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ABSTRACT

Graph neural networks (GNNs) have become core building blocks behind a myriad
of graph learning tasks. The vast majority of the existing GNNs are built upon,
either implicitly or explicitly, the homophily assumption, which is not always
true and could heavily degrade the performance of learning tasks. In response,
GNNs tailored for heterophilic graphs have been developed. However, most of the
existing works are designed for the specific GNN models to address heterophily,
which lacks generality. In this paper, we study the problem from the structure
learning perspective and propose a family of general solutions named ALT. It
can work hand in hand with most of the existing GNNs to decently handle graphs
with either low or high homophily. The core of our method is learning to (1)
decompose a given graph into two components, (2) extract complementary graph
signals from these two components, and (3) adaptively merge the graph signals for
node classification. Moreover, analysis based on graph signal processing shows
that our framework can empower a broad range of existing GNNs to have adaptive
filter characteristics and further modulate the input graph signals, which is critical
for handling complex homophilic/heterophilic patterns. The proposed ALT brings
significant and consistent performance improvement in node classification for a
wide range of GNNs over a variety of real-world datasets.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated the great power as building blocks for a variety of
graph learning tasks, such as node classification (Kipf & Welling, 2017), graph classification (Xu
et al., 2018), link prediction (Zhang & Chen, 2018), clustering (Bianchi et al., 2020), and many
more. Most of the existing GNNs follow the homophily assumption, i.e., edges tend to connect nodes
with the same labels and similar node features. Such an assumption holds true for networks such as
citation networks (Yang et al., 2016; Bojchevski & Günnemann, 2018) where a paper tends to cite
related literature. However, in many other cases, the heterophilic settings arise. For instance, to form
a protein structure, different types of amino acids are more likely to be linked together (Zhu et al.,
2020). On such heterophilic networks, the performance of classic GNN models (Klicpera et al., 2018;
Veličković et al., 2018; Hamilton et al., 2017) could degrade greatly and might be even worse than an
MLP which does not utilize any topology information at all (Zhu et al., 2020).

In response, researchers have analyzed the limitations of the existing GNNs in the presence of node
heterophily and further proposed specific models to address it from both the spatial and spectral
perspectives. For instance, an important design by H2GCN (Zhu et al., 2020) is that high-order
neighbors should be considered during message aggregation. GPRGNN (Chien et al., 2021) also
aggregates messages from multi-hop neighbors but it emphasizes that messages can also be negative
via a set of learnable aggregation weights. From the spectral perspective, FAGCN (Bo et al., 2021)
points out that low-pass filter-based GNNs smooth the node representations between connected nodes,
which is not desirable for the heterophilic settings where connected nodes are more likely to have
different labels. Hence, FAGCN (Bo et al., 2021) adaptively mixes the low-pass graph filter with the
high-pass graph filter via an attention mechanism to tackle this problem. A more detailed review of
related work can be found in Section 5.

Despite the theoretic insights and empirical performance gain, most of the existing works focus on
the model level, i.e., they aim to propose better GNNs models to handle the heterophilic graphs. In
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other words, the success of their methods relies on specific designs of GNN models. In this paper,
we take a step further and ask: how to develop a generic method to benefit a broad range of GNNs
for node classification beyond homophily, even if they are not originally tailored for the heterophilic
graphs? To this end, we address this problem from a structure learning (Zhu et al., 2021b) perspective,
that is, we optimize the given graph structure to benefit downstream tasks (e.g., node classification).
Different from the existing approaches that refine the specific GNNs models, our approach focuses
on the data level by optimizing the input graph topology to tackle heterophily.

Challenges. In pursuing such a data-centric general solution, here are the key challenges. First (model
diversity), our goal is to strengthen a broad range of established GNNs so that they can handle graphs
with arbitrary homophily. However, the aggregation mechanism and the graph convolution kernels
are different between various GNN models. It is unknown how to accommodate diverse GNNs
seamlessly. Second (theoretical foundation), analyses on the success of some specific GNNs for
heterophilic graphs have recently emerged (e.g., from the graph signal processing perspective (Shuman
et al., 2013)). However, few works focus on the theoretical foundation of structure learning and
its connection to dealing with graphs with low homophily. Our main contributions are listed as
follows: (1) We propose a general graph structure learning-based framework named duAL sTructure
learning (ALT), which can accommodate a variety of GNN models. Specifically, after removing
the activation function from the last layer, any GNN can be plugged into our framework and be
trained end-to-end with common optimizers. (2) We provide a detailed analysis from the graph
signal processing perspective. Our analysis guides the design of ALT and validates its effectiveness
theoretically. (3) Experiments show that with the help of ALT, the node classification accuracy of a
broad range of existing GNNs is boosted on heterophilic graphs, and meanwhile kept competitive on
homophilic graphs.

2 PRELIMINARIES

Notations. We use bold uppercase letters for matrices (e.g., A), bold lowercase letters for column
vectors (e.g., u), lowercase and uppercase letters in regular font for scalars (e.g., d, K), and calli-
graphic letters for sets (e.g., T ). We use A[i, j] to represent the entry of matrix A at the i-th row and
the j-th column, A[i, :] to represent the i-th row of matrix A, and A[:, j] to represent the j-th column
of matrix A. Similarly, u[i] denotes the i-th entry of vector u. Superscript ⊤ denotes the transpose
of matrices and vectors. ⊙ denotes the Hadamard product.

An attributed graph can be represented as G = {A,X} which is composed of an adjacency matrix
A ∈ Rn×n and an attribute matrix X ∈ Rn×d, where n is the number of nodes and d is the node
feature dimension. In total, nodes can be categorized into a set of classes C. The normalized
Laplacian matrix is L̃ = I −D− 1

2AD− 1
2 where D is the diagonal degree matrix of A. It can be

decomposed as L̃ = UΛU⊤ where U ∈ Rn×n is the eigenvector matrix and Λ ∈ Rn×n is the
diagonal eigenvalue matrix. In graph signal processing (Shuman et al., 2013), the diagonal entry of Λ
represents frequency and Λ[i, i] = λi. Given a signal x ∈ Rn, its graph Fourier transform (Shuman
et al., 2013) is represented as x̂ = Ux, and its inverse graph Fourier transform is defined as x = U⊤x̂.
For a diffusion matrix C ∈ Rn×n, its frequency response (or profile (Balcilar et al., 2021)) is defined
as Φfp = diag−1(U⊤CU) where diag−1(·) returns the diagonal entries. This frequency response
is also known as the filter and the convolution kernel.

