ )| ≤
1

nt

nt∑
i=1

|ϵ2t (θτi)− ϵ2t (θτ )− nt(ϵ̄
2
t − ϵ̄2t (θτ ))|

≤ 1

nt

nt∑
i=1

|ϵ2t (θτi)− ϵ2t (θτ )|+ |ϵ̄2t − ϵ̄2t (θτ )|

≤ 2max
i
|ϵ2t (θτi)− ϵ2t (θτ )|

≤ 2max
i
|ϵt(θτi)− ϵt(θτ )| · |ϵt(θτi) + ϵt(θτ )|

= 2max
i
|f(X,θτi)t − f(X,θτ )t| · |ϵt(θτi) + ϵt(θτ )|

≤ 2max
i

Lf ||θτi − θτ || · 2R (Assumption 2 and 3)

≤ 4LfRηGmax
i
|τ − τi|. (Assumption 4)

(18)

Given that adjacent epochs are separated by no more than 2K − 1 iterations, we obtain:

|σ̂2
t − σ̂2

t (θτ )| ≤ 4LfRηG(2K − 1). (19)
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B Related Work

B.1 Data Selection Strategies in Deep Learning

Data selection strategies aim to improve the efficiency, generalizability, and robustness of deep
learning models by carefully selecting subsets of data for training. Instead of using the entire dataset
indiscriminately, these methods prioritize samples that contribute more significantly to model learning
dynamics or downstream performance. Some studies such as curriculum learning [4] and hard sample
mining [47], select or filter samples based on their difficulties. In LM pretraining, samples or tokens
are typically selected for high quality [68, 61, 27, 3], great importance [69], or strong diversity [77]
to enhance both training efficiency and generalization. Data filtering pipelines often rely on heuristic
metrics, such as perplexity [60, 49] and toxicity, or learned metrics [34, 27, 48], to remove duplicated,
or low-quality data. Unlike the above studies, our approach is closely tied to the characteristics of
time series data, focusing on filtering noise or anomalies. By identifying and removing such irregular
patterns, the model can learn from representative and generalizable timesteps and achieve more stable
and reliable predictions.

C Implementation Details

C.1 Dataset Descriptions

We conduct experiments on 8 real-world datasets to evaluate the effectiveness of the proposed
selective learning, including:

• ETT (Electricity Transformer Temperature) [81] contains 7 features of electricity trans-
former data collected from two separate counties from July 2016 to July 2018. It contains
four datasets: ETTh1, ETTh2, ETTm1, ETTm2, where ETTh1 and ETTh2 are recorded
every hour, and ETTm1 and ETTm2 are recorded every 15 minutes.

• Electricity [64] records the hourly electricity consumption data of 321 clients from 2012 to
2014. Each variable represents a client’s electricity consumption.

• Exchange [64] collects the panel data of daily exchange rates from 1990 to 2016 from 8
countries, including Australia, Britain, Canada, Switzerland, China, Japan, New Zealand,
and Singapore.

• Weather[64] includes 21 meteorological factors collected every 10 minutes from the weather
station of the Max Planck Biogeochemistry Institute in 2020.

• ILI (Influenza-Like Illness) [64] includes the weekly recorded patient data from the Centers
for Disease Control and Prevention of the United States between 2002 and 2021.

We follow the same data processing and train-validation-test set split protocol used in TimesNet[63],
where the train, validation, and test datasets are strictly divided according to chronological order to
ensure no data leakage issues. The statistics of the datasets are provided in Table 5.

Table 5: Statistics of the datasets.

Dataset Dim Prediction Length Dataset Size Split Frequency Domain
ETTh1, ETTh2 7 {96, 192, 336, 720} 14,400 6:2:2 Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} 57,600 6:2:2 15min Electricity

Exchange 8 {96, 192, 336, 720} 7,588 7:1:2 Daily Economy

Weather 21 {96, 192, 336, 720} 52,696 7:1:2 10min Weather

Electricity 321 {96, 192, 336, 720} 26,304 7:1:2 Hourly Electricity

ILI 7 {24, 36, 48, 60} 966 7:1:2 Weekly Health
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C.2 Baselines

• Informer [81] is a Transformer for time series forecasting (TSF) with a ProbSparse self-
attention mechanism.

• Crossformer [79] utilizes attention to capture both temporal and multivariate correlations.
• PatchTST [35] splits the input time series into patches, which serve as input tokens of the

Transformer. It proposes a channel-independent strategy.
• TimesNet [63] transforms time series into 2D tensors and employs CNN to capture inter-

and intra-period dependencies.
• iTransformer [29] embeds each series independently to the variate token and applies

self-attention to capture multivariate correlations.
• TimeMixer [55] is an MLP-based model that captures multi-scale patterns by decomposing

time series into different scales and mixing them through MLP layers.

