

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PHYSICS-CONSTRAINED FINE-TUNING OF FLOW-MATCHING MODELS FOR GENERATION AND INVERSE PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a framework for fine-tuning flow-matching generative models to enforce physical constraints and solve inverse problems in scientific systems. Starting from a model trained on low-fidelity or observational data, we apply a differentiable post-training procedure that minimizes weak-form residuals of governing partial differential equations (PDEs), promoting physical consistency and adherence to boundary conditions without distorting the underlying learned distribution. To infer unknown physical inputs, such as source terms, material parameters, or boundary data, we augment the generative process with a learnable latent parameter predictor and propose a joint optimization strategy. The resulting model produces physically valid field solutions alongside plausible estimates of hidden parameters, effectively addressing ill-posed inverse problems in a data-driven yet physics-aware manner. We validate our method on canonical PDE problems, demonstrating improved satisfaction of physical constraints and accurate recovery of latent coefficients. Further, we confirm cross-domain utility through fine-tuning of natural-image models. Our approach bridges generative modelling and scientific inference, opening new avenues for simulation-augmented discovery and data-efficient modelling of physical systems.

1 INTRODUCTION

Physical systems with rich spatio-temporal structure can be effectively represented by deep generative models, including diffusion and flow-matching methods (Kerrigan et al., 2024; Erichson et al., 2025; Baldan et al., 2025; Price et al., 2023). Although their dynamics can be highly complex, these systems are often governed by fundamental principles, such as conservation laws, symmetries, and boundary conditions, that constrain the space of admissible solutions. Incorporating such physical structure into generative modelling can improve both sample fidelity and out-of-distribution generalization.

In many scientific domains, including atmospheric and oceanographic modelling, seismic inversion, and medical imaging, we often observe system states without access to the underlying physical parameters that govern them. Crucially, PDE-based constraints are typically parameter-dependent, with residuals that vary according to material properties, source terms, or other latent variables. Prior work has largely focused on simple or global constraints—such as fixed boundaries or symmetries, that apply uniformly across the data distribution. Handling parameter-dependent constraints naively would require training over the joint distribution of solutions and parameters, which is often infeasible because parametric labels are missing, expensive to obtain, or high-dimensional. Addressing this limitation is critical for scientific discovery. Many inverse problems in the natural sciences and engineering require reasoning about unobserved parameters or exploring hypothetical scenarios inaccessible to direct experimentation. A generative model that can enforce parameter-dependent PDE constraints using only observational data would provide a powerful tool for data-efficient simulation, hypothesis testing, and the discovery of new physical phenomena, helping to bridge the gap between raw observations and mechanistic understanding.

This work proposes a framework for fine-tuning flow-matching generative models to enforce parameter-dependent PDE constraints without requiring joint parameter–solution training data. This

054 work aligns with a growing trend of simulation-augmented machine learning (Karniadakis et al.,
 055 2021), where generative models accelerate scientific discovery by efficiently exploring physically
 056 plausible solution spaces. Our approach reformulates fine-tuning as a stochastic optimal control
 057 problem via Adjoint Matching (Domingo-Enrich et al., 2025), guided by weak-form PDE resi-
 058 duals. By augmenting the model with a latent parameter evolution, we enable joint generation of
 059 physically consistent solution-parameter pairs, addressing ill-posed inverse problems. We evaluate
 060 our proposed fine-tuning framework on four representative PDE families spanning elliptic diffusion,
 061 elasticity, wave propagation, and incompressible flow and show an application to natural images.
 062 We demonstrate denoising and conditional generation capabilities, including robustness to noisy
 063 data and the ability to infer latent parameters from sparse observations. Visual and quantitative re-
 064 sults, including strong reductions in residuals across tasks and robustness to model misspecification,
 065 highlight the flexibility of our method for integrating physical constraints into generative modelling.
 066

067 To sum up, our contributions are as follows:

- 068 • **POST-TRAINING ENFORCEMENT OF PHYSICAL CONSTRAINTS:** We introduce a fine-
 069 tuning strategy that tilts the generative distribution toward PDE-consistent samples using
 070 weak-form residuals, improving physical validity while preserving diversity.
- 071 • **ADJOINT-MATCHING FINE-TUNING WITH THEORETICAL GROUNDING:** Leveraging the
 072 adjoint-matching framework, we recast reward-based fine-tuning as a stochastic control
 073 problem, extending flow-matching models to generate latent parameters alongside states,
 074 enabling inverse problem inference without paired training data.
- 075 • **BRIDGING GENERATIVE MODELING AND PHYSICS-INFORMED LEARNING:** Our ap-
 076 proach connects preference-aligned generation with physics-based inference, enabling
 077 simulation-augmented models to generate solutions that respect complex physical laws.

079 2 RELATED WORK

080 **Physics-Constrained Generative Models** Integrating physical constraints—such as boundary
 081 conditions, symmetry invariances, and partial differential equation (PDE) constraints—into ma-
 082 chine learning models improves both accuracy and out-of-distribution generalization. Classical ap-
 083 proaches, such as Physics-Informed Neural Networks (PINNs, Raissi et al. (2019)), directly regress
 084 solutions that satisfy governing equations. While effective for forward or inverse problems, PINNs
 085 do not capture distributions over solutions, making them unsuitable for generative tasks that require
 086 sampling diverse plausible outcomes.

087 In the generative setting, the main challenge is ensuring that the physically constrained samples re-
 088 tain the variability of the underlying generative model, avoiding pathological issues such as mode
 089 collapse. Basteck et al. (2024) proposes a unified framework for introducing physical constraints into
 090 Denoising Diffusion Probabilistic Models (DDPMs, Ho et al. (2020)) at pre-training time, by adding
 091 a first-principles physics-residual loss to the diffusion training objective. This loss penalises vi-
 092 olations of governing PDEs (e.g. fluid dynamics equations) so that generated samples inherently satisfy
 093 physical laws. The method was empirically shown to reduce residual errors for individual samples
 094 significantly, while simultaneously acting as a regulariser against overfitting, thereby improving gen-
 095 eralisation. To evaluate the physics-residual loss, one needs to compute the expected PDE residual
 096 of the final denoised sample conditioned on the current noisy state in the DDPM process. Accurately
 097 estimating this expectation requires generating multiple reverse-diffusion trajectories from the same
 098 noisy sample, which makes pre-training significantly more expensive. A common alternative is to
 099 use Tweedie’s formula to approximate the conditional expectation in a single pass, but this shortcut
 100 introduces bias, particularly in the final denoising steps.

101 Zhang & Zou (2025) proposes enforcing constraints through a post-hoc distillation stage, where a
 102 deterministic student model is trained from a vanilla diffusion model to generate samples in one-
 103 step, regularised by a PDE residual loss. In Wang et al. (2025) the authors introduce PhyDA,
 104 diffusion-based data assimilation framework that ensures reconstructions obey PDE-based dynam-
 105 ics, specifically for atmospheric science. An autoencoder is used to encode sparse observations into
 106 a structured latent prior for the diffusion model, which is trained with an additional physical residual
 107 loss.

108 **Inference- and Post-Training Constraint Enforcement** Various works have proposed approaches to enforce PDE constraints at inference time, often in combination with observational
 109 constraints, drawing connections to conditional diffusion models (Dhariwal & Nichol, 2021; Ho &
 110 Salimans, 2021). Huang et al. (2024) introduce guidance terms within the denoising update of a
 111 score-based diffusion model to steer the denoising process towards solutions which are both consistent
 112 with data and underlying PDEs. A related approach was considered by Xu et al. (2025), further
 113 introducing an adaptive constraint to mitigate instabilities in early diffusion steps. In Christopher
 114 et al. (2024), the authors recast the inference-time sampling of a diffusion process as a constrained
 115 optimization problem, each diffusion step is projected to satisfy user-defined constraints or physical
 116 principles. This allows strict enforcement of hard constraints (including convex and non-convex
 117 constraints, as well as ODE-based physical laws) on the generated data. Lu & Xu (2024) consider
 118 the setting where the base diffusion model is trained on cheap, low-fidelity simulations, leveraging
 119 a similar approach to generate down-scaled samples via projection.
 120

121 **Flow-Matching Models for Simulation and Inverse Problems** Flow-matching (FM, Lipman
 122 et al. (2023)) has emerged as a flexible generative modelling paradigm for complex physical systems
 123 across science, including molecular systems (Hassan et al., 2024), weather (Price et al., 2023) and
 124 geology (Zhang et al., 2025) . In the context of physics-constrained generative models Utkarsh
 125 et al. (2025) introduces a zero-shot inference framework to enforce hard physical constraints in
 126 pretrained flow models, by repeatedly projecting the generative flow at sampling time. Similarly,
 127 Cheng et al. (2024) proposed the ECI algorithm, to adapt a pretrained flow-matching model so that
 128 it exactly satisfies constraints without using analytical gradients. In each iteration of flow sampling,
 129 ECI performs: an Extrapolation step (advancing along the learned flow), a Correction step (applying
 130 a constraint-enforcement operation), and an Interpolation step (adjusting back towards the model’s
 131 trajectory). While projection approaches are a compelling strategy for hard constraints, they can be
 132 challenging particularly for local constraints such as boundary conditions, as direct enforcement can
 133 introduce discontinuities. The above approach mitigates this by interleaving projections with flow
 134 steps, however this relies on the flow’s ability to rapidly correct such non-physical artifacts.
 135

136 Baldan et al. (2025) propose Physics-Based Flow Matching (PBFM), which embeds constraints
 137 (PDE or symmetries) directly into the FM loss during training. The approach leverages temporal
 138 unrolling to refine noise-free final state predictions and jointly minimizes generative and physics-
 139 based losses without manual hyperparameter tuning of their tradeoff. To mitigate conflicts between
 140 physical constraints and the data loss, they employ the ConFIG (Liu et al., 2024), which combines
 141 the gradients of both losses in a way that ensures that gradient updates always minimise both losses
 142 simultaneously.

143 Related to our approach are the works on generative models for Bayesian inverse problems (Stuart,
 144 2010), where the goal is to infer distributions over latent PDE parameters given partial or noisy
 145 observations. Conditional diffusion and flow-matching models can be used to generate samples from
 146 conditional distributions and posterior distributions, supporting amortized inference and uncertainty
 147 quantification (Song et al., 2021; Utkarsh et al., 2025; Zhang et al., 2023). Conditioning is typically
 148 achieved either through explicit parameter inputs or guidance mechanisms during sampling, as in
 149 classifier-guided diffusion. While effective when large volumes of paired training data is available,
 150 these approaches are less relevant to observational settings where parameters are unobserved. In
 151 contrast, our approach connects the observed data to the latent parameters only during post-training,
 152 requiring substantially smaller volumes of data.
 153

3 METHOD

154 FM models are trained to learn and sample from a given distribution of data p_{data} . They approximate
 155 this distribution by constructing a Markovian transformation from noise to data, such that the time
 156 marginals of this transformation match those of a *reference flow* $X_t = \beta_t X_1 + \gamma_t X_0$. Specifically
 157 FM models learn a vector field $v_t(x)$ that transports noise to data, via the ODE $dX_t = v_t(X_t)$.
 158 We can optionally inject a noise schedule $\sigma(t)$ along the trajectory to define an equivalent SDE that
 159 preserves the same time marginals (Maoutsas et al., 2020),

$$dX_t = \left(v_t(X_t) + \frac{\sigma(t)^2}{2\eta_t} \left(v_t(X_t) - \frac{\dot{\beta}_t}{\beta_t} X_t \right) \right) + \sigma(t) dB_t =: b_t(X_t) + \sigma(t) dB_t, \quad (1)$$

Figure 1: Visual depiction of proposed method. Starting at state x_t^{base} or x_t^{ft} , we use the base vector field $v_{t,x}^{\text{base}}$ to predict the final sample [a)]. Through the inverse predictor φ , we recover the corresponding predicted parameters $\hat{\alpha}_1^{\text{base}}$ and $\hat{\alpha}_1^{\text{ft}}$ [b)]. These estimates can be used as a target for evolving α_t^{base} [c)] or as a baseline for the fine-tuned evolution of α_t^{ft} [d)]. For purposes of regularization, we further consider $v_{t,\alpha}^{\text{reg}}$, pointing from the current α_t^{ft} to the predicted final parameter of the base evolution $\hat{\alpha}_1^{\text{base}}$ [e)].

where we combine coefficients β_t and γ_t into $\eta_t = \gamma_t \left(\frac{\dot{\beta}_t}{\beta} \gamma_t - \dot{\gamma}_t \right)$.

Assuming we have access to a FM model which generates samples according to distribution $p(x)$, we seek to adjust this model so as to generate samples from the tilted distribution $p_r(x) \propto e^{\lambda r(x)} p(x)$, where r is a reward function and λ characterises the degree of distribution shift induced by fine-tuning.

To achieve this, we leverage the adjoint-matching framework of Domingo-Enrich et al. (2025). This work reformulates reward fine-tuning for flow-based generative models as a control problem in which the base generative process given by v_t^{base} is steered toward high-reward samples via modifying the learned vector field, which we denote as v_t^{ft} with corresponding drift term b_t^{ft} . Our approach is conceptually related to reward- or preference-based fine-tuning of generative models (Christiano et al., 2017; Sun et al., 2024), where a learned or computed reward steers generation toward desired properties. Here, the reward is defined via PDE residuals, encoding knowledge about underlying dynamics and physical constraints to the solutions space as deviations to differential operators or boundary conditions.

Notably, we assume that the distribution generated by the base model $p(x)$ only captures an observed quantity, but does not provide us with corresponding parameters or coefficient fields often needed to evaluate the respective differential operator. In the following, we will present a strategy of jointly recovering unknown parameters and fine-tuning the generation process.

3.1 REWARD

A generative model can reproduce the visual characteristics of empirical data while ignoring the physics that governs it, thereby rendering the samples unusable for downstream scientific tasks. To bridge this gap we impose the known governing equations as *soft constraints*, expressed through differential operators $\mathcal{L}_\alpha x = 0$ with parameters α . Throughout, a generated sample x is interpreted as the discretisation of a continuous field $x(\xi)$ on a domain Ω . The *strong* PDE residual is defined as

$$\mathcal{R}_{\text{strong}}(x, \alpha) = \|\mathcal{L}_\alpha x\|_{L^2(\Omega)}^2.$$

In practice, strong residuals involve high-order derivatives that make the optimization landscape unstable. We therefore adopt *weak-form residuals* of the form $\langle \mathcal{L}_\alpha x, \psi \rangle_{L^2(\Omega)}$ for suitably chosen test functions $\psi \in \Psi$, which are numerically more stable under noisy or misspecified data. Repeated

216 applications of integration-by-parts can transfer derivatives from x to ψ . The set Ψ is composed of
 217 compactly supported local polynomial kernels. For each evaluation we draw N_{test} such functions;
 218 their centers and length-scales are sampled at random. A mollifier enforces $\psi|_{\partial\Omega} = 0$, justifying the
 219 integration by parts. The resulting residual is

$$221 \quad \mathcal{R}_{\text{weak}}(x, \alpha) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} |\langle \mathcal{L}_\alpha x, \psi^{(i)} \rangle_{L^2(\Omega)}|^2.$$

224 These randomly sampled local test functions act as stochastic probes of PDE violations, providing
 225 a low-variance, data-efficient learning signal. A more detailed description of the test functions used
 226 can be found in Appendix D.3. Note that the residual might be augmented by adding soft constraints
 227 for boundary conditions.

228 3.2 JOINT EVOLUTION

230 Fine-tuning is nontrivial in our setting because we must infer latent physical parameters jointly
 231 with the generated solutions. On fully denoised samples, we can train an inverse predictor, i.e.,
 232 $\varphi(x_1) = \alpha_1$, such that the weak PDE residual is minimised. As a naïve approach, this already
 233 induces a joint distribution over (x_1, α_1) via the push-forward through φ .

234 However, we advocate a more principled formulation that evolves *both* x and α along vector
 235 fields, enabling joint sampling of parameters and solutions, as well as a controlled regularisation
 236 of fine-tuning through the Adjoint Matching framework as outlined below. In the fine-tuning model,
 237 this can be achieved by directly learning the vector field $v_{t,\alpha}^{\text{ft}}$ jointly with $v_{t,x}^{\text{ft}}$ by augmenting the
 238 neural architecture. Since no ground-truth flow of α for the base model is available, at each state
 239 (x_t, α_t) we define a *surrogate base flow* using the inverse predictor φ . Specifically, we consider the
 240 one-step estimates

$$241 \quad \hat{x}_1 = x_t + (1-t) v_t^{\text{base}}(x_t), \quad \hat{\alpha}_1 = \varphi(\hat{x}_1).$$

242 The direction from the current state α_t to the predicted final parameter $\hat{\alpha}_1$ serves as a base vector field
 243 which we use to evolve alpha, i.e. $v_{t,\alpha}^{\text{base}}(\alpha_t) = (\hat{\alpha}_1 - \alpha_t)/(1-t)$ inducing corresponding drift $b_{t,\alpha}^{\text{base}}$.
 244 This *surrogate base flow*, starting at a noise sample $\alpha_0^{\text{base}} \sim \mathcal{N}(0, I)$, emulates a denoising process
 245 of the recovered parameter. We denote by α^{base} the parameter aligned with the base trajectory
 246 x^{base} . While the evolution of α^{base} does not influence the trajectory of x^{base} , the inferred vector
 247 field can be used to effectively regularize the generation of the fine-tuned model. Similarly, to
 248 regularise towards the parameter recovered under the base model, we introduce an additional field
 249 $v_{t,\alpha}^{\text{reg}}(\alpha_t^{\text{ft}}) = (\hat{\alpha}_1^{\text{base}} - \alpha_t^{\text{ft}})/(1-t)$. This vector field points from the current parameter estimate of
 250 the fine-tuned trajectory α_t^{ft} to the recovered parameter under the base model $\hat{\alpha}_1^{\text{base}}$. The field is used
 251 to pull the fine-tuned dynamics towards final samples associated with parameters similar to those of
 252 the base trajectory. The introduced vector fields are visualized in Fig. 1.