Semi-supervised Node Classification. In this paper, we study semi-supervised node classifica-
tion (Yang et al., 2016; Kipf & Welling, 2017) where the graph topology A, all node features X, and
a part of node labels are given and our goal is to predict the labels of unlabelled nodes. Numerous
works (Kipf & Welling, 2017; Veličković et al., 2018; Klicpera et al., 2018) achieve impressive
performance on this problem. However, recent studies show that their successes heavily rely upon
the homophily assumption of the given graphs (Zheng et al., 2022; Zhu et al., 2020). In general,
homophily describes to what extent edges tend to link nodes with the same labels and similar fea-
tures. Following previous works (Zhu et al., 2020; Pei et al., 2019), this paper focuses on the node
label homophily. There are various homophily metrics and we introduce one of them named edge
homophily (Zhu et al., 2020) as: h(G) =

∑
i,j,A[i,j]=1Jy[i]=y[j]K∑

i,j A[i,j] ∈ [0, 1], where JxK = 1 if x is true

and 0 otherwise. The more homophilic a given graph is, the closer its h(G) is to 1.
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(a) A given filter (b) Reflection (c) Reflection + offset

Figure 1: The Illustration of obtaining a filter with complementary filter characteristics. Given a filter
(a), its reflected frequency response (b) with offset (c) has complementary filter characteristics.

3 PROPOSED METHODS

In this section, we first propose a flexible method named ALT-global which empowers any GNN
with an adaptive filter characteristics. Next, we carefully analyze the expressiveness of ALT-global
from the graph signal processing perspective (Shuman et al., 2013). This analysis guides the design
of another more advanced method named ALT-local which enhances the spectral expressiveness of
any GNN to be a local adaptive filter by modulating the input graph signals.

3.1 ALT-GLOBAL: A GLOBAL ADAPTIVE METHOD

Intuitively, nodes with different labels should be located as far as possible in the embedding space and
nodes with the same labels should be assigned closely. This intuition is aligned well with the utility
of many classic GNNs (e.g., GCN (Kipf & Welling, 2017)) on homophilic graphs. That is because,
on homophilic graphs, many same-label nodes are connected, whose embeddings will be smoothed
by those classic low-pass filter GNNs (Bo et al., 2021; Balcilar et al., 2021). In contrast, the low-pass
filter GNNs’ performance degrades significantly on heterophilic graphs since the connected nodes’
embeddings should not be smoothed. Many efforts (Bo et al., 2021; Chien et al., 2021) point out that
a key design to deal with graphs with unknown homophily is to equip GNNs with an adaptive filter.

We aim to propose a data-centric solution such that minimal modification on the given GNNs (e.g.,
a low-pass filter GNN) is needed. As we do not make any assumption about the model structure
of the given GNN, its filter can be either low-pass, high-pass, band-pass, or others. To equip the
given GNN with an adaptive filter, our core idea is to adaptively combine signals from two filters
with the complementary filter characteristics. For example, if a low-pass filter GNN is given, it
should be adaptively combined with another high-pass filter. To find such a complementary filter, a
two-step modification of the frequency response is needed. Figure 1 shows that we can first reflect the
frequency response curve over the frequency axis and then set an appropriate offset to the reflected
frequency response. Guided by this idea, the mathematical details of the proposed ALT-global are as
follows,

H1 = GNN(wA,X, θ1), (1a)
H2 = GNN((1− w)A,X, θ2), (1b)

Hoffset = MLP(X, θ3), (1c)
Z = softmax(H1 −H2 + ηHoffset), (1d)

where θ1 and θ2 are the parameters of the backbone dual GNNs (i.e., GNNs from Eq. 1a and Eq. 1b),
θ3 is the parameter of a multi-layer perceptron (MLP), η ∈ R and w ∈ [0, 1] are learnable parameters,
and Z ∈ Rn×C is the prediction matrix. Here the softmax is applied row-wise. For models using
the normalized adjacency matrix (e.g., Ã = (D+ I)−

1
2 (A+ I)(D+ I)−

1
2 ) as the diffusion matrix

(e.g., GCN (Kipf & Welling, 2017)), the re-weighting can be set over the normalized adjacency
matrix (i.e., wÃ and (1− w)Ã).

We elaborate more on the design of ALT-global. First, all the insights we obtained from Figure 1 are
still applicable to the convolution kernel directly. Nonetheless, since our method works in a plug-
and-play fashion which does not modify the backbone GNNs, it uses a well-designed aggregation
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(i.e., Eq. 1d) to achieve an equivalent effect. Specifically, (1) H1 is the signals from a backbone
GNN with positive re-scaling; (2) −H2 is the negative signals that correspond to the signals from a
reflected filter; (3) ηHoffset is the offset term which is equivalent to signals from an all-pass filter.
Second, the adaptive mixture of the above three sets of graph signals is controlled by the learnable
parameters w and η. Other aggregation functions are also applicable. One of the options is an MLP
whose input is the concatenation of H1, H2, and Hoffset. However, it is not used in this paper
because (1) it increases the analysis difficulties dramatically and (2) empirically, no performance
advantage is observed in the ablation study (Section 4.3). Analysis in the following section shows
that ALT-global bears strong flexibility in filter characteristics.

3.2 ANALYSIS OF ALT-GLOBAL

For clarity and brevity, in the following analysis, we assume that the backbone GNNs are graph-
augmented MLPs (GA-MLPs) as defined below. This is because, first, many GNNs fall into the
GA-MLP family if part of the nonlinear functions is removed; and second, GA-MLPs have shown
strong empirical performance while enjoying provable expressiveness (Chen et al., 2021).
Definition 1. Graph-Augmented Multi-Layer Perceptron (GA-MLP) (Chen et al., 2021) is a
family of GNNs that first conduct feature transformation via an MLP and then diffuse the features.
Mathematically they compute node embeddings as H = C · MLP(X) where C is the diffusion matrix.

The (full) frequency profile (Balcilar et al., 2021) is closely related to the filter characteristics of
GNNs and it is introduced as follows.
Definition 2. Frequency profile (Balcilar et al., 2021) is defined as Φfp = diag−1(U⊤CU) where
diag−1(·) returns the diagonal entries if U⊤CU is a diagonal matrix. In case U⊤CU is not a
diagonal matrix, full frequency profile (Balcilar et al., 2021) is defined as Φ = U⊤CU.