Notably, PatchTST, iTransformer, and TimeMixer are equipped with RevIN [19] to handle the
distribution shift issue. Selective learning can provide additional performance gains while maintaining
full compatibility with existing normalization techniques.

Algorithm 1 The workflow of selective learning.

1: INPUT: The model f(·,θ), the training set Dtrain = {(Xt−L:t,Xt:t+F )}T−F
t=L , the estimation

model g(·,ϕ) trained on Dtrain, and the number of iterations Nit.
2: OUTPUT: Optimized model f(·,θτ ).
3: Initialize f(·,θ0) and a historical residual archive S
4: for τ in {0, 1, ·, Nit − 1} do
5: X̂t:t+F = f(Xt−L:t;θτ ) // Forward
6: // Calculate the residual and update S

7: ϵt:t+F = Xt:t+F − X̂t:t+F

8: S ← ϵt:t+F

9: // Uncertainty mask
10: if τ ≥ K then
11: // Update the residual entropy once per epoch
12: if τ%K = 0 then
13: for t in {0, · · · , T} do
14: Calculate Ĥ(ϵt) by Eq.(8)
15: end for
16: γu = Top-ru% H(ϵt) for t ∈ {0, · · · , T − 1}
17: end if
18: CalculateM(τ)

u by Eq.(11)
19: end if
20: // Anomaly Mask
21: Calculate Ŝ(Xt) by Eq.(13)
22: γa = Top-ra% S(Xt) for t ∈ {0, · · · , F − 1}
23: CalculateM(τ)

a by Eq.(14)
24: M(τ) =M(τ)

u ∨M(τ)
a

25: LSL = 1
N ·|M(τ)|

∑F−1
i=0 ||M(τ)(Xt+i − f(Xt−L:t;θτ )i)||2

26: θτ+1 = θτ − η∇θLSL // Optimization through selective learning loss
27: end for

C.3 Implementation Details

In this section, we provide the implementation details of selective learning. The overall workflow of
selective learning is provided in Algorithm 1.

Uncertainty Mask We employ a global threshold γu computed across the entire training sequence
X0:T to determine uncertainty masks. This choice prevents performance degradation caused by
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masking normal (but relatively uncertain within specific samples) timesteps when masking ratios
increase. For computational efficiency, the threshold is updated only once per epoch. This design
additionally mitigates the cold-start issue of uncertainty masking in the first epoch, where inadequate
residual entropy estimates would otherwise lead to suboptimal masking decisions.

When processing extremely large datasets that exceed memory capacity for saving full-sequence
residuals, we recommend two alternative approaches: (1) adopting per-sample thresholds with con-
servatively low masking ratios, or (2) implementing a max-heap algorithm for threshold computation.
Both solutions maintain computational feasibility while preserving the benefits of uncertain masking.

Anomaly Mask We employ a per-sample threshold γa computed across the prediction sequence
Xt:t+F to determine uncertainty masks. Global anomaly masking over X0:T is adversely affected
by training dynamics (where later samples consistently produce smaller residuals), resulting in
suboptimal mask selection.

In this paper, the estimation model g is trained on the entire training set of f , diverging from some
existing works in other fields that employ held-out sets to train auxiliary models to prevent overfitting
in the training set [34]. We prevent overfitting instead by employing a simple model (e.g., DLinear)
as g, thereby safeguarding the main model’s performance. Additionally, unlike other data modalities,
the patterns in time-series data often change over time. Consequently, using a holdout set may lead
to underfitting of certain patterns in g, particularly for datasets with strong non-stationarity. When
using a simple model as g, it should be trained until full convergence on the training set to avoid
underfitting. Additionaly, since the sample partitioning in TSF depends on the sliding window size,
each forecasting window size necessitates training a distinct model.

C.4 Selection of Masking Ratio

The masking ratios are crucial hyperparameters in selective learning. We provide the default masking
ratio in Table 6. However, the optimal masking ratio may vary across different models. Users can
perform a hyperparameter search around the default masking rate to find the optimal masking ratio.
For a new dataset, we recommend a three-stage optimization protocol: (1) optimize the noise masking
ratio to achieve peak performance; (2) fix the noise masking ratio and tune the anomaly masking
ratio to its optimal value; (3) conduct a local hyperparameter search within the neighborhood of these
determined masking ratios.

Additionally, specific masking ratios may also be attempted as initial values:

• ru = 10%, ra = 10% for stable and high-quality datasets.
• ru = 30%, ra = 30% for datasets containing certain levels of noise and anomalies.
• ra = 90% for highly-volatile dataset.

