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Abstract

The cross-entropy loss function is widely used001
and generally considered the default loss func-002
tion for text classification. When it comes003
to ordinal text classification where there is an004
ordinal relationship between labels, the cross-005
entropy is not optimal as it does not incorpo-006
rate the ordinal character into its feedback. In007
this paper, we propose a new simple loss func-008
tion called ordinal log-loss (OLL). We show009
that this loss function outperforms state-of-the-010
art previously introduced losses on four bench-011
mark text classification datasets.012

1 Introduction013

For many classification tasks, there is an order on014

the labels of the target variable. In particular, in015

natural language processing (NLP) when, for ex-016

ample, we are trying to predict the number of stars017

associated with a review: it is obvious that when018

the label is 1 star, predicting 2 stars is better than019

predicting 5 stars. This type of classification is020

called ordinal classification (or ordinal regression)021

and many techniques have been developed in re-022

cent years around it. Among the most used tech-023

niques, the ordinal binary classification consists024

in decomposing the ordering target variable in sev-025

eral binary ones (Frank and Hall, 2001; Allwein026

et al., 2000). The threshold methods treat the027

target variable (with N classes) as a continuous028

real-valued variable and N − 1 thresholds are in-029

troduced (Verwaeren et al., 2012; Herbrich et al.,030

2000). In the loss-sensitive classification the loss031

function is built such that a higher penalty is as-032

signed if the distance between the prediction and033

the label is higher. Several losses can be used here:034

mapping the labels {C1;C2; ...;CN} into values035

{1; 2; ...;N} and use the mean squared error. The036

margin loss or the hinge loss can also be extended037

for ordinal regression (Rennie and Srebro, 2005).038

The weighted kappa loss (de la Torre et al., 2018),039

the earth mover’s distance (Hou et al., 2016) or040

the soft labels (Diaz and Marathe, 2019; Bertinetto 041

et al., 2020) are other examples of modified losses 042

used in ordinal classification. 043

In order to measure the performance of the ordi- 044

nal regression there are well known metrics such 045

as the off-by-k-accuracy, the mean absolute error, 046

the mean squared error or Kendall Tau for instance 047

(Cardoso and Sousa, 2011; Gaudette and Japkow- 048

icz, 2009). 049

1.1 Specific contribution 050

The main contribution of this paper is to introduce 051

a new loss named ordinal log-loss (OLL). This loss 052

is easy to use, adapted to ordinal classification and 053

gives more accurate results than classical existing 054

methods in text classification. The idea behind 055

the OLL is to penalize bad predictions instead of 056

rewarding good predictions like the majority of the 057

losses mentioned before do. 058

In section 2 we introduce the ordinal log-loss. In 059

section 3 we present the experiments, the metrics 060

used and finally the results. 061

2 Ordinal Log-Loss 062

2.1 Definition 063

As explained in the introduction, in ordinal classifi- 064

cation tasks, predictions too distant from the labels 065

can be particularly problematic. While the majority 066

of losses introduced in the literature for ordinal clas- 067

sification (Gutiérrez et al., 2015; Bertinetto et al., 068

2020; Rennie and Srebro, 2005) tend to encour- 069

age predictions close to the labels, we introduce a 070

loss which penalises the critical errors (i.e. the pre- 071

dictions that are the most distant from the correct 072

class). 073

First, for each ordinal classification task, we de- 074

fine a distance matrix that embodies the distances 075

between each label: 076

D = (d(Ci, Cj))(i,j)∈[[1,N ]]2 (1) 077
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where N is the number of classes, C =078