It is well-known that the frequency profile of a diffusion matrix (if diagonal) is a filter/convolution
kernel for the input graph signal. Next, we show that ALT is indeed equipped with an adaptive filter.
Lemma 1. The filter characteristic of the proposed ALT-global (Eq. 1d) is adaptive regardless of
the frequency filtering functionality of the backbone GNNs (Eq. 1a and Eq. 1b).

Proof. For analysis convenience, we assume (1) the learnable weight w is multiplied with the
diffusion matrix, and (2) the backbone GNNs are GA-MLPs whose MLP modules (from Eq. 1a
and Eq. 1b) share common parameters with the offset MLP (from Eq. 1c). We start from the case
where backbone GNNs are fixed low-pass filters. Without loss of generality, their corresponding full
frequency profiles can be presented as Φ = I− ξ(Λ) where ξ is a monotonically increasing function.
Then, in this case, the diffusion matrices from two GNNs are re-weighted as wC and (1 − w)C
respectively. Considering the offset MLP as a special GA-MLP whose diffusion matrix is I, the
combined graph signals are wC · MLP(X) − (1 − w)C · MLP(X) + ηI · MLP(X) = C̃ · MLP(X)

where the combined diffusion matrix is C̃ = wC− (1− w)C+ ηI. Hence the diagonal entry of the
corresponding full frequency profile is

Φ[i, i] = Φ(λi) = (2w − 1)(1− ξ(λi)) + η.

When w > 0.5, i.e., 2w − 1 > 0, Φ(λi) is a monotonically decreasing function. The proposed
method is a low-pass filter when η > 0. Similarly, it is a high-pass filter when w is close to 0 and
η > 1. The above conditions are sufficient and in fact, there are many other combinations of w and η
which can produce low-pass/high-pass filters. Similar results can be obtained when the backbone
GNNs are fixed high-pass filters and we omit that part for brevity.

Remarks. The filter characteristics of the ALT-global can also be interpreted from the Graph Diffusion
Equation (GDE) (Newman, 2018) perspective and we provide the GDE-related analysis in Appendix.

3.3 GLOBAL FILTERS VS. LOCAL FILTERS

We have shown that ALT-global is equipped with adaptive filter characteristics. However, ALT-global
fundamentally applies a global filter to every node, which could lead to suboptimal performance.
Recent studies (Zhu et al., 2021a; Wang et al., 2022a) reveal that heterophilic connection patterns
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differ between different nodes. Take gender classification on a dating network as an example. While
node pairs are often of different labels (i.e., genders), homosexuality also exists between some node
pairs. Therefore, simply applying a global low-pass or high-pass filter over all the nodes can degrade
the overall classification performance.

Next, we will study how to generalize our proposed ALT-global to a local (i.e., node-specific) and
adaptive filter. Before that, let us take a closer look at the full frequency profile (Balcilar et al., 2021):
Φ = U⊤CU. In the following proposition, we point out that Φ can describe both the filter and
modulator characteristics of a given diffusion matrix C.
Proposition 1. The diagonal entries of the full frequency profile Φ of the diffusion matrix serve as
the filter and the non-zero off-diagonal entries are the frequency modulator.

Proof. The diffusion of the input graph signal Xin = MLP(X) can be represented as CXin =

UΦU⊤Xin = U(ΦX̂in), where X̂in is the input graph signal in spectral domain. According to the
definitions of graph signal processing (Shuman et al., 2013), (ΦX̂in)[i :] represents the amplitude of
output graph signal whose frequency is λi. We further expand the computation and obtain

(ΦX̂in)[i :] =
∑
j

Φ[i, j] ·Xin[j, :].

In the summation, if i = j, it represents the filter/convolution kernel which has been adopted by
many spectral GNNs (Balcilar et al., 2021). If i ̸= j (i.e., if non-zero off-diagonal entries of Φ
exist), it shows that the λi-component of the output graph signal is merged with scaled (by Φ[i, j])
λj-component of the input graph signal which is essentially the modulation (Shuman et al., 2013).

Based on the above property of the full frequency profile Φ, the following proposition points out the
key design for local filter characteristics.
Proposition 2. Modulation of the input graph signal (i.e., non-zero off-diagonal entries in the full
frequency profile) is necessary for local filters.

Proof. We follow the terminology used in the proof of Proposition 1. If the full frequency profile Φ
only contains non-zero diagonal entries, we can obtain

(ΦX̂in)[i, :] = (diag−1(Φ))⊤ ⊙ X̂in[i, :], (2)

where diag−1 extracts the diagonal entries into a vector from the input square matrix. Hence, if
we define the scaling of the λi-frequency signal over node p after and before the operator Φ as
SCALING(i, p,Φ) = (ΦX̂in)[i,p]

X̂in[i,p]
, based on Eq. 2 we obtain

∀i, p, q, SCALING(i, p,Φ) = SCALING(i, q,Φ)

i.e., for any specific frequency (e.g., λi), its scaling over any two nodes (p and q) are equal. In other
words, the filter Φ works globally over every node. If we expect the filter Φ to not work globally, i.e.

∃i, p, q, SCALING(i, p,Φ) ̸= SCALING(i, q,Φ).

The above inequality is equivalent to∑
k,k ̸=i Φ[i, k] · X̂in[k, p]

X̂in[i, p]
̸=

∑
k,k ̸=i Φ[i, k] · X̂in[k, q]

X̂in[i, q]
.

Assume that ∀k, if k ̸= i, Φ[i, k] = 0, and then the left-hand side is equal to the right-hand side
which leads to a contradiction. Hence, non-zero off-diagonal entries of the full frequency profile Φ
must exist if we expect the filter to not work globally. Notice that the above definition of scaling
(e.g., (ΦX̂in)[i,p]

X̂in[i,p]
) is not fully aligned with the classic graph filtering (Shuman et al., 2013) but a

combination of filtering and modulation as we mentioned in Proposition 1.

Next, we present a family of GA-MLPs whose spectral expressiveness is limited to a global filter.
Proposition 3. A family of GA-MLPs are global filters if their full frequency profiles are in the form
of C =

∑
k akÃ

k + bI which only contains non-zero diagonal entries.
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Figure 2: The proposed ALT-local.

