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ABSTRACT

We present a framework for fine-tuning flow-matching generative models to en-
force physical constraints and solve inverse problems in scientific systems. Start-
ing from a model trained on low-fidelity or observational data, we apply a dif-
ferentiable post-training procedure that minimizes weak-form residuals of gov-
erning partial differential equations (PDEs), promoting physical consistency and
adherence to boundary conditions without distorting the underlying learned dis-
tribution. To infer unknown physical inputs, such as source terms, material pa-
rameters, or boundary data, we augment the generative process with a learnable
latent parameter predictor and propose a joint optimization strategy. The result-
ing model produces physically valid field solutions alongside plausible estimates
of hidden parameters, effectively addressing ill-posed inverse problems in a data-
driven yet physics-aware manner. We validate our method on canonical PDE prob-
lems, demonstrating improved satisfaction of physical constraints and accurate
recovery of latent coefficients. Further, we confirm cross-domain utility through
fine-tuning of natural-image models. Our approach bridges generative modelling
and scientific inference, opening new avenues for simulation-augmented discov-
ery and data-efficient modelling of physical systems.

1 INTRODUCTION

Physical systems with rich spatio-temporal structure can be effectively represented by deep genera-
tive models, including diffusion and flow-matching methods (Kerrigan et al., [2024; |[Erichson et al.,
2025} |Baldan et al.l 2025; Price et al.l|2023). Although their dynamics can be highly complex, these
systems are often governed by fundamental principles, such as conservation laws, symmetries, and
boundary conditions, that constrain the space of admissible solutions. Incorporating such physical
structure into generative modelling can improve both sample fidelity and out-of-distribution gener-
alization.

In many scientific domains, including atmospheric and oceanographic modelling, seismic inversion,
and medical imaging, we often observe system states without access to the underlying physical
parameters that govern them. Crucially, PDE-based constraints are typically parameter-dependent,
with residuals that vary according to material properties, source terms, or other latent variables. Prior
work has largely focused on simple or global constraints—such as fixed boundaries or symmetries,
that apply uniformly across the data distribution. Handling parameter-dependent constraints naively
would require training over the joint distribution of solutions and parameters, which is often infea-
sible because parametric labels are missing, expensive to obtain, or high-dimensional. Addressing
this limitation is critical for scientific discovery. Many inverse problems in the natural sciences
and engineering require reasoning about unobserved parameters or exploring hypothetical scenarios
inaccessible to direct experimentation. A generative model that can enforce parameter-dependent
PDE constraints using only observational data would provide a powerful tool for data-efficient sim-
ulation, hypothesis testing, and the discovery of new physical phenomena, helping to bridge the gap
between raw observations and mechanistic understanding.

This work proposes a framework for fine-tuning flow-matching generative models to enforce
parameter-dependent PDE constraints without requiring joint parameter—solution training data. This
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work aligns with a growing trend of simulation-augmented machine learning (Karniadakis et al.,
2021), where generative models accelerate scientific discovery by efficiently exploring physically
plausible solution spaces. Our approach reformulates fine-tuning as a stochastic optimal control
problem via Adjoint Matching (Domingo-Enrich et al.l 2025)), guided by weak-form PDE resid-
uals. By augmenting the model with a latent parameter evolution, we enable joint generation of
physically consistent solution—parameter pairs, addressing ill-posed inverse problems. We evaluate
our proposed fine-tuning framework on two canonical physical systems and show an application
to natural images. We demonstrate denoising and conditional generation capabilities, including ro-
bustness to noisy data and the ability to infer latent parameters from sparse observations. Visual and
quantitative results, including strong reductions in residuals across tasks and robustness to model
misspecification, highlight the flexibility of our method for integrating physical constraints into gen-
erative modelling.

To sum up, our contributions are as follows:

* POST-TRAINING ENFORCEMENT OF PHYSICAL CONSTRAINTS: We introduce a fine-
tuning strategy that tilts the generative distribution toward PDE-consistent samples using
weak-form residuals, improving physical validity while preserving diversity.

* ADJOINT-MATCHING FINE-TUNING WITH THEORETICAL GROUNDING: Leveraging the
adjoint-matching framework, we recast reward-based fine-tuning as a stochastic control
problem, extending flow-matching models to generate latent parameters alongside states,
enabling inverse problem inference without paired training data.

e BRIDGING GENERATIVE MODELING AND PHYSICS-INFORMED LEARNING: Our ap-
proach connects preference-aligned generation with physics-based inference, enabling
simulation-augmented models to generate solutions that respect complex physical laws.

2 RELATED WORK

Physics-Constrained Generative Models Integrating physical constraints—such as boundary
conditions, symmetry invariances, and partial differential equation (PDE) constraints—into ma-
chine learning models improves both accuracy and out-of-distribution generalization. Classical ap-
proaches, such as Physics-Informed Neural Networks (PINNs, |Raissi et al.| (2019)), directly regress
solutions that satisfy governing equations. While effective for forward or inverse problems, PINNs
do not capture distributions over solutions, making them unsuitable for generative tasks that require
sampling diverse plausible outcomes.

In the generative setting, the main challenge is ensuring that the physically constrained samples re-
tain the variability of the underlying generative model, avoiding pathalogical issues such as mode
collapse. Bastek et al.[(2024) proposes a unified framework for introducing physical constraints into
Denoising Diffusion Probabilistic Models (DDPMs, Ho et al.| (2020)) at pre-training time, by adding
a first-principles physics-residual loss to the diffusion training objective. This loss penalises viola-
tions of governing PDEs (e.g. fluid dynamics equations) so that generated samples inherently satisfy
physical laws. The method was empirically shown to reduce residual errors for individual samples
significantly, while simultaneously acting as a regulariser against overfitting, thereby improving gen-
eralisation. To evaluate the physics-residual loss, one needs to compute the expected PDE residual
of the final denoised sample conditioned on the current noisy state in the DDPM process. Accurately
estimating this expectation requires generating multiple reverse-diffusion trajectories from the same
noisy sample, which makes pre-training significantly more expensive. A common alternative is to
use Tweedie’s formula to approximate the conditional expectation in a single pass, but this shortcut
introduces bias, particularly in the final denoising steps.

Zhang & Zou (2025) proposes enforcing constraints through a post-hoc distillation stage, where a
deterministic student model is trained from a vanilla diffusion model to generate samples in one-
step, regularised by a PDE residual loss. In [Wang et al.| (2025) the authors introduce PhyDA,
diffusion-based data assimilation framework that ensures reconstructions obey PDE-based dynam-
ics, specifically for atmospheric science. An autoencoder is used to encode sparse observations into
a structured latent prior for the diffusion model, which is trained with an additional physical residual
loss.
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Inference- and Post-Training Constraint Enforcement Various works have proposed ap-
proaches to enforce PDE constraints at inference time, often in combination with observational
constraints, drawing connections to conditional diffusion models (Dhariwal & Nichol, 2021; Ho &
Salimans| 2021). [Huang et al.| (2024) introduce guidance terms within the denoising update of a
score-based diffusion model to steer the denoising process towards solutions which are both consis-
tent with data and underlying PDEs. A related approach was considered by |Xu et al.[(2025), further
introducing an adaptive constraint to mitigate instabilities in early diffusion steps. In|Christopher
et al. (2024), the authors recast the inference-time sampling of a diffusion process as a constrained
optimization problem, each diffusion step is projected to satisfy user-defined constraints or physical
principles. This allows strict enforcement of hard constraints (including convex and non-convex
constraints, as well as ODE-based physical laws) on the generated data. |Lu & Xu| (2024) consider
the setting where the base diffusion model is trained on cheap, low-fidelity simulations, leveraging
a similar approach to generate down-scaled samples via projection.