Table 6: The default masking ratio for the datasets.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Weather ILI
Uncertainty Mask 30% 10% 20% 20% 10% / 10% 10%

Anomaly Mask 30% 60% 20% 50% 10% 90% 20% 10%

D Running Cost

In this section, we analyze the computational cost introduced by selective learning from the perspective
of running time and memory usage.

Complexity Analysis We first theoretically analyze of the time and space complexity of selective
learning algorithm.

• Time Complexity: Let B be the batch size. For uncertainty mask, residual entropy updates
cost O(BFN) per epoch. The complexity of the anomaly mask depends on the architecture
of the estimation model. Taking a linear model as an example, the forward pass of the
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estimation model requires O(BLN) complexity, and the masking process adds O(BFN).
Therefore, the complexity of the anomaly mask is O(B(L+ F )N).

• Space Complexity: Storing residuals for T timesteps requires O(TFN) space.

Running Time We measure the running time per epoch of different models trained without and
with selective learning on the ETTh1 and ETTm2 datasets. The results in Table 7 demonstrate that
selective learning maintains computational efficiency, adding acceptable training time while achieving
significant performance gains.

Table 7: Running cost of selective learning (SL). The results are averaged over 3 runs.

Method TimesNet iTransformer TimeMixer

w/o SL Time Inc. MSE Dec. w/o SL Time Inc. MSE Dec. w/o SL Time Inc. MSE Dec.
Metric (s/Epoch) (s/Epoch) (s/Epoch) % (s/Epoch) (s/Epoch) (s/Epoch) % (s/Epoch) (s/Epoch) (s/Epoch) %

E
T

T
h1

96 7.2 9.0 1.8 10.6% 1.8 2.0 0.2 7.7% 5.0 5.4 0.4 6.9%
192 10.2 11.0 0.8 13.0% 1.9 2.2 0.3 7.0% 5.1 5.6 0.5 6.8%
336 10.2 12.4 2.2 12.9% 2.1 2.3 0.2 8.1% 5.1 5.8 0.7 4.0%
720 14.1 15.7 1.6 18.9% 2.2 3.1 0.9 13.6% 5.3 6.5 1.2 10.5%

Avg. 10.4 12.0 1.6 14.0% 2.0 2.4 0.4 9.3% 5.1 5.8 0.7 6.9%

E
T

T
m

2

96 43.2 54.5 11.3 11.5% 9.7 11.0 1.3 5.1% 18.1 18.8 0.7 4.7%
192 50.1 56.6 6.5 8.1% 10.2 11.2 1.0 9.0% 19.2 20.0 0.8 5.6%
336 56.3 64.2 7.9 13.1% 10.9 11.8 0.9 7.2% 20.5 21.1 0.6 5.7%
720 77.4 100.5 23.1 10.0% 10.3 14.2 3.9 4.2% 19.1 24.0 4.9 4.3%

Avg. 56.8 69.0 12.2 10.7% 10.3 12.0 2.7 6.4% 19.2 21.0 1.8 5.0%

Memory Usage Our implementation processes historical residuals on the CPU, resulting in merely
2MB of additional GPU memory allocation. Although migrating these operations to the GPU would
improve computational throughput, it would increase GPU memory consumption. Additionally,
maintaining historical residuals in memory requires approximately 4|Dtrain|NF bytes of RAM (e.g.,
<0.1GB RAM for ETTh1 and about 7GB for Electricity when F = 336).

E Discussion

E.1 Non-generalizable Timesteps vs. Distribution Shift

In recent years, distribution shift in non-stationary time series has been widely studied by the research
community [19, 11, 14] and shares conceptual similarities with non-generalizable timestemps. This
section compares and contrasts non-generalizable time steps with distribution shift. At their core,
both concepts describe a fundamental challenge in deep time series forecasting: the problem of
a mismatch between the data a model was trained on and the data it encounters in test, which is
typically induced by changes in environmental or exogenous variables

However, the crucial distinction lies in their scale: distribution shift is typically a instance- or segment-
level phenomenon, where the statistics of the entire dataset change gradually or abruptly over time. In
contrast, a non-generalizable timestep is often a localized, point-level issue. It refers to an individual
or a small set of timesteps whose patterns are uncertain or anomalous that they cannot be reliably
learned or predicted by the model, even if the overall data distribution remains stable.

Therefore, our proposed selective learning offers a finer-grained solution to prevent models from
being affected by non-generalizable data.