We prove Proposition 3 in the Appendix. A wide range of GA-MLPs (e.g., SGC (Wu et al., 2019),
APPNP (Klicpera et al., 2018)) follow the above form and therefore cannot modulate graph signal.
Unfortunately, even when they are equipped with our proposed ALT-global, they are still global
filters because ALT-global assigns the same weight to every edge (i.e., wÃ and (1− w)Ã).

3.4 ALT-LOCAL: A LOCAL ADAPTIVE METHOD

In this subsection, we propose a more flexible method based on ALT-global. Our goal is to empower
the backbone GNNs with local adaptive signal filtering capabilities, which is an essential property
for capturing complex heterophilic connection patterns. (Zhu et al., 2021a; Wang et al., 2022a).
According to Proposition 3, we know that if all the edges are assigned with the same weight (e.g.,
wÃ) the corresponding full frequency profile will only contain diagonal non-zero entries. Lemma 2
provides a clue on how to bring non-zero off-diagonal entries in full frequency profiles.
Lemma 2. By re-weighting the edge weights non-uniformly (i.e., if re-weighting by W ⊙
Ã, ∃i, j, k, l,W[i, j] ̸= W[k, l]), the off-diagonal entries of Φ can be non-zero.

We prove Lemma 2 in the appendix. Guided by Lemma 2 we modify ALT-global as follows so that
the edge weights are different:

H1 = GNN(W ⊙A,X, θ1), (3a)
H2 = GNN((1−W)⊙A,X, θ2), (3b)

Hoffset = MLP(X, θ3), (3c)
Z = softmax(H1 −H2 + ηHoffset), (3d)

One option is to set W as a learnable parameter which is prune to overfitting as the number of
parameters is equal to the number of edges. Therefore, we parameterize the edge weight W by an
edge augmenter as follows,

H = GNNaug(A,X, ϕ1), (4a)
W[i, j] = wij = sigmoid(MLP(H[i, :]||H[j, :], ϕ2)) (4b)

where ϕ1 and ϕ2 are the parameters of the augmenter GNN and a multi-layer perceptron (MLP)
respectively. Here we first obtain the node embedding matrix via the augmenter GNN (i.e., GNNaug)
in Eq. 4a. Then we concatenate node embeddings into edge embeddings (i.e., H[i, :]||H[j, :]). The
edge weight (i.e., wij) is computed via an MLP with sigmoid activation. Naturally, the node
embeddings from the augmenter GNN (Eq. 4a) should be as discriminative as possible so that the
edge importance can be better measured. Thus, we use a two-layer high-pass filter GNN as the
GNNaug whose mathematical formulation is as follows,

GNNaug(A,X, ϕ1) = Ã2
highMLP(X, ϕ1), (5a)

Ãhigh = ϵI−D− 1
2AD− 1

2 , (5b)

where ϵ is a scaling hyper-parameter to adjust the amplitude of the high-pass filter. We name the
above model (i.e., Eqs.3a- 5b) as ALT-local which is summarized in Figure 2.
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Remarks. Our method is partly inspired by FAGCN (Bo et al., 2021) and we claim the uniqueness and
advantages of our work compared with FAGCN as follows. From the method perspective, FAGCN
explicitly mixes high-frequency and low-frequency signals. ALT generalizes this idea to the ‘mixture
of complementary filters’; thus, even though the backbone GNN’s convolution kernel is unknown,
ALT can still boost its performance decently, which provides great generality. For the theoretical
contribution, Bo et al. (2021) analyze the spatial effects of signals with different frequencies. Our
analysis takes a solid step forward to reveal the connections between the full frequency profile, graph
signal modulation, and local adaptive filters.

3.5 TRAINING PROCEDURE

To train our models, we formulate the following bi-level optimization problem.

ϕ∗ = argmin
ϕ

Lupper(g(G, ϕ), θ∗,Yvalid) s.t. θ∗ = argmin
θ

Llower(g(G, ϕ), θ,Ytrain), (6)

where the augmenter is denoted as g(·) whose parameter is ϕ and the dual backbone GNNs are
parameterized as θ for brevity. Specifically, for the ALT-global, θ = {θ1, θ2, θ3} and ϕ = w are
from Eq.1a, Eq.1b, and Eq.1c. For ALT-local, θ = {θ1, θ2, θ3} is from Eq. 3a, 3b, and Eq. 3c;
ϕ = {ϕ1, ϕ2} is from Eq. 4a and 4b. Both Lupper and Llower are cross-entropy loss between the
classification results (Eq. 1d for ALT-global and Eq. 3d for ALT-local) and the labelled nodes. The
difference lies in that, for the lower-level objective we compute the loss over the training nodes
but for the upper-level one we compute the loss over the validation nodes. To solve such a bilevel
optimization problem, we resort to the classic first-order approximation (Nichol et al., 2018) to
compute the hyper-gradient ∇ϕLupper and any gradient descent-based methods can then be used.

If all the feature dimensions of different layers (including the input layers) from different backbone
GNNs and MLPs are denoted as d and all the models (GNNs and MLPs) contain 2 feature transfor-
mation matrices, the number of trainable parameters of ALT-local is composed of three parts: (1)
GNNaug (2d2), (2) MLP from Eq. 4b (2d2 + d), (3) GNN1, GNN2, and offset MLP (3d2 + 3dc) where
c is the number of classes. In practice, the parameter number is much smaller than the estimated
number. For example for datasets whose d > 500, empirically, setting the hidden dimension as 32
is enough. However, compared with vanilla backbone GNNs (e.g., a simple GCN (Kipf & Welling,
2017)), ALT-local inevitably contains more parameters as ALT-local is composed of 3 GNNs and
2 MLPs in total. Even for ALT-global, it is still composed of 2 GNNs and 1 MLP. Hence, the
increased number of parameters is a potential limitation of ALT-local and ALT-global. Besides, our
theoretical analysis relies on the assumption that the backbone GNNs are GA-MLPs. Generalizing
our theoretical results to a broader range of GNNs is our future work.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. We use 16 datasets, including Cora (Yang et al., 2016), Citeseer (Yang et al., 2016),
Pubmed (Yang et al., 2016), DBLP (Bojchevski & Günnemann, 2018), Computers (Shchur et al.,
2018), Photos (Shchur et al., 2018), CS (Shchur et al., 2018), Physics (Shchur et al., 2018), Cor-
nell (Pei et al., 2019), Texas (Pei et al., 2019), Wisconsin (Pei et al., 2019), Chameleon (Rozemberczki
et al., 2021), Squirrel (Rozemberczki et al., 2021), Film (Pei et al., 2019), Cornell5 (Lim et al., 2021),
and Penn94 (Lim et al., 2021). For Cora, Citeseer, and Pubmed, we follow the dataset split from (Kipf
& Welling, 2017). We randomly split the other datasets into 20/20/60% for training, validation, and
test. Detailed statistics of the datasets are presented in the Appendix - Dataset Statistics.