Flow-Matching Models for Simulation and Inverse Problems Flow-matching (FM, [Lipman
et al. (2023))) has emerged as a flexible generative modelling paradigm for complex physical systems
across science, including molecular systems (Hassan et al., |2024)), weather (Price et al., 2023) and
geology (Zhang et al., 2025) . In the context of physics-constrained generative models [Utkarsh
et al.| (2025) introduces a zero-shot inference framework to enforce hard physical constraints in
pretrained flow models, by repeatedly projecting the generative flow at sampling time. Similarly,
Cheng et al.|(2024) proposed the ECI algorithm, to adapt a pretrained flow-matching model so that
it exactly satisfies constraints without using analytical gradients. In each iteration of flow sampling,
ECI performs: an Extrapolation step (advancing along the learned flow), a Correction step (applying
a constraint-enforcement operation), and an Interpolation step (adjusting back towards the model’s
trajectory). While projection approaches are a compelling strategy for hard constraints, they can be
challenging particularly for local constraints such as boundary conditions, as direct enforcement can
introduce discontinuities. The above approach mitigates this by interleaving projections with flow
steps, however this relies on the flow’s ability to rapidly correct such non-physical artifacts.

Baldan et al.| (2025) propose Physics-Based Flow Matching (PBFM), which embeds constraints
(PDE or symmetries) directly into the FM loss during training. The approach leverages temporal
unrolling to refine noise-free final state predictions and jointly minimizes generative and physics-
based losses without manual hyperparameter tuning of their tradeoff. To mitigate conflicts between
physical constraints and the data loss, they employ the ConFIG (Liu et al., 2024)), which combines
the gradients of both losses in a way that ensures that gradient updates always minimise both losses
simultaneously.

Related to our approach are the works on generative models for Bayesian inverse problems (Stuart,
2010), where the goal is to infer distributions over latent PDE parameters given partial or noisy
observations. Conditional diffusion and flow-matching models can be used to generate samples from
conditional distributions and posterior distributions, supporting amortized inference and uncertainty
quantification (Song et al.| 2021} [Utkarsh et al.,[2025}; |[Zhang et al.,[2023)). Conditioning is typically
achieved either through explicit parameter inputs or guidance mechanisms during sampling, as in
classifier-guided diffusion. While effective when large volumes of paired training data is available,
these approaches are less relevant to observational settings where parameters are unobserved. In
contrast, our approach connects the observed data to the latent parameters only during post-training,
requiring substantially smaller volumes of data.

3 METHOD

FM models are trained to learn and sample from a given distribution of data pg,,. They approximate
this distribution by constructing a Markovian transformation from noise to data, such that the time
marginals of this transformation match those of a reference flow X; = p; X1 + 7. Xo. Specifically
FM models learn a vector field v;(z) that transports noise to data, via the ODE dX; = v:(Xy).
We can optionally inject a noise schedule o () along the trajectory to define an equivalent SDE that
preserves the same time marginals (Maoutsa et al., 2020)),

X ( (X)+"(t)2< (X)BtX>>+ (t)dB; = b(X)) +o(t)dB,, (1)
t = | Ve Ay 2 Ve At 3, t g t =: 0t Aq a t
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Figure 1: Visual depiction of proposed method. Starting at state %% or !, we use the base vector

field v?f‘;e to predict the final sample [a)]. Through the inverse predictor ¢, we recover the corre-

sponding predicted parameters 4°%° and &'t [b)]. These estimates can be used as a target for evolving
ab® [¢)] or as a baseline for the fine-tuned evolution of o' [d)]. For purposes of regularization, we
further consider Ufi, pointing from the current o' to the predicted final parameter of the base evo-

lution &tl’ase [e)].

where we combine coefficients 3; and ; into 7, = v (%% — ).

Assuming we have access to a FM model which generates samples according to distribution p(z), we
seek to adjust this model so as to generate samples from the tilted distribution p,.(z) oc e*"®)p(z),
where 7 is a reward function and A characterises the degree of distribution shift induced by fine-
tuning.

To achieve this, we leverage the adjoint-matching framework of Domingo-Enrich et al.| (2025)). This
work reformulates reward fine-tuning for flow-based generative models as a control problem in
which the base generative process given by vP*¢ is steered toward high-reward samples via modify-
ing the learned vector field, which we denote as v with corresponding drift term bl'. Our approach
is conceptually related to reward- or preference-based fine-tuning of generative models (Christiano
et al.L 2017;Sun et al.}2024)), where a learned or computed reward steers generation toward desired
properties. Here, the reward is defined via PDE residuals, encoding knowledge about underlying
dynamics and physical constraints to the solutions space as deviations to differential operators or
boundary conditions.

Notably, we assume that the distribution generated by the base model p(x) only captures an observed
quantity, but does not provide us with corresponding parameters or coefficient fields often needed
to evaluate the respective differential operator. In the following, we will present a strategy of jointly
recovering unknown parameters and fine-tuning the generation process.

3.1 REWARD

A generative model can reproduce the visual characteristics of empirical data while ignoring the
physics that governs it, thereby rendering the samples unusable for downstream scientific tasks. To
bridge this gap we impose the known governing equations as soft constraints, expressed through
differential operators £, = 0 with parameters «. Throughout, a generated sample « is interpreted
as the discretisation of a continuous field z(£) on a domain 2. The strong PDE residual is defined
as

Rslrong(xv a) = ||‘Ca‘r||iz(§2)

In practice, strong residuals involve high-order derivatives that make the optimization landscape

unstable. We therefore adopt weak-form residuals of the form (L,x,v) 2 (o) for suitably chosen
test functions ¢y € W, which are numerically more stable under noisy or misspecified data. Repeated
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applications of integration-by-parts can transfer derivatives from x to . The set ¥ is composed of
compactly supported local polynomial kernels. For each evaluation we draw N such functions;
their centers and length-scales are sampled at random. A mollifier enforces 1|9 = 0, justifying the
integration by parts. The resulting residual is

Nies,

1 test Z 2

Rweak(xaa) = Nt . Z|<EQI,1/)( )>L2(Q)| .
est J ]

These randomly sampled local test functions act as stochastic probes of PDE violations, providing
a low-variance, data-efficient learning signal. A more detailed description of the test functions used
can be found in Appendix[D.3] Note that the residual might be augmented by adding soft constraints
for boundary conditions.

3.2 JOINT EVOLUTION

Fine-tuning is nontrivial in our setting because we must infer latent physical parameters jointly
with the generated solutions. On fully denoised samples, we can train an inverse predictor, i.e.,
©(z1) = a1, such that the weak PDE residual is minimised. As a naive approach, this already
induces a joint distribution over (1, «1) via the push-forward through ¢.

However, we advocate a more principled formulation that evolves both x and « along vector
fields, enabling joint sampling of parameters and solutions, as well as a controlled regularisation
of fine-tuning through the Adjoint Matching framework as outlined below. In the fine-tuning model,
this can be achieved by directly learning the vector field v? ., jointly with vt by augmenting the
neural architecture. Since no ground-truth flow of « for the base model is available, at each state
(z¢, o) we define a surrogate base flow using the inverse predictor . Specifically, we consider the
one-step estimates

il = x4+ (1 - t) Ult)ase(fﬁt), @1 = gD(JEl)

The direction from the current state o to the predicted final parameter ¢ serves as a base vector field
which we use to evolve alpha, i.e. vf*%¢(ay) = (&1 — o)/ (1 — t) inducing corresponding drift by™¢.
This surrogate base flow, starting at a noise sample a*¢ ~ N(0, I'), emulates a denoising process
of the recovered parameter. We denote by a"®® the parameter aligned with the base trajectory
2% While the evolution of a?*¢ does not influence the trajectory of x°, the inferred vector
field can be used to effectively regularize the generation of the fine-tuned model. Similarly, to
regularise towards the parameter recovered under the base model, we introduce an additional field
vy 5 (aff) = (a5 — a})/(1 — t). This vector field points from the current parameter estimate of

the fine-tuned trajectory o to the recovered parameter under the base model &5*¢. The field is used
to pull the fine-tuned dynamics towards final samples associated with parameters similar to those of
the base trajectory. The introduced vector fields are visualized in Fig.