E.2 Dynamic Masking vs. Static Masking

Static masking offers an intuitive implementation approach, for example, training an estimation
model to estimate the distribution of each timestep, or employing time series anomaly detection
models [40, 71, 66] to target anomalous timesteps. In contrast, dynamic masking adaptively modifies
the masked timesteps during training. This approach offers two key advantages:

• Static masking significantly alters the distribution of Dtrain, thereby introducing bias,
whereas dynamic masking adapts the mask during training to mitigate this in expectation.
Specifically, a given timestep may be masked only during certain training phases and within
particular lookback windows, while remaining in other contexts and stages.
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• For rare but critical extreme events (e.g., extreme weather)[10, 78] that are less generalizable,
dynamic masking first learns the most generalizable timesteps and gradually attempts to
learn timesteps previously considered anomalies. Static masking, by contrast, consistently
excludes these patterns, resulting in compromised forecasting capacity for extreme events.

We present a comparison between dynamic and static masking in Table 8 using iTransformer, showing
that dynamic masking yields consistently better performance, which validates our claims.

Table 8: Comparison of static and dynamic masking.

Method Metric ETTh1 ETTm2 Exchange

Static masking MSE 0.426 0.264 0.358
MAE 0.437 0.324 0.408

Dynamic masking MSE 0.415 0.256 0.343
MAE 0.425 0.313 0.399

E.3 Capacity of Handling Clean Datasets

If selective learning is employed, then even clean datasets will be masked. This section conducts
additional experiments and make discussions to investigate whether selective learning has an impact
on model performance on clean datasets.

To evaluate selective learning under clean conditions, we construct a synthetic dataset that is theoreti-
cally clean (without any noise or anomalies). An ideal time series without noise or anomalies can be
decomposed into trend and periodic components [39, 64]. Accordingly, we synthesize the dataset by
combining a linear trend components with daily, weekly, and yearly sinusoidal patterns to generate
multivariate time series. For each channel, both the trend slope and the amplitudes of each periodic
component are sampled uniformly from specified ranges.

We have conducted experiments on the synthetic dataset using iTransformer as the backbone model.
As shown in Table 9, uncertainty masking can reduce model performance on clean datasets (by
misidentifying noise), while anomaly masking maintains or even marginally improves performance.
This effect stems from our dynamic masking approach for anomalies: When a normal timestep is
mistakenly masked in one epoch, it can likely be learned in subsequent epochs.

In summary, we recommend using the anomaly mask on clean datasets, while exercising caution
when applying uncertainty masking. Given that real-world time series datasets typically contain a
certain level of noise and anomalies, it is therefore beneficial to select an appropriate masking ratio.

Table 9: iTransformer’s performance on the synthetic dataset (L = 336,F = 336). Better results
with selective learning are in bold.

Method iTransformer + Uncertainty mask +Anomaly mask
ru=5% ru=10% ru=20% ra=5% ra=10% ra=20%

MSE 0.0295 0.0475 0.1569 0.1640 0.0299 0.0294 0.0293
MAE 0.0838 0.0791 0.0848 0.1004 0.0823 0.0829 0.0833

F Limitations and Future Work

Beyond Forecasting Task Our work currently focuses on time series forecasting tasks. However,
our idea can also be applied to other time series analysis tasks, such as imputation and classification
[53], guiding the model to focus more on generalizable patterns. While we highlight these potential
extensions as promising directions, a thorough investigation of their applicability and effectiveness
remains an open question. We leave this exploration for future work.

Extreme Event Forecasting Capacity The dual-masking mechanism may filter out rare extreme
events present in the training set. Although dynamic masking can mitigate this effect, the model’s
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predictive capability for extreme events may still be compromised. For scenarios where extreme
events are critically important, we recommend fine-tuning the selective learning-trained model using
online learning [59, 36, 22] or test-time adaptation [2, 6, 18, 52] after deployment. For example,
SOLID [6] retrieves training samples similar to the current input (including potentially masked ones)
to fine-tune the prediction head.

Pretraining for Time Series Foundation Model Recently, time series foundation models (TSFMs)
have achieved rapid advancements [62, 9, 30, 1, 46, 41, 16]. Selective learning currently focuses on
in-domain forecasting. We leave this as future work. Since the TSFM is trained on samples drawn
from a large-scale dataset, we cannot estimate the residual entropy and lower bound at each timestep.
As a result, the existing design is not directly compatible with the training of TSFMs. However,
thanks to the strong representational capacity of TSFMs, we can train a probabilistic forecasting
model (e.g., Chronos [1], MOIRAI [62]) to directly predict the distribution of each timestep, thereby
selecting the generalizable timesteps. Future work can further combine the selective learning with
some model predictive methods [54] for TSFMs’ robustness and efficiency improvement.

G Full Experimental Results

G.1 Full Forecasting Results

The full forecasting results are provided in Table 10 and 11 due to the page limitation of the main text.
It can be observed that selective learning significantly improves models’ performance in all cases,
demonstrating its effectiveness.

G.2 Full Results of Training Objective Comparison

The full results of the training objective comparison are provided in Table 12 due to the page limitation
of the main text. It is evident that selective learning consistently achieves superior performance. These
results demonstrate that global alignment over whole sequences, whether in shape or distribution,
in the temporal or frequency domain, proves suboptimal, validating the effectiveness of selective
learning.