Baseline Methods and Metric. We use 6 baseline methods including 3 classic GNNs: GCN (Kipf &
Welling, 2017), SGC (Wu et al., 2019), and APPNP (Klicpera et al., 2018), and 3 adaptive GNNs:
GPRGNN (Chien et al., 2021), FAGCN (Bo et al., 2021), and H2GCN (Zhu et al., 2020) which use
specific designs to tackle graphs with low homophily. Thanks to the flexibility of our method, we
equip the above baseline methods with our proposed ALT to validate the effectiveness. As ALT-local
is more powerful than ALT-global, we mainly show the performance comparison with ALT-local
(short as ALT). The comparison between ALT-local and ALT-global will be presented in the ablation
study. We use the accuracy (ACC) as the metric and report the average accuracy with the standard
deviation in 10 runs.
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Table 1: Performance comparison (mean±std accuracy) on heterophilic graphs. The last column
indicates the average performance boosting for a specific backbone GNN over all the datasets.

Backbone ALT? Chameleon Squirrel Texas Wisconsin Cornell Film Cornell5 Penn94 Avg. ∆

GCN No 58.4±0.4 35.4±0.6 57.6±3.5 44.4±1.6 55.9±0.6 28.1±0.3 72.8±0.2 75.1±0.4 +10.5Yes 61.6±0.9 41.9±0.4 70.3±1.1 79.0±0.7 73.9±1.4 34.8±0.3 73.5±0.3 76.9±0.8

SGC No 58.4±0.6 36.8±0.4 58.6±1.9 46.5±1.8 57.0±0.4 27.3±0.1 73.5±0.3 75.7±0.2 +10.6Yes 61.9±0.8 42.2±1.0 70.0±0.4 82.0±0.9 78.4±0.6 32.9±0.2 74.4±0.4 77.4±0.4

APPNP No 43.0±0.9 24.2±0.4 59.5±1.1 45.7±2.0 56.3±1.4 28.7±0.3 72.2±0.2 74.0±0.1 +11.5Yes 55.0±0.7 33.5±1.7 72.1±1.7 76.3±3.3 75.0±1.6 33.6±0.5 74.1±0.1 75.7±0.5

GPRGNN No 59.2±0.5 38.4±0.8 69.1±1.0 72.4±1.6 69.6±2.5 31.3±1.1 74.1±0.4 78.6±0.4 +2.5Yes 59.4±1.2 38.2±0.9 76.3±1.5 79.5±0.7 70.9±2.9 32.1±0.8 75.9±0.3 80.4±0.2

FAGCN No 54.3±1.9 32.5±1.4 61.5±1.3 56.6±5.2 66.0±1.7 33.8±0.7 69.6±0.8 73.5±0.4 +4.1Yes 57.3±1.0 35.6±1.8 66.9±3.9 69.0±1.8 67.9±4.9 36.1±0.3 71.7±0.9 75.8±0.8

H2GCN No 49.9±0.4 29.8±0.8 65.8±2.1 69.5±2.1 63.7±0.4 34.5±0.3 70.8±0.4 73.9±0.3 +4.2Yes 54.0±0.3 35.3±0.9 72.4±2.8 77.7±0.3 68.5±3.5 34.4±0.4 73.2±0.1 76.2±0.4

Table 2: Performance comparison (mean±std accuracy (%)) on homophilic graphs. The last column
indicates the average performance boosting for a specific backbone GNN over all the datasets.

Backbone ALT? Cora Citeseer Pubmed DBLP Computers Photos CS Physics Avg. ∆

GCN No 81.1±0.3 71.2±0.7 79.0±0.4 83.7±0.1 66.2±1.0 84.1±0.5 88.2±0.2 95.3±0.1 +2.5Yes 80.9±0.5 71.5±0.2 79.2±0.3 83.4±0.1 77.8±0.4 88.4±0.1 92.0±0.2 95.6±0.1

SGC No 80.8±0.1 71.0±0.2 79.5±0.5 83.8±0.0 69.1±0.4 86.2±0.4 89.7±0.1 95.3±0.0 +2.1Yes 80.6±0.5 71.3±0.1 79.6±0.4 83.1±0.2 79.9±0.3 88.6±1.5 92.8±0.1 95.9±0.0

APPNP No 82.1±0.1 71.8±0.1 79.8±0.5 83.8±0.2 66.7±1.1 83.4±1.2 87.8±0.1 94.9±0.0 +2.7Yes 82.4±0.4 71.7±0.2 79.5±0.8 84.4±0.1 77.6±0.8 88.3±0.7 92.4±0.4 95.5±0.1

GPRGNN No 78.6±1.5 68.9±0.9 77.6±0.9 84.4±0.2 85.0±0.5 92.4±0.2 92.3±0.1 95.5±0.4 +0.6Yes 80.9±0.3 68.8±0.2 78.2±0.4 84.4±0.3 85.9±1.5 92.6±0.3 93.2±0.2 95.7±0.1

FAGCN No 79.0±0.6 72.1±0.5 78.0±1.1 81.1±1.1 74.8±3.4 91.2±0.3 93.0±1.4 95.7±0.3 +0.5Yes 79.0±0.4 71.9±0.5 77.9±0.5 82.5±0.7 76.1±3.9 91.9±0.7 93.6±0.2 96.0±0.1

H2GCN No 78.9±0.6 70.3±1.0 78.2±1.0 82.4±0.0 75.8±0.3 89.7±0.2 92.5±0.2 96.2±0.1 +0.8Yes 79.3±0.7 70.5±1.3 77.9±1.0 82.2±0.2 80.4±0.8 90.3±1.0 93.5±0.2 96.3±0.1

4.2 MAIN RESULTS

We present the performance comparison on heterophilic graphs in Table 1. First, on the heterophilic
graphs, in general, our method ALT can significantly improve the performance of most of the existing
GNNs, especially for methods originally not designed for the heterophilic graphs (e.g., GCN, SGC,
and APPNP). On average, over 10% improvement is obtained among the heterophilic graphs. Second,
over the heterophilic graphs, for adaptive GNNs (e.g., GPRGNN, FAGCN, and H2GCN), their
performance improvement is not as significant as low-pass filter GNNs. This is expected since these
methods have already dealt with heterophily to some extent. Nonetheless, we still gain 2 − 4%
performance improvements averaged over all 8 heterophilic datasets.