3.3 ADJOINT MATCHING

Considering an augmented state variable of the joint evolution X, = (XTI, al)T, we cast fine-tuning
as a stochastic optimal control problem:

!
mjn]E[/ (‘
@ 0o \2

st dX, = (B'gase(f(t) +o(t) at(f(t)) dt + o(t) dB,

e (Xy)

\2 + f(Xg) dt + g(f(l)} o

with control i, (X,), running state cost f(X,), and terminal cost g(X). In this formulation, fine-
tuning amounts to a point-wise modification of the base drift through application of control @, i.e.

b (X)) = By (Xy) + o(t) i (Xy).

In|Domingo-Enrich et al.|(2025)), Adjoint Matching is introduced as a technique with lower variance
and computational cost than standard adjoint methods. The method is based on a Lean Adjoint state,
which is initialized as

ai = AVzg(X1) = (\eVa g(X1,01), AaVa g(X1,a1))
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and evolves backward in time according to

d _ _pbase v \T ~ . v \T\ _ ng Jga: Atz \ vwf(Xtvat)T
%U«t - (vzbt (Xt) ag + vmf(Xt) ) - (J’ITQ Jga At o Vaf(Xt,Oét)T (3)

where the block-Jacobian is evaluated along the base drift for X and «, which means that
Jij =V; blt’f‘fe(Xt,at) for i,j € {x,a}. The hyperparameters A\, and A, can be used to regu-
late the extent to which the fine-tuned distribution departs from the base distribution. The Adjoint
Matching objective can then be formulated as a consistency loss:

1
£ X) = %/ a:(Xs) + o(t) | dt
0 (4)
= %/ (Huw(Xt, ar) + o(t) am”2 + Hu@a(Xt, at) + o(t) at7aH2) dt.
0

It can be shown (Domingo-Enrich et al.l 2025) that with f = 0, this objective is consistent with the
tilted target distribution for reward r = —g, if optimized with a memoryless noise schedule. This
schedule ensures sufficient mixing during generation such that the final sample X is independent of
X. To stabilise fine-tuning we introduce a scaled variant of the memoryless noise schedule. Instead
of using the canonical choice 02(75) = 21, identified by |[Domingo-Enrich et al.| (2025)), we adopt

a?(t) = (1 — k) 2, 0<k<l,

which retains the theoretical memoryless property (see Lemma[I]in Appendix while attenuat-
ing the magnitude of the noise variance. The introduction of the scaling factor 0 < x < 1 constitutes
a simple but novel extension of the adjoint-matching framework. Whereas prior work highlighted
a unique schedule, our analysis shows that a family of scaled schedules remains consistent with the
memoryless condition. This additional degree of freedom acts as a numerical stabilisation knob,
mitigating blow-ups near ¢ — 0 without losing theoretical consistency. Further, it offers a control—
fidelity trade-off by regulating the amount of exploration. In practice, this flexibility allows practi-
tioners to adapt fine-tuning to the conditioning of the PDE residuals and the stability of the solver, a
feature not available in the original formulation.

Equation 2]is optimized by iteratively sampling trajectories with the fine-tuned model while follow-
ing a memoryless noise schedule, numerically computing the lean adjoint states by solving the ODE
in Equation [3] and taking a gradient descent step to minimize the loss in Equation[d] Note that gradi-
ents are only computed through the control u; and not through the adjoint, reducing the optimization
target to a simple regression loss. We state the full training algorithm and implementation details in

Appendix [D.5]

Adjoint Matching steers the generator toward the reward-tilted distribution, thereby reshaping the
entire output distribution rather than correcting individual trajectories. However, when fine-tuning
observational data or under system misspecification, we might be interested in retaining sample-
specific detail. Empirically we find that this can be effectively encoded by imposing similarity of
the inferred coefficients between base and fine-tuned model. Therefore, we add a running state cost

Fl@) = As [[of a(@) — v ()]

which penalises deviations of the fine-tuned a-drift from the direction pointing toward the base
estimate 4*¢. The hyper-parameter \ ¢ controls a smooth trade-off: Ay = 0 recovers pure Adjoint
Matching, while larger Ay progressively anchors the final parameters o obtained under the fine-
tuned model to their base-model counterparts, thus retaining trajectory-level detail.

4 EXPERIMENTS

We evaluate across three settings: two PDE systems (one with observational noise, one with mis-
specified boundary data) and a natural-image model. Unlike latent-space fine-tuning for images,
our PDE models operate directly in pixel space. High-variance noise during sampling can drive off-
manifold trajectories and perturb PDE residuals, motivating x > 0 for these models. For base Flow
Matching backbones we use U-FNO (Wen et al., [2022) for PDEs and the DiT-based latent FM of
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Dao et al.|(2023)) for images. In all experiments we first sample from the base generator and pre-train
the inverse predictor ¢ to recover o by minimizing the (PDE) residual, then fine-tune. Following
Domingo-Enrich et al.| (2025), fine-tuning is initialized from the base weights. We augment capac-
ity to condition v%‘z on oy and add a separate head for v{ta. Fine-tuning uses a memoryless noise
schedule, while all reported results are generated without injected noise (o (¢) = 0). Implementation

details appear in App.[D.2]

4.1 DARCY DENOISING

Consider a square domain of Q = [0, 1]? where a permeability «/(¢), here serving as the hidden
parameter, and a forcing term f(&) induce a pressure distribution z(£). We observe solutions for
samples of permeability o ~ p, drawn from a discretized Gaussian Process such that a takes values
a € {3,12}. Pressure z follows the law

=V (a§) Vz(§)) = f(§) =0, z e

We assume zero Dirichlet boundary conditions and constant forcing. This is a standard dataset used
in the Neural Operator literature, established in [Li et al.| (2020). However, to mimic observational
data, we add noise to the generated solutions before training the base Flow Matching model. Details
about the dataset are given in Appendix [B] Figure 2] compares three Darcy samples generated from
the same noise seed xg: the base draw, fine-tuning with our regularization (here Ay = 1.0), and fine-
tuning without regularization. The base pressure z°*° is visibly contaminated by high-frequency
noise, and the inverse predictor ¢ correspondingly yields a scattered, artefact-ridden permeability
map o®¢. With regularization enabled, fine-tuning attenuates noise in the pressure =™ while remain-
ing close to a®®°. Because o™ is itself fragmented, some artefacts persist. In contrast, disabling
regularization produces a fully denoised pressure and a markedly more coherent o', but at the ex-
pected expense of erasing sample-specific details present in the base realization. More non-curated
samples are given in Appendix [F1]

Base

Fine-tuned w/ regularization

J" ¥

Fine-tuned w/o regularization

xbase abase 5% aft X aft

Figure 2: Denoising on Darcy for a fixed noise seed. Left: base pressure °%° and inferred perme-

ability a®°. Middle: fine-tuned output with parameter regularization (A = 1.0). Right: fine-tuning
with Ay = 1.0. Color maps throughout this work taken from |Crameri et al.| (2020).

Figure E| quantifies how the hyperparameters A;, A, and A; mediate the trade-off between staying
close to the base model and reducing the PDE residual. Each configuration is evaluated on 128
samples with noise seeds shared across models. In (a), starting from the base setting A\, = Ao = 0,
we jointly increase A, = A\, while fixing Ay = 0. As expected, the residual decreases with increased
A. However, this also leads to decreasing diversity in the generated samples, here reported as the
complement of the mean pairwise SSIM for o. Thus A, A\, provide a direct control knob for the
tuning the trade-off between fine-tuning and diversity. In (b), we fix A; = A, = 20K and vary Ay.
Larger Ay raises the residual, whereas weaker regularization attains lower residuals but departs more
from the base, quantified by the mean pointwise relative MSE between fine-tuned and base samples
for both = and «.. The ablations indicate that the method can be adapted to produce task-appropriate
samples. By tuning (A;, A, Af), practitioners can steer fine-tuning toward specific targets, e.g.,
stronger residual reduction versus closer adherence to the base sample—informed by domain priors.