253 3.3 ADJOINT MATCHING

255 Considering an augmented state variable of the joint evolution $\tilde{X}_t = (X_t^T, \alpha_t^T)^T$, we cast fine-tuning
 256 as a stochastic optimal control problem:

$$257 \quad \min_{\tilde{u}} \mathbb{E} \left[\int_0^1 \left(\frac{1}{2} \left\| \tilde{u}_t(\tilde{X}_t) \right\|^2 + f(\tilde{X}_t) \right) dt + g(\tilde{X}_1) \right] \quad (2)$$

$$260 \quad \text{s.t.} \quad d\tilde{X}_t = \left(\tilde{b}_t^{\text{base}}(\tilde{X}_t) + \sigma(t) \tilde{u}_t(\tilde{X}_t) \right) dt + \sigma(t) d\tilde{B}_t$$

262 with control $\tilde{u}_t(\tilde{X}_t)$, running state cost $f(\tilde{X}_t)$, and terminal cost $g(\tilde{X}_1)$. In this formulation, fine-
 263 tuning amounts to a point-wise modification of the base drift through application of control \tilde{u} , i.e.

$$264 \quad \tilde{b}_t^{\text{ft}}(\tilde{X}_t) = \tilde{b}_t^{\text{base}}(\tilde{X}_t) + \sigma(t) \tilde{u}_t(\tilde{X}_t).$$

266 In Domingo-Enrich et al. (2025), Adjoint Matching is introduced as a technique with lower variance
 267 and computational cost than standard adjoint methods. The method is based on a *Lean Adjoint* state,
 268 which is initialized as

$$269 \quad \tilde{a}_1^T = \tilde{\lambda} \nabla_{\tilde{x}} g(\tilde{X}_1) = (\lambda_x \nabla_x g(X_1, \alpha_1), \lambda_\alpha \nabla_\alpha g(X_1, \alpha_1))$$

270 and evolves backward in time according to
 271

$$272 \frac{d}{dt} \tilde{a}_t = - \left(\nabla_{\tilde{x}} \tilde{b}_t^{\text{base}}(\tilde{X}_t)^T \tilde{a}_t + \nabla_{\tilde{x}} f(\tilde{X}_t)^T \right) = - \begin{pmatrix} J_{xx}^T & J_{\alpha x}^T \\ J_{x\alpha}^T & J_{\alpha\alpha}^T \end{pmatrix} \begin{pmatrix} a_{t,x} \\ a_{t,\alpha} \end{pmatrix} - \begin{pmatrix} \nabla_x f(X_t, \alpha_t)^T \\ \nabla_\alpha f(X_t, \alpha_t)^T \end{pmatrix} \quad (3)$$

274 where the block-Jacobian is evaluated along the base drift for X and α , which means that
 275 $J_{ij} = \nabla_j b_{t,i}^{\text{base}}(X_t, \alpha_t)$ for $i, j \in \{x, \alpha\}$. The hyperparameters λ_x and λ_α can be used to regu-
 276 late the extent to which the fine-tuned distribution departs from the base distribution. The *Adjoint*
 277 *Matching* objective can then be formulated as a consistency loss:
 278

$$279 \mathcal{L}(\tilde{u}; \tilde{X}) = \frac{1}{2} \int_0^1 \left\| \tilde{u}_t(\tilde{X}_t) + \sigma(t) \tilde{a}_t \right\|^2 dt \\ 280 \\ 281 = \frac{1}{2} \int_0^1 \left(\left\| u_{t,x}(X_t, \alpha_t) + \sigma(t) a_{t,x} \right\|^2 + \left\| u_{t,\alpha}(X_t, \alpha_t) + \sigma(t) a_{t,\alpha} \right\|^2 \right) dt. \quad (4)$$

284 It can be shown (Domingo-Enrich et al., 2025) that with $f = 0$, this objective is consistent with the
 285 tilted target distribution for reward $r = -g$, if optimized with a *memoryless* noise schedule. This
 286 schedule ensures sufficient mixing during generation such that the final sample X_1 is independent of
 287 X_0 . To stabilise fine-tuning we introduce a scaled variant of the memoryless noise schedule. Instead
 288 of using the canonical choice $\sigma^2(t) = 2\eta_t$ identified by Domingo-Enrich et al. (2025), we adopt

$$289 \sigma^2(t) = (1 - \kappa) 2\eta_t, \quad 0 \leq \kappa < 1,$$

290 which retains the theoretical memoryless property (see Lemma 1 in Appendix D.4) while attenuating
 291 the magnitude of the noise variance. The introduction of the scaling factor $0 \leq \kappa < 1$ constitutes
 292 a simple but novel extension of the adjoint-matching framework. Whereas prior work highlighted
 293 a unique schedule, our analysis shows that a family of scaled schedules remains consistent with the
 294 memoryless condition. This additional degree of freedom acts as a *numerical stabilisation knob*,
 295 mitigating blow-ups near $t \rightarrow 0$ without losing theoretical consistency. Further, it offers a *control-fidelity trade-off* by regulating the amount of exploration.
 296

297 In practice, this flexibility allows practitioners to adapt fine-tuning to the conditioning of the PDE
 298 residuals and the stability of the solver, a feature not available in the original formulation.

300 Equation 2 is optimized by iteratively sampling trajectories with the fine-tuned model while follow-
 301 ing a memoryless noise schedule, numerically computing the lean adjoint states by solving the ODE
 302 in Equation 3, and taking a gradient descent step to minimize the loss in Equation 4. Note that gradi-
 303 ents are only computed through the control \tilde{u}_t and not through the adjoint, reducing the optimization
 304 target to a simple regression loss. We state the full training algorithm and implementation details in
 305 Appendix D.5.

306 Adjoint Matching steers the generator toward the reward-tilted distribution, thereby reshaping the
 307 entire output distribution rather than correcting individual trajectories. However, when fine-tuning
 308 observational data or under system misspecification, we might be interested in retaining sample-
 309 specific detail. Empirically we find that this can be effectively encoded by imposing similarity of
 310 the inferred coefficients between base and fine-tuned model. Therefore, we add a running state cost

$$311 \quad 312 f(\alpha) = \lambda_f \left\| v_{t,\alpha}^{\text{ft}}(\alpha) - v_{t,\alpha}^{\text{reg}}(\alpha) \right\|^2$$

313 which penalises deviations of the fine-tuned α -drift from the direction pointing toward the base
 314 estimate $\hat{\alpha}_1^{\text{base}}$. The hyper-parameter λ_f controls a smooth trade-off: $\lambda_f = 0$ recovers pure Adjoint
 315 Matching, while larger λ_f progressively anchors the final parameters α_1 obtained under the fine-
 316 tuned model to their base-model counterparts, thus retaining trajectory-level detail.

317 4 EXPERIMENTS

320 We evaluate across five settings: four PDE systems (including boundary and system misspecifi-
 321 cation, and observational noise) and a natural-image model. Unlike latent-space fine-tuning for
 322 images, our PDE models operate directly in pixel space. High-variance noise during sampling can
 323 drive off-manifold trajectories and perturb PDE residuals, motivating $\kappa > 0$ for these models. For
 base Flow Matching backbones we use U-FNO (Wen et al., 2022) for PDEs and the DiT-based latent

324 FM of Dao et al. (2023) for images. In all experiments we first sample from the base generator and
 325 pre-train the inverse predictor φ to recover α by minimizing the (PDE) residual, then fine-tune. Fol-
 326 lowing Domingo-Enrich et al. (2025), fine-tuning is initialized from the base weights. We augment
 327 capacity to condition $v_{t,x}^{\text{ft}}$ on α_t and add a separate head for $v_{t,\alpha}^{\text{ft}}$. Fine-tuning uses a memoryless
 328 noise schedule, while all reported results are generated without injected noise ($\sigma(t) = 0$). Imple-
 329 mentation details appear in App. D.2.
 330

331 **Comparisons, ablations, and metrics.** Our proposed method converts a single-variable flow into
 332 a joint generative model (Sec. 3.2). We compare against: (i) a *Base AM* variant (vanilla Adjoint
 333 Matching) where φ is frozen and used only to compute residuals, (ii) a *Base AM+ φ* variant where
 334 φ continues to train but the flow over α is not modeled jointly, and (iii) *PBFM* (Baldan et al., 2025),
 335 augmented with our pretrained φ to enable residual evaluation. Details on the comparison methods
 336 can be found in App. E.2. All evaluations use 256 samples, generated from shared seeds across
 337 methods. We report weak and strong residuals, R_{weak} and R_{strong} , scaled by the mean residual of
 338 a fixed reference set. The reference set \mathcal{D}_{ref} is a synthetic, clean dataset generated under the tar-
 339 get PDE specification assumed during fine-tuning (no noise, modified BCs, lossless Helmholtz, or
 340 unforced Stokes respectively). We also report Maximum Mean Discrepancy (MMD) based distribu-
 341 tional similarities for states and parameters (MMD_x , MMD_α) computed against this dataset (details
 342 in App. E.1). While the main text shows representative results, the complete set of experimental
 343 evaluations is provided in App. F.
 344

344 4.1 Darcy Flow

346 Consider a square domain $\Omega = [0, 1]^2$ where a permeability $\alpha(\xi)$ and forcing $f(\xi)$ induce a pressure
 347 field $x(\xi)$ governed by $-\nabla \cdot (\alpha(\xi) \nabla x(\xi)) - f(\xi) = 0$ with zero Dirichlet boundary conditions and
 348 constant f . We draw α from a discretized Gaussian process and corrupt pressures with observation
 349 noise before training the base FM. Dataset details are in App. B.

350 Figure 2 compares three Darcy samples generated from the *same* noise seed x_0 : the base draw, fine-
 351 tuning with our regularization (here $\lambda_f = 1.0$), and fine-tuning without regularization. The base
 352 pressure x^{base} is visibly contaminated by high-frequency noise, and the inverse predictor φ corre-
 353 spondingly yields a scattered, artefact-ridden permeability map α^{base} . With regularization enabled,
 354 fine-tuning attenuates noise in the pressure x^{ft} while remaining close to α^{base} . Because α^{base} is itself
 355 fragmented, some artefacts persist. In contrast, disabling regularization produces a fully denoised
 356 pressure and a markedly more coherent α^{ft} , but at the expected expense of erasing sample-specific
 357 details present in the base realization.
 358

368
 369 Figure 2: Darcy denoising (qualitative). Base vs. fine-tuned outputs for a fixed seed. Regularization
 370 ($\lambda_f = 1.0$) denoises while staying close to the base sample. Removing it denoises more aggressively
 371 at the cost of fidelity to the base realization. Additional non-curated samples in App. F.3.1. Color
 372 maps throughout this work taken from Cramer et al. (2020).
 373

374 We quantify the controllable trade-offs in Fig. 3. Panel (a) increases $\lambda_x = \lambda_\alpha$ at $\lambda_f = 0$, which
 375 reduces the PDE residual while also reducing diversity in the inferred permeabilities (measured via
 376 the complement of the mean pairwise SSIM; see App. E.1). Panel (b) fixes $\lambda_x = \lambda_\alpha = 20K$ and
 377 varies λ_f , reporting MMD_x between the fine-tuned samples and the base dataset. As expected,
 378 stronger regularization preserves distributional fidelity (lower MMD) but yields higher residuals.
 379

378 These ablations illustrate how practitioners can target residual reduction or distributional fidelity by
 379 tuning $(\lambda_x, \lambda_\alpha, \lambda_f)$.
 380

392 Figure 3: Darcy ablations. (a) Increasing $\lambda_x = \lambda_\alpha$ with $\lambda_f = 0$ lowers the PDE residual but reduces
 393 diversity in the inferred parameters (reported via SSIM-based diversity). (b) Sweeping λ_f trades
 394 PDE residuals against fidelity to the base distribution (MMD_x). Each point averages 256 samples
 395 with shared noise seeds across settings.

396 Computationally, adaptation is lightweight: fine-tuning on noisy Darcy requires only 20 gradient
 397 steps (hyperparameters in App. E.3) and completes in under 15 minutes on a single NVIDIA L40S,
 398 after which sampling proceeds at base-model cost with no inference-time adjustments.

400 4.2 GUIDANCE ON SPARSE OBSERVATIONS

402 In many realistic settings dense observations of a state variable are available for pre-training a gener-
 403 ative model, whereas only a few measurements of the latent parameter can be collected. To sample
 404 from the posterior of parameter-state pairs that respect such sparse evidence we steer the genera-
 405 tive process through *guidance*. Huang et al. (2024) demonstrate guided sampling towards sparse
 406 observations from a model that was pre-trained on the joint parameter-state distribution. Our
 407 approach applies a similar guidance mechanism, however, to a model that was pre-trained on noisy
 408 state observations alone. We state details on the guiding mechanism in E.4. Figure 4 shows that
 409 the guided sampler adheres to sparse measurements while preserving realistic variability in the gen-
 410 erated samples. Additional results for different amounts of conditioning observations are given in
 411 Appendix F.3.5.

412
 413
 414
 415
 416
 417
 418 Figure 4: Three samples through guidance towards sparse observations (white markers in right
 419 panel) of the permeability, showing a plausible conditional distribution.

421 4.3 LINEAR ELASTICITY

424 We consider plane-strain linear elasticity on $\Omega = [0, 1]^2$ with spatially varying Young’s modulus
 425 $\alpha(\xi)$ and fixed Poisson ratio. Boundaries are Dirichlet: left/right clamped, top/bottom receive
 426 inward sinusoidal *normal* displacements with zero tangential slip. During fine-tuning, we impose a
 427 modified lower-boundary amplitude to induce controlled misspecification (see App. B) and include
 428 an MSE boundary penalty in the weak residual. We report quantitative BC results as the MSE at
 429 the boundary in Table 4.3 and a qualitative comparison is provided in App. F. Our method attains
 430 low weak/strong residuals while keeping distributional shift modest; PBFM and FM+ECI drift
 431 distributionally or present high residuals (full details and non-curated samples in App. E.5, F.3.2).

Model	BC error (MSE) \downarrow	$\mathcal{R}_{\text{weak}}$ (rel) \downarrow	$\mathcal{R}_{\text{strong}}$ (rel) \downarrow	$\text{MMD}_x \downarrow$	$\text{MMD}_\alpha \downarrow$
FM	$6.98 \times 10^{-5} (\pm 0.53)$	$1.59 \times 10^1 (\pm 0.37)$	$1.83 \times 10^1 (\pm 0.66)$	0.24	0.05
PBFM	$2.32 \times 10^{-5} (\pm 0.87)$	$6.32 \times 10^0 (\pm 0.82)$	$4.22 \times 10^0 (\pm 0.26)$	0.92	0.54
FM+ECI	0.0	$1.01 \times 10^3 (\pm 0.13)$	$2.49 \times 10^2 (\pm 0.32)$	1.16	0.36
Ours	$1.71 \times 10^{-6} (\pm 0.50)$	$6.15 \times 10^0 (\pm 0.77)$	$3.79 \times 10^0 (\pm 0.87)$	0.15	0.12

Table 1: Linear elasticity under BC misspecification. Quantitative boundary-condition (BC) error, relative weak/strong residuals, and distributional metrics. Our method achieves low residuals with limited distributional shift.

4.4 HELMHOLTZ

We consider time-harmonic wave propagation governed by the heterogeneous Helmholtz equation $-\Delta u - (1 - i \tan \delta) \kappa(x)^2 u = s$ on $\Omega = [0, 1]^2$ with Robin boundary conditions. Training data use a small damping term ($\tan \delta > 0$) producing complex attenuated fields, while fine-tuning assumes the idealized lossless model ($\tan \delta = 0$), inducing a controlled model mismatch.

Model	Criterion	$\mathcal{R}_{\text{weak}}$ (rel) \downarrow	$\mathcal{R}_{\text{strong}}$ (rel) \downarrow	$\text{MMD}_x \downarrow$	$\text{MMD}_\alpha \downarrow$
FM	–	$1.5 \times 10^1 (\pm 0.59)$	$2.55 \times 10^1 (\pm 0.55)$	0.18	0.03
PBFM	–	$8.33 \times 10^0 (\pm 3.04)$	$1.22 \times 10^1 (\pm 0.33)$	0.09	0.03
Base AM	$\mathcal{R}_{\text{weak}}$	$4.9 \times 10^0 (\pm 1.85)$	$1.34 \times 10^1 (\pm 0.32)$	0.15	0.04
Base AM	MMD_x	$5.64 \times 10^0 (\pm 2.09)$	$1.59 \times 10^1 (\pm 0.33)$	0.13	0.04
Base AM + φ	$\mathcal{R}_{\text{weak}}$	$4.99 \times 10^0 (\pm 2.12)$	$1.16 \times 10^1 (\pm 0.33)$	0.13	0.05
Base AM + φ	MMD_x	$5.46 \times 10^0 (\pm 1.94)$	$1.59 \times 10^1 (\pm 0.33)$	0.12	0.04
AM	$\mathcal{R}_{\text{weak}}$	$4.3 \times 10^0 (\pm 1.29)$	$1.14 \times 10^1 (\pm 0.29)$	0.07	0.04
AM	MMD_x	$4.32 \times 10^0 (\pm 1.43)$	$1.05 \times 10^1 (\pm 0.30)$	0.06	0.04

Table 2: Helmholtz: residuals and distribution (representative configs). Normalized weak/strong residuals and MMD metrics. We include AM variants and a PBFM-style baseline.

Table 2 reports representative configurations for each method, selected as either the setting with the lowest weak residual ($\mathcal{R}_{\text{weak}}$) or the lowest MMD_x . Full results are provided in App. F. The base FM model shows the largest weak and strong residuals due to the damped-vs.-lossless mismatch. PBFM substantially reduces both residuals relative to FM and, notably, also lowers MMD_x and preserves MMD_α . The AM ablations (Base AM and Base AM+ φ) further reduce the weak residuals into the range 4.9×10^0 – 5.6×10^0 , with strong residuals similar to those of PBFM, but they incur a moderate increase in MMD_x and MMD_α compared to PBFM. Our full joint AM model achieves the lowest residuals overall (weak residuals down to 4.3×10^0 and strong residuals near 1.05×10^1) while simultaneously attaining the lowest MMD_x among all methods and maintaining MMD_α comparable to the ablations. This indicates that the joint flow most effectively resolves the misspecification while preserving distributional fidelity.

4.5 STOKES LID-DRIVEN CAVITY

We consider steady incompressible flow in the Stokes regime (linear, low-Reynolds-number proxy) governed by $-\nabla \cdot (\nu(x) \nabla u) + \nabla p = f$, $\nabla \cdot u = 0$ with no-slip walls and a smooth moving lid. The dataset uses nonzero Kolmogorov forcing $f \neq 0$, while fine-tuning assumes $f \equiv 0$, creating a systematic model mismatch.