The performance comparison on homophilic graphs is presented in Table 2. We test 48 graph-GNN
combinations, out of which, 35 cases show improvements. It is worth noting that even though GCN,
SGC, and APPNP are designed mainly for homophilic graphs, the proposed ALT is still able to
significantly boost their performance on Computers by nearly 10%. Moreover, for each backbone
GNN, the average gain of applying the proposed ALT over all 8 homophilic graphs is always positive.
Most of the remaining cases bear very minor performance losses (12 out of 13 are below 0.5%).
Thus, we conclude that ALT can retain or even boost the performance of given backbone GNNs on
homophilic graphs.

4.3 ABLATION STUDY AND HYPERPARAMETER STUDY

In this section, we present a systematic ablation study on datasets: Chameleon (Rozemberczki et al.,
2021), Squirrel (Rozemberczki et al., 2021), Film (Pei et al., 2019), Computers (Shchur et al., 2018),
Photos (Shchur et al., 2018), and CS (Shchur et al., 2018). Specifically, we have the following ablated
versions: (1) ALT-local, (2) ALT-local with a low-pass filter augmenter (i.e., change Eq.5b as a two-
layer SGC) which is named as ALT-local-low, (3) ALT-local-concat whose aggregation step (Eq. 3d)
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Table 3: Results of ablation study (Backbone GNN: GCN).

Backbone Version Chameleon Squirrel Film Computers Photos CS

GCN

None 58.4±0.4 35.4±0.6 28.1±0.3 66.2±1.0 84.1±0.5 88.2±0.2
Global 58.5±1.2 36.5±0.5 30.1±0.2 67.5±1.1 85.9±0.7 89.5±0.1

Local-low 60.4±0.6 39.8±0.9 31.6±0.3 73.4±1.5 86.2±0.6 90.4±0.3
Local-concat 43.3±1.8 29.2±0.6 34.7±1.0 72.1±4.0 85.1±4.1 87.2±0.8

Local 61.6±0.9 41.9±0.4 34.8±0.3 77.8±0.4 88.4±0.1 92.0±0.2

is instantiated by ‘concatenation’ followed by an MLP (4) ALT-global, and (5) vanilla backbone
GNNs without our methods (named as None). Results with GCN as the backbone are presented
in Table 3 and results with SGC and APPNP as the backbones are presented in the Appendix -
Additional Experimental Results. From the above results we conclude that the ALT-local has
consistent advantages over all ablated versions. In addition, we provide a hyperparameter sensitivity
study in the Appendix - Additional Experimental Results.

5 RELATED WORK

Graph Structure Learning. Graph structure learning aims to modify the given graph structure to
improve the performance of downstream tasks. For instance, to boost message propagation, inserting
virtual nodes is an effective approach (Gilmer et al., 2017; Li et al., 2017). For topology denoising,
dropping some existing edges can improve the model robustness (Wu et al., 2020; Luo et al., 2021)
and eliminate redundant information from the input (Yu et al., 2020). Another line of research views
the given graph as the optimization variable and updates them according to the performance of
downstream node classifiers (e.g., LDS (Franceschi et al., 2019) and Gasoline (Xu et al., 2022)).
Other works which formulate the given graph as a random variable and infer its optimal parameters
include Bayesian GCNN (Zhang et al., 2019), GEN (Wang et al., 2021), and many more. Recently,
Zhu et al. (Zhu et al., 2021b) provide a comprehensive survey on this topic.

Graph Learning on Heterophilic Graphs. Heterophilic graphs are also known as disassortative
graphs. Many message-passing based GNNs suffer from the performance degradation on the het-
erophilic graphs and several approaches have been developed for that. For example, Geom-GCN (Pei
et al., 2019) and H2GCN (Zhu et al., 2020) expand the message-passing mechanism beyond the
first-order neighbors. GPRGNN (Chien et al., 2021) and BernNet (He et al., 2021) set the weights for
different propagation results as learnable parameters to work as an adaptive graph filter. FAGCN (Bo
et al., 2021), GBK (Du et al., 2022), and ACM-GNN (Luan et al., 2021) explicitly mix two convo-
lution kernels through attention-based mechanisms. Based on the above work, DMP (Yang et al.,
2021) studies this problem in a finer granularity where it introduces a feature specific message-
passing mechanism. Yan et al. (2021) reveal the connections between oversmoothing and network
heterophily. Other works which modify the propagation step of GNNs for the heterophilic graphs
include CPGNN (Zhu et al., 2021a), HOG-GCN (Wang et al., 2022b), and GloGNN (Li et al., 2022).
Interestingly, Luan et al. (Luan et al., 2021) and Ma et al. (Ma et al., 2021) both report that there
are some cases where high heterophily will not hurt the performance of low-pass filter GNN which
reveals further unexplored space for this problem. Zheng et al. (Zheng et al., 2022) recently present a
survey on this topic. The only structure learning-based solution on addressing graph heterophily, as
far as authors’ knowledge, is WRGAT (Suresh et al., 2021) which improves the graph homophily by a
heuristic method. As a comparison, our proposed framework is more flexible and theoretically solid.

6 CONCLUSION

In this paper, we propose a general framework ALT for the semi-supervised node classification
problem on graphs beyond homophily. Our method introduces a novel structure learning-based
augmenter to decompose the given graph. After that, a dual GNN module can be instantiated as most
of the existing GNNs on the decomposed graphs. Systematic theoretical analysis shows that our
proposed method can adaptively filter and modulate the graph signals which is critical to address
complex heterophilic connection patterns. Comprehensive empirical evaluation and ablation study
demonstrate that the proposed ALT obtains significant performance improvement for a wide range of
GNN models, on a variety of graph datasets with arbitrary homophily.
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A REPRODUCIBILITY

Hardware We implement ALT in pytorch1 and pytorch-geometric 2 using one NVIDIA Tesla
V100 SXM2-32GB.

Dataset statistics The detailed statistics of datasets are presented in Table 4 and Table 5.