Computationally, adaptation is lightweight: fine-tuning on noisy Darcy requires only 20 gradient
steps (hyperparameters in App. [E-T)) and completes in under 15 minutes on a single NVIDIA L40S,
after which sampling proceeds at base-model cost with no inference-time adjustments.
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Residual SSIM Diversity a Residual RelMSE [ /al
0.4 1.00 0.4 A 0.4
0.3 1 0.95 0.3 1 0.3
0.2 0.90 0.2 0.2
0.1 0.85 0.1 4 0.1
0.0 T T T T T T — 0.80 0.0 T { T T T — 0.0
base 100 1k 10k 100k 1M 10M base 10 1 0.1 0.01 0
(a) Ay and A\, vs. residual/diversity (b) Regularization Ay vs. residual/ReIMSE

Figure 3: Ablation over A;, Ao, Ay (128 samples per setting, shared seeds xg). (a) Increasing
Az = Aq With Ay = 0 monotonically lowers the PDE residual while reducing diversity (reported as
complement of mean pairwise SSIM). (b) Fixing A, = A, = 20K and sweeping A trades residual
against fidelity to the base via mean pointwise relative MSE for x (scaled up by 10) and a.

4.2 GUIDANCE ON SPARSE OBSERVATIONS

In many realistic settings dense observations of a state variable are available for pre-training a gener-
ative model, whereas only a few measurements of the latent parameter can be collected. To sample
from the posterior of parameter—state pairs that respect such sparse evidence we steer the genera-
tive process through guidance. |Huang et al. (2024) demonstrate guided sampling towards sparse
observations from a model that was pre-trained on the joint parameter-state distribution. Our ap-
proach applies a similar guidance mechanism, however, to a model that was pre-trained on noisy
state observations alone. We state details on the guiding mechanism in Figure [ shows that
the guided sampler adheres to sparse measurements while preserving realistic variability in the gen-
erated samples. Additional results for different amounts of conditioning observations are given in

Appendix [F3]

Figure 4: Three samples through guidance towards sparse observations (white markers in right
panel) of the permeability, showing a plausible conditional distribution.

4.3 LINEAR ELASTICITY: MISSPECIFICATION

We consider plane-strain linear elasticity on = [0, 1]? with spatially varying Young’s modulus,
considered as the hidden parameter «(¢), and fixed Poisson ratio v. The displacement x : ) — R?
solves the static, body-force-free equilibrium. Boundary conditions are fully Dirichlet and identical
across samples: the left and right edges are clamped, while the top and bottom edges receive inward
sinusoidal normal displacements with zero tangential slip and common amplitude Ao, = Apoy =
0.10. During fine-tuning, we add a penalty term for deviations from the boundary conditions under
modified Ay; = 0.075 to the weak PDE residual. Detailed specifications of this system and data
generation can be found in Appendix [B] Figure [5] shows resulting displacement fields from the
base and fine-tuned model together with heatmaps of their weak residuals. Our fine-tuning method
successfully adjusts the lower boundary while retaining the details of the base samples and keeping
low PDE residuals. While also ECI (Utkarsh et al.,2025)) adjusts to the new boundary condition, the
sampled displacements appear physically implausible and show high residual values. Details and
non-curated samples are given in the Appendix [E2).
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Figure 5: Fine-tuning towards boundary modification, comparing our approach with ECI. Samples
for two random seeds shared across models. Top row: displacement fields. Bottom row: corre-
sponding weak residual heatmaps.

4.4 NATURAL IMAGES: PARAMETRIC COLOR TRANSFORMATION

To demonstrate cross-domain utility, we apply our method to natural images by introducing a para-
metric recoloring pathway: analogous to the hidden PDE parameter, o here specifies a polynomial
color transform that operates outside the latent space, enabling exploration of image appearances not
well supported by the base distribution. We use a class-conditional Latent Flow Matching (LFM)

model (Dao et al, 2023) pretrained on ImageNet-1k (Deng et all [2009) and optimize PickScore

(Kirstain et al.| |2023)) with a globally fixed prompt. As a concrete example, we fine-tune on the class

macaw with the prompt “close-up Pop Art of a macaw parrot,” yielding the samples in Fig.[6] Joint
fine-tuning with recoloring produces markedly more vibrant palettes and, crucially, joint adjustments
(e.g., background textures that the recoloring exploits). Details about the recoloring parametrization
are given in Appendix [E-4]and further non-curated samples are provided in Appendix [F4]

(a) Vanilla Adjoint Matching (b) Joint model with parametric recoloring

Figure 6: Fine-tuning of LFM model on macaw class using prompt “close-up Pop Art of a macaw
parrot”, comparing vanilla Adjoint Matching with our joint approach.

5 CONCLUSION

We have introduced a framework for post-training fine-tuning of flow-matching generative models
to enforce physical constraints and jointly infer latent physical parameters informing the constraints.
Through a novel architecture, combined with the combination of weak-form PDE residuals with an
adjoint-matching scheme our method can produce samples that adhere to complex constraints with-
out significantly affecting the sample diversity. Preliminary experiments on Darcy flow and acoustic
wave problems demonstrate the potential of this method to reduce residuals and enable joint solu-
tion—parameter generation, supporting its promise for physics-aware generative modelling. Future
steps include adaptive approaches to optimising trade-off between constraint enforcement and gener-
ative diversity, and extending the framework to more complex and multi-physics systems, including
coupled PDEs and stochastic or chaotic dynamics. We would also explore how this methodology can
be leveraged for uncertainty quantification and propagation, and downstream tasks such as optimal
sensor placement and scientific discovery workflows.
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REPRODUCIBILITY STATEMENT

We report datasets, model backbones, training schedules, loss definitions, evaluation metrics, and
the key hyperparameters required to reproduce our results in the main text and appendix. Remaining
implementation choices are documented in the released configuration files. Upon acceptance, we
will open-source the code, including full training scripts. We fixed random seeds where applicable
and specify hardware/software versions.
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A USE OF LARGE LANGUAGE MODELS

We employed large language models to polish the manuscript (wording, grammar, and synonyms)
and to assist with implementation details, including plotting scripts and code rewriting/refactoring.
The research questions, problem formulation, algorithmic design and experimental methodology,
however, were conceived by the authors. All LLM-produced text and code were reviewed, adapted,
and verified by the authors prior to inclusion.

B DATASET DETAILS

In this section we detail the datasets used throughout our study. Our guiding principle was to select
scenarios in which the underlying parameter fields contain sharp discontinuities, thereby inducing
rich, non-linear behaviour in the associated state variables and making the inverse problem decidedly
non-trivial. Although the Darcy-flow benchmark follows the setup of |Li et al.| (2020), we regenerate
the data so that the sample count, grid resolution, and ground-truth parameters can be controlled
precisely. Complete scripts for producing both the Darcy and elasticity datasets will be released to
facilitate transparency and reproducibility.

B.1 DARCY FLOW DATASET

The dataset comprises 20,000 independent samples, each a pair (a, «) on the unit square 2 = [0, 1],
where a : ) — Ry is the permeability and u : 2 — R is the steady-state pressure solving

—V-(a(§) Vu(§)) = f(9), £=(&,8) €9,

with homogeneous Dirichlet boundary conditions u|sq; = 0 and constant forcing f = 1.

Discretization. We use a uniform 64 x 64 nodal grid with spacing Az = 1/(64 — 1) and the stan-
dard five-point finite-difference scheme. Interface permeabilities are formed by two-point arithmetic
averaging. Dirichlet values are imposed strongly, yielding a sparse SPD linear system that is solved
with a direct sparse solver.

Permeability sampling. We draw a zero-mean Gaussian random field a,,, via a cosine-basis
Karhunen-Lo¢ve synthesis on {2 associated with the Matérn-type covariance operator

C=(rP-A)"" a=2 7=3,

i.e., using the DCT-II basis (Neumann eigenfunctions of —A), setting the DC mode to zero to enforce
exact zero mean, scaling by the spectrum of C, and applying an orthonormal inverse DCT to obtain
a grid realization.