Figure 5 reports the residual-distribution trade-offs for the Stokes lid-driven cavity. We show only the Base AM variants and our joint model: the base FM model exhibits extremely large residuals ($3.05 \times 10^2 \pm 3.16$) and is omitted for clarity, while PBFM fails to converge to meaningful velocity-pressure fields (strong residuals $1.15 \times 10^1 \pm 0.05$; see App. F). In contrast to Darcy and Helmholtz, the attainable weak residuals of all remaining variants are similar ($R_{\text{weak}} \approx 4$ – 15). However, the joint model reaches *substantially lower* parameter-distribution discrepancies, achieving $\text{MMD}_\alpha \approx 0.07$ – 0.13 , whereas both ablations remain around 0.22– 0.28 . Overall, although residual levels are similar across AM variants, only the joint model can enter the low-MMD

486 regime—particularly for MMD_α . This highlights the joint flow’s greater flexibility in achieving
 487 high-fidelity parameter distributions.
 488

499 Figure 5: Stokes lid-driven cavity: residual–distribution trade-offs. Weak residuals R_{weak} versus (a)
 500 MMD_x and (b) MMD_α . Across all variants, attainable residuals are comparable, but the joint model
 501 reaches *much lower* parameter-distribution discrepancies ($\text{MMD}_\alpha \approx 0.07\text{--}0.13$) than the
 502 Base AM (blue) and Base AM+ φ (orange) ablations, which remain around 0.22–0.28.
 503

504 4.6 NATURAL IMAGES: PARAMETRIC COLOR TRANSFORMATION

506 To demonstrate cross-domain utility, we apply our method to natural images by introducing a para-
 507 metric recoloring pathway: analogous to the hidden PDE parameter, α here specifies a polynomial
 508 color transform that operates outside the latent space, enabling exploration of image appearances not
 509 well supported by the base distribution. We use a class-conditional Latent Flow Matching (LFM)
 510 model (Dao et al., 2023) pretrained on ImageNet-1k (Deng et al., 2009) and optimize PickScore
 511 (Kirstain et al., 2023) with a globally fixed prompt. As a concrete example, we fine-tune on the class
 512 *macaw* with the prompt “close-up Pop Art of a macaw parrot,” yielding the samples in Fig. 6. Joint
 513 fine-tuning with recoloring produces markedly more vibrant palettes and, crucially, *joint* adjustments
 514 (e.g., background textures that the recoloring exploits). Details about the recoloring parametrization
 515 are given in Appendix E.7 and further non-curated samples are provided in Appendix F.3.6.
 516

523 Figure 6: Fine-tuning of LFM model on *macaw* class using prompt “close-up Pop Art of a macaw
 524 parrot”, comparing *vanilla* Adjoint Matching with our joint approach.
 525

527 5 CONCLUSION

529 We have introduced a framework for post-training fine-tuning of flow-matching generative models
 530 to enforce physical constraints and jointly infer latent physical parameters informing the constraints.
 531 Through a novel architecture, combined with the combination of weak-form PDE residuals with an
 532 adjoint-matching scheme our method can produce samples that adhere to complex constraints with-
 533 out significantly affecting the sample diversity. Experiments across PDE problems demonstrate the
 534 potential of this method to reduce residuals and enable joint solution–parameter generation, support-
 535 ing its promise for physics-aware generative modelling. Future steps include adaptive approaches
 536 to optimising trade-off between constraint enforcement and generative diversity, and extending the
 537 framework to more complex and multi-physics systems, including coupled PDEs and stochastic or
 538 chaotic dynamics. We would also explore how this methodology can be leveraged for uncertainty
 539 quantification and propagation, and downstream tasks such as optimal sensor placement and sci-
 entific discovery workflows.

540 REPRODUCIBILITY STATEMENT
541

542 We report datasets, model backbones, training schedules, loss definitions, evaluation metrics, and
543 the key hyperparameters required to reproduce our results in the main text and appendix. Remaining
544 implementation choices are documented in the released configuration files. Upon acceptance, we
545 will open-source the code, including full training scripts. We fixed random seeds where applicable
546 and specify hardware/software versions.

548 REFERENCES
549

550 Martin S. Alnaes, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells. Unified
551 form language: A domain-specific language for weak formulations of partial differential equa-
552 tions. *ACM Transactions on Mathematical Software*, 40, 2014. doi: 10.1145/2566630.

553 Giacomo Baldan, Qiang Liu, Alberto Guardone, and Nils Thuerey. Flow matching meets pdes: A
554 unified framework for physics-constrained generation. *arXiv preprint arXiv:2506.08604*, 2025.

556 Igor A. Baratta, Joseph P. Dean, Jørgen S. Dokken, Michal Habera, Jack S. Hale, Chris N. Richard-
557 son, Marie E. Rognes, Matthew W. Scroggs, Nathan Sime, and Garth N. Wells. DOLFINx: the
558 next generation FEniCS problem solving environment. *preprint*, 2023.

560 Jan-Hendrik Basteck, WaiChing Sun, and Dennis Kochmann. Physics-informed diffusion models. In
561 *The Thirteenth International Conference on Learning Representations*, 2024.

562 Yoav Chai, Raja Giryes, and Lior Wolf. Supervised and unsupervised learning of parameterized
563 color enhancement. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
564 puter Vision*, pp. 992–1000, 2020.

566 Chaoran Cheng, Boran Han, Danielle C Maddix, Abdul Fatir Ansari, Andrew Stuart, Michael W
567 Mahoney, and Yuyang Wang. Gradient-free generation for hard-constrained systems. *arXiv
568 preprint arXiv:2412.01786*, 2024.

570 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
571 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
572 contrastive language-image learning. In *Proceedings of the IEEE/CVF conference on computer
573 vision and pattern recognition*, pp. 2818–2829, 2023.

574 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
575 reinforcement learning from human preferences. *Advances in neural information processing sys-
576 tems*, 30, 2017.

578 Jacob K Christopher, Stephen Baek, and Nando Fioretto. Constrained synthesis with projected
579 diffusion models. *Advances in Neural Information Processing Systems*, 37:89307–89333, 2024.

580 Fabio Crameri, Grace Shephard, and Philip Heron. The misuse of colour in science communication.
581 *Nature Communications*, 11, 2020. doi: 10.1038/s41467-020-19160-7.

583 Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. *arXiv preprint
584 arXiv:2307.08698*, 2023.

585 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
586 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
587 pp. 248–255. Ieee, 2009.

589 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
590 in neural information processing systems*, 34:8780–8794, 2021.

592 Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
593 Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control. In
International Conference on Representation Learning, 2025.

594 N Benjamin Erichson, Vinicius Mikuni, Dongwei Lyu, Yang Gao, Omri Azencot, Soon Hoe Lim,
 595 and Michael W Mahoney. Flex: A backbone for diffusion-based modeling of spatio-temporal
 596 physical systems. *arXiv preprint arXiv:2505.17351*, 2025.

597

598 Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. Large sample analysis of the
 599 median heuristic. *arXiv preprint arXiv:1707.07269*, 2017.

600 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
 601 A kernel two-sample test. *The journal of machine learning research*, 13(1):723–773, 2012.

602

603 Majdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stärk, Stephan Thaler, and Dominique Beaini.
 604 Et-flow: Equivariant flow-matching for molecular conformer generation. *Advances in Neural
 605 Information Processing Systems*, 37:128798–128824, 2024.

606

607 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on
 Deep Generative Models and Downstream Applications*, 2021.

608

609 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 610 neural information processing systems*, 33:6840–6851, 2020.

611

612 Jiahe Huang, Guandao Yang, Zichen Wang, and Jeong Joon Park. Diffusionpde: Generative pde-
 613 solving under partial observation. *Advances in Neural Information Processing Systems*, 37:
 130291–130323, 2024.

614

615 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 616 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

617

618 Gavin Kerrigan, Giosue Migliorini, and Padhraic Smyth. Functional flow matching. In *International
 Conference on Artificial Intelligence and Statistics*, pp. 3934–3942. PMLR, 2024.

619

620 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 621 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural
 622 information processing systems*, 36:36652–36663, 2023.

623

624 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
 625 drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
 626 equations. *arXiv preprint arXiv:2010.08895*, 2020.

627

628 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 629 for generative modeling. In *11th International Conference on Learning Representations, ICLR
 2023*, 2023.

630

631 Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of physics in-
 632 formed neural networks. *arXiv preprint arXiv:2408.11104*, 2024.

633

634 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 635 arXiv:1711.05101*, 2017.

636

637 Yulong Lu and Wuzhe Xu. Generative downscaling of pde solvers with physics-guided diffusion
 638 models. *Journal of scientific computing*, 101(3):71, 2024.

639

640 Dimitra Maoutsa, Sebastian Reich, and Manfred Opper. Interacting particle solutions of fokker-
 641 planck equations through gradient–log–density estimation. *Entropy*, 22(8):802, 2020.

642

643 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 644 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 645 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

646

647 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

648

649 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 650 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial
 intelligence*, volume 32, 2018.

648 Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
 649 *SIAM journal on control and optimization*, 30(4):838–855, 1992.
 650

651 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Do-
 652 minic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Gen-
 653 cast: Diffusion-based ensemble forecasting for medium-range weather. *arXiv preprint*
 654 *arXiv:2312.15796*, 2023.

655 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 656 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 657 models from natural language supervision. In *International conference on machine learning*, pp.
 658 8748–8763. PmLR, 2021.

659 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 660 deep learning framework for solving forward and inverse problems involving nonlinear partial
 661 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

662

663 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 664 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 665 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

666

667 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 668 ical image segmentation. In *International Conference on Medical image computing and computer-
 669 assisted intervention*, pp. 234–241. Springer, 2015.

670

671 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 672 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 673 open large-scale dataset for training next generation image-text models. *Advances in neural in-
 674 formation processing systems*, 35:25278–25294, 2022.

675

676 Matthew W. Scroggs, Igor A. Baratta, Chris N. Richardson, and Garth N. Wells. Basix: a runtime
 677 finite element basis evaluation library. *Journal of Open Source Software*, 7(73):3982, 2022a. doi:
 678 10.21105/joss.03982.

679

680 Matthew W. Scroggs, Jørgen S. Dokken, Chris N. Richardson, and Garth N. Wells. Construction of
 681 arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes.
 682 *ACM Transactions on Mathematical Software*, 48(2):18:1–18:23, 2022b. doi: 10.1145/3524456.

683

684 Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
 685 with score-based generative models. In *NeurIPS 2021 Workshop on Deep Learning and Inverse
 686 Problems*, 2021.

687

688 Andrew M Stuart. Inverse problems: a bayesian perspective. *Acta numerica*, 19:451–559, 2010.

689

690 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 691 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 692 factually augmented rlhf. In *Annual Meeting of the Association for Computational Linguistics*,
 693 2024.

694

695 Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
 696 sistency targets improve semi-supervised deep learning results. *Advances in neural information
 697 processing systems*, 30, 2017.

698

699 Utkarsh Utkarsh, Pengfei Cai, Alan Edelman, Rafael Gomez-Bombarelli, and Christopher Vincent
 700 Rackauckas. Physics-constrained flow matching: Sampling generative models with hard con-
 701 straints. *arXiv preprint arXiv:2506.04171*, 2025.

702

703 Hao Wang, Jindong Han, Wei Fan, Weijia Zhang, and Hao Liu. Phyda: Physics-guided diffusion
 704 models for data assimilation in atmospheric systems. *arXiv preprint arXiv:2505.12882*, 2025.

705

706 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 707 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 708 612, 2004.

702 Gege Wen, Zongyi Li, Kamayr Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
 703 fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. *Ad-*
 704 *vances in Water Resources*, 163:104180, 2022.

705 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 706 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
 707 natural language processing. In *Proceedings of the 2020 conference on empirical methods in*
 708 *natural language processing: system demonstrations*, pp. 38–45, 2020.

710 Ruichen Xu, Haochun Wang, Georgios Kementzidis, Chenhao Si, and Yuefan Deng. Apod: Adap-
 711 tive pde-observation diffusion for physics-constrained sampling. In *ICML 2025 Workshop on*
 712 *Assessing World Models*, 2025.

714 Hao Zhang, Yuanyuan Li, and Jianping Huang. Diffusionvel: Multi-information integrated velocity
 715 inversion using generative diffusion model. In *86th EAGE Annual Conference & Exhibition*,
 716 volume 2025, pp. 1–5. European Association of Geoscientists & Engineers, 2025.

718 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 719 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 720 pp. 3836–3847, 2023.

722 Yi Zhang and Difan Zou. Physics-informed distillation of diffusion models for pde-constrained
 723 generation. *arXiv preprint arXiv:2505.22391*, 2025.

726 A USE OF LARGE LANGUAGE MODELS

728 We employed large language models to polish the manuscript (wording, grammar, and synonyms)
 729 and to assist with implementation details, including plotting scripts and code rewriting/refactoring.
 730 The research questions, problem formulation, algorithmic design and experimental methodology,
 731 however, were conceived by the authors. All LLM-produced text and code were reviewed, adapted,
 732 and verified by the authors prior to inclusion.

734 B DATASET DETAILS

737 In this section we detail the datasets used throughout our study. Our guiding principle was to select
 738 scenarios in which the underlying parameter fields contain sharp discontinuities, thereby inducing
 739 rich, non-linear behaviour in the associated state variables and making the inverse problem decidedly
 740 non-trivial. Although the Darcy-flow benchmark follows the setup of Li et al. (2020), we regenerate
 741 the data so that the sample count, grid resolution, and ground-truth parameters can be controlled
 742 precisely. Complete scripts for producing all data will be released to facilitate transparency and
 743 reproducibility.

744 B.1 DARCY FLOW DATASET

746 The dataset comprises 20,000 independent samples, each a pair (a, u) on the unit square $\Omega = [0, 1]^2$,
 747 where $a : \Omega \rightarrow \mathbb{R}_{>0}$ is the permeability and $u : \Omega \rightarrow \mathbb{R}$ is the steady-state pressure solving

$$749 -\nabla \cdot (a(\xi) \nabla u(\xi)) = f(\xi), \quad \xi = (\xi_1, \xi_2) \in \Omega,$$

750 with homogeneous Dirichlet boundary conditions $u|_{\partial\Omega} = 0$ and constant forcing $f \equiv 1$.

752 **Discretization.** We use a uniform 64×64 nodal grid with spacing $\Delta x = 1/(64 - 1)$ and the stan-
 753 dard five-point finite-difference scheme. Interface permeabilities are formed by two-point arithmetic
 754 averaging. Dirichlet values are imposed strongly, yielding a sparse SPD linear system that is solved
 755 with a direct sparse solver.

756 **Permeability sampling.** We draw a zero-mean Gaussian random field a_{raw} via a cosine-basis
 757 Karhunen–Loëve synthesis on Ω associated with the Matérn-type covariance operator

$$758 \quad \mathcal{C} = (\tau^2 - \Delta)^{-\alpha}, \quad \alpha = 2, \quad \tau = 3,$$

759 i.e., using the DCT-II basis (Neumann eigenfunctions of $-\Delta$), setting the DC mode to zero to enforce
 760 exact zero mean, scaling by the spectrum of \mathcal{C} , and applying an orthonormal inverse DCT to obtain
 761 a grid realization.

762 To model sharp contrasts, we threshold the Gaussian field into a piecewise-constant permeability,

$$763 \quad a(\xi) = \begin{cases} 12, & a_{\text{raw}}(\xi) \geq 0, \\ 764 \quad 3, & a_{\text{raw}}(\xi) < 0. \end{cases}$$

765 **Observational noise.** In experiments with noisy observations, we corrupt the pressure with additive
 766 Gaussian noise

$$767 \quad \tilde{u} = u + \sigma \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I), \quad \sigma = 10^{-4}.$$

770 B.2 LINEAR ELASTICITY DATASET

771 The dataset contains $N = 10,000$ independent samples on the unit square $\Omega = [0, 1]^2$. Each sample
 772 is a pair (E, u) where $E : \Omega \rightarrow \mathbb{R}_{>0}$ denotes the spatially varying Young's modulus and $u : \Omega \rightarrow \mathbb{R}^2$
 773 is the plane-strain displacement field under fixed Poisson ratio $\nu = 0.30$. The boundary loading is
 774 deterministic and identical across samples: the left/right edges are clamped, and sinusoidal normal
 775 displacements are prescribed on the top and bottom edges with zero tangential slip (amplitudes
 776 $A_{\text{top}} = A_{\text{bot}} = 0.10$). For each E , u solves the static linear elasticity equations (no body force)

$$777 \quad -\nabla \cdot \sigma(\xi) = 0, \quad \sigma = \lambda(E, \nu) \text{tr}(\varepsilon) I + 2\mu(E, \nu) \varepsilon, \quad \varepsilon = \frac{1}{2}(\nabla u + \nabla u^\top), \quad \xi \in \Omega,$$

778 with Lamé parameters $\lambda(E, \nu) = \frac{\nu E}{(1+\nu)(1-2\nu)}$ and $\mu(E, \nu) = \frac{E}{2(1+\nu)}$, and Dirichlet boundary
 779 conditions

$$780 \quad \begin{aligned} u(\xi_1=0, \xi_2) &= 0, & u(\xi_1=1, \xi_2) &= 0 \\ 781 \quad u_x(\xi_1, \xi_2=0) &= 0, & u_y(\xi_1, \xi_2=0) &= -A_{\text{bot}} \sin(\pi \xi_1) \\ 782 \quad u_x(\xi_1, \xi_2=1) &= 0, & u_y(\xi_1, \xi_2=1) &= +A_{\text{top}} \sin(\pi \xi_1). \end{aligned}$$

783 During fine-tuning, we set $A_{\text{bot}} = 0.075$ to enforce adaptation of the solutions, simulating a mis-
 784 specification between observed data and the assumed model.

785 **Discretization.** We use a uniform 64×64 grid on Ω and standard second-order finite differences
 786 in the small-strain regime. Dirichlet data are imposed strongly. The discrete equilibrium equations
 787 are advanced by a stable explicit time-marching (damped gradient) scheme for the static problem
 788 until the global residual norm falls below 10^{-6} , or a cap of 2×10^4 iterations is reached.