Table 4: Dataset statistics of heterophilic graphs.

Chameleon Squirrel Texas Wisconsin Cornell Film Cornell5 Penn94
# Nodes 2,277 5,201 183 251 183 7,600 18,660 41,554
# Edges 62,792 396,846 325 515 298 30,019 1,581,554 2,724,458

# Features 2,325 2,089 1,703 1,703 1,703 932 4,735 4,814
# Classes 5 5 5 5 5 5 2 2
h(G) 0.231 0.222 0.108 0.196 0.305 0.219 0.479 0.470

Table 5: Dataset Statistics of homophilic graphs.

Cora Citeseer Pubmed DBLP Computers Photos CS Physics
# Nodes 2,708 3,327 19,717 17,716 13,752 7,650 18,333 34,493
# Edges 10,556 9,104 88,648 105,734 491,722 238,162 163,788 495,924

# Features 1,433 3,703 500 1,639 767 745 6,805 8,415
# Classes 7 6 3 4 10 8 15 5
h(G) 0.810 0.736 0.802 0.828 0.777 0.827 0.808 0.931

Detailed Experimental Settings We obtain all the datasets from pytorch-geometric 3 which are
public. We follow the given dataset split for Cora, Citeseer, and Pubmed. For the remaining datasets,
we randomly split them into 20/20/60% as training, validation, and test set. Notice that here we
do not follow the dataset split from the paper of GPRGNN (Chien et al., 2021) as they manually
assign the same number of training samples to each class and our dataset split is more practical. For
all the GNNs (including the augmenter and backbone GNNs), we set the hidden dimension as 16,
the learning rate as 0.05. For all the backbone GNNs, their weight decay is set as 0.0005. For the
augmenter GNN, its weight decay is searched in {0.005, 0.0005, 0.00005} and its ϵ is set as 0.5. We
are still going through our internal review process for releasing the code, and we expect to be able to
release it before the conference.

B ADDITIONAL EXPERIMENTAL RESULTS

The ablation study results with SGC and APPNP backbones are presented in Table 6 and 7. Our best
model ALT local obtains consistent advantages. The results are consistent with the ones presented in
the main content whose backbone GNNs are GCN.

Table 6: Results of ablation study (Backbone GNN: SGC).

Backbone Version Chameleon Squirrel Film Computers Photos CS

SGC

None 58.4±0.6 36.8±0.4 27.3±0.1 69.1±0.4 86.2±0.4 89.7±0.1
Global 58.5±0.9 37.6±0.4 28.6±0.2 69.5±0.5 87.2±0.2 90.1±0.3

Local-low 60.8±1.5 40.6±0.5 29.5±0.2 76.4±0.2 87.9±0.2 90.8±0.3
Local-concat 45.1±3.5 30.0±1.3 32.8±0.2 75.6±2.0 88.6±1.2 90.2±0.6

Local 61.9±0.8 42.2±1.0 32.9±0.2 79.9±0.3 88.6±1.5 92.8±0.1

1https://pytorch.org/
2https://pytorch-geometric.readthedocs.io/en/latest/
3https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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Table 7: Results of ablation study (Backbone GNN: APPNP).

Backbone Version Chameleon Squirrel Film Computers Photos CS

APPNP

None 43.0±0.9 24.2±0.4 28.7±0.3 66.7±1.1 83.4±1.2 87.8±0.1
Global 45.9±0.5 28.5±0.6 31.1±0.3 70.1±0.6 84.9±1.2 89.3±0.1

Local-low 51.0±1.3 30.0±1.2 32.2±1.4 74.3±1.2 87.3±0.4 91.8±0.2
Local-concat 43.2±0.4 26.0±0.3 33.8±0.9 73.6±2.1 82.5±2.1 89.4±0.5

Local 55.0±0.7 33.5±1.7 33.6±0.5 77.6±0.8 88.3±0.7 92.4±0.4

We provide a hyperparameter sensitivity study as follows. Specifically, we study the sensitivity of
ALT-local concerning the amplitude of the high-pass filter for the augmenter GNN (i.e, ϵ from Eq. 5b).
We select GCN (Kipf & Welling, 2017) and GPRGNN (Chien et al., 2021) as backbone GNNs and
conduct experiments over Cora (Yang et al., 2016), Citeseer (Yang et al., 2016), Chameleon (Rozem-
berczki et al., 2021), Squirrel (Rozemberczki et al., 2021) datasets. Results are presented in Figure 3
from which we observe that the model performance is stable for the selection of ϵ over four datasets
and two selections of the backbone GNNs (i.e., GCN and GPRGNN).

(a) GCN (b) GPRGNN

Figure 3: Hyperparameter sensitivity of ALT with backbone GNN as (a) GCN and (b) GPRGNN.

C PROOF OF PROPOSITION 3

Proposition 3. A family of GA-MLPs are global filters if their full frequency profiles are in the form
of C =

∑
k akÃ

k + bI which only contains non-zero diagonal entries.

Proof. Since {Ãk} and I share the same eigenvectors, the diffusion matrix can be decomposed as

C =
∑
k

akÃ
k + bI = U(

∑
k

ak(I− Λ̃)k + bI)U⊤.

Hence, the frequency profile is Φ =
∑

k ak(I− Λ̃)k + bI whose off-diagonal entries are zero.

D PROOF OF LEMMA 2

Lemma 2 By re-weighting the edge weights non-uniformly (i.e., if re-weighting by W ⊙
Ã, ∃i, j, k, l,W[i, j] ̸= W[k, l]), the off-diagonal entries of Φ can be non-zero.

Proof. We follow the assumption mentioned in the proof of Lemma 1. The diffusion matrix C
can be decomposed as C = UΦU⊤. For the full frequency profile Φ, its off-diagonal entry
Φ[i, j] =

∑
l,k U[l, i]C[l, k]U[k, j] = 0,∀i ̸= j. If we re-weight the diffusion matrix by W ⊙C

such that W[l, k] = wlk and W[i, j] = w ̸= wlk,∀i ̸= l and j ̸= k. In other words, we start from
the most basic case where only one edge (l, k) is re-weighted by wlk and all the remaining edges are
re-weighted as w. Recall that Φ[i, i] =

∑
l,k U[l, i]C[l, k]U[k, i] which can be non-zero. In other
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words, it is common that U[k, i] ̸= 0. Therefore, it should be easy to find a pair of node i and j such
that U[l, i]U[k, j] ̸= 0 and we obtain

Φre-weighted[i, j] = (U⊤(W ⊙C)U)[i, j]

= (U⊤(W ⊙C)U)[i, j]− wΦ[i, j]

= U[l, i]C[l, k]U[k, j](wlk − w) ̸= 0.