To model sharp contrasts, we threshold the Gaussian field into a piecewise-constant permeability,

)12, anaw(§) >0,
ale) = {3, raw(€) < 0.

Observational noise. In experiments with noisy observations, we corrupt the pressure with addi-
tive Gaussian noise
U =u+oe, e~N(0,I), o=10""

B.2 LINEAR ELASTICITY DATASET

The dataset contains N = 10,000 independent samples on the unit square = [0, 1]?. Each sample
is a pair (E, u) where E : Q — R denotes the spatially varying Young’s modulus and v :  — R?
is the plane—strain displacement field under fixed Poisson ratio v = 0.30. The boundary loading is
deterministic and identical across samples: the left/right edges are clamped, and sinusoidal normal
displacements are prescribed on the top and bottom edges with zero tangential slip (amplitudes
Agop = Apor = 0.10). For each E, u solves the static linear elasticity equations (no body force)

~V-0(&) =0, o = MNE,v)tr(e) I +2u(E,v)e, e = L(Vu+Wvu'), €€Q,
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with Lamé parameters A\(E,v) =
conditions

and p(E,v) = , and Dirichlet boundary

v E E
(14+v)(1—2v) 2(14v)
u(§1=0,8) =0, u(§1=1,&) =0
ug(€1,6=0) =0, uy(£1,8=0) = —Apee sin(r 1)

Uz (§1,&=1) =0, uy(&1,&=1) = +Apsin(r&y).

During fine-tuning, we set Apo, = 0.075 to enforce adaptation of the solutions, simulating a mis-
specification between observed data and the assumed model.

Discretization. We use a uniform 64 x 64 grid on 2 and standard second—order finite differences
in the small—strain regime. Dirichlet data are imposed strongly. The discrete equilibrium equations
are advanced by a stable explicit time—marching (damped gradient) scheme for the static problem
until the global residual norm falls below 107, or a cap of 2 x 10% iterations is reached.

Coefficient field sampling (piecewise-constant Voronoi medium). Heterogeneous modulus
fields E are obtained from a Voronoi tessellation constructed by drawing a fixed number of sites
uniformly in €2, assigning to each Voronoi cell a modulus sampled log-uniformly within [1.0, 10.0],
and rasterizing the resulting partition to the computational grid by nearest-site labeling. This pro-
duces piecewise-constant E' with sharp jumps that emulate multi-phase media. To control interface
smoothness, a separable Gaussian blur with standard deviation oy, = 1.0 (in grid units) is applied
to the rasterized field.

C PRE-TRAINING OF FLOW MATCHING MODELS

We adopt the vanilla Flow—Matching (FM) procedure of |Lipman et al.|(2023)). Based on the optimal-
transport reference flow

X = B X1+ Xo
with 8; = t, and 7, = 1—t, we can define conditional vector field as training targets for a parametric
model vg (¢, t). Given and end-point 21 ~ pga., the conditional vector field is available as

ve(z|xy) = %(xl —x).

This leads to the simplest form of Flow Matching objectives:
Lew = Elvo(Xe, 1) — (X1 — Xo)|1?
where Xy ~ N(0,1), X1 ~ pgaa and t ~ U0, 1].

Network Backbone. For PDE data, the mapping vy is realised with a U-FNO (Wen et al.|, |[2022),
which combines Fourier Neural Operator (FNO, |L1 et al.| (2020)) with U-Net (Ronneberger et al.,
20135) layers. The FNO layers have an inductive bias towards low-frequency solutions and are
therefore particularly suited for modeling PDE data, while the U-Net layers help to refine outputs
and produce discontinuities.

Departing from the original design, we use the U-Net skip-connection structure in all layers. Also,
we employ a more powerful time-conditioning in the U-Net layers by using FILM-style Adaptive
Group Normalization (AdaGN) time conditioning, i.e., predicting per-channel scale and shift from a
sinusoidal time embedding and applying them after GroupNorm in each residual block. This follows
the feature-wise linear modulation idea of |Perez et al.| (2018]) and its diffusion U-Net instantiations
in|Dhariwal & Nichol (2021); Rombach et al.|(2022).

We prepend the physical input with fixed sinusoidal encodings for absolute spatial coordinates and
the normalised time stamp so the spectral backbone receives explicit space-time context. Padding
inside the U-FNO (for the spectral convolution layers) is reflective, which has empirically worked
better than replicative. Before training, data is standardised to zero mean and unit variance.

Table |1| compiles the hyperparameters of the U-FNO architecture used for the base FM models in
our experiments.

On natural image data, we use a pretrained Latent Flow Matching Model (Dao et al., [2023)) based
on a DiT (Peebles & Xie, 2023)) backbone.
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Table 1: U-FNO (2D) backbone hyperparameters used in our experiments.

Hyperparameter Value Description

Number of layers 4 Count of spectral and U-Net operator blocks.
Padding mode reflect Boundary padding for convolutions/lifts.
Input channels 1/ 2 Channels of input field .

Output channels 1/ 2 Channels of output field.

Time embedding dim 32 Dimensionality of time conditioning.
Spatial embedding dim 32 Dimensionality of coordinate embedding.
Lifting width 256 Channels in input lifting/projection.
Fourier modes (kx, ky) [32, 32] Retained spectral modes per axis.

Spectral block width 32 Channel width within FNO layers.

U-Net base widths 32 Stage-wise channel widths.

Embedding width (U-Net) 64 Channels for conditioning embeddings.
Attention stages [] Stages with self-attention (empty = none).

Attention heads [] Multi-head count if attention is enabled.
Total number of parameters ~ 19M

Optimisation. We train the FM backbone with AdamW (Loshchilov & Hutter, [2017), using a
linear warmup of the learning rate from O to the base value over the first p,,, fraction of training steps,
followed by a constant learning rate thereafter. For evaluation stability, we maintain an exponential
moving average (EMA) of the network parameters §°MA < g 9FMA 1 (1 — ) 0, a practice rooted
in Polyak averaging (Polyak & Juditsky, [1992) and widely adopted in modern deep models (e.g.,
Tarvainen & Valpola, [2017).

Table 2: Flow Matching (FM) training hyperparameters and schedule.

Hyperparameter Description

Batch size 128 Minibatch size per step.

Base learning rate le—-4 AdamW step size.

Warmup fraction py,, 0.01 Fraction of total steps used for linear LR warmup.
Epochs 300 Full passes over the dataset.

Optimizer AdamW Applied to FM backbone parameters.

Weight decay 0.01 AdamW L2/decoupled decay coefficient.

EMA decay 0.9998 Exponential moving average of weights for evaluation.
Schedule after warmup  constant LR held constant after warmup.

The FM training configuration is summarized in Table [2] For the Darcy dataset (20k samples),
training takes around 12 hours on a single NVIDIA RTXA6000 GPU. For the smaller (10k) elasticity
dataset, training takes around 7 hours using the same configuration.

D METHOD: IMPLEMENTATION DETAILS

In this section, we provide further details into the implementation of our fine-tuning method. This
includes neural network architectures, the specific design of test functions for the computation of
the weak residuals, numerical heuristics, and finally the full training algorithm for fine-tuning.

All relevant code is implemented using Python 3.12.3, specifically, neural architectures are imple-
mented in PyTorch [Paszke et al.|(2019) version 2.7.
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D.1 INVERSE PREDICTOR ¢

We parametrise the inverse map ¢ with a two-layer U-FNO, mirroring the spectral-spatial bias of the
forward backbone. However, we increase the capacity of the U-Net components and use attention
at the two lowest resolutions (stage indices 2 and 3). Since the inverse predictor only operates at
t = 1, we drop the temporal but keep the spatial conditioning. Exact parameters are stated in Table

Table 3: U-FNO Inverse Predictor.