G.3 Full Ablation Results

The full ablation results are provided in Table 13. The results demonstrate that the model with
full selective learning consistently achieves the best performance. Removing either mask leads to
significant performance degradation across all four datasets. Additionally, replacing the dual-mask
mechanism with random masking reduces model performance to levels comparable to or worse than
the unmasked counterparts. This suggests that the effectiveness of selective learning fundamentally
stems from our dual-mask mechanism, which directs model attention to generalizable timesteps
while filtering out non-generalizable ones.

H Case Study

To showcase the effectiveness of selective learning, we provide supplementary prediction cases of
five baselines across five representative datasets in Figure 6. The visualizations clearly show that
selective learning can enhance models’ forecasting performance and generalizability.
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Table 10: Part 1 of the full forecasting results without/with selective learning (SL). Better results
are in bold. Avg. denotes the average from all prediction lengths, and ∆ denotes the averaged
improvements caused by selective learning.

Method Informer Crossformer PatchTST
w/o +SL w/o +SL w/o +SL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 1.087 0.831 0.478 0.487 0.406 0.426 0.373 0.397 0.377 0.397 0.368 0.386
192 1.262 0.917 0.492 0.490 0.448 0.455 0.417 0.422 0.417 0.421 0.412 0.413
336 1.379 0.952 0.503 0.526 0.460 0.466 0.448 0.443 0.448 0.442 0.433 0.426
720 1.428 0.968 0.680 0.634 0.505 0.512 0.484 0.500 0.465 0.472 0.425 0.443
Avg. 1.289 0.917 0.538 0.534 0.455 0.465 0.431 0.441 0.427 0.433 0.410 0.417
∆ -58.3% -41.8% -5.33% -5.22% -4.10% -3.70%

E
T

T
h2

96 3.107 1.475 1.516 0.937 0.717 0.579 0.474 0.463 0.311 0.367 0.296 0.353
192 3.707 1.659 1.697 1.012 0.736 0.609 0.610 0.548 0.381 0.410 0.369 0.400
336 2.671 1.346 1.595 0.982 0.739 0.621 0.618 0.553 0.418 0.437 0.401 0.428
720 2.543 1.348 2.065 1.175 1.113 0.784 0.935 0.707 0.443 0.464 0.431 0.452
Avg. 3.007 1.457 1.718 1.027 0.826 0.648 0.659 0.568 0.388 0.420 0.374 0.408
∆ -42.9% -29.5% -20.2% -12.4% -3.61% -2.68%

E
T

T
m

1

96 0.443 0.446 0.304 0.350 0.307 0.360 0.301 0.353 0.294 0.343 0.290 0.333
192 0.618 0.573 0.344 0.374 0.366 0.404 0.344 0.381 0.339 0.373 0.333 0.359
336 0.865 0.701 0.374 0.395 0.446 0.453 0.403 0.422 0.372 0.393 0.367 0.381
720 0.941 0.757 0.431 0.433 0.578 0.531 0.503 0.496 0.424 0.428 0.420 0.414
Avg. 0.717 0.619 0.363 0.388 0.424 0.437 0.388 0.413 0.357 0.385 0.353 0.372
∆ -49.3% -37.3% -8.60% -5.49% -1.33% -3.32%

E
T

T
m

2

96 0.334 0.443 0.226 0.345 0.281 0.356 0.194 0.291 0.175 0.261 0.164 0.251
192 0.729 0.676 0.367 0.464 0.374 0.450 0.262 0.341 0.236 0.306 0.218 0.289
336 1.416 0.955 0.595 0.610 0.676 0.582 0.391 0.430 0.293 0.347 0.266 0.322
720 3.460 1.601 0.786 0.690 1.019 0.724 0.631 0.570 0.379 0.402 0.361 0.384
Avg. 1.485 0.919 0.494 0.527 0.588 0.528 0.370 0.408 0.271 0.329 0.252 0.312
∆ -66.8% -42.6% -37.1% -22.7% -6.83% -5.32%

E
le

tr
ic

ity

96 0.300 0.389 0.266 0.364 0.137 0.236 0.134 0.228 0.139 0.235 0.139 0.234
192 0.311 0.399 0.286 0.384 0.162 0.260 0.147 0.241 0.153 0.248 0.152 0.245
336 0.349 0.434 0.301 0.391 0.190 0.283 0.169 0.271 0.168 0.267 0.166 0.258
720 0.406 0.459 0.316 0.404 0.237 0.330 0.220 0.315 0.208 0.296 0.204 0.293
Avg. 0.342 0.420 0.292 0.386 0.182 0.277 0.168 0.264 0.167 0.262 0.165 0.258
∆ -14.4% -8.21% -7.71% -4.87% -1.05% -1.53%