Therefore, we proved that if the edge weights are re-weighted non-uniformly, the off-diagonal entries
of Φ can be non-zero, i.e., the GNN can be a local filter.

E ANALYSIS OF ALT-GLOBAL FROM THE GRAPH DIFFUSION EQUATION
(GDE) PERSPECTIVE

As we claimed in Lemma 1, our proposed ALT-global can be an adaptive filter even if the given
backbone GNNs only have fixed filters. Here, we prove this from the Graph Diffusion Equation
(GDE) (Newman, 2018) perspective. Our proof will focus on the case where the diffusion matrix is
the normalized adjacency matrix Ã = D− 1

2AD− 1
2 whose convolution kernel is fixed. Other cases

can be proved in similar ways.

Given graph signals H, its diffusion process can be presented as H(t+1) = ÃH(t). Thus, we have

H(t+1) −H(t) =
H(t+1) −H(t)

(t+ 1)− t
= ÃH(t) −H(t). (7a)

In the GNN case, t > 0 denotes the GNN depth and in the GDE context, it denotes the diffusion time.
Thus, if we set the time interval as ∆t, the graph diffusion dynamics can be presented as follows,

H(t+1) −H(t)

∆t
= ÃH(t) −H(t),

dH(t)

dt
= −LH(t), (8a)

where L = I−D− 1
2AD− 1

2 is the normalized Laplacian matrix. As ALT-global re-weights all the
edges into wÃ and (1− w)Ã, we have

dH
(t)
1

dt
= wÃH

(t)
1 −H

(t)
1 = (wÃ− wI− (1− w)I)H

(t)
1 = (−wL− (1− w)I)H

(t)
1 , (9a)

dH
(t)
2

dt
= (1− w)ÃH

(t)
2 −H

(t)
2 = (−(1− w)L− wI)H

(t)
2 , (9b)

Recap that the prediction matrix of ALT-global is by combining signals from dual backbone GNNs
and an offset MLP as Z = softmax(H1 −H2 + ηHoffset). We keep the assumption that the dual
backbone GNNs are both GA-MLPs (Chen et al., 2021) which shares parameters with our offset
MLP. Thus, we have H

(0)
1 = H

(0)
2 = Hoffset = H = MLP(X)

As we are analyzing its diffusion dynamics, there is no interaction between any two columns of the
feature matrix H

(t)
1 (and H

(t)
2 ). Hence, for brevity, we only show analysis of a single feature h

(t)
1 =

H
(t)
1 [:,m], h

(t)
2 = H

(t)
2 [:,m], h = hoffset = Hoffset[:,m], z(t) = Z(t)[:,m], ∀m ∈ {1, . . . , n}.

The dual GNNs’ GDEs can be presented as follows,

dh
(t)
1

dt
= (−wL− (1− w)I)h

(t)
1 , (10a)

dh
(t)
2

dt
= (−(1− w)L− wI)h

(t)
2 , (10b)

Proposition 4. The solutions of Eq. 10a and Eq. 10b can be presented as

h
(t)
1 =

∑n
i=0

(
a
(0)
i e−(wλi+(1−w))t

)
ui and h

(t)
2 =

∑n
i=0

(
a
(0)
i e−((1−w)λi+w)t

)
ui, where ui and

λi refers to the i-th eigenvector and eigenvalue of L; initial state a(0)i is determined by h(0)
1 = h

(0)
2 =∑

i a
(0)
i ui.
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Proof. Here we prove the solution of Eq. 10a and for Eq. 10b its solution can be obtained in a similar
way. For Eq. 10a, by decomposing the graph signal with the eigenvectors ({ui}) of the normalized
Laplacian L we have:

h
(t)
1 =

∑
i

a
(t)
i ui. (11)

As only h and ai are the functions of t, based on the fact that Lui = λiui and Iui = ui we have:∑
i

(
da

(t)
i

dt
+ wλia

(t)
i + (1− w)a

(t)
i )ui = 0. (12)

As all the eigenvectors are orthogonal with each other, by multiplying both sides of the above equation
with u⊤

i we have

(
da

(t)
i

dt
+ wλia

(t)
i + (1− w)a

(t)
i )ui = 0. (13)

da
(t)
i

dt
+ wλia

(t)
i + (1− w)a

(t)
i = 0. (14)

Hence, the graph signal h(t)
1 can be represented as

h
(t)
1 =

n∑
i=0

(
a
(0)
i e−(wλi+(1−w))t

)
ui. (15a)

Similarly, the graph signal h(t)
2 can be presented as

h
(t)
2 =

n∑
i=0

(
a
(0)
i e−((1−w)λi+w)t

)
ui. (16a)

Thus, aggregated signal can be presented as (here we use hoffset = h(0) =
∑n

i=1 a
(0)
i ui)

z(t) = h
(t)
1 − h

(t)
2 + ηhoffset (17a)

=

n∑
i=0

a
(0)
i

(
e−(wλi+(1−w))t − e−((1−w)λi+w)t + η

)
ui (17b)

According to the graph signal processing Shuman et al. (2013), ui denotes the graph signal with λi

frequency. Hence, a(0)i

(
e−(wλi+(1−w))t − e−((1−w)λi+w)t + η

)
denotes the amplitude of the the

λi-frequency signal after filtered by ALT-global. We know the signal before filtering (i.e., diffusion)
is

h(0) = h
(0)
1 = h

(0)
2 = h

(0)
offset =

n∑
i=0

a
(0)
i ui, (18)

and the amplitude of the the λi-frequency signal before filtering is a0i . Hence, the filter response to
λi frequency is

Φ(λi) =

a
(0)
i

(
e−(wλi+(1−w))t − e−((1−w)λi+w)t + η

)
a
(0)
i

(19a)

=e−(wλi+(1−w))t − e−((1−w)λi+w)t + η (19b)

It is clear when w > 0„ Φ(λi) is a monotonically decreasing function and when w < 0, Φ(λi)
is a monotonically increasing function. With appropriate η and different w, ALT-global can be
instantiated as either a low-pass filter or a high-pass filter.
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