(C1, ..., CN ) are the different classes and d(Ci, Cj)079

the distance between label Ci and Cj . We denote080

for the sake of simplicity d(i, j) for d(Ci, Cj) and081

y for Cy (the label).082

Let P = (p1, ..., pN ) the output probability dis-083

tribution of a network for a given prediction. By084

definition, the cross-entropy loss encourages the085

models to output a high probability for the correct086

class.087

Equivalently, but from the opposite perspective,088

we wish that the further a prediction is from the089

true label, the higher the loss should be. With a090

simple modification of the cross-entropy loss, we091

can find such a loss, that we introduce as the ordinal092

log-loss (OLL):093

LOLL−α(P, y) = −
N∑
i=1

log(1− pi)d(y, i)α (2)094

where α is a strictly positive hyper-parameter.095

The novelty of this loss lies in the coefficients096

− log(1−pi). In fact, other articles already consid-097

ered the following loss:
∑N

i=1 pid(y, i) (obtained098

by replacing − log(1 − pi) by pi and where α is099

taken equal to 1) (Hou et al., 2016; Kotsiantis and100

Pintelas, 2004). Nevertheless, for this latter loss,101

as explained in (Hou et al., 2016), the optimiza-102

tion does not converge to a desired local mini-103

mum. Although we have not reported these re-104

sults in this article, this is indeed what we observed105

experimentally and what gave us the idea of the106

OLL. We wanted to penalize classification errors107

more strongly and since we have the inequality108

− log(1−pi) ≥ pi for all pi ∈ [0, 1[, OLL satisfies109

this property.110

2.2 Impact of the α parameter111

In the expression 2, α is an hyper-parameter that112

could be interpreted as a penalizing factor: the113

greater α is, the higher the loss function is when114

the distance between the output predictions and the115

labels is high.116

3 Experiments and Results117

In this section we first introduce the public datasets118

(section 3.1) and the metrics (section 3.2) used to119

compare our loss function to existing ones. Then120

in section 3.3 we present the different results ob-121

tained.122

3.1 Datasets 123

To conduct our experiments, we used the SNLI 124

dataset (Bowman et al., 2015) used for tasks such 125

as Recognizing Textual Entailment (RTE). We also 126

use the Amazon Reviews Corpus (Keung et al., 127

2020), the Yelp Reviews Dataset (Yelp, 2015) and 128

the Stanford Sentiment Treebank for fine grained 129

classification (SST-5) dataset (Socher et al., 2013). 130

SNLI: Developped by (Bowman et al., 2015), 131

this corpus is a collection of 570k human-written 132

English (including 10k for testing and 10k for 133

validation) pairs of sentences dedicated to the 134

Natural Language Inference (NLI) task. It 135

is composed of three balanced labels: C = 136

(entailment, neutral, contradiction). To accelerate 137

the training, we used a random subsample of 250k 138

rows from the training set. The ordinal relationship 139

between the classes is taken into account by using 140

the matrix defined in equation [7] as the distance 141

matrix. 142

Amazon Reviews: This dataset, published by 143

(Keung et al., 2020), was obtained by gathering cus- 144

tomer reviews of product from several categories 145

published on the Amazon marketplace in six differ- 146

ent languages. We only kept the reviews written in 147

English and the corresponding star rating (an inte- 148

ger between 1 and 5). It represents a total dataset 149

of 210k samples, including 5k for testing and 5k 150

for validation. 151

Yelp Reviews: Extracted from the Yelp Dataset 152

Challenge 2015 data (Yelp, 2015), it was first used 153

as a text classification benchmark in (Zhang et al., 154

2015). It is a balanced dataset composed of 700k 155

samples of reviews (50k for testing) extracted from 156

Yelp, a website hosting crowd-sourced reviews 157

about businesses. Each sample is a (text, 5-star 158

rating) pair. To reduce the time taken for training, a 159

random subsample of the training set of size 200k 160

was used as the training set, and one of size 20k 161

was used for the validation set. 162

SST-5: Introduced by (Socher et al., 2013), the 163

Stanford Sentiment Treebank (SST) is a corpus 164

with parse trees enabling sentiment analysis. It is 165

composed of 12k sentences extracted from movie 166

reviews and annotated by 3 humans. In the SST 167

fine-grained version (or SST-5), each phrase is la- 168

belled as a 5 star rating corresponding to: nega- 169

tive, somewhat negative, neutral, somewhat posi- 170

tive, positive. 171
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3.2 Metrics172