Hyperparameter Value
Number of layers 2

Padding mode reflect
Input channels 1/ 2
Time embedding dimension 0

Spatial embedding dimension 32

Output channels 1

Lifting width 256
Fourier modes (k, k) [32, 32]
Spectral block width 32

U-Net base widths [64, 64, 96, 128]
U—Net embedding width 64
Attention stages [2, 3]
Attention heads 4

D.2 ARCHITECTURE MODIFICATIONS

Fine-tuning augments the base U-FNO map = — v?f;e(% t) to a joint, a-conditioned vector field

f f fi
(vtt,mﬂ vtt,a) =v [((L',O[,t),
implemented as residual corrections around the frozen U-FNO core. Given the padded input 2,9
(with time/space embeddings) and conditioning fields « and v%’f‘;"', the base feature stack x, is

produced by the original spectral4-skip+U-Net blocks. A first correction head (a U-Net) takes

2., vP%¢, o] and outputs an additive refinement, yielding

ft _, base base
Vpg = Upg T Uw(x*, Upg s O t).

After unpadding, a pixel-wise correction (lightweight channel-wise MLP) further adjusts v{tw using
local features and 2D positional channels,

vfI — vi‘x + Mx(pos(m*,t), vgz),

which provides extra capacity for rapid adaptation without altering the global operator. For the
parameter dynamics, we adopt a strictly residual strategy that conditions on both « and the baseline
field:

’U?’a = Ultjjl(ie + ua('rpa(h «, U?if) )7
where U, is a second U-Net. All correction heads are zero-initialized at their final projection layers,
so that at the start of fine-tuning v™ = (vp%, vP%°) and departures are learned smoothly. Table EI
lists the parameters of the correction U-Nets.

Overall, the modifications to the base architecture add around 6M parameters to the model, resulting
in a total ~25M parameters.

D.3 WEAK RESIDUALS AND TEST FUNCTIONS

Darcy Flow. A pressure field u that solves our Darcy flow equations fulfills
—V-(aVu) —f=L,u=0o0n Q c R? with homogeneous Dirichlet data u|sn = 0. For

any 1) € C¢ () we compute the L2 inner product by multiplying with ¢ and integrating:
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Table 4: Parameterization of the fine-tuning U-Net heads U/, and U,,.

Hyperparameter Value

U-Net base widths [64, 64, 96, 128]
Embedding width (time/aux) 64

Hidden lift (internal width) 256

Self-attention stages [2, 3]

Attention heads 4

(Lot )roe = [ (-9-(@Va) - )6 dg
Q
One application of the divergence theorem yields

(Lau, ) r2(0) =—/ (aVu-n)pdE

o0

+/(aVu-V@/J)—fwd§
Q
=/Q<aw-vw>—fwd5,

where the boundary term vanishes because of 1|s = 0. This expression only contains a first-order
derivative of u and can be used to compute in the computation of the weak residual. To obtain a
dimensionless, coefficient-scaled quantity comparable across locations, we normalize by the local
mean permeability over the support of 1,
ap = [ aga R = Y
| supp 1/J| supp ¥ Q)

In practice, supp v is the compact patch where v (or its mollified variant) is nonzero, so that @,
captures the local coefficient scale used to normalize the residual.

Linear Elasticity. For any compactly supported vector test ¢ € Cg(Q; R?), the weak residual is

R[] = (Lpu,Y)re@) = A(—V'U(U;EW))%/)dﬁ-
A single integration by parts yields

R[w}:—/(m(an)WdS + /Qa:vwdg = /Qaszdg,

since ¥|pn = 0. Here “o : V1)” is the Frobenius product and we denote the stress components by
Oz, Ozy(= Oyz), 0yy. To reuse the same scalar test generator for both momentum equations, we
restrict to tests that share a single scalar profile in both components. Concretely, we take

@ = (4,0, YW =(0,v), ¢ eCHQ.

With this restriction, residuals can be computed component-wise
<£Eua ¢(£)> = /Q(me 851'(/) + Ozy 852'(/J) df, <[/Eua lb(y)) = /Q(O-ZMI aflw + oy 652 ¢) df

To obtain a dimensionless, coefficient-scaled quantity, we normalize by the local mean modulus over
the support of 1,

— 1

By Lpu, 1#('”))7 BW)

~ o Lpu,p®)
i p——— E@)ds,  RW] = < [¥] = (Lpw 07)
| supp 1/1| supp ¥ Ew Ew
For a family of tests {@/}k},i\[:l, the scalar residual used in experiments is the /> aggregation over
components followed by averaging over tests. Therefore, the weak residual for the elasticity experi-
ment is

N
Rueat = 3 S (ROW) + (R [ua])).

k=1
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Wendland-wavelet test family. For estimating the weak residual accurately and to provide a
strong learning signal, we need to sample sufficiently many test functions. Evaluating them on
the entire computational grid would be prohibitively costly. We therefore consider test functions
which are locally supported, such that we can restrict computations to smaller patches. Wendland
polynomials are a natural candidate meeting these requirements since they are compactly supported
within unit radius and allow for efficient gradient computation. Here, we will describe the test
functions in detail.

Each test function is drawn from a radially anisotropic family.

Yoon(®) = (1-r(x))} (4r(z) + 1) (1-64br(z)*),

Wendland C2 optional wavelet

where r(z) = \/ > (T —¢)? /o3. Length-scales o; are uniformly sampled from the range

[Omin Aj, Omax A;]. By multiplying opi, and opax with the grid spacing A, of axis j, we ob-
tain a parametrization that is intuitive to tune since the length-scales of the test functions are given
in pixel units. Instead of also sampling center points ¢ uniformly and independently from the full
domain {2, we instead start from the grid coordinates of the data, considering each grid point as one
center. We found that this way of ensuring spatial coverage improves training efficiency. To still
retain stochasticity, we apply i.i.d jitter to each center point. b ~ Ber(p) randomly toggles a high-
frequency wavelet factor that provides additional variability within the test functions and proved
especially effective on noisy data.

To enforce 1);|sq = 0, we multiply every test function by a bridge mollifier

m(f) = ((f - gmin)(&max - g))/(ﬁmax - 5H1in)27

applied per axis. This legitimises the application of integration by-parts in the derivation of the
weak forms. At training time we sample a set of test functions {( )}N “ independently per residual
evaluation and define the loss as

Rweak (z, @) Ntest Z| (Low, D) 2.

i

D.4 ADJOINT MATCHING DETAILS

As mentioned in the main paper, we introduce a scaling coefficient  that allows us to attenuate the
magnitude of the noise variance. In this section, we provide a justification for using £ > 0 and lay
out numerical heuristics used in the implementation.

Memoryless Noise. |[Domingo-Enrich et al.|(2025)) define a generative process with noise schedule
o2(t) to be memoryless, if and only if 0%(t) = 21, + x(t) with x : [0, 1] — R chosen such that

t
vt € (0,1) tl/i—>moﬁt/ exp (— /t/ );E;) ds) =0.

Specifically, they refer to o (t) = +/27; as the memoryless noise schedule. In our setting of 3; = ¢
and v; = 1 — ¢, the memoryless noise schedule can be simplified to
2(1—1¢)

Y

o(t) =

Lemma 1 (Scaling of memoryless noise). Consider a generative process as in[I|with 3, = t and
v =1—1t For0 < k < 1, the schedule 0*(t) = (1 — k) 21, is memoryless.

Proof. First, we consider the integral term. The desired o?(¢) = (1 — k) 2n; implies that

K
) = —2km = 292 ——— .
x(t) K1)t "
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With this, we can simplify the integral term:

K b ‘1 1
—/ X(Sz)ds:/ﬁ/id(s:n/f—l— ds
v 272 v s(1—) v s 1l—s

:mp%@)fbﬂlfﬁﬁ

1 t 1 2
=k|lo —lo .
1t 1w
Thus, for an arbitrary fixed ¢ € (0, 1), it holds that

t /
[ x(s) o t t
By exp( /t/ 202 ds> =t exp(& <log1_t 1Og1—t/>>
t \"( t \"
=t [ —— -
<l—t> (l—t’)

t K
:() (1) ——0.
1-1t t’—0
——— " ——
const —0 limited

O

Therefore, scaling down the noise schedule by a factor 1 — & is justified and consistent with the
theory provided in|Domingo-Enrich et al.| (2025).