789 **Coefficient field sampling (piecewise-constant Voronoi medium).** Heterogeneous modulus
 790 fields E are obtained from a Voronoi tessellation constructed by drawing a fixed number of sites
 791 uniformly in Ω , assigning to each Voronoi cell a modulus sampled log-uniformly within $[1.0, 10.0]$,
 792 and rasterizing the resulting partition to the computational grid by nearest-site labeling. This pro-
 793 duces piecewise-constant E with sharp jumps that emulate multi-phase media. To control interface
 794 smoothness, a separable Gaussian blur with standard deviation $\sigma_{\text{blur}} = 1.0$ (in grid units) is applied
 795 to the rasterized field.

796 B.3 HELMHOLTZ WAVE PROPAGATION DATASET

797 The dataset consists of $N = 10,000$ independent samples on the unit square $\Omega = [0, 1]^2$. Each
 798 sample is a pair (c, u) , where $c : \Omega \rightarrow \mathbb{R}_{>0}$ denotes the spatially varying sound speed and $u : \Omega \rightarrow \mathbb{C}$
 799 is the time-harmonic acoustic pressure. For a fixed angular frequency $\omega > 0$, the field u solves the
 800 damped Helmholtz equation

$$801 \quad -\Delta u(\xi) - (1 - i \tan \delta) \kappa(\xi)^2 u(\xi) = s(\xi), \quad \kappa(\xi) = \frac{\omega}{c(\xi)}, \quad \xi \in \Omega,$$

802 subject to homogeneous Robin boundary conditions

$$803 \quad \partial_n u(\xi) + i \gamma u(\xi) = 0, \quad \xi \in \partial\Omega,$$

804 with fixed admittance parameter $\gamma > 0$ and loss tangent $\tan \delta \geq 0$.

810 **Discretization.** We use a uniform 64×64 nodal grid on Ω with spacing $\Delta x = 1/(64 - 1)$. The
 811 Laplacian $-\Delta$ is discretized by the standard five-point finite-difference stencil in the interior and
 812 homogeneous Neumann conditions in the normal direction on all sides, implemented via ghost-point
 813 elimination. The Robin condition $\partial_n u + i\gamma u = 0$ is enforced by adding purely imaginary diagonal
 814 contributions at boundary nodes to the stiffness matrix, consistent with the underlying Neumann-
 815 type discretization. The heterogeneous reaction term $-(1 - i \tan \delta) \kappa^2 u$ is assembled pointwise on
 816 the grid. This yields a sparse complex-valued linear system, which is solved for each sample using
 817 a direct sparse solver.

818 **Sound-speed sampling.** The sound speed c is derived from a Gaussian random field constructed
 819 in the same manner as for the Darcy dataset, but interpreted as a wave speed. We first draw a zero-
 820 mean Gaussian field g on the grid using a cosine-basis Karhunen–Loëve synthesis associated with
 821 the Matérn-type covariance operator

$$823 \quad \mathcal{C} = (\tau^2 - \Delta)^{-\alpha}, \quad \alpha = 4, \quad \tau = 6,$$

824 using the DCT-II basis on Ω , zeroing the DC mode, scaling by the spectrum of \mathcal{C} , and applying the
 825 inverse DCT to obtain g . To model sharp material contrasts, we map g to a two-level sound speed,
 826

$$827 \quad c(\xi) = \begin{cases} c_{\max}, & g(\xi) \geq 0, \\ c_{\min}, & g(\xi) < 0, \end{cases}$$

828 with $c_{\min} = 0.8$ and $c_{\max} = 1.2$ in the reported experiments.

831 **Source and damping.** The source term s is a fixed, smooth Gaussian bump centered in Ω ,

$$832 \quad s(\xi) = \exp\left(-\frac{\|\xi - (0.5, 0.5)\|_2^2}{2\sigma^2}\right), \quad \sigma = 0.05,$$

834 shared across all samples. We use a fixed angular frequency $\omega = 20$ and Robin parameter $\gamma = 0.03$.
 835 Data is generated with a small but nonzero loss tangent $\tan \delta = 0.02$, leading to complex-valued
 836 damped solutions.

838 B.4 STOKES LID-DRIVEN CAVITY DATASET

840 The dataset consists of $N = 10,000$ independent samples on the unit square $\Omega = [0, 1]^2$. Each
 841 sample is a pair (ν, u) , where $\nu : \Omega \rightarrow \mathbb{R}_{>0}$ denotes the spatially varying kinematic viscosity and
 842 $u : \Omega \rightarrow \mathbb{R}^2$ is the steady incompressible velocity field with associated pressure $p : \Omega \rightarrow \mathbb{R}$. For
 843 each ν , (u, p) solve the variable-coefficient Stokes system

$$844 \quad -\nabla \cdot (\nu(\xi) \nabla u(\xi)) + \nabla p(\xi) = f(\xi), \quad \nabla \cdot u(\xi) = 0, \quad \xi \in \Omega,$$

845 with a smooth lid-driven cavity boundary condition on the top wall

$$846 \quad u(\xi_1, \xi_2=1) = (U_{\text{lid}} \sin^2(\pi \xi_1), 0),$$

848 and no-slip conditions on the remaining walls

$$849 \quad u(\xi_1, \xi_2=0) = 0, \quad u(\xi_1=0, \xi_2) = 0, \quad u(\xi_1=1, \xi_2) = 0.$$

850 To excite richer flow structures, we add a Kolmogorov-type body force

$$851 \quad f(\xi_1, \xi_2) = F_0 (\sin(\pi \xi_2), 0),$$

853 with fixed amplitude $F_0 > 0$.

854 **Discretization.** The Stokes system is discretized using FEniCS (Baratta et al., 2023; Scroggs et al.,
 855 2022b;a; Alnaes et al., 2014) on a conforming triangular mesh obtained from a $(64-1) \times (64-1)$
 856 grid of squares, each split into two triangles. We employ Taylor–Hood elements (vector-valued P_2
 857 for u , scalar P_1 for p) on the mixed space $V \times Q$. The weak form reads

$$859 \quad \int_{\Omega} \nu \nabla u : \nabla v \, dx - \int_{\Omega} p \nabla \cdot v \, dx - \int_{\Omega} q \nabla \cdot u \, dx = \int_{\Omega} f \cdot v \, dx,$$

861 for all test functions $(v, q) \in V \times Q$, with the lid and no-slip boundary conditions imposed strongly.
 862 For each sample, the resulting saddle-point system is solved with a direct solver, and the solution
 863 (u, p) is sampled on a uniform 64×64 grid on Ω ; the pressure is post-processed to have zero spatial
 864 mean in order to fix the gauge.

864 **Viscosity field sampling.** The viscosity ν is obtained from a Gaussian random field constructed
 865 in the same manner as for the Darcy and Helmholtz datasets. We first draw a zero-mean Gaussian
 866 field g on the grid using a cosine-basis Karhunen–Loëve synthesis associated with the Matérn-type
 867 covariance operator

$$868 \quad \mathcal{C} = (\tau^2 - \Delta)^{-\alpha}, \quad \alpha = 4, \quad \tau = 6,$$

869 using the DCT-II basis on Ω , zeroing the DC mode, scaling by the spectrum of \mathcal{C} , and applying the
 870 inverse DCT to obtain g . To model sharp viscosity contrasts, we map g to a two-level field,
 871

$$872 \quad \nu(\xi) = \begin{cases} \nu_{\max}, & g(\xi) \geq 0, \\ 873 \quad \nu_{\min}, & g(\xi) < 0, \end{cases}$$

874 with $\nu_{\min} = 0.02$ and $\nu_{\max} = 0.5$ in the reported experiments.
 875

876 **Lid and body-force parameters.** In all samples we fix the lid velocity scale to $U_{\text{lid}} = 1.0$ and the
 877 Kolmogorov forcing amplitude to $F_0 = 2.0$.
 878

879 C PRE-TRAINING OF FLOW MATCHING MODELS

880 We adopt the vanilla Flow–Matching (FM) procedure of Lipman et al. (2023). Based on the refer-
 881 ence flow

$$882 \quad X_t = \beta_t X_1 + \gamma_t X_0$$

883 with $\beta_t = t$, and $\gamma_t = 1 - t$, we can define conditional vector field as training targets for a parametric
 884 model $v_{\theta}(x_t, t)$. Given an end-point $x_1 \sim p_{\text{data}}$, the conditional vector field is available as

$$885 \quad v_t(x|x_1) = \frac{1}{1-t}(x_1 - x).$$

886 This leads to the simplest form of Flow Matching objectives:
 887

$$888 \quad \mathcal{L}_{\text{FM}}^{\text{OT}} = \mathbb{E} \|v_{\theta}(X_t, t) - (X_1 - X_0)\|^2$$

889 where $X_0 \sim \mathcal{N}(0, I)$, $X_1 \sim p_{\text{data}}$ and $t \sim U[0, 1]$.
 890

891 **Network Backbone.** For PDE data, the mapping v_{θ} is realised with a U-FNO (Wen et al., 2022),
 892 which combines Fourier Neural Operator (FNO, Li et al. (2020)) with U–Net (Ronneberger et al.,
 893 2015) layers. The FNO layers have an inductive bias towards low-frequency solutions and are
 894 therefore particularly suited for modeling PDE data, while the U–Net layers help to refine outputs
 895 and produce discontinuities.
 896

897 Departing from the original design, we use the U–Net skip-connection structure in all layers. Also,
 898 we employ a more powerful time-conditioning in the U–Net layers by using FiLM-style Adaptive
 899 Group Normalization (AdaGN) time conditioning, i.e., predicting per-channel scale and shift from a
 900 sinusoidal time embedding and applying them after GroupNorm in each residual block. This follows
 901 the feature-wise linear modulation idea of Perez et al. (2018) and its diffusion U–Net instantiations
 902 in Dhariwal & Nichol (2021); Rombach et al. (2022).
 903

904 We prepend the physical input with fixed sinusoidal encodings for absolute spatial coordinates and
 905 the normalised time stamp so the spectral backbone receives explicit space-time context. Padding
 906 inside the U-FNO (for the spectral convolution layers) is reflective, which has empirically worked
 907 better than replicative. Before training, data is standardised to zero mean and unit variance.
 908

909 Table 3 compiles the hyperparameters of the U-FNO architecture used for the base FM models in
 910 our experiments.
 911

912 On natural image data, we use a pretrained Latent Flow Matching Model (Dao et al., 2023) based
 913 on a DiT (Peebles & Xie, 2023) backbone.
 914

915 **Optimisation.** We train the FM backbone with AdamW (Loshchilov & Hutter, 2017), using a
 916 linear warmup of the learning rate from 0 to the base value over the first p_{wu} fraction of training steps,
 917 followed by a constant learning rate thereafter. For evaluation stability, we maintain an exponential
 918 moving average (EMA) of the network parameters $\theta^{\text{EMA}} \leftarrow \beta \theta^{\text{EMA}} + (1 - \beta) \theta$, a practice rooted
 919

918
919 Table 3: U–FNO (2D) backbone hyperparameters used in our experiments.
920

Hyperparameter	Value	Description
Number of layers	4	Count of spectral and U–Net operator blocks.
Padding mode	reflect	Boundary padding for convolutions/lifts.
Input channels	1 – 3	Channels of input field x .
Output channels	1 – 3	Channels of output field.
Time embedding dim	32	Dimensionality of time conditioning.
Spatial embedding dim	32	Dimensionality of coordinate embedding.
Lifting width	256	Channels in input lifting/projection.
Fourier modes (k _x , k _y)	[32, 32]	Retained spectral modes per axis.
Spectral block width	32	Channel width within FNO layers.
U–Net base widths	32	Stage-wise channel widths.
Embedding width (U–Net)	64	Channels for conditioning embeddings.
Attention stages	[]	Stages with self-attention (empty \Rightarrow none).
Attention heads	[]	Multi-head count if attention is enabled.
Total number of parameters	$\approx 1.9M$	

938
939 Table 4: Flow Matching (FM) training hyperparameters and schedule.
940

Hyperparameter	Description	
Batch size	128	Minibatch size per step.
Base learning rate	1e-4	AdamW step size.
Warmup fraction p_{wu}	0.01	Fraction of total steps used for linear LR warmup.
Epochs	300	Full passes over the dataset.
Optimizer	AdamW	Applied to FM backbone parameters.
Weight decay	0.01	AdamW L2/decoupled decay coefficient.
EMA decay	0.9998	Exponential moving average of weights for evaluation.
Schedule after warmup	constant	LR held constant after warmup.

951
952 in Polyak averaging (Polyak & Juditsky, 1992) and widely adopted in modern deep models (e.g.,
953 Tarvainen & Valpola, 2017).954 The FM training configuration is summarized in Table 4. For the Darcy dataset (20k samples),
955 training takes around 12 hours on a single NVIDIA RTXA6000 GPU. For the smaller datasets of
956 10k samples but with more channels (Elasticity, Helmholtz, Stokes), training takes around 7 hours
957 using the same configuration.959
960

D METHOD: IMPLEMENTATION DETAILS

961
962 In this section, we provide further details into the implementation of our fine-tuning method. This
963 includes neural network architectures, the specific design of test functions for the computation of
964 the weak residuals, numerical heuristics, and finally the full training algorithm for fine-tuning.
965 All relevant code is implemented using Python 3.12.3, specifically, neural architectures are imple-
966 mented in PyTorch Paszke et al. (2019) version 2.7.967
968

D.1 INVERSE PREDICTOR

969
970 We parametrise the inverse map φ with a two-layer U–FNO, mirroring the spectral–spatial bias of the
971 forward backbone. However, we increase the capacity of the U–Net components and use attention
at the two lowest resolutions (stage indices 2 and 3). Since the inverse predictor only operates at

972 $t = 1$, we drop the temporal but keep the spatial conditioning. Exact parameters are stated in Table
 973 5.
 974

975 Table 5: U-FNO Inverse Predictor.
 976

977 Hyperparameter	978 Value
978 Number of layers	979 2
979 Padding mode	980 reflect
980 Input channels	981 1 – 3
981 Time embedding dimension	982 0
982 Spatial embedding dimension	983 32
983 Output channels	984 1
984 Lifting width	985 256
985 Fourier modes (k_x, k_y)	986 [32, 32]
986 Spectral block width	987 32
987 U-Net base widths	988 [64, 64, 96, 128]
988 U-Net embedding width	989 64
989 Attention stages	990 [2, 3]
990 Attention heads	991 4

992
 993 D.2 ARCHITECTURE MODIFICATIONS
 994995 Fine-tuning augments the base U-FNO map $x \mapsto v_{t,x}^{\text{base}}(x, t)$ to a joint, α -conditioned vector field
 996

997
$$(v_{t,x}^{\text{ft}}, v_{t,\alpha}^{\text{ft}}) = v^{\text{ft}}(x, \alpha, t),$$

998 implemented as residual corrections around the U-FNO core. Given the padded input x_{pad} (with
 999 time/space embeddings) and conditioning fields α and $v_{t,\alpha}^{\text{base}}$, the base feature stack x_* is produced
 1000 by the original spectral+skip+U-Net blocks. A first *correction head* (a U-Net) takes $[x_*, v_{t,x}^{\text{base}}, \alpha]$
 1001 and outputs an additive refinement, yielding
 1002

1003
$$v_{t,x}^{\text{ft}} = v_{t,x}^{\text{base}} + \mathcal{U}_x(x_*, v_{t,x}^{\text{base}}, \alpha, t).$$

1004 After unpadding, a *pixel-wise correction* (lightweight channel-wise MLP) further adjusts $v_{t,x}^{\text{ft}}$ using
 1005 local features and 2D positional channels,
 1006

1007
$$v_{t,x}^{\text{ft}} \leftarrow v_{t,x}^{\text{ft}} + \mathcal{M}_x(\text{pos}(x_*, t), v_{t,x}^{\text{ft}}),$$

1008 which provides extra capacity for rapid adaptation without altering the global operator. For the
 1009 parameter dynamics, we adopt a strictly residual strategy that conditions on both α and the baseline
 1010 field:
 1011

1012
$$v_{t,\alpha}^{\text{ft}} = v_{t,\alpha}^{\text{base}} + \mathcal{U}_\alpha(x_{\text{pad}}, \alpha, v_{t,\alpha}^{\text{base}}, t),$$

1013 where \mathcal{U}_α is a second U-Net. All correction heads are zero-initialized at their final projection layers,
 1014 so that at the start of fine-tuning $v^{\text{ft}} \equiv (v_{t,x}^{\text{base}}, v_{t,\alpha}^{\text{base}})$ and departures are learned smoothly. Table 6
 lists the parameters of the correction U-Nets.
 10151016 Table 6: Parameterization of the fine-tuning U-Net heads \mathcal{U}_x and \mathcal{U}_α .
 1017

1018 Hyperparameter	1019 Value
1019 U-Net base widths	1020 [64, 64, 96, 128]
1020 Embedding width (time/aux)	1021 64
1021 Hidden lift (internal width)	1022 256
1022 Self-attention stages	1023 [2, 3]
1023 Attention heads	1024 4

1024 Overall, the modifications to the base architecture add around 6M parameters to the model, resulting
 1025 in a total ≈ 25 M parameters.
 1026