In this article we use the classical metrics for173

ordinal classification (Cardoso and Sousa, 2011;174

Gaudette and Japkowicz, 2009).175

Off-by-k Accuracy: In the case of ordinal clas-176

sification, the Off-by-k Accuracy, or OBk, is the177

percentage of total predictions where the index178

of the predicted label ŷ ∈ (C1, ..., CN ) and the179

one from the true label differ from less than k. In180

our experiments, we assumed that ∀i ∈ [[2, N ]] :181

d(Ci−1, Ci) = 1 so the OBk can be formulated as:182

183

OBk = 100×
∑S

s=1 1{d(ys, ŷs) ≤ k}
S

(3)184

With S being the number of examples.185

Mean Absolute Error for Classification: To186

measure the mean distance between the predicted187

labels and the true ones, we use the MAE:188

MAE =

∑S
s=1 d(ys, ŷs)

S
(4)189

where d is the distance defined Section 2.1.190

Mean Squared Error for Classification: To191

complete the MAE, we measure the mean squared192

error:193

MSE =

∑S
s=1 d(ys, ŷs)

2

S
(5)194

Kendall Tau: The Kendall τ (Kendall, 1938) is195

a measure of rank correlation between two mea-196

sured quantities. It is defined as :197

τ =
#{concordant pairs} −#{discordant pairs}(

S
2

) (6)198

where ∀(i, j) ∈ [[1, S]]2, i < j, if the sort order199

of (yi, yj) and (ŷi, ŷj) agrees, then (yi, ŷi) and200

(yj , ŷj) are concordant pairs, and discordant pairs201

otherwise.202

Remark: metrics such as the Accuracy or the F1203

score are often used to evaluate models in classifi-204

cation tasks. But in the particular case of ordinal205

classification, these metrics are not considered rel-206

evant as they do not truly outline the performance207

of a model. Indeed, if 2 models A and B predict208

the same amount of samples correctly, but model209

A predicts all the other samples incorrectly with210

predictions that are really distant to the true labels,211

while the wrong predictions of model B are labels212

that are close to the true ones, then models A and213

B have the same accuracy, but model B should be214

considered better than model A. Like the accuracy,215

the multi-class F1 score does not take into account 216

the distance between classes and is therefore not 217

appropriate for ordinal classification. 218

3.3 Experimental Results 219

3.3.1 Model Used 220

To conduct our experiments, we have trained the 221

BERT-tiny model (Turc et al., 2019) on the four 222

datasets listed in section 3.1. The choice of using 223

a smaller version of BERT (Devlin et al., 2018) 224

was made for several reasons. First, having less 225

parameters, this model is a lot faster to train. Sec- 226

ondly, it produces scores lower than bigger models 227

such as BERT-base, allowing to better highlight 228

the impact of different loss functions on scores. Fi- 229

nally, being a smaller version of the BERT model, 230

the results provided here are assumed to be gen- 231

eralised to bigger BERT models and other similar 232

Transformers models. We will release our code on 233

Github. 234

3.4 Distance Matrices 235

As explained in section 2, each ordinal classifi- 236

cation task comes with distance matrix D that 237

reflects the proximity between the different la- 238

bels. For the SNLI dataset, the ordered labels 239

are C = (entailment, neutral, contradiction) while 240

for the other 3 datasets, the ordered labels are 241

C = (1, 2, 3, 4, 5). As mentioned in section 3.2, 242

for any two neighbors labels, we choose a distance 243

of 1 between them. As a result, the distance matrix 244

for the SNLI task is: 245

D =

0 1 2
1 0 1
2 1 0

 (7) 246

while the one for the 1 to 5 stars rating tasks is : 247

D =


0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

 (8) 248

3.5 Procedure 249

For each dataset, we trained the BERT-tiny model 250

with 4 different types of losses: the cross-entropy, 251

the ordinal log-loss (our loss), the weighted kappa 252

loss (de la Torre et al., 2018), and the soft labels 253

loss (Bertinetto et al., 2020). We wanted to com- 254

pare our loss with these three other losses for the 255

following reasons: the cross entropy loss is a very 256
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Datasets Batch Size Num Epochs Stopping Rate Weight Decay

