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ABSTRACT

Generative models frequently suffer miscalibration, wherein class probabilities
and other statistics of the sampling distribution deviate from desired values. We
frame calibration as a constrained optimization problem and seek the closest
model in Kullback-Leibler divergence satisfying calibration constraints. To ad-
dress the intractability of imposing these constraints exactly we introduce two
surrogate objectives for fine-tuning: (1) the relax loss, which replaces the con-
straint with a miscalibration penalty, and (2) the reward loss, which converts cali-
bration into a reward fine-tuning problem. We demonstrate that these approaches
substantially reduce calibration error across hundreds of simultaneous constraints
and models with up to one billion parameters, spanning applications in protein
design, image generation, and language modeling.

1 INTRODUCTION

Generative models commonly produce samples whose statistics deviate systematically from desired
values. Such miscalibration occurs in many domains. Image models, such as GANs and diffusion
models, exhibit mode collapse, producing images that cover only a subset of the training distribution
(Arora & Zhang, 2017; Qin et al., 2023). Language models represent gender, race, religion, and age
in ways that reinforce societal biases (Gallegos et al., 2024). In synthetic biology applications,
protein structure models produce samples that have alpha-helical and beta-strand substructures at
frequencies atypical of proteins found in nature (Lu et al., 2025), and DNA models generate samples
that contain subsequences at frequencies that differ from those in human DNA (Sarkar et al., 2024).
These calibration errors arise from many sources including dataset imbalances, suboptimal training
dynamics, and post-hoc adjustments such as low-temperature sampling or preference fine-tuning.

We frame calibration as a constrained optimization problem: find the distribution closest in
Kullback-Leibler (KL) divergence to the base model that satisfies a set of expectation constraints.
We introduce two fine-tuning algorithms—CGM-relax and CGM-reward (“calibrating generative
models”)—that approximately solve the calibration problem by stochastic optimization. We demon-
strate across three applications that CGM effectively calibrates high-dimensional generative models
to meet hundreds of simultaneous constraints.

Problem statement. Consider a trained “base” generative model py,, () with parameters Gpyge, a

statistic h(z), and an expectation value desired for the statistic h*. We say py,,. is calibrated if

Ep,,  [R(z)] = h* and miscalibrated if E,, [h(z)] # h". In the case that pq,,, is miscalibrated,

our goal is to fine-tune its parameters Gy,se to some 6 such that py is calibrated.

For example, if h(z) = 1{x € C7} is the 0-1 function indicating whether « belongs to class C, then
Py, [P(T)] = po,.(x € C) is the probability that pg,,, generates a member of class C. When

h* > E,, [h(z)], calibration corresponds to increasing the probability of class C.

For a given h(-) and h*, many calibrated models may exist. Provided a calibrated model exists, we
seek the one that is closest to the base model in KL divergence,

pe~ := arg min Dy, (pg || pe,,..) suchthat E,, [h(z)] = h", (1
Po

where Dki. (p' || p) = Ep [log p’(x)/p()] for p’ with a probability density with respect to p. Out
of many possible notions of distance we choose Dk because it is simple and, as we will see, is
tractable for some important classes of complex generative models.
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Related work. Within the generative modeling community, there has been a wealth of fine-tuning
methods that incorporate preferences at the level of individual samples through a user-specified
reward (Christiano et al., 2017; Rafailov et al., 2023; Uehara et al., 2024; Domingo-Enrich et al.,
2025). None of these methods solves the calibration problem, which imposes a hard constraint at
the distribution level.

Two prior works (Khalifa et al., 2021; Shen et al., 2024) have proposed fine-tuning procedures for
distribution level constraints, but each applies narrowly to a single class of generative models. Khal-
ifa et al. (2021), the most similar to the present work, fine-tunes autoregressive language models to
match distributional constraints with an algorithm similar to CGM-reward. Shen et al. (2024) pro-
pose a method for balancing class proportions in diffusion models that relies upon optimal transport.
Compared to the present work, neither method reduces a majority of calibration error, and Khal-
ifa et al. (2021) is demonstrated only for low-dimensional (<10) constraints. By contrast we show
CGM reduces the majority of calibration error in all applications and is successful at calibrating to
>10? constraints. Appendix A provides an extended discussion of related work.

2 CALIBRATING GENERATIVE MODELS WITH CGM-RELAX AND REWARD

The calibration problem is challenging for non-trivial generative models because both the objective
and the calibration constraint in equation