1026 D.3 WEAK RESIDUALS AND TEST FUNCTIONS
1027

1028 **Darcy Flow.** A pressure field u that solves our Darcy flow equations fulfills
1029 $-\nabla \cdot (a \nabla u) - f = \mathcal{L}_a u = 0$ on $\Omega \subset \mathbb{R}^d$ with homogeneous Dirichlet data $u|_{\partial\Omega} = 0$. For
1030 any $\psi \in C_0^1(\Omega)$ we compute the L^2 inner product by multiplying with ψ and integrating:
1031

$$1032 \quad \langle \mathcal{L}_a u, \psi \rangle_{L^2(\Omega)} = \int_{\Omega} (-\nabla \cdot (a \nabla u) - f) \psi \, d\xi$$

$$1033$$

$$1034$$

1035 One application of the divergence theorem yields

$$1036 \quad \langle \mathcal{L}_a u, \psi \rangle_{L^2(\Omega)} = - \int_{\partial\Omega} (a \nabla u \cdot n) \psi \, d\xi$$

$$1037$$

$$1038 \quad + \int_{\Omega} (a \nabla u \cdot \nabla \psi) - f \psi \, d\xi$$

$$1039$$

$$1040 \quad = \int_{\Omega} (a \nabla u \cdot \nabla \psi) - f \psi \, d\xi,$$

$$1041$$

$$1042$$

$$1043$$

1044 where the boundary term vanishes because of $\psi|_{\partial\Omega} = 0$. This expression only contains a first-order
1045 derivative of u and can be used to compute in the computation of the weak residual. To obtain a
1046 dimensionless, coefficient-scaled quantity comparable across locations, we normalize by the local
1047 mean permeability over the support of ψ ,

$$1048 \quad \bar{a}_\psi := \frac{1}{|\text{supp } \psi|} \int_{\text{supp } \psi} a(\xi) \, d\xi, \quad \tilde{\mathcal{R}}[\psi] := \frac{\mathcal{R}[\psi]}{\bar{a}_\psi}.$$

$$1049$$

$$1050$$

1051 In practice, $\text{supp } \psi$ is the compact patch where ψ (or its mollified variant) is nonzero, so that \bar{a}_ψ
1052 captures the local coefficient scale used to normalize the residual.
1053

1054 **Linear Elasticity.** For any compactly supported vector test $\psi \in C_0^1(\Omega; \mathbb{R}^2)$, the weak residual is

$$1055 \quad \mathcal{R}[\psi] := \langle \mathcal{L}_E u, \psi \rangle_{L^2(\Omega)} = \int_{\Omega} (-\nabla \cdot \sigma(u; E, \nu)) \cdot \psi \, d\xi.$$

$$1056$$

1057 A single integration by parts yields

$$1058 \quad \mathcal{R}[\psi] = - \int_{\partial\Omega} (\sigma n) \cdot \psi \, dS + \int_{\Omega} \sigma : \nabla \psi \, d\xi = \int_{\Omega} \sigma : \nabla \psi \, d\xi,$$

$$1059$$

$$1060$$

1061 since $\psi|_{\partial\Omega} = 0$. Here “ $\sigma : \nabla \psi$ ” is the Frobenius product and we denote the stress components by
1062 $\sigma_{xx}, \sigma_{xy} (= \sigma_{yx}), \sigma_{yy}$. To reuse the same scalar test generator for both momentum equations, we
1063 restrict to tests that share a single scalar profile in both components. Concretely, we take

$$1064 \quad \psi^{(x)} = (\psi, 0), \quad \psi^{(y)} = (0, \psi), \quad \psi \in C_0^1(\Omega).$$

$$1065$$

1066 With this restriction, residuals can be computed component-wise

$$1067 \quad \langle \mathcal{L}_E u, \psi^{(x)} \rangle = \int_{\Omega} (\sigma_{xx} \partial_{\xi_1} \psi + \sigma_{xy} \partial_{\xi_2} \psi) \, d\xi, \quad \langle \mathcal{L}_E u, \psi^{(y)} \rangle = \int_{\Omega} (\sigma_{xy} \partial_{\xi_1} \psi + \sigma_{yy} \partial_{\xi_2} \psi) \, d\xi.$$

$$1068$$

$$1069$$

1070 To obtain a dimensionless, coefficient-scaled quantity, we normalize by the local mean modulus over
1071 the support of ψ ,
1072

$$1073 \quad \bar{E}_\psi := \frac{1}{|\text{supp } \psi|} \int_{\text{supp } \psi} E(\xi) \, d\xi, \quad \tilde{\mathcal{R}}^{(x)}[\psi] := \frac{\langle \mathcal{L}_E u, \psi^{(x)} \rangle}{\bar{E}_\psi}, \quad \tilde{\mathcal{R}}^{(y)}[\psi] := \frac{\langle \mathcal{L}_E u, \psi^{(y)} \rangle}{\bar{E}_\psi}.$$

$$1074$$

$$1075$$

1076 For a family of tests $\{\psi_k\}_{k=1}^N$, the scalar residual used in experiments is the ℓ_2 aggregation over
1077 components followed by averaging over tests. Therefore, the weak residual for the elasticity experi-
1078 ment is

$$1079 \quad \mathcal{R}_{\text{weak}} := \frac{1}{N} \sum_{k=1}^N \left((\tilde{\mathcal{R}}^{(x)}[\psi_k])^2 + (\tilde{\mathcal{R}}^{(y)}[\psi_k])^2 \right).$$

1080 **Helmholtz.** For the Helmholtz experiments we consider complex-valued time-harmonic pressures
 1081 $u : \Omega \rightarrow \mathbb{C}$ satisfying
 1082

$$1083 \quad \mathcal{L}_c u := -\Delta u(\xi) - (1 - i \tan \delta) \kappa(\xi)^2 u(\xi) - s(\xi) = 0, \quad \kappa(\xi) = \frac{\omega}{c(\xi)},$$

1085 where $c(\xi)$ is the sound speed, $\omega > 0$ the angular frequency, $\tan \delta \geq 0$ the loss tangent, and $s(\xi)$
 1086 a fixed source. Writing $u = u_R + i u_I$ with real and imaginary parts $u_R, u_I : \Omega \rightarrow \mathbb{R}$, we split the
 1087 operator into its real and imaginary components

$$1088 \quad \mathcal{L}_c u = (\mathcal{L}_c^{(R)} u_R + \mathcal{C}^{(R)} u_I - s) + i(\mathcal{L}_c^{(I)} u_I + \mathcal{C}^{(I)} u_R),$$

1089 with

$$1090 \quad \mathcal{L}_c^{(R)} u_R := -\Delta u_R - \kappa^2 u_R, \quad \mathcal{L}_c^{(I)} u_I := -\Delta u_I - \kappa^2 u_I,$$

$$1092 \quad \mathcal{C}^{(R)} u_I := \alpha_I u_I, \quad \mathcal{C}^{(I)} u_R := -\alpha_I u_R,$$

1093 where $\alpha_R := \kappa^2$ and $\alpha_I := -\tan \delta \kappa^2$. For any scalar test function $\psi \in C_0^1(\Omega)$, we define real and
 1094 imaginary weak residuals as

$$1095 \quad \mathcal{R}^{(R)}[\psi] := \langle \mathcal{L}_c^{(R)} u_R + \mathcal{C}^{(R)} u_I - s, \psi \rangle_{L^2(\Omega)}, \quad \mathcal{R}^{(I)}[\psi] := \langle \mathcal{L}_c^{(I)} u_I + \mathcal{C}^{(I)} u_R, \psi \rangle_{L^2(\Omega)}.$$

1097 A single integration by parts in the Laplacian terms gives

$$1099 \quad \mathcal{R}^{(R)}[\psi] = - \int_{\partial\Omega} (\nabla u_R \cdot n) \psi \, dS + \int_{\Omega} (\nabla u_R \cdot \nabla \psi - \alpha_R u_R \psi + \alpha_I u_I \psi - s \psi) \, d\xi,$$

$$1101 \quad \mathcal{R}^{(I)}[\psi] = - \int_{\partial\Omega} (\nabla u_I \cdot n) \psi \, dS + \int_{\Omega} (\nabla u_I \cdot \nabla \psi - \alpha_R u_I \psi - \alpha_I u_R \psi) \, d\xi.$$

1103 Since ψ is compactly supported in the interior, the boundary contributions vanish and we use only
 1104 the volume terms in the residual. As in the elasticity case, we reuse the same scalar profile ψ for
 1105 both channels (real and imaginary parts) and evaluate $\mathcal{R}^{(R)}[\psi]$ and $\mathcal{R}^{(I)}[\psi]$ on identical compact
 1106 patches to increase computational efficiency.

1107 To obtain a dimensionless quantity that is comparable across locations and coefficient scales, we
 1108 normalize by a local Helmholtz energy associated with the bilinear form

$$1110 \quad E_\psi(u) := \int_{\text{supp } \psi} \left(|\nabla u_R|^2 + |\nabla u_I|^2 + \kappa(\xi)^2 (u_R(\xi)^2 + u_I(\xi)^2) \right) \, d\xi,$$

1112 which combines gradient and reaction contributions of both channels. The normalized residuals are

$$1114 \quad \tilde{\mathcal{R}}^{(R)}[\psi] := \frac{\mathcal{R}^{(R)}[\psi]}{\sqrt{E_\psi(u)}}, \quad \tilde{\mathcal{R}}^{(I)}[\psi] := \frac{\mathcal{R}^{(I)}[\psi]}{\sqrt{E_\psi(u)}}.$$

1116 Given a family of scalar tests $\{\psi_k\}_{k=1}^N$, the scalar weak residual used in experiments is obtained by
 1117 aggregating real and imaginary components and averaging over tests,

$$1119 \quad \mathcal{R}_{\text{weak}} := \frac{1}{N} \sum_{k=1}^N \left((\tilde{\mathcal{R}}^{(R)}[\psi_k])^2 + (\tilde{\mathcal{R}}^{(I)}[\psi_k])^2 \right).$$

1122 **Stokes lid-driven cavity.** For the Stokes experiments, each sample contains a velocity-pressure
 1123 pair (u, p) solving the variable-viscosity incompressible Stokes system

$$1125 \quad \mathcal{L}_\nu(u, p) := (-\nabla \cdot (\nu \nabla u) + \nabla p, \nabla \cdot u) = (0, 0) \quad \text{in } \Omega,$$

1126 with $\nu : \Omega \rightarrow \mathbb{R}_{>0}$ denoting the viscosity field. Writing $u = (u_x, u_y)$, the operator decomposes into

$$1128 \quad \mathcal{L}_\nu^{(x)}(u, p) = -\nabla \cdot (\nu \nabla u_x) + \partial_{\xi_1} p, \quad \mathcal{L}_\nu^{(y)}(u, p) = -\nabla \cdot (\nu \nabla u_y) + \partial_{\xi_2} p,$$

$$1130 \quad \mathcal{L}_\nu^{(\text{div})}(u, p) = \partial_{\xi_1} u_x + \partial_{\xi_2} u_y.$$

1131 For any scalar test function $\psi \in C_0^1(\Omega)$, we form momentum and incompressibility residuals by
 1132 testing each of these three equations with the same scalar profile,

$$1133 \quad \mathcal{R}^{(x)}[\psi] := \langle \mathcal{L}_\nu^{(x)}(u, p), \psi \rangle_{L^2(\Omega)}, \quad \mathcal{R}^{(y)}[\psi] := \langle \mathcal{L}_\nu^{(y)}(u, p), \psi \rangle_{L^2(\Omega)},$$

$$1134 \quad \mathcal{R}^{(\text{div})}[\psi] := \langle \mathcal{L}_\nu^{(\text{div})}(u, p), \psi \rangle_{L^2(\Omega)}.$$

$$1135$$

1136 As in the Darcy and elasticity settings, one integration by parts isolates only first derivatives of
 1137 the solution inside the volume integral. Since ψ has compact support inside Ω , all boundary terms
 1138 vanish and we obtain the local weak forms

$$1139 \quad \mathcal{R}^{(x)}[\psi] = \int_{\Omega} \left(\nu \nabla u_x \cdot \nabla \psi + (\partial_{\xi_1} p) \psi \right) d\xi,$$

$$1140$$

$$1141 \quad \mathcal{R}^{(y)}[\psi] = \int_{\Omega} \left(\nu \nabla u_y \cdot \nabla \psi + (\partial_{\xi_2} p) \psi \right) d\xi,$$

$$1142$$

$$1143 \quad \mathcal{R}^{(\text{div})}[\psi] = \int_{\Omega} (\partial_{\xi_1} u_x + \partial_{\xi_2} u_y) \psi d\xi.$$

$$1144$$

$$1145$$

1146 To obtain a dimensionless, coefficient-scaled residual comparable across locations, we normalize
 1147 by the local viscosity-weighted kinetic energy over the support of ψ ,

$$1148 \quad E_\psi(u) := \int_{\text{supp } \psi} \left(\nu(\xi) \|\nabla u(\xi)\|_F^2 + \|u(\xi)\|_2^2 \right) d\xi,$$

$$1149$$

$$1150$$

1151 where $\|\nabla u\|_F^2 = |\partial_{\xi_1} u_x|^2 + |\partial_{\xi_2} u_x|^2 + |\partial_{\xi_1} u_y|^2 + |\partial_{\xi_2} u_y|^2$. The normalized weak residuals are

$$1152 \quad \tilde{\mathcal{R}}^{(x)}[\psi] := \frac{\mathcal{R}^{(x)}[\psi]}{\sqrt{E_\psi(u)}}, \quad \tilde{\mathcal{R}}^{(y)}[\psi] := \frac{\mathcal{R}^{(y)}[\psi]}{\sqrt{E_\psi(u)}}, \quad \tilde{\mathcal{R}}^{(\text{div})}[\psi] := \frac{\mathcal{R}^{(\text{div})}[\psi]}{\sqrt{E_\psi(u)}}.$$

$$1153$$

$$1154$$

1155 Finally, for a collection of scalar tests $\{\psi_k\}_{k=1}^N$, the scalar weak residual used in experiments aggregates
 1156 momentum and incompressibility contributions and averages across tests:

$$1157 \quad \mathcal{R}_{\text{weak}} := \frac{1}{N} \sum_{k=1}^N \left((\tilde{\mathcal{R}}^{(x)}[\psi_k])^2 + (\tilde{\mathcal{R}}^{(y)}[\psi_k])^2 + (\tilde{\mathcal{R}}^{(\text{div})}[\psi_k])^2 \right).$$

$$1158$$

$$1159$$

1160 **Wendland-wavelet test family.** For estimating the weak residual accurately and to provide a
 1161 strong learning signal, we need to sample sufficiently many test functions. Evaluating them on
 1162 the entire computational grid would be prohibitively costly. We therefore consider test functions
 1163 which are locally supported, such that we can restrict computations to smaller patches. Wendland
 1164 polynomials are a natural candidate meeting these requirements since they are compactly supported
 1165 within unit radius and allow for efficient gradient computation. Here, we will describe the test
 1166 functions in detail.

$$1167$$

1168 Each test function is drawn from a radially anisotropic family.

$$1169 \quad \psi_{c,\sigma,b}(x) = \underbrace{\left(1 - r(x)\right)_+^4 (4r(x) + 1)}_{\text{Wendland } C^2} \underbrace{\left(1 - 64b r(x)^4\right)}_{\text{optional wavelet}},$$

$$1170$$

$$1171$$

1172 where $r(x) = \sqrt{\sum_j (x_j - c_j)^2 / \sigma_j^2}$. Length-scales σ_j are uniformly sampled from the range
 1173 $[\sigma_{\min} \Delta_j, \sigma_{\max} \Delta_j]$. By multiplying σ_{\min} and σ_{\max} with the grid spacing Δ_j of axis j , we obtain
 1174 a parametrization that is intuitive to tune since the length-scales of the test functions are given
 1175 in *pixel* units. Instead of also sampling center points c uniformly and independently from the full
 1176 domain Ω , we instead start from the grid coordinates of the data, considering each grid point as one
 1177 center. We found that this way of ensuring spatial coverage improves training efficiency. To still
 1178 retain stochasticity, we apply i.i.d jitter to each center point. $b \sim \text{Ber}(p)$ randomly toggles a high-
 1179 frequency wavelet factor that provides additional variability within the test functions and proved
 1180 especially effective on noisy data.

1181 To enforce $\psi_i|_{\partial\Omega} = 0$, we multiply every test function by a *bridge mollifier*

$$1182 \quad m(\xi) = ((\xi - \xi_{\min})(\xi_{\max} - \xi)) / (\xi_{\max} - \xi_{\min})^2,$$

$$1183$$

1184 applied per axis. This legitimises the application of integration-by-parts in the derivation of the
 1185 weak forms. At training time we sample a set of test functions $\{\psi^{(i)}\}_{i=1}^{N_{\text{test}}}$ independently per residual
 1186 evaluation and define the loss as

$$1187 \quad R_{\text{weak}}(x, \alpha) = \frac{1}{N_{\text{test}}} \sum_i |\langle \mathcal{L}_\alpha x, \psi^{(i)} \rangle_{L^2}|^2.$$

$$1188$$

1188 D.4 ADJOINT MATCHING DETAILS
11891190 As mentioned in the main paper, we introduce a scaling coefficient κ that allows us to attenuate the
1191 magnitude of the noise variance. In this section, we provide a justification for using $\kappa > 0$ and lay
1192 out numerical heuristics used in the implementation.
11931194 **Memoryless Noise.** Domingo-Enrich et al. (2025) define a generative process with noise schedule
1195 $\sigma^2(t)$ to be memoryless, if and only if $\sigma^2(t) = 2\eta_t + \chi(t)$ with $\chi : [0, 1] \rightarrow \mathbb{R}$ chosen such that
1196

1197
$$\forall t \in (0, 1) \quad \lim_{t' \rightarrow 0} \beta_{t'} \exp\left(-\int_{t'}^t \frac{\chi(s)}{2\gamma_s^2} ds\right) = 0.$$

1198
1199

1200 Specifically, they refer to $\sigma(t) = \sqrt{2\eta_t}$ as the memoryless noise schedule. In our setting of $\beta_t = t$
1201 and $\gamma_t = 1 - t$, the memoryless noise schedule can be simplified to
1202

1203
$$\sigma(t) = \sqrt{\frac{2(1-t)}{t}}.$$

1204

1205 **Lemma 1** (Scaling of memoryless noise). *Consider a generative process as in 1 with $\beta_t = t$ and
1206 $\gamma_t = 1 - t$. For $0 \leq \kappa < 1$, the schedule $\sigma^2(t) = (1 - \kappa) 2\eta_t$ is memoryless.*
12071208 *Proof.* First, we consider the integral term. The desired $\sigma^2(t) = (1 - \kappa) 2\eta_t$ implies that
1209

1210
$$\chi(t) = -2\kappa\eta_t = -2\gamma_t^2 \frac{\kappa}{t(1-t)}.$$

1211

1212 With this, we can simplify the integral term:
1213

1214
$$\begin{aligned} -\int_{t'}^t \frac{\chi(s)}{2\gamma_s^2} ds &= \kappa \int_{t'}^t \frac{1}{s(1-s)} ds = \kappa \int_{t'}^t \frac{1}{s} + \frac{1}{1-s} ds \\ 1215 &= \kappa [\log(s) - \log(1-s)]_{t'}^t \\ 1216 &= \kappa \left(\log \frac{t}{1-t} - \log \frac{t'}{1-t'} \right). \end{aligned}$$