Yelp Reviews 1024 100 5 0.01
Amazon Reviews 1024 100 5 0.01

SST-5 1024 2340 117 0.01
SNLI 1024 80 4 0.01

Table 1: Training parameters for each dataset

common loss in text classification and the weighted257

kappa loss and soft labels loss were recently intro-258

duced losses and outperformed a significant num-259

ber of other losses as explained in the previously260

cited articles.261

For the ordinal log-loss, we chose α in262

{1, 1.5, 2}, for the soft labels loss, we chose β263

in {2, 3, 4} because it gave us the best results (al-264

though in the original paper, the values used for β265

are higher). For each loss, we trained the model266

with 5 different learning rates : 10−5, 2.5× 10−5,267

5 × 10−5, 7.5 × 10−5 and 10−4. And for each268

learning rate, the pre-trained model was trained 5269

times. Finally, for each dataset, for each loss, we270

chose the learning rate that gave the best scores in271

averages for the 5 independent trainings.272

3.6 Results273

The results of the experiments are shown in table274

2 and 3. In table 3, according to the procedure275

described in section 3.5, for each line in the table276

we took the average scores for the 5 independent277

trainings for the given learning rate. We did not278

display the OB2 score for SNLI because there are279

only three classes.280

We can observe that the OLL gave better results281

for all the metrics used, although the SOFT loss is282

performing well too on the MAE metric. Results of283

the OLL loss vary with the α parameter : while α ∈284

{1, 1.5} gives better results on the SNLI and SST-5285

datasets, for α = 2, the OLL loss is providing good286

results on the other 2 datasets. Overall, α = 1.5287

seems to be a good tradeoff.288

To have a clearer idea of which losses perform289

better, we completed the table 2, where each line290

displays the average rank of the corresponding loss291

on the 4 datasets, for each metric. Although the292

SOFT loss with β = 4 gives interesting results293

for the MAE and the Kendall Tau, the OLL loss294

seems to perform better overall. The impact of the295

α parameter in the OLL loss vary, depending on296

the dataset and the number of classes, but the table297

2 confirmed that α = 1.5 is a good trade-off.298

Loss OB1 OB2 MAE MSE Kendall
Tau

CE 5.25 6 4.25 5.75 6.5
OLL-1 3.25 2.67 3 2.25 2.5

OLL-1.5 1.5 1.33 2.75 1.5 2
OLL-2 1.5 1.67 5.5 2.25 4.25
WKL 6 3.67 7.25 6.5 6

SOFT-2 6.75 6.33 6 6.5 4.5
SOFT-3 5.25 6 3.25 5.75 4.75
SOFT-4 5 5.67 2 5.25 3.75

Table 2: Losses mean rank on each metrics

Dataset Loss
Learn

OB1 OB2 MAE MSE
Kendall

Rate Tau

Y
el

p
re

vi
ew

s

CE 7.5e-5 92.9 ± 0.1 97.7 ± 0.0 0.529 ± 0.001 0.809 ± 0.001 0.713 ± 0.000
OLL-1 5e-5 92.7 ± 0.0 98.0 ± 0.0 0.536 ± 0.000 0.796 ±0.000 0.712 ± 0.000

OLL-1.5 1e-4 93.1 ± 0.0 98.4 ± 0.1 0.530 ± 0.003 0.750 ± 0.004 0.718 ± 0.001
OLL-2 1e-4 93.3 ±0.1 98.6 ± 0.0 0.534 ± 0.003 0.742 ± 0.003 0.716 ± 0.001
WKL 1e-4 92.1 ± 0.1 98.2 ± 0.1 0.554 ± 0.003 0.814 ±0.011 0.712±0.001

SOFT-2 7.5e-5 92.6 ± 0.2 97.7 ± 0.1 0.535 ± 0.005 0.826 ± 0.016 0.712±0.001
SOFT-3 7.5e-5 92.8 ±0.2 97.7 ±0.1 0.532 ±0.003 0.817 ±0.011 0.712±0.001
SOFT-4 1e-4 92.9 ±0.0 97.9 ±0.0 0.529 ±0.000 0.804 ±0.000 0.714±0.000