E
xc

ha
ng

e

96 0.906 0.763 0.408 0.514 0.289 0.396 0.205 0.328 0.078 0.196 0.078 0.196
192 1.291 0.908 0.621 0.638 0.527 0.558 0.355 0.447 0.161 0.290 0.157 0.287
336 1.334 0.953 0.825 0.745 0.858 0.719 0.539 0.551 0.303 0.404 0.294 0.397
720 2.547 1.317 1.402 0.949 1.344 0.922 1.010 0.772 0.826 0.693 0.819 0.654
Avg. 1.520 0.985 0.814 0.712 0.755 0.649 0.527 0.525 0.342 0.396 0.337 0.384
∆ -46.4% -27.8% -30.1% -19.2% -1.46% -3.10%

W
ea

th
er

96 0.203 0.287 0.157 0.198 0.145 0.209 0.138 0.193 0.150 0.196 0.147 0.185
192 0.303 0.369 0.216 0.256 0.190 0.256 0.184 0.245 0.195 0.240 0.190 0.225
336 0.351 0.373 0.270 0.305 0.252 0.306 0.231 0.285 0.246 0.280 0.243 0.267
720 0.491 0.465 0.448 0.435 0.318 0.363 0.298 0.336 0.321 0.332 0.319 0.321
Avg. 0.337 0.374 0.273 0.299 0.226 0.284 0.213 0.265 0.228 0.262 0.225 0.250
∆ -19.1% -20.1% -5.97% -6.61% -1.32% -4.77%

IL
I

24 4.689 1.466 4.587 1.434 3.595 1.265 3.006 1.150 1.900 0.868 1.755 0.856
36 4.812 1.529 3.273 1.243 3.977 1.350 3.416 1.234 2.396 0.964 2.056 0.926
48 4.952 1.572 3.721 1.328 3.783 1.297 3.773 1.306 1.938 0.917 1.793 0.888
60 5.358 1.608 4.405 1.434 4.571 1.457 4.527 1.450 2.070 0.933 2.014 0.911

Avg. 4.953 1.544 3.997 1.360 3.982 1.342 3.681 1.285 2.076 0.921 1.905 0.895
∆ -19.3% -11.9% -7.56% -4.26% -8.26% -2.74%
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Table 11: Part 2 of the full forecasting results without/with selective learning (SL). Better results
are in bold. Avg. denotes the average from all prediction lengths, and ∆ denotes the averaged
improvements caused by selective learning.

Method TimesNet iTransformer TimeMixer
w/o +SL w/o +SL w/o +SL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.445 0.448 0.398 0.411 0.402 0.413 0.371 0.389 0.394 0.411 0.367 0.387
192 0.476 0.472 0.414 0.426 0.445 0.440 0.414 0.420 0.440 0.442 0.410 0.415
336 0.505 0.485 0.440 0.446 0.469 0.464 0.431 0.432 0.452 0.446 0.434 0.429
720 0.571 0.537 0.463 0.474 0.514 0.510 0.444 0.460 0.485 0.480 0.434 0.452
Avg. 0.499 0.486 0.429 0.439 0.458 0.457 0.415 0.425 0.443 0.445 0.411 0.421
∆ -14.0% -9.67% -9.29% -6.90% -7.11% -5.40%

E
T

T
h2

96 0.356 0.404 0.292 0.357 0.319 0.372 0.300 0.352 0.325 0.375 0.299 0.354
192 0.427 0.452 0.351 0.396 0.394 0.419 0.375 0.405 0.412 0.436 0.378 0.402
336 0.450 0.467 0.389 0.423 0.429 0.445 0.408 0.433 0.430 0.451 0.405 0.428
720 0.505 0.500 0.439 0.459 0.460 0.474 0.445 0.467 0.457 0.472 0.443 0.462
Avg. 0.435 0.456 0.368 0.409 0.401 0.428 0.382 0.414 0.406 0.434 0.381 0.412
∆ -15.4% -10.3% -4.62% -3.27% -6.10% -5.07%

E
T

T
m

1

96 0.329 0.375 0.298 0.342 0.305 0.358 0.295 0.342 0.298 0.350 0.287 0.337
192 0.377 0.402 0.344 0.372 0.346 0.380 0.338 0.368 0.329 0.370 0.327 0.362
336 0.413 0.427 0.382 0.397 0.385 0.403 0.371 0.386 0.368 0.391 0.368 0.382
720 0.464 0.453 0.419 0.424 0.446 0.441 0.423 0.422 0.431 0.426 0.422 0.416
Avg. 0.396 0.414 0.361 0.384 0.371 0.396 0.357 0.380 0.357 0.384 0.351 0.374
∆ -8.84% -7.36% -3.71% -4.05% -1.54% -2.60%