Heuristics. Still, the term 7; causes numerical problems for ¢ = 0. Furthermore, it forces the
control u to be close to zero for ¢ close to 1. Following the original paper, we instead use

1—t+h
"SR
where we choose h as the step size of our numerical ODE/SDE solver. This resolves infinite values

and allows for faster fine tuning by letting the fine-tuned model deviate further from the base model
closetot = 1.

)

While & is an effective tool to mitigate residual noise in final samples, increasing slows down train-
ing. As another way of improving sample quality without adding computational cost, we consider
non-uniform time grids when sampling memoryless rollouts. We observe that the most critical
phases of sampling are at the beginning, where noise magnitudes are the highest, and at the end,
where final denoising happens. Therefore, we tilt the uniform grid towards the endpoints:

Let S € N be the number of steps and define the uniform grid ¢; = ¢/S fori = 0,...,S. We tilt
this grid toward the endpoints by first applying a cosine—ease mapping

g(t) = % (1— cos(rt)), t €10,1],

which has g(0) = 0, g(1) = 1. For a mixing parameter ¢ € [0, 1], the tilted times are the convex
combination }
ti = (1—q)t; + qg(t;), i=0,...,5.

{t;} is strictly increasing and distributes grid points more densely near ¢t = 0 and ¢ = 1 for ¢ > 0.
For PDE experiments, we use ¢ = 0.9. This heuristic was not needed for latent-space models.

Loss Computation. As in the original paper, we do not compute the Adjoint Matching loss
(Equation {4) for all simulated time steps, since the gradient signal for successive time steps is
similar. Note that for solving the lean adjoint ODE, we do not need to compute gradients through
the FM model, therefore we can compute the lean adjoint states efficiently but save computational
ressources when computing the Adjoint Matching loss. Again, the last steps in the sam-
pling process are most important for empirical performance. For that reason, we also compute the
loss for a fraction of last steps K,y Additionally, we sample K steps from the remaining time steps.
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To ensure stable learning, we apply a clipping function to the loss to exclude noisy high-magnitude
gradients from training. Empirically, the values provided in|Domingo-Enrich et al.|(2025)) work well
in our setting, i.e. we set the loss clipping threshold (LCT) as LCT, = 1.6 A2 and LCT,, = 1.6 A2
respectively.

D.5 FULL TRAINING ALGORITHM

Algorithm [T] details the complete optimisation loop used in all experiments. Starting from the pre-
trained base flow v**¢ we attach two residual heads that (i) condition the state flow vf‘r on the latent

parameter « and (ii) predict the parameter flow v{"a. Their respective output layers are initialized
to zero. The inverse predictor ¢ is first pre-trained on base samples and then frozen, providing
surrogate target flows for a. Each epoch rolls both the base and fine-tuned trajectories on the tilted
time grid, solves the lean-adjoint equation, and updates only the fine-tune parameters 6 through the
Adjoint-Matching loss.

Algorithm 1 Adjoint Matching on Joint Evolution

Input: initialise core v™ < v°*¢, add residual-style output heads to get v, vt

1: Pretrain o based on 1 samples generated with v?%° by minimizing Ryeak (71, (1))
2: Freeze weights of v2*¢ and ¢, denote trainable parameters as ¢
3: for number of epochs do

4: l;oNN(O,I), Qg NN((LI)

5: T < GET_TILTED_TIME(T)

6:  foric |T'|do ~

7 t«T, tt+« Ty, h+tt—t
8: VDS = P (1, 1)

9. phuse ¢ Shzas

10: vgyt, vgyt — vl (zy, at,vgﬁﬁt)

11: a4 < SDE_STEP(x}™¢, v0%¢, o (t), h)
12: x}y < SDE_STEP(z}, vl ,, o(t), h)

13: ofy < SDE_STEP(of', v} ;,0(t), h)
14: end for

15: @< SOLVE_LEAN_ADJOINT(z%*¢ 2ft oft)
16: 0 < GRADIENT_DESCENT(, L(@i; X, a))
17: end for

18: return o™, o

E DETAILS: EXPERIMENTAL RESULTS

Here we describe the fine-tuning configuration of the conducted experiments. Specifics about the
base model FM training can be found in Appendix [C] In all experiments, we use AdamW as the
optimizer with a weight decay of 0.01 and all fine-tuning is conducted on a single NVIDIA L40S
GPU.

E.1 DARcCY

For the Darcy experiments, we use the hyperparameters listed in Table [5] Note that one epoch
amounts to exactly one gradient descent step, meaning that we only fine-tune for 20 total steps. The
parameters A\, A, and Ay are varied in the experiments, see Figurein the main text.

In panel (a) of Figure E} we report a SSIM-based (Wang et al., 2004) metric for diversity, which is
implemented as follows:
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Table 5: Darcy fine-tuning hyperparameters.

Hyperparameter Value
Time-tilting factor ¢ 0.9

Az varying
Ao varying
Y varying
Klast 20

K 20

Noise scaling s 0.9
Sampling steps (per trajectory) 100
Training epochs 20
Learning rate 0.00002
Batch size 15

Given a batch {a; } 2, of single-channel parameter maps scaled to [0, 1], we define diversity as the
mean complement of the pairwise structural similarity index (SSIM) :

Dssm({ai}il,) = € Z (1 —SSIM(ai,aj)), a; €10, 1)V,

(]23) 1<i<j<B

With SSIM € [0, 1] (data range = 1), Dssiv € [0, 1] and larger values indicate greater sample
diversity.

E.2 GUIDANCE

For generating the guidance results, we use the same model as in the Darcy experiments to further
highlight that we can infer functional joint distributions when starting from noisy observations.
Instead of the usual Euler stepping, here we use a Heun sampler following Huang et al.| (2024).
While this is more expensive, since we need to differentiate through two forward passes of our
model to obtain the guidance gradient, it empirically improved faithfulness to the sparse observations
significantly. Note, however, that we only guide on sparse observations and not on PDE residuals.
The full sampling procedure is show in Algorithm [2| In our experiments, we use 100 steps for
sampling and guidance scales of v, = 7, = 0.75.

E.3 ELASTICITY

Fine-tuning in the elasticity experiment is more challenging than the Darcy denoising experiment,
which is why we increase the number of fine-tuning epochs to 100. We fix A, = A\, = 100k and set
the regularization Ay = 1k. Other parameters are the same as in the Darcy experiments.

We compare our fine-tuning approach with the inference-time correction method ECI presented in
Cheng et al.| (2024). Our implementation of the sampling correction method is given in Algorithm
[3l For ECIL, we set M/ = 5 and use 1000 steps when sampling, compared to 100 steps used when
sampling from the fine-tuned model. The reported residual heat maps in the main paper show one
test function per grid point, where the magnitude indicates local error without aggregating across
test functions.

E.4 NATURAL IMAGES: RECOLORING

For natural-image experiments, we adopt the class-conditional Latent Flow Matching (LFM) model
of |Dao et al.|(2023) trained on ImageNet-1k (Deng et al.l [2009) with a DiT backbone (Peebles &
Xie, [2023). We fix an ImageNet class label y to condition the generator and hold a global text
prompt c to define the fine-tuning direction. As a reward we use PickScore vI, a CLIP-H/14-based
preference scorer trained on the Pick-a-Pic dataset, that evaluates image—text compatibility via co-
sine similarity in the CLIP embedding space (Kirstain et al.,|2023; Radford et al.|[2021}; |Cherti et al.}
2023 Schuhmann et al.,|2022)), implemented with TRANSFORMERS (Wolf et al., 2020).