A
m

az
on

re
vi

ew
s

CE 5e-5 90.9 ± 0.3 97.8 ±0.1 0.578 ±0.004 0.897 ±0.008 0.692±0.002
OLL-1 5e-5 92.3 ±0.1 98.5 ±0.1 0.570 ±0.001 0.802 ±0.005 0.699±0.001

OLL-1.5 2.5e-5 92.5 ±0.2 98.6 ±0.0 0.567 ±0.004 0.787 ±0.009 0.701±0.003
OLL-2 5e-5 92.5 ±0.0 98.6 ±0.0 0.577 ±0.001 0.791±0.002 0.697±0.000
WKL 5e-5 91.2 ±0.3 98.5 ±0.1 0.591 ±0.008 0.847 ±0.015 0.698±0.003

SOFT-2 5e-5 90.7 ±0.1 97.9 ±0.1 0.579 ±0.005 0.897 ±0.012 0.695±0.003
SOFT-3 5e-5 90.8 ±0.2 97.8 ±0.1 0.577 ±0.004 0.899 ±0.012 0.693±0.002
SOFT-4 5e-5 90.7 ±0.0 97.7 ±0.0 0.577 ±0.000 0.909 ±0.000 0.694±0.000

SS
T-

5

CE 5e-5 85.2 ±0.2 97.0 ±0.2 0.754 ±0.008 1.171 ±0.012 0.533±0.005
OLL-1 7.5e-5 86.7 ±0.2 98.0 ±0.1 0.738 ±0.002 1.084 ±0.008 0.548±0.003

OLL-1.5 7.5e-5 86.9 ±0.2 98.0 ±0.1 0.739 ±0.000 1.081 ±0.005 0.544±0.002
OLL-2 1e-5 86.3 ±0.4 97.7 ±0.2 0.757 ±0.007 1.121 ±0.016 0.531±0.004
WKL 1e-5 83.8 ±0.7 97.2 ±0.1 0.806 ±0.019 1.259 ±0.038 0.520±0.009

SOFT-2 2.5e-5 84.8 ±0.6 96.9 ±0.4 0.754 ±0.004 1.186 ±0.031 0.548±0.003
SOFT-3 1e-5 85.2 ±0.3 97.0 ±0.2 0.748 ±0.001 1.166 ±0.011 0.544±0.005
SOFT-4 7.5e-5 86.1 ±0.0 97.3 ±0.0 0.738 ±0.000 1.124 ±0.000 0.549±0.000

SN
L

I

CE 7.5e-5 97.2 ±0.0 0.208 ±0.000 0.264 ±0.001 0.773±0.001
OLL-1 1e-4 98.3 ±0.0 0.202 ±0.002 0.237 ±0.002 0.786±0.002

OLL-1.5 7.5e-5 98.3 ±0.0 0.207 ±0.000 0.241 ±0.000 0.781±0.000
OLL-2 7.5e-5 98.5 ±0.0 0.214 ±0.003 0.244 ±0.004 0.777±0.003
WKL 1e-4 97.7 ±0.1 0.238 ±0.005 0.283 ±0.006 0.750±0.005

SOFT-2 2.5e-5 97.3 ±0.1 0.208 ± 0.004 0.261 ±0.006 0.775 ±0.004
SOFT-3 1e-4 97.4 ±0.0 0.204 ±0.000 0.257 ±0.001 0.779±0.000
SOFT-4 7.5e-5 97.3 ±0.0 0.205 ±0.000 0.259 ±0.000 0.776±0.000

Table 3: Losses comparisons on 4 datasets: Yelp re-
views, Amazon reviews, SST-5 and SNLI

3.7 Conclusion 299

We introduced a simple and novel loss function spe- 300

cially designed for the ordinal classification task. 301

This loss is intuitive and easy to use. We evalu- 302

ated our method on four benchmark ordinal text 303

classification datasets. Our loss outperforms state- 304

of-the-art comparable and previously introduced 305

losses. We also experimentally find good hyper- 306

parameters to use. We believe that those results 307

could be extended to other machine learning tasks 308

in computer vision, speech or structured data for 309

instance. 310
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