1217
1218
1219

1220 Thus, for an arbitrary fixed $t \in (0, 1)$, it holds that
1221

1222
$$\begin{aligned} \beta_{t'} \exp\left(-\int_{t'}^t \frac{\chi(s)}{2\gamma_s^2} ds\right) &= t' \exp\left(\kappa \left(\log \frac{t}{1-t} - \log \frac{t'}{1-t'} \right)\right) \\ 1223 &= t' \left(\frac{t}{1-t} \right)^\kappa \left(\frac{t'}{1-t'} \right)^{-\kappa} \\ 1224 &= \underbrace{\left(\frac{t}{1-t} \right)^\kappa}_{\text{const}} \underbrace{t'^{1-\kappa}}_{\rightarrow 0} \underbrace{(1-t')^\kappa}_{\text{limited}} \xrightarrow{t' \rightarrow 0} 0. \end{aligned}$$

1225
1226
1227
1228
1229
1230
1231

□

1232 Therefore, scaling down the noise schedule by a factor $1 - \kappa$ is justified and consistent with the
1233 theory provided in Domingo-Enrich et al. (2025).
12341235 **Heuristics.** Still, the term η_t causes numerical problems for $t = 0$. Furthermore, it forces the
1236 control u to be close to zero for t close to 1. Following the original paper, we instead use
1237

1238
$$\eta_t = \frac{1-t+h}{t+h},$$

1239
1240

1241 where we choose h as the step size of our numerical ODE/SDE solver. This resolves infinite values
1242 and allows for faster fine tuning by letting the fine-tuned model deviate further from the base model

1242 close to $t = 1$.
 1243

1244 While κ is an effective tool to mitigate residual noise in final samples, increasing slows down training.
 1245 As another way of improving sample quality without adding computational cost, we consider
 1246 non-uniform time grids when sampling memoryless rollouts. We observe that the most critical
 1247 phases of sampling are at the beginning, where noise magnitudes are the highest, and at the end,
 1248 where final denoising happens. Therefore, we tilt the uniform grid towards the endpoints:
 1249 Let $S \in \mathbb{N}$ be the number of steps and define the uniform grid $t_i = i/S$ for $i = 0, \dots, S$. We tilt
 1250 this grid toward the endpoints by first applying a cosine-ease mapping
 1251

$$g(t) = \frac{1}{2} (1 - \cos(\pi t)), \quad t \in [0, 1],$$

1252 which has $g(0) = 0$, $g(1) = 1$. For a mixing parameter $q \in [0, 1]$, the tilted times are the convex
 1253 combination
 1254

$$\tilde{t}_i = (1 - q) t_i + q g(t_i), \quad i = 0, \dots, S.$$

1255 $\{\tilde{t}_i\}$ is strictly increasing and distributes grid points more densely near $t = 0$ and $t = 1$ for $q > 0$.
 1256 For PDE experiments, we use $q = 0.9$. This heuristic was not needed for latent-space models.
 1257

1258 **Loss Computation.** As in the original paper, we do not compute the Adjoint Matching loss
 1259 (Equation 4) for all simulated time steps, since the gradient signal for successive time steps is
 1260 similar. Note that for solving the lean adjoint ODE, we do not need to compute gradients through
 1261 the FM model, therefore we can compute the lean adjoint states efficiently but save computational
 1262 resources when computing the Adjoint Matching loss. Again, the last steps in the sam-
 1263 pling process are most important for empirical performance. For that reason, we also compute the
 1264 loss for a fraction of last steps K_{last} . Additionally, we sample K steps from the remaining time steps.
 1265

1266 To ensure stable learning, we apply a clipping function to the loss to exclude noisy high-magnitude
 1267 gradients from training. Empirically, the values provided in Domingo-Enrich et al. (2025) work well
 1268 in our setting, i.e. we set the loss clipping threshold (LCT) as $\text{LCT}_x = 1.6 \lambda_x^2$ and $\text{LCT}_\alpha = 1.6 \lambda_\alpha^2$
 1269 respectively.
 1270

1271 D.5 FULL TRAINING ALGORITHM

1272 Algorithm 1 details the complete optimisation loop used in all experiments. Starting from the pre-
 1273 trained base flow v^{base} we attach two residual heads that (i) condition the state flow $v_{t,x}^{\text{ft}}$ on the latent
 1274 parameter α and (ii) predict the parameter flow $v_{t,\alpha}^{\text{ft}}$. Their respective output layers are initialized
 1275 to zero. The inverse predictor φ is first pre-trained on base samples and then frozen, providing
 1276 surrogate target flows for α . Each epoch rolls both the base and fine-tuned trajectories on the tilted
 1277 time grid, solves the lean-adjoint equation, and updates only the fine-tune parameters θ through the
 1278 Adjoint-Matching loss.
 1279

1280 E DETAILS: EXPERIMENTS

1281 Here we describe the fine-tuning configuration of the conducted experiments. Specifics about the
 1282 base model FM training can be found in Appendix C. In all experiments, we use AdamW as the
 1283 optimizer with a weight decay of 0.01 and all fine-tuning is conducted on a single NVIDIA L40S
 1284 GPU. As reported in the main paper, fine-tuning for Darcy takes less than one minute per epoch. For
 1285 the other, computationally more expensive experiments, one epoch of fine-tuning takes around one
 1286 minute (1-2 hours for 100 epochs).
 1287

1288 E.1 METRICS

1289 **SSIM diversity.** In panel (a) of Figure 3, we report a SSIM-based (Wang et al., 2004) metric for
 1290 diversity, which is implemented as follows:
 1291

1296
1297
1298
1299
1300

Algorithm 1 Adjoint Matching with Joint State–Parameter Evolution

1301 **Notation:** $v_x^{\text{base}}, v_x^{\text{ft}}, v_{\alpha}^{\text{ft}}$ denote *functions* (neural vector fields). Evaluations at time t are written in
1302 bold, e.g. $\mathbf{v}_{x,t}^{\text{base}} := v_x^{\text{base}}(x_t, t)$.
1303
1304 **Input:** base state field v_x^{base} ; initialize $v^{\text{ft}} \leftarrow v_x^{\text{base}}$ and add heads for $v_x^{\text{ft}}, v_{\alpha}^{\text{ft}}$.
1305 1: **Pretrain** φ on x_1 samples from v_x^{base} by minimizing $\mathcal{R}_{\text{weak}}(x_1, \varphi(x_1))$.
1306 2: **Freeze** v_x^{base} and φ ; let θ be the trainable parameters of v^{ft} .
1307 3: **for** epoch = 1, … **do**
1308 4: Sample $x_0 \sim \mathcal{N}(0, I)$ and $\alpha_0 \sim \mathcal{N}(0, I)$; $\bar{T} \leftarrow \text{GET_TILTED_TIME}(T)$.
1309 5:
1310 6: **for** $i = 0$ to $L - 1$ **do**
1311 7: $t \leftarrow t_i, t^+ \leftarrow t_{i+1}, h \leftarrow t^+ - t$.
1312 8: **Base state velocity:**
1313 9: $\mathbf{v}_{x,t}^{\text{base}} = v_x^{\text{base}}(x_t, t)$.
1314 10: **Surrogate terminal parameter:**
1315 11: $\hat{x}_1 = x_t^{\text{ft}} + (1 - t) \mathbf{v}_{x,t}^{\text{base}}$
1316 12: $\hat{\alpha}_1^{\text{ft}} = \varphi(\hat{x}_1)$.
1317 13: **Base parameter velocity (surrogate):**
1318 14: $\mathbf{v}_{\alpha,t}^{\text{base}} = (\hat{\alpha}_1^{\text{ft}} - \alpha_t) / (1 - t)$.
1319 15: **Fine-tuned velocities:**
1320 16: $\mathbf{v}_{x,t}^{\text{ft}} = v_x^{\text{ft}}(x_t, \alpha_t, \mathbf{v}_{\alpha,t}^{\text{base}}, t)$
1321 17: $\mathbf{v}_{\alpha,t}^{\text{ft}} = v_{\alpha}^{\text{ft}}(x_t, \alpha_t, \mathbf{v}_{\alpha,t}^{\text{base}}, t)$.
1322 18: **Forward steps (with noise $\sigma(t)$):**
1323 19: $x_{t^+}^{\text{base}} = \text{STEP}(x_t^{\text{base}}, \mathbf{v}_{x,t}^{\text{base}}, \sigma(t), h)$
1324 20: $x_{t^+}^{\text{ft}} = \text{STEP}(x_t^{\text{ft}}, \mathbf{v}_{x,t}^{\text{ft}}, \sigma(t), h)$
1325 21: $\alpha_{t^+}^{\text{ft}} = \text{STEP}(\alpha_t^{\text{ft}}, \mathbf{v}_{\alpha,t}^{\text{ft}}, \sigma(t), h)$.
1326 22: **end for**
1327 23:
1328 24: $(a_{x,t}, a_{\alpha,t})_{t \in \bar{T}} \leftarrow \text{SOLVELEANADJOINT}(\{x_t^{\text{base}}\}, \{x_t^{\text{ft}}\}, \{\alpha_t^{\text{ft}}\})$.
1329 25:
1330 26: **Subsample time indices:** form $\mathcal{I} \subset \{0, \dots, L\}$ according to K and L_{last}
1331 27:
1332 28: **Per-step drifts:** for each $t_i \in \mathcal{I}$ compute
1333 29: $\mathbf{b}_{x,t_i}^{\text{ft}} = \mathbf{v}_{x,t_i}^{\text{ft}} + \frac{\sigma(t_i)^2}{2\eta(t_i)} (\mathbf{v}_{x,t_i}^{\text{ft}} - \frac{1}{t_i + \varepsilon} x_{t_i}^{\text{ft}})$; $\mathbf{b}_{x,t_i}^{\text{base}} = \mathbf{v}_{x,t_i}^{\text{base}} + \frac{\sigma(t_i)^2}{2\eta(t_i)} (\mathbf{v}_{x,t_i}^{\text{base}} - \frac{1}{t_i + \varepsilon} x_{t_i}^{\text{base}})$.
1334 30: $\mathbf{b}_{\alpha,t_i}^{\text{ft}} = \mathbf{v}_{\alpha,t_i}^{\text{ft}} + \frac{\sigma(t_i)^2}{2\eta(t_i)} (\mathbf{v}_{\alpha,t_i}^{\text{ft}} - \frac{1}{t_i + \varepsilon} \alpha_{t_i}^{\text{ft}})$; $\mathbf{b}_{\alpha,t_i}^{\text{base}} = \mathbf{v}_{\alpha,t_i}^{\text{base}} + \frac{\sigma(t_i)^2}{2\eta(t_i)} (\mathbf{v}_{\alpha,t_i}^{\text{base}} - \frac{1}{t_i + \varepsilon} \alpha_{t_i}^{\text{ft}})$.
1335 31:
1336 32: **Per-step losses (with clipping):** for each $t_i \in \mathcal{I}$ set
1337 33: $\ell_x(t_i) = \min\{[\sigma(t_i)^{-1}(\mathbf{b}_{x,t_i}^{\text{ft}} - \mathbf{b}_{x,t_i}^{\text{base}}) + \sigma(t_i) a_{x,t_i}]^2, \text{LCT}_x\}$,
1338 34: $\ell_{\alpha}(t_i) = \min\{[\sigma(t_i)^{-1}(\mathbf{b}_{\alpha,t_i}^{\text{ft}} - \mathbf{b}_{\alpha,t_i}^{\text{base}}) + \sigma(t_i) a_{\alpha,t_i}]^2, \text{LCT}_{\alpha}\}$,
1339 35: (squaring and clipping applied elementwise, then summed over spatial dimensions)
1340 36:
1341 37: **Adjoint-matching objective:**
1342 38: $\mathcal{L} = \frac{1}{|\mathcal{I}|} \sum_{t_i \in \mathcal{I}} (\ell_x(t_i) + \ell_{\alpha}(t_i))$.
1343 39: $\theta \leftarrow \text{GRADIENT_DESCENT}(\theta, \mathcal{L})$
1344 40: **end for**
1345 41: **return** v^{ft}, φ

1346
1347
1348
1349

Given a batch $\{\alpha_i\}_{i=1}^B$ of single-channel parameter maps scaled to $[0, 1]$, we define diversity as the mean complement of the pairwise structural similarity index (SSIM) :

$$\mathcal{D}_{\text{SSIM}}(\{\alpha_i\}_{i=1}^B) = \frac{1}{\binom{B}{2}} \sum_{1 \leq i < j \leq B} (1 - \text{SSIM}(\alpha_i, \alpha_j)), \quad \alpha_i \in [0, 1]^{H \times W}.$$

With $\text{SSIM} \in [0, 1]$ (data range = 1), $\mathcal{D}_{\text{SSIM}} \in [0, 1]$ and larger values indicate greater sample diversity.

Maximum Mean Discrepancy (MMD). To quantify distributional differences between generated samples and the reference dataset \mathcal{D}_{ref} , we use the squared Maximum Mean Discrepancy (MMD^2) with an RBF kernel (Gretton et al., 2012). Given two batches $\{x_i\}_{i=1}^{N_1} \subset \mathbb{R}^D$ and $\{y_j\}_{j=1}^{N_2} \subset \mathbb{R}^D$, let

$$k_\sigma(u, v) = \exp\left(-\frac{1}{2\sigma^2}\|u - v\|_2^2\right), \quad \gamma = \frac{1}{2\sigma^2}.$$

The empirical MMD² is

$$\text{MMD}^2(x, y) = \frac{1}{N_1^2} \sum_{i, i'} k_\sigma(x_i, x_{i'}) + \frac{1}{N_2^2} \sum_{j, j'} k_\sigma(y_j, y_{j'}) - \frac{2}{N_1 N_2} \sum_{i, j} k_\sigma(x_i, y_j).$$

In all experiments we use the median heuristic (Gretton et al., 2012), which sets the kernel bandwidth σ^2 to the median of the pairwise squared distances across the pooled samples $z = \{x_i\} \cup \{y_j\}$. In practice we subsample up to 1000 points to compute

$$\sigma^2 = \text{median}\{\|z_a - z_b\|_2^2 : a < b\} + \varepsilon, \quad \varepsilon = 10^{-6},$$

which yields a stable and scale-adaptive kernel width (Garreau et al., 2017).

E.2 ABLATIONS AND BASELINES

Single Adjoint Matching. To isolate the effect of modeling a joint flow over (x, α) , we include two ablations based on the vanilla Adjoint Matching (AM) objective of Domingo-Enrich et al. (2025). Both variants optimize the standard lean-adjoint control loss over the state trajectory $\{x_t\}$, using the same noise schedule, ODE discretization, and step subsampling as our full method.

Base AM freezes the inverse predictor φ . It is used only to compute PDE residuals but receives no gradient updates, and no joint flow over α is modeled.

Base AM+ φ keeps φ trainable and backpropagates through the residual term r , but still does not model a coupled flow over (x, α) . This variant tests whether updating the inverse predictor alone can stabilize residuals without introducing a surrogate base flow.

PBFM. As an alternative baseline we adapt Physics-Based Flow Matching (PBFM) (Baldan et al., 2025) to our setting. Since PBFM requires paired (x, α) information during training, we augment the method with our pretrained inverse predictor φ to estimate α and enable residual computation. Training follows the original ConFIG (Liu et al., 2024) update rule: at each iteration we compute the FM loss and the residual loss, extract their gradients, and form a conflict-free update via ConFIG. Our implementation mirrors the official code except for minor modifications to support complex-valued weights (arising from FNO backbones). Due to memory constraints, we have to use much lower batch sizes than with vanilla Flow Matching (16 instead of 128). We chose the number of epochs such that the total number of update steps is twice that of our base FM models.

PBFM serves as a comparison against a training-time physics-regularized baseline, whereas our method enforces physics *post-training* (data-free). Note that all our PDE settings deliberately introduce a mismatch between the physics assumed during fine-tuning and the physics underlying the training data. Such misspecification is inherently challenging for training-time methods like PBFM which naturally places them at a disadvantage.

E.3 DARCY

For the Darcy experiments, we use the hyperparameters listed in Table 7. Note that one epoch amounts to exactly one gradient descent step, meaning that we only fine-tune for 20 total steps. The parameters λ_x , λ_α and λ_f are varied in the experiments, see Figure 3 in the main text.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 7: Darcy fine-tuning hyperparameters.

Hyperparameter	Value
Time-tilting factor q	0.9
λ_x	varying
λ_α	varying
λ_f	varying
K_{last}	20
K	20
Noise scaling κ	0.9
Sampling steps (per trajectory)	100
Training epochs	20
Learning rate	0.00002
Batch size	15

E.4 GUIDANCE

For generating the guidance results, we use the same model as in the Darcy experiments to further highlight that we can infer functional joint distributions when starting from noisy observations. Instead of the usual Euler stepping, here we use a Heun sampler following Huang et al. (2024). While this is more expensive, since we need to differentiate through two forward passes of our model to obtain the guidance gradient, it empirically improved faithfulness to the sparse observations significantly. Note, however, that we only guide on sparse observations and not on PDE residuals. The full sampling procedure is show in Algorithm 2. In our experiments, we use 100 steps for sampling and guidance scales of $\gamma_x = \gamma_\alpha = 0.75$.

E.5 ELASTICITY

Fine-tuning in the elasticity experiment is more challenging than the Darcy denoising experiment, which is why we increase the number of fine-tuning epochs to 100. Other parameters are the same as in the Darcy experiments.

Table 8: Elasticity fine-tuning hyperparameters.

Hyperparameter	Value
Time-tilting factor q	0.9
λ_x	varying
λ_α	varying
λ_f	varying
K_{last}	20
K	20
Noise scaling κ	0.9
Sampling steps (per trajectory)	100
Training epochs	100
Learning rate	0.00002
Batch size	15

We compare our fine-tuning approach with the inference-time correction method ECI presented in Cheng et al. (2024). Our implementation of the sampling correction method is given in Algorithm 3. For ECI, we set $M = 5$ and use 1000 steps when sampling, compared to 100 steps used when sampling from the fine-tuned model. The reported residual heat maps in the main paper show one test function per grid point, where the magnitude indicates local error without aggregating across test functions.