21



Under review as a conference paper at ICLR 2026

Algorithm 2 Guided Heun sampler with sparse observations

Require: initial state z(; initial parameter «y; observed targets v ps; index set Z; steps .S; guidance
scales ., 7Va; base fields v¥, v$; fine-tuned joint field v!*
Ensure: trajectories {x(V}  and {a(V}_,
1: 20 X0
al®) o
t; < i/Sfori=0,...,5
h<«1/8

Rl N

fort:=0toS —1do
Predictor (Euler):
VT v;;”i(x(i))
vgase « Ug(‘r(i)a a(i)a vz)
(0%, 0%) + v{t(aﬁ(i), al®, vg“asc)
i a® 4+ ho*
&+ a4 oo

T2 Y R R

—_—

12: ifi < S — 1 then

13: Corrector (Heun):
14: v} < vf, (2)
15: Ugase,—&- — Ugﬂ (j7 a, vi)
16: (0%, 0%) v (2, &, Ve 4)
17: One-step terminal extrapolation:
18: dl(—@+(1—ti+1)1~)$
19: Sparse-observation loss:
1 . A~ a2

20: L+ ] ZjeIHaobs[]] - al[J]HQ
21: Heun average update:

. . h
22: g+ (@) 4 5 (07 +93)

) , h
23: alith) o) 4 B (™ +0%)
24: Decaying guidance:
25: s+ +/1—-1i/8
26: ) 20+ _ 5y VL
27: alth) a1 s~ VL
28: else
29: Last step (no correction/guidance):
30: 20D ¢
31: alith) &
32: end if
33: end for

34: return {x(i)};s:o’ {Of(i)}zszo

Concretely, we maximize R(T (D(z), a), c), where D is the latent-space decoder and T'(+, «) is

a parametric per-pixel recoloring with coefficients «. The recoloring operates in logit space to avoid
saturation: with D(z) = z : Q—(0,1)3,

: e (§)
x = clip(x(§),e,1 —¢), 0(€) =log—2
we apply a residual r(&; ) = a ®%25(2(£)) built from RGB monomials up to total degree D and
map back via y(&; o) = o(4(€) + r(&; ). Equivalently, for channel ¢ € {R, G, B},

e R?,

M
yc(f; Oé) = 0<EC(§) + Z Qem (bm(x(f)) + ac,O)a (bm € (I)D-
m=1
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Table 6: Elasticity fine-tuning hyperparameters.

Hyperparameter

Value

Time—tilting factor ¢

Klast
K

Noise scaling s
Sampling steps (per trajectory)
Training epochs

Learning rate
Batch size

0.9
100k
100k
1k
20
20
0.9
100
100
0.00002
15

Algorithm 3 ECI-style sampling with boundary correction

Require: initial state x; steps S; inner correction iterations M ; model drift v(-); correction oper-

ator C(-); noise sampler Noise(+)

Ensure: trajectory {x(V}3_,

1:

2

3
4
5

15:
16:
17:
18:
19:
20:

21
22

l‘(o)(—l‘o
st 1/Sfori=0,...,8

:fort=0toS —1do
: t+—t;
. tnext<_ti+1

F 2@
for j =1to M do
v 4 v (Z)
Tos— T+ (1 —t)v
Teorr < C(xos)
71 < Noise(shape of zg)
T+ (1=t)n—+txeon
end for

v v(T)

Tos— T+ (1 —t)v
Leorr € C(xos)

71 < Noise(shape of xg)

: end for
. return {z(V}5_

Inner ECI corrections at fixed ¢:

Final correction and roll-forward to t"¢*:

2+ (1 _ tnexl) n+ fnext Teorr

one-step Euler update
apply boundary correction

stochastic convex blending

This residual parameterization is identity at initialization (o = 0) and provides a low-dimensional,
channel-coupled appearance pathway that can disentangle content from presentation or reach color-
ings underrepresented by the base LFM. It is related to CNN-predicted polynomial color transforms
(quadratic in|Chai et al.|(2020)), whereas we use cubic polynomials and learn solely via the reward.

The parameter predictor ¢ here maps from latent feature tensors z to parameters o . First, a com-
pact scene descriptor is extracted by passing z through convolutional transformations, aggregating
information across multiple spatial scales via downsampling and global pooling, and enriching it
with low-order channel statistics of z (e.g., moments). The concatenated descriptor is projected into



Under review as a conference paper at ICLR 2026

a fixed embedding space, refined by a lightweight pre-LayerNorm MLP with a residual connection,
and finally mapped by a linear head to the recoloring coefficients c.

Building on the inverse predictor, we augment the base U-Net generator with two lightweight resid-
ual heads that couple image dynamics and color—parameter evolution. First, the image path predicts
the base drift v?f‘;e (z,t). Then, we form a compact a-token by flattening the current color parameters
« and mapping them through a small MLP. This token is broadcast to a k,,-channel feature map and
concatenated with (x, v%’f‘;"’) into a shallow U-Net “correction” that outputs an additive refinement,
yielding

oy = o+ Unfa, of, map(a), ¢).

Second, the parameter path updates the polynomial recoloring coefficients by a residual on top
of the baseline parameter field vff‘;e. Here, a dedicated a-projection module mirrors the inverse
predictor: multi-scale pooled conv features are fused—at the foken level—with tokens from « and
v?f‘jf via a small fusion MLP, AdaLN/FiLM modulation of a head token, and a light SE rescaling of
conv features. The head then predicts a delta added to the baseline,

ft __ base base
vt,a - Ut7a + Z/[a(.’lﬁ, Q, Ut7a )

All correction heads are zero-initialized at their final projections, so fine-tuning starts from the base
behavior and departs smoothly as training progresses. Table [7]lists the parameters of the correction
U—Nets. In total, the modified architecture adds ~9M parameters to the ~130M parameters of the
base DiT backbone.

Table 7: Correction head hyperparameters (image and parameter paths).

Hyperparameter  Value

ke 16

U-Net base widths [96, 128, 160, 192]
U—Net embedding 96

U-Net hidden lift 256

Attention stages [2, 3]

Attention heads 8

With the LFM model, we use 40 steps when sampling and use the same training specifications as
the original Adjoint Matching paper (Domingo-Enrich et al., 2025). Again, we first pretrain the
predictor ¢, and then perform joint fine-tuning with our Adjoint Matching formulation. Fine-tuning
is performed for 100 epochs with a batch size of 15.
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F ADDITIONAL RESULTS

F.1 DENOISING

L.

(a) Base FM model

(b) Fine-tuned with Ay = 1.0 (c) Fine-tuned with Ay = 0.0

Figure 7: Darcy flow: non-curated samples of pressure distributions (left columns) and recovered
permeability fields (right columns). Each row was generated using the same initial noise across the
three models. Color scales are normalized per row for the pressure distributions. For the base model,
permeabilities are obtained with the pre-trained inverse predictor.
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F.2 ELASTICITY

m
- i
—

a—
ﬂ
—

ﬂ
—
—

-~ o

(a) Base FM model (b) Fine-tuned with model

Figure 8: Non-curated samples from the elasticity experiment, where fine-tuning has to scale down
the lower boundary.
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aVao)
0uQaa0

Figure 9: Guided samples with an increasing number of given observations, specifically
[25, 50, 100, 200, 300, 400, 500, 750, 1000]. For each number of conditioning points, we generate
two samples from independent noise and condition on the same sparse samples, indicated as white
markers in the right column. As expected, with more points both x and o become more constraint
and less diverse.
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F.4 NATURAL IMAGES: RECOLORING

S d

N \ o Shile ' o
(b) Vanilla Adjoint Matching

g g 2R ;
(c) Joint Adjoint Matching

(a) Base LFM model

Figure 10: Non-curated independent samples from LFM model conditioned on class “macaw” and
using guidance scale 4.0. Models were fine-tuned to maximize PickScore using the prompt “close-
up pop art of a macaw parrot”.
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|1 iTF

.

(a) Base LFM model (b) Vanilla Adjoint Matching (c) Joint Adjoint Matching
Figure 11: Non-curated independent samples from LFM model conditioned on class “boathouse”
and using guidance scale 4.0. Models were fine-tuned to maximize PickScore using the prompt
“boathouse with green and purple curtains of northern lights.” Our joint model is able to generate
the colors demanded in the prompt while retaining diversity in the generated boathouses.
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