E
T

T
m

2

96 0.191 0.280 0.169 0.257 0.175 0.268 0.166 0.253 0.172 0.261 0.164 0.250
192 0.246 0.314 0.226 0.298 0.244 0.315 0.220 0.291 0.233 0.305 0.220 0.289
336 0.312 0.360 0.271 0.324 0.291 0.343 0.270 0.325 0.283 0.335 0.267 0.321
720 0.408 0.416 0.367 0.385 0.383 0.400 0.367 0.384 0.370 0.391 0.354 0.377
Avg. 0.289 0.343 0.258 0.316 0.273 0.332 0.256 0.313 0.265 0.323 0.251 0.309
∆ -10.7% -7.74% -6.40% -5.51% -5.01% -4.26%

E
le

tr
ic

ity

96 0.184 0.289 0.177 0.281 0.134 0.227 0.132 0.223 0.135 0.229 0.133 0.228
192 0.192 0.295 0.184 0.286 0.157 0.249 0.151 0.244 0.152 0.247 0.149 0.241
336 0.193 0.299 0.190 0.294 0.168 0.262 0.158 0.250 0.164 0.263 0.160 0.255
720 0.222 0.320 0.214 0.313 0.197 0.290 0.187 0.279 0.201 0.297 0.196 0.290
Avg. 0.198 0.301 0.191 0.294 0.164 0.257 0.157 0.249 0.163 0.259 0.160 0.254
∆ -3.29% -2.33% -4.27% -2.92% -2.15% -2.12%

E
xc

ha
ng

e

96 0.109 0.239 0.091 0.218 0.088 0.211 0.082 0.203 0.080 0.199 0.078 0.197
192 0.182 0.312 0.165 0.299 0.173 0.303 0.162 0.293 0.166 0.298 0.157 0.287
336 0.333 0.427 0.322 0.416 0.323 0.419 0.305 0.407 0.310 0.407 0.297 0.399
720 0.904 0.736 0.875 0.720 0.870 0.720 0.821 0.693 0.834 0.694 0.808 0.693
Avg. 0.382 0.429 0.363 0.413 0.364 0.413 0.343 0.399 0.348 0.400 0.335 0.394
∆ -4.97% -3.73% -5.78% -3.45% -3.60% -1.38%

W
ea

th
er

96 0.167 0.222 0.160 0.207 0.161 0.210 0.153 0.194 0.152 0.207 0.152 0.204
192 0.218 0.266 0.212 0.255 0.206 0.249 0.197 0.237 0.197 0.253 0.194 0.243
336 0.265 0.300 0.257 0.289 0.249 0.280 0.243 0.270 0.249 0.293 0.245 0.287
720 0.340 0.348 0.326 0.334 0.325 0.336 0.321 0.328 0.321 0.350 0.312 0.338
Avg. 0.248 0.284 0.239 0.271 0.235 0.269 0.229 0.257 0.230 0.276 0.226 0.268
∆ -3.54% -4.58% -2.87% -4.28% -1.74% -2.81%

IL
I

24 2.480 1.009 1.969 0.907 1.511 0.813 1.359 0.784 1.931 0.879 1.829 0.847
36 2.815 1.095 2.405 0.979 1.929 0.929 1.696 0.847 2.430 0.971 2.113 0.902
48 2.436 1.008 2.351 0.941 2.054 0.931 1.857 0.892 2.135 0.931 2.051 0.903
60 2.240 0.998 1.892 0.898 2.140 0.983 1.926 0.905 2.157 0.948 2.109 0.926

Avg. 2.493 1.028 2.154 0.931 1.909 0.914 1.710 0.857 2.163 0.932 2.026 0.895
∆ -13.6% -9.36% -10.4% -6.24% -6.37% -4.06%
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Table 12: Full comparison results between selective learning (SL) and other training objectives with
iTransformer as backbone. Avg. denotes the averaged results from all prediction lengths. The best
results are in bold, and the second-best are underlined.