1458 **Algorithm 2** Guided Heun sampler with sparse observations

1459 **Require:** initial state x_0 ; initial parameter α_0 ; observed targets α_{obs} ; index set \mathcal{I} ; steps S ; guidance
 1460 scales γ_x, γ_α ; base fields v_t^x, v_t^α ; fine-tuned joint field v_t^{ft}

1461 **Ensure:** trajectories $\{x^{(i)}\}_{i=0}^S$ and $\{\alpha^{(i)}\}_{i=0}^S$

1462 1: $x^{(0)} \leftarrow x_0$
 1463 2: $\alpha^{(0)} \leftarrow \alpha_0$
 1464 3: $t_i \leftarrow i/S$ for $i = 0, \dots, S$
 1465 4: $h \leftarrow 1/S$

1466

1467 5: **for** $i = 0$ to $S - 1$ **do**

1468 6: **Predictor (Euler):**

1469 7: $v^x \leftarrow v_{t_i}^x(x^{(i)})$
 1470 8: $v_{\text{base}}^\alpha \leftarrow v_{t_i}^\alpha(x^{(i)}, \alpha^{(i)}, v^x)$
 1471 9: $(\tilde{v}^x, \tilde{v}^\alpha) \leftarrow v_t^{\text{ft}}(x^{(i)}, \alpha^{(i)}, v_{\text{base}}^\alpha)$
 1472 10: $\hat{x} \leftarrow x^{(i)} + h \tilde{v}^x$
 1473 11: $\hat{\alpha} \leftarrow \alpha^{(i)} + h \tilde{v}^\alpha$

1474

1475 12: **if** $i < S - 1$ **then**

1476 13: **Corrector (Heun):**

1477 14: $v_+^x \leftarrow v_{t_{i+1}}^x(\hat{x})$
 1478 15: $v_{\text{base},+}^\alpha \leftarrow v_{t_{i+1}}^\alpha(\hat{x}, \hat{\alpha}, v_+^x)$
 1479 16: $(\tilde{v}_+^x, \tilde{v}_+^\alpha) \leftarrow v_{t+1}^{\text{ft}}(\hat{x}, \hat{\alpha}, v_{\text{base},+}^\alpha)$

1480 17: **One-step terminal extrapolation:**
 1481 18: $\hat{\alpha}_1 \leftarrow \hat{\alpha} + (1 - t_{i+1}) \tilde{v}_+^\alpha$

1482 19: **Sparse-observation loss:**
 1483 20: $L \leftarrow \frac{1}{|\mathcal{I}|} \sum_{j \in \mathcal{I}} \|\alpha_{\text{obs}}[j] - \hat{\alpha}_1[j]\|_2^2$

1484 21: **Heun average update:**
 1485 22: $x^{(i+1)} \leftarrow x^{(i)} + \frac{h}{2} (\tilde{v}^x + \tilde{v}_+^x)$
 1486 23: $\alpha^{(i+1)} \leftarrow \alpha^{(i)} + \frac{h}{2} (\tilde{v}^\alpha + \tilde{v}_+^\alpha)$

1487 24: **Decaying guidance:**
 1488 25: $s \leftarrow \sqrt{1 - i/S}$
 1489 26: $x^{(i+1)} \leftarrow x^{(i+1)} - s \gamma_x \nabla_{x^{(i)}} L$
 1490 27: $\alpha^{(i+1)} \leftarrow \alpha^{(i+1)} - s \gamma_\alpha \nabla_{\alpha^{(i)}} L$

1491 28: **else**

1492 29: **Last step (no correction/guidance):**
 1493 30: $x^{(i+1)} \leftarrow \hat{x}$
 1494 31: $\alpha^{(i+1)} \leftarrow \hat{\alpha}$

1495 32: **end if**

1496 33: **end for**

1497 34: **return** $\{x^{(i)}\}_{i=0}^S, \{\alpha^{(i)}\}_{i=0}^S$

1501

1502 **E.6 HELMHOLTZ AND STOKES LID-DRIVEN CAVITY**

1503

1504 For both Helmholtz and the Stokes lid-driven cavity problems, we use the same configuration as in
 1505 the elasticity experiment (see 8), training for 100 epochs. We only adjust the number of input/output
 1506 channels.

1507

1508 **E.7 NATURAL IMAGES: RECOLORING**

1509

1510 For natural-image experiments, we adopt the class-conditional Latent Flow Matching (LFM) model
 1511 of Dao et al. (2023) trained on ImageNet-1k (Deng et al., 2009) with a DiT backbone (Peebles &
 Xie, 2023). We fix an ImageNet class label y to condition the generator and hold a global text

1512 **Algorithm 3** ECI-style sampling with boundary correction

1513 **Require:** initial state x_0 ; steps S ; inner correction iterations M ; model drift $v_t(\cdot)$; correction operator $\mathcal{C}(\cdot)$; noise sampler $\text{Noise}(\cdot)$

1514 **Ensure:** trajectory $\{x^{(i)}\}_{i=0}^S$

1515 1: $x^{(0)} \leftarrow x_0$

1516 2: $t_i \leftarrow i/S$ for $i = 0, \dots, S$

1517

1518

1519 3: **for** $i = 0$ **to** $S - 1$ **do**

1520 4: $t \leftarrow t_i$

1521 5: $t^{\text{next}} \leftarrow t_{i+1}$

1522

1523 6: **Inner ECI corrections at fixed t :**

1524 7: $\tilde{x} \leftarrow x^{(i)}$

1525 8: **for** $j = 1$ **to** M **do**

1526 9: $v \leftarrow v_t(\tilde{x})$

1527 10: $x_{\text{os}} \leftarrow \tilde{x} + (1 - t) v$

1528 11: $x_{\text{corr}} \leftarrow \mathcal{C}(x_{\text{os}})$

1529 12: $\eta \leftarrow \text{Noise}(\text{shape of } x_0)$

1530 13: $\tilde{x} \leftarrow (1 - t) \eta + t x_{\text{corr}}$

1531 14: **end for**

1532

1533 15: **Final correction and roll-forward to t^{next} :**

1534 16: $v \leftarrow v_t(\tilde{x})$

1535 17: $x_{\text{os}} \leftarrow \tilde{x} + (1 - t) v$

1536 18: $x_{\text{corr}} \leftarrow \mathcal{C}(x_{\text{os}})$

1537 19: $\eta \leftarrow \text{Noise}(\text{shape of } x_0)$

1538 20: $x^{(i+1)} \leftarrow (1 - t^{\text{next}}) \eta + t^{\text{next}} x_{\text{corr}}$

21: **end for**

22: **return** $\{x^{(i)}\}_{i=0}^S$

prompt c to define the fine-tuning direction. As a reward we use *PickScore v1*, a CLIP-H/14-based preference scorer trained on the Pick-a-Pic dataset, that evaluates image–text compatibility via cosine similarity in the CLIP embedding space (Kirstain et al., 2023; Radford et al., 2021; Cherti et al., 2023; Schuhmann et al., 2022), implemented with TRANSFORMERS (Wolf et al., 2020).

Concretely, we maximize $R(T(D(z), \alpha), c)$, where D is the latent-space decoder and $T(\cdot, \alpha)$ is a parametric per-pixel recoloring with coefficients α . The recoloring operates in logit space to avoid saturation: with $D(z) = x : \Omega \rightarrow (0, 1)^3$,

$$x_\varepsilon(\xi) = \text{clip}(x(\xi), \varepsilon, 1 - \varepsilon), \quad \ell(\xi) = \log \frac{x_\varepsilon(\xi)}{1 - x_\varepsilon(\xi)} \in \mathbb{R}^3,$$

we apply a residual $r(\xi; \alpha) = \alpha \Phi_D^{\text{bias}}(x(\xi))$ built from RGB monomials up to total degree D and map back via $y(\xi; \alpha) = \sigma(\ell(\xi) + r(\xi; \alpha))$. Equivalently, for channel $c \in \{R, G, B\}$,

$$y_c(\xi; \alpha) = \sigma\left(\ell_c(\xi) + \sum_{m=1}^M \alpha_{cm} \phi_m(x(\xi)) + \alpha_{c,0}\right), \quad \phi_m \in \Phi_D.$$

This residual parameterization is identity at initialization ($\alpha = 0$) and provides a low-dimensional, channel-coupled appearance pathway that can disentangle *content* from *presentation* or reach colorings underrepresented by the base LFM. It is related to CNN-predicted polynomial color transforms (quadratic in Chai et al. (2020)), whereas we use cubic polynomials and learn solely via the reward.

The parameter predictor φ here maps from latent feature tensors z to parameters α . First, a compact scene descriptor is extracted by passing z through convolutional transformations, aggregating information across multiple spatial scales via downsampling and global pooling, and enriching it with low-order channel statistics of z (e.g., moments). The concatenated descriptor is projected into

1566 a fixed embedding space, refined by a lightweight pre-LayerNorm MLP with a residual connection,
 1567 and finally mapped by a linear head to the recoloring coefficients α .
 1568

1569 Building on the inverse predictor, we augment the base DiT backbone with two lightweight residual
 1570 heads that couple image dynamics and color-parameter evolution. First, the *image path* predicts the
 1571 base drift $v_{t,x}^{\text{base}}(x, t)$. Then, we form a compact α -token by flattening the current color parameters α
 1572 and mapping them through a small MLP. This token is broadcast to a k_α -channel feature map and
 1573 concatenated with $(x, v_{t,x}^{\text{base}})$ into a shallow U-Net ‘‘correction’’ that outputs an additive refinement,
 1574 yielding

$$v_{t,x}^{\text{ft}} = v_{t,x}^{\text{base}} + \mathcal{U}_x(x, v_{t,x}^{\text{base}}, \text{map}(\alpha), t).$$

1575 Second, the *parameter path* updates the polynomial recoloring coefficients by a residual on top
 1576 of the baseline parameter field $v_{t,\alpha}^{\text{base}}$. Here, a dedicated α -projection module mirrors the inverse
 1577 predictor: multi-scale pooled conv features are fused—at the *token level*—with tokens from α and
 1578 $v_{t,\alpha}^{\text{base}}$ via a small fusion MLP, AdaLN/FiLM modulation of a head token, and a light SE rescaling of
 1579 conv features. The head then predicts a delta added to the baseline,

$$v_{t,\alpha}^{\text{ft}} = v_{t,\alpha}^{\text{base}} + \mathcal{U}_\alpha(x, \alpha, v_{t,\alpha}^{\text{base}}).$$

1580 All correction heads are zero-initialized at their final projections, so fine-tuning starts from the base
 1581 behavior and departs smoothly as training progresses. Table 9 lists the parameters of the correction
 1582 U-Nets. In total, the modified architecture adds $\approx 9\text{M}$ parameters to the $\approx 130\text{M}$ parameters of the
 1583 base DiT backbone.
 1584

1585 Table 9: Correction head hyperparameters (image and parameter paths).
 1586

1587	Hyperparameter	1588	Value
1589	k_α	1590	16
1591	U-Net base widths	1592	[96, 128, 160, 192]
1593	U-Net embedding	1594	96
1595	U-Net hidden lift	1596	256
	Attention stages		[2, 3]
	Attention heads		8

1597 With the LFM model, we use 40 steps when sampling and use the same training specifications as
 1598 the original Adjoint Matching paper (Domingo-Enrich et al., 2025). Again, we first pretrain the
 1599 predictor φ , and then perform joint fine-tuning with our Adjoint Matching formulation. Fine-tuning
 1600 is performed for 100 epochs with a batch size of 15.
 1601

1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 **F ADDITIONAL RESULTS**
1621

1622 In this section, we provide full experimental results and samples from the trained models.
1623

1624 **F.1 FULL EXPERIMENTAL RESULTS**
1625

1626 **F.1.1 DARCY**
1627

1638 Figure 7: Darcy dataset: scatter plots showing the relationship between PDE residuals (weak and
1639 strong) and distributional discrepancies (MMD_x , MMD_α) across all model variants and hyperparame-
1640 ter parameter configurations. Each point corresponds to one configuration; lower values indicate better
1641 physics consistency or distributional fidelity.
1642

1643 Table 10: Darcy dataset: full residual and distributional metrics for all methods
1644 and hyperparameter settings
1645

Model	λ_x	λ_f	$R_{\text{weak}} \downarrow$	$R_{\text{strong}} \downarrow$	$MMD_x \downarrow$	$MMD_\alpha \downarrow$
FM	–	–	$3.56 \times 10^0 (\pm 0.62)$	$7.11 \times 10^1 (\pm 3.20)$	0.005	0.011
PBFM	–	–	$1.69 \times 10^0 (\pm 0.14)$	$1.64 \times 10^1 (\pm 1.66)$	0.545	0.330
Base AM	1k	–	$1.89 \times 10^0 (\pm 0.40)$	$5.55 \times 10^1 (\pm 2.04)$	0.238	0.057
Base AM	5k	–	$1.84 \times 10^0 (\pm 0.55)$	$4.22 \times 10^1 (\pm 1.63)$	0.362	0.094
Base AM	10k	–	$1.95 \times 10^0 (\pm 0.81)$	$2.95 \times 10^1 (\pm 1.14)$	0.380	0.114
Base AM	20k	–	$2.26 \times 10^0 (\pm 1.38)$	$2.34 \times 10^1 (\pm 1.10)$	0.405	0.125
Base AM	100k	–	$3.44 \times 10^0 (\pm 2.98)$	$2.04 \times 10^1 (\pm 1.05)$	0.507	0.145
Base AM	1M	–	$3.68 \times 10^0 (\pm 3.17)$	$2.03 \times 10^1 (\pm 1.04)$	0.508	0.145
Base AM	100M	–	$3.72 \times 10^0 (\pm 3.05)$	$2.02 \times 10^1 (\pm 1.03)$	0.512	0.146
Base AM + φ	1k	–	$2.29 \times 10^0 (\pm 0.42)$	$5.32 \times 10^1 (\pm 1.89)$	0.255	0.061
Base AM + φ	5k	–	$1.68 \times 10^0 (\pm 0.51)$	$4.01 \times 10^1 (\pm 1.46)$	0.376	0.095
Base AM + φ	10k	–	$1.85 \times 10^0 (\pm 0.66)$	$3.2 \times 10^1 (\pm 1.16)$	0.394	0.107
Base AM + φ	20k	–	$2.15 \times 10^0 (\pm 1.18)$	$2.26 \times 10^1 (\pm 1.00)$	0.409	0.122
Base AM + φ	100k	–	$3.36 \times 10^0 (\pm 2.61)$	$1.98 \times 10^1 (\pm 1.03)$	0.481	0.143
Base AM + φ	1M	–	$3.82 \times 10^0 (\pm 3.27)$	$1.87 \times 10^1 (\pm 0.99)$	0.518	0.148
Base AM + φ	100M	–	$3.58 \times 10^0 (\pm 3.06)$	$1.9 \times 10^1 (\pm 1.01)$	0.519	0.150

1673 *continued on next page*

Table 10 – *continued from previous page*

Model	λ_x	λ_f	$R_{\text{weak}} \downarrow$	$R_{\text{strong}} \downarrow$	$\text{MMD}_x \downarrow$	$\text{MMD}_\alpha \downarrow$
AM	1k	0.0	$1.93 \times 10^0 (\pm 0.32)$	$5.96 \times 10^1 (\pm 2.60)$	0.024	0.008
AM	10k	0.0	$1.11 \times 10^0 (\pm 0.27)$	$5.23 \times 10^1 (\pm 2.18)$	0.063	0.012
AM	20k	0.0	$9.15 \times 10^{-1} (\pm 2.29)$	$4.71 \times 10^1 (\pm 2.13)$	0.053	0.010
AM	20k	10	$1.97 \times 10^0 (\pm 0.38)$	$5.13 \times 10^1 (\pm 2.15)$	0.010	0.010
AM	20k	1	$1.64 \times 10^0 (\pm 0.34)$	$4.94 \times 10^1 (\pm 2.20)$	0.012	0.009
AM	20k	10^{-1}	$1.23 \times 10^0 (\pm 0.27)$	$4.73 \times 10^1 (\pm 2.21)$	0.023	0.006
AM	20k	10^{-2}	$1.05 \times 10^0 (\pm 0.24)$	$4.63 \times 10^1 (\pm 2.08)$	0.049	0.009
AM	20k	10^{-5}	$9.78 \times 10^{-1} (\pm 2.18)$	$4.74 \times 10^1 (\pm 2.19)$	0.034	0.008
AM	100k	0.0	$1.15 \times 10^0 (\pm 0.28)$	$4.9 \times 10^1 (\pm 2.58)$	0.006	0.006
AM	1M	0.0	$1.26 \times 10^0 (\pm 0.32)$	$5.08 \times 10^1 (\pm 2.72)$	0.006	0.008
AM	10M	0.0	$1.54 \times 10^0 (\pm 0.35)$	$5.09 \times 10^1 (\pm 2.69)$	0.008	0.007
AM	100M	0.0	$1.32 \times 10^0 (\pm 0.31)$	$5.23 \times 10^1 (\pm 2.77)$	0.013	0.009

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728
1729 F.1.2 ELASTICITY

1744
1745 Figure 8: Fine-tuning towards boundary modification, comparing our approach with ECI. Samples
1746 for two random seeds shared across models. Top row: displacement fields. Bottom row: cor-
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1776
1777
1778
1779
1780
1781

Figure 9: Elasticity dataset: scatter plots showing the relationship between PDE residuals (weak and strong) and distributional discrepancies (MMD_x , MMD_α) across all model variants and hyperparameter configurations. Each point corresponds to one configuration; lower values indicate better physics consistency or distributional fidelity.