Loss SL PS FreDF TILDE-Q MSE

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.371 0.389 0.389 0.410 0.388 0.410 0.391 0.408 0.402 0.413
192 0.414 0.420 0.421 0.429 0.434 0.438 0.423 0.428 0.445 0.440
336 0.431 0.432 0.443 0.446 0.460 0.459 0.448 0.444 0.469 0.464
720 0.444 0.460 0.453 0.476 0.516 0.513 0.467 0.477 0.514 0.510

Avg. 0.415 0.425 0.427 0.440 0.450 0.455 0.432 0.439 0.458 0.457

E
T

T
m

2

96 0.166 0.253 0.167 0.255 0.169 0.258 0.173 0.259 0.175 0.268
192 0.220 0.291 0.232 0.299 0.227 0.298 0.231 0.298 0.244 0.315
336 0.270 0.325 0.287 0.336 0.274 0.330 0.278 0.331 0.291 0.343
720 0.367 0.384 0.370 0.389 0.377 0.391 0.370 0.388 0.383 0.400

Avg. 0.256 0.313 0.264 0.320 0.262 0.319 0.263 0.319 0.273 0.332

E
xc

ha
ng

e 96 0.082 0.203 0.087 0.211 0.088 0.208 0.084 0.207 0.088 0.211
192 0.162 0.293 0.180 0.303 0.185 0.305 0.171 0.301 0.173 0.303
336 0.305 0.407 0.335 0.420 0.346 0.426 0.335 0.422 0.323 0.419
720 0.821 0.693 0.861 0.700 0.886 0.712 0.884 0.724 0.870 0.720

Avg. 0.343 0.399 0.366 0.409 0.376 0.413 0.369 0.414 0.364 0.413

W
ea

th
er

96 0.153 0.194 0.155 0.199 0.159 0.207 0.155 0.198 0.161 0.210
192 0.197 0.237 0.200 0.241 0.204 0.249 0.199 0.239 0.206 0.249
336 0.243 0.270 0.250 0.281 0.260 0.292 0.249 0.279 0.249 0.280
720 0.321 0.328 0.327 0.337 0.334 0.347 0.325 0.333 0.325 0.336

Avg. 0.229 0.257 0.233 0.265 0.239 0.274 0.232 0.262 0.235 0.269

Table 13: Full ablation results for selective learning with iTransformer as backbone.

Prediction ETTh1 ETTm2 Electricity Weather

Design Length MSE MAE MSE MAE MSE MAE MSE MAE

Selective Learning

96 0.371 0.389 0.166 0.253 0.132 0.223 0.153 0.194
192 0.414 0.420 0.220 0.291 0.151 0.244 0.197 0.237
336 0.431 0.432 0.270 0.325 0.158 0.250 0.243 0.270
720 0.444 0.460 0.367 0.384 0.187 0.279 0.321 0.328
Avg. 0.415 0.425 0.257 0.315 0.157 0.249 0.229 0.257

w/o Uncertainty Mask

96 0.379 0.400 0.166 0.257 0.133 0.228 0.159 0.207
192 0.423 0.429 0.230 0.300 0.153 0.247 0.201 0.246
336 0.448 0.447 0.287 0.335 0.165 0.261 0.246 0.280
720 0.495 0.497 0.377 0.394 0.195 0.287 0.321 0.331

Avg. 0.436 0.443 0.265 0.322 0.162 0.256 0.232 0.266

w/o Anomaly Mask

96 0.388 0.403 0.177 0.261 0.135 0.228 0.158 0.206
192 0.424 0.428 0.230 0.301 0.151 0.244 0.201 0.245
336 0.444 0.442 0.279 0.333 0.160 0.256 0.249 0.281
720 0.468 0.477 0.376 0.396 0.189 0.279 0.326 0.334

Avg. 0.431 0.438 0.266 0.323 0.159 0.252 0.234 0.267

Random Mask

96 0.401 0.418 0.179 0.271 0.137 0.234 0.160 0.208
192 0.452 0.452 0.240 0.312 0.158 0.256 0.203 0.249
336 0.471 0.466 0.294 0.346 0.169 0.266 0.258 0.284
720 0.505 0.505 0.384 0.399 0.196 0.286 0.325 0.334

Avg. 0.457 0.460 0.274 0.332 0.165 0.261 0.237 0.269
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(a) Case study on the ETTh1 datasets with iTransformer as backbone.

(b) Case study on the ETTm2 datasets with Informer as backbone.

(c) Case study on the Electricity datasets with Crossformer as backbone.

(d) Case study on the Exchange datasets with Informer as backbone.

(e) Case study on the Weather datasets with PatchTST as backbone.

Figure 6: Case study results across five datasets.
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Guidelines:
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made in the paper.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [Yes]
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Justification: The paper provides the assumptions and proofs in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the datasets, experimental setups,
implementation details, and hyperparameters, which are sufficient to reproduce the main
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides the code in the supplemental material with sufficient
instructions to reproduce the main experimental results. The code will be released publicly
upon acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper thoroughly describes the training and test details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper provides clear explanations of the statistical methods used to
compute metrics and ensures the robustness of the reported findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research aligns with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on time series forecasting problem, so there is no potential
societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper credits the owners of any used assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces new assets that are well documented alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects, so IRB approvals or equivalent
review are not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method in this research does not involve LLMs as any important,
original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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