Table 11: Elasticity dataset: full residual and distributional metrics for all methods and hyperparameter settings

Model	λ_x	λ_f	$R_{\text{weak}} \downarrow$	$R_{\text{strong}} \downarrow$	$MMD_x \downarrow$	$MMD_\alpha \downarrow$
FM	–	–	$1.59 \times 10^1 (\pm 0.37)$	$1.83 \times 10^1 (\pm 0.66)$	0.238	0.049
PBFM	–	–	$6.32 \times 10^0 (\pm 0.82)$	$4.22 \times 10^0 (\pm 0.26)$	0.918	0.544
Base AM	1k	–	$6.78 \times 10^0 (\pm 1.09)$	$1.21 \times 10^1 (\pm 0.34)$	0.325	0.194
Base AM	10k	–	$4.62 \times 10^0 (\pm 0.85)$	$4.89 \times 10^0 (\pm 1.29)$	0.336	0.297

continued on next page

Table 11 – *continued from previous page*

Model	λ_x	λ_f	$R_{\text{weak}} \downarrow$	$R_{\text{strong}} \downarrow$	$\text{MMD}_x \downarrow$	$\text{MMD}_\alpha \downarrow$
Base AM	50k	–	$5.47 \times 10^0 (\pm 0.85)$	$4.16 \times 10^0 (\pm 0.87)$	0.404	0.314
Base AM	100k	–	$6.18 \times 10^0 (\pm 0.75)$	$4.0 \times 10^0 (\pm 0.98)$	0.396	0.288
Base AM	500k	–	$6.68 \times 10^0 (\pm 0.79)$	$4.04 \times 10^0 (\pm 0.76)$	0.417	0.299
Base AM	1M	–	$6.08 \times 10^0 (\pm 0.74)$	$3.76 \times 10^0 (\pm 0.54)$	0.446	0.288
Base AM + φ	1k	–	$6.99 \times 10^0 (\pm 0.99)$	$1.06 \times 10^1 (\pm 0.30)$	0.323	0.180
Base AM + φ	10k	–	$4.58 \times 10^0 (\pm 0.70)$	$4.91 \times 10^0 (\pm 1.31)$	0.339	0.298
Base AM + φ	50k	–	$5.55 \times 10^0 (\pm 0.72)$	$4.58 \times 10^0 (\pm 0.94)$	0.359	0.290
Base AM + φ	100k	–	$5.65 \times 10^0 (\pm 0.82)$	$4.16 \times 10^0 (\pm 0.93)$	0.375	0.288
Base AM + φ	500k	–	$5.47 \times 10^0 (\pm 0.72)$	$3.92 \times 10^0 (\pm 0.77)$	0.408	0.296
Base AM + φ	1M	–	$6.39 \times 10^0 (\pm 0.86)$	$4.09 \times 10^0 (\pm 0.68)$	0.469	0.286
AM	5k	1	$5.57 \times 10^0 (\pm 0.60)$	$4.34 \times 10^0 (\pm 0.95)$	0.510	0.248
AM	20k	1k	$8.33 \times 10^0 (\pm 1.34)$	$4.78 \times 10^0 (\pm 1.15)$	0.096	0.060
AM	30k	1k	$8.44 \times 10^0 (\pm 1.27)$	$4.48 \times 10^0 (\pm 1.08)$	0.091	0.060
AM	50k	1k	$7.85 \times 10^0 (\pm 1.17)$	$4.4 \times 10^0 (\pm 1.08)$	0.108	0.064
AM	100k	0.0	$3.04 \times 10^0 (\pm 0.31)$	$5.06 \times 10^0 (\pm 0.66)$	0.144	0.253
AM	100k	1k	$6.78 \times 10^0 (\pm 1.00)$	$4.43 \times 10^0 (\pm 1.02)$	0.091	0.074
AM	500k	1k	$6.15 \times 10^0 (\pm 0.77)$	$3.79 \times 10^0 (\pm 0.87)$	0.148	0.121
AM	1M	0.0	$3.93 \times 10^0 (\pm 0.27)$	$3.49 \times 10^0 (\pm 0.48)$	0.204	0.297
AM	1M	1k	$5.14 \times 10^0 (\pm 0.42)$	$2.85 \times 10^0 (\pm 0.58)$	0.197	0.203

1836 F.1.3 HELMHOLTZ
1837

1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
Figure 10: Helmholtz dataset: scatter plots showing the relationship between PDE residuals (weak and strong) and distributional discrepancies (MMD_x , MMD_α) across all model variants and hyperparameter configurations. Each point corresponds to one configuration; lower values indicate better physics consistency or distributional fidelity.

Table 12: Helmholtz dataset: full residual and distributional metrics for all methods and hyperparameter settings

Model	λ_x	λ_f	$R_{\text{weak}} \downarrow$	$R_{\text{strong}} \downarrow$	$MMD_x \downarrow$	$MMD_\alpha \downarrow$
FM	–	–	$1.5 \times 10^1 (\pm 0.59)$	$2.55 \times 10^1 (\pm 0.55)$	0.177	0.033
PBFM	–	–	$8.33 \times 10^0 (\pm 3.04)$	$1.22 \times 10^1 (\pm 0.33)$	0.090	0.031
Base AM	5k	–	$5.64 \times 10^0 (\pm 2.09)$	$1.59 \times 10^1 (\pm 0.33)$	0.134	0.039
Base AM	50k	–	$4.9 \times 10^0 (\pm 1.85)$	$1.34 \times 10^1 (\pm 0.32)$	0.147	0.041
Base AM	100k	–	$5.19 \times 10^0 (\pm 2.01)$	$1.27 \times 10^1 (\pm 0.32)$	0.148	0.042
Base AM	1M	–	$4.95 \times 10^0 (\pm 1.81)$	$1.17 \times 10^1 (\pm 0.33)$	0.144	0.042
Base AM	100M	–	$5.01 \times 10^0 (\pm 2.00)$	$1.14 \times 10^1 (\pm 0.32)$	0.143	0.042
Base AM + φ	5k	–	$5.46 \times 10^0 (\pm 1.94)$	$1.59 \times 10^1 (\pm 0.33)$	0.124	0.039
Base AM + φ	50k	–	$5.35 \times 10^0 (\pm 2.31)$	$1.35 \times 10^1 (\pm 0.34)$	0.133	0.045
Base AM + φ	100k	–	$5.02 \times 10^0 (\pm 2.17)$	$1.32 \times 10^1 (\pm 0.33)$	0.126	0.043
Base AM + φ	1M	–	$4.99 \times 10^0 (\pm 2.12)$	$1.16 \times 10^1 (\pm 0.33)$	0.125	0.046
Base AM + φ	100M	–	$5.41 \times 10^0 (\pm 2.20)$	$1.17 \times 10^1 (\pm 0.34)$	0.127	0.044
AM	5k	1	$5.32 \times 10^0 (\pm 1.49)$	$1.48 \times 10^1 (\pm 0.29)$	0.081	0.035
AM	10k	0.0	$4.71 \times 10^0 (\pm 1.26)$	$1.35 \times 10^1 (\pm 0.28)$	0.069	0.037
AM	100k	0.0	$4.3 \times 10^0 (\pm 1.29)$	$1.14 \times 10^1 (\pm 0.29)$	0.069	0.037
AM	100k	0p1	$4.49 \times 10^0 (\pm 1.46)$	$1.17 \times 10^1 (\pm 0.29)$	0.069	0.040
AM	100k	1	$4.42 \times 10^0 (\pm 1.35)$	$1.21 \times 10^1 (\pm 0.30)$	0.068	0.041
AM	100k	1k	$8.36 \times 10^0 (\pm 2.65)$	$1.16 \times 10^1 (\pm 0.25)$	0.151	0.032
AM	500k	0.0	$4.56 \times 10^0 (\pm 1.47)$	$1.09 \times 10^1 (\pm 0.31)$	0.066	0.046
AM	1M	0.0	$4.43 \times 10^0 (\pm 1.43)$	$1.1 \times 10^1 (\pm 0.30)$	0.064	0.046
AM	1M	1k	$5.83 \times 10^0 (\pm 1.63)$	$1.1 \times 10^1 (\pm 0.27)$	0.106	0.032
AM	100M	0.0	$4.43 \times 10^0 (\pm 1.43)$	$1.1 \times 10^1 (\pm 0.30)$	0.065	0.045

continued on next page

Table 12 – *continued from previous page*

Model	λ_x	λ_f	$R_{\text{weak}} \downarrow$	$R_{\text{strong}} \downarrow$	$\text{MMD}_x \downarrow$	$\text{MMD}_\alpha \downarrow$
AM	100M	1	$4.32 \times 10^0 (\pm 1.43)$	$1.05 \times 10^1 (\pm 0.30)$	0.062	0.042

1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944
1945 F.2 STOKES LID-DRIVEN CAVITY
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966 Figure 11: Stokes dataset: scatter plots showing the relationship between PDE residuals (weak and
1967 strong) and distributional discrepancies (MMD_x , MMD_α) across all model variants and hyperpa-
1968 rameter configurations. Each point corresponds to a single configuration; lower values indicate
1969 better physics consistency or distributional fidelity. PBFM is omitted in the strong-residual panels
1970 because its training did not converge to physically meaningful samples (yielding strong residuals
1971 several orders of magnitude larger than the other methods).

1972

1973

1974 Table 13: Stokes dataset: full residual and distributional metrics for all methods
1975 and hyperparameter settings.

Model	λ_x	λ_f	$R_{\text{weak}} \downarrow$	$R_{\text{strong}} \downarrow$	$MMD_x \downarrow$	$MMD_\alpha \downarrow$
FM	–	–	$3.05 \times 10^2 (\pm 3.16)$	$1.81 \times 10^0 (\pm 0.44)$	0.224	0.049
PBFM	–	–	$9.94 \times 10^0 (\pm 2.17)$	$1.15 \times 10^1 (\pm 0.05)$	0.227	0.071
Base AM	5k	–	$1.42 \times 10^1 (\pm 0.28)$	$1.47 \times 10^0 (\pm 0.17)$	0.484	0.212
Base AM	10k	–	$1.16 \times 10^1 (\pm 0.27)$	$1.43 \times 10^0 (\pm 0.13)$	0.500	0.233
Base AM	100k	–	$6.88 \times 10^0 (\pm 2.47)$	$1.07 \times 10^0 (\pm 0.14)$	0.561	0.266
Base AM	1M	–	$5.3 \times 10^0 (\pm 2.23)$	$9.94 \times 10^{-1} (\pm 1.59)$	0.611	0.267
Base AM	100M	–	$5.05 \times 10^0 (\pm 2.16)$	$9.04 \times 10^{-1} (\pm 1.77)$	0.749	0.271
Base AM + φ	5k	–	$1.22 \times 10^1 (\pm 0.22)$	$1.37 \times 10^0 (\pm 0.12)$	0.515	0.236
Base AM + φ	10k	–	$9.0 \times 10^0 (\pm 1.55)$	$1.3 \times 10^0 (\pm 0.12)$	0.532	0.256
Base AM + φ	100k	–	$8.11 \times 10^0 (\pm 2.28)$	$1.15 \times 10^0 (\pm 0.13)$	0.514	0.250
Base AM + φ	1M	–	$8.55 \times 10^0 (\pm 2.52)$	$1.16 \times 10^0 (\pm 0.13)$	0.535	0.252
Base AM + φ	100M	–	$4.64 \times 10^0 (\pm 2.04)$	$7.89 \times 10^{-1} (\pm 1.59)$	0.825	0.267
AM	10k	0.0	$1.41 \times 10^1 (\pm 0.93)$	$1.16 \times 10^0 (\pm 0.20)$	0.426	0.087
AM	10k	1	$1.98 \times 10^1 (\pm 0.77)$	$1.3 \times 10^0 (\pm 0.24)$	0.452	0.095
AM	50k	0.0	$9.14 \times 10^0 (\pm 4.80)$	$1.05 \times 10^0 (\pm 0.20)$	0.514	0.164
AM	100k	0.0	$7.0 \times 10^0 (\pm 3.51)$	$1.07 \times 10^0 (\pm 0.20)$	0.570	0.219
AM	100k	1k	$3.43 \times 10^1 (\pm 1.80)$	$4.87 \times 10^0 (\pm 1.29)$	0.186	0.107
AM	500k	0.0	$6.26 \times 10^0 (\pm 3.15)$	$1.07 \times 10^0 (\pm 0.21)$	0.605	0.235
AM	1M	0.0	$5.8 \times 10^0 (\pm 3.28)$	$1.03 \times 10^0 (\pm 0.20)$	0.632	0.229
AM	1M	1k	$4.11 \times 10^1 (\pm 2.73)$	$1.3 \times 10^0 (\pm 0.30)$	0.411	0.081
AM	100M	0.0	$4.72 \times 10^0 (\pm 2.84)$	$1.01 \times 10^0 (\pm 0.15)$	0.882	0.266

1997 *continued on next page*

Table 13 – *continued from previous page*

Model	λ_x	λ_f	$R_{\text{weak}} \downarrow$	$R_{\text{strong}} \downarrow$	$\text{MMD}_x \downarrow$	$\text{MMD}_\alpha \downarrow$
AM	100M	100k	$3.67 \times 10^1 (\pm 2.47)$	$1.35 \times 10^0 (\pm 0.34)$	0.515	0.112
AM	100M	10k	$1.45 \times 10^1 (\pm 0.34)$	$1.64 \times 10^0 (\pm 0.31)$	0.678	0.131
AM	100M	1	$4.9 \times 10^0 (\pm 3.43)$	$1.02 \times 10^0 (\pm 0.16)$	0.885	0.260
AM	100M	1k	$5.27 \times 10^0 (\pm 2.36)$	$1.07 \times 10^0 (\pm 0.12)$	1.036	0.354

F.2.1 EFFECT OF FORCING MISSPECIFICATION

In the Stokes lid–driven cavity experiment, the base Flow Matching (FM) model is trained on data generated with a nonzero Kolmogorov-type forcing term with amplitude $F_0 = 2.0$. In the main experiment reported in the paper, however, fine-tuning is performed under the *assumption of no forcing* ($F_0 = 0.0$). This represents a severe form of model–physics misspecification: the fine-tuning objective assumes a qualitatively different flow regime from the data on which the FM model was trained.

Figure 12: Representative stationary velocity fields for the same viscosity but different forcing amplitudes F_0 . With $F_0 = 0$, the flow is driven solely by the moving lid and exhibits a single dominant recirculating vortex. As the forcing strength increases, additional sub-vortices emerge and the flow develops progressively more complex interior structures.

Figure 12 illustrates this mismatch. Samples with $F_0 = 2.0$ exhibit complex flow structure with multiple vortices driven by the interior forcing. In contrast, the flow for $F_0 = 0.0$ contains essentially a single large recirculating vortex induced only by the moving lid. These differences reflect a fundamental change in the underlying PDE solution manifold rather than a minor perturbation. Fine-tuning the FM model to match such a drastically different flow regime therefore constitutes an inherently challenging, strongly out-of-distribution adaptation problem.

To study this effect more systematically, we perform additional fine-tuning runs using different assumed forcing amplitudes $\tilde{F}_0 \in \{0.0, 0.5, 1.0, 1.5, 2.0\}$, while always starting from the same FM model trained on data with $F_0 = 2.0$. All other hyperparameters are kept fixed ($\lambda_x = \lambda_\alpha = 100k$, $\lambda_f = 0.0$). For each \tilde{F}_0 , we compute the weak PDE residuals after fine-tuning and report them relative to the mean weak residual of *ground-truth* data generated with the same forcing amplitude \tilde{F}_0 . Because both pre-training of the inverse predictor and the fine-tuning itself use the same assumed forcing \tilde{F}_0 , we can also report baseline values for the FM model by applying the corresponding inverse predictor to its samples. Figure 13 presents the resulting residuals.

Across all levels of assumed forcing, fine-tuning consistently reduces the weak residuals by at least an order of magnitude compared to the corresponding FM baseline. As expected, the remaining residuals strongly depend on the degree of misspecification: when \tilde{F}_0 is close to the true value (2.0), the relative residuals after tuning approach 1.0, indicating consistency with the ground-truth distribution. Under severe mismatch (e.g. $\tilde{F}_0 = 0.0$), the residuals remain higher despite significant improvement relative to the FM baseline, which is consistent with the demand for structurally significant modification.

Figure 13: Weak residuals of the base FM model (red) and the fine-tuned model (black) as a function of the assumed forcing amplitude. Reduced misspecification leads to substantially lower post-tuning residuals, approaching the ground-truth residual level when the assumed forcing matches the true physical value.

2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106
2107 F.3 NON-CURATED SAMPLES

2108 F.3.1 DARCY

2109

2155 Figure 14: Darcy flow: non-curated samples of pressure distributions (left columns) and recovered
 2156 permeability fields (right columns). Each row was generated using the same initial noise across the
 2157 three models. Color scales are normalized per row for the pressure distributions. For the base model,
 2158 permeabilities are obtained with the pre-trained inverse predictor.

2159

2160
2161

F.3.2 ELASTICITY

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209

(a) Base FM model

(b) Fine-tuned with model

2210
2211
2212
2213

Figure 15: Non-curated samples from the elasticity experiment, where fine-tuning has to scale down the lower boundary.

2214
2215 F.3.3 HELMHOLTZ

(a) Base FM model (damped)

(b) Fine-tuned (lossless)

2263
2264 Figure 16: Non-curated Helmholtz samples. In both panels, each row shows: (i) the real part of the
2265
2266
2267 generated field, (ii) its imaginary part, and (iii) the recovered wave-speed parameter c .

2268
2269

F.3.4 STOKES

2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321Figure 17: Non-curated Stokes samples. Each row displays: (i) the viscosity field ν , (ii) the velocity magnitude $\|u\|$, and (iii) a streamplot of the velocity (u_x, u_y) .

2322 F.3.5 GUIDANCE
2323

2364 Figure 18: Guided samples with an increasing number of given observations, specifically
2365 [25, 50, 100, 200, 300, 400, 500, 750, 1000]. For each number of conditioning points, we generate
2366 two samples from independent noise and condition on the same sparse samples, indicated as white
2367 markers in the right column. As expected, with more points both x and α become more constraint
2368 and less diverse.

2369
2370
2371
2372
2373
2374
2375

2376 F.3.6 NATURAL IMAGES: RECOLORING
2377

2423 (a) Base LFM model

2424 (b) Vanilla Adjoint Matching

2425 (c) Joint Adjoint Matching

2426 Figure 19: Non-curated independent samples from LFM model conditioned on class "macaw" and
2427 using guidance scale 4.0. Models were fine-tuned to maximize PickScore using the prompt "close-
2428 up pop art of a macaw parrot".
2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

(a) Base LFM model

(b) Vanilla Adjoint Matching

(c) Joint Adjoint Matching

Figure 20: Non-curated independent samples from LFM model conditioned on class "boathouse" and using guidance scale 4.0. Models were fine-tuned to maximize PickScore using the prompt "boathouse with green and purple curtains of northern lights." Our joint model is able to generate the colors demanded in the prompt while retaining diversity in the generated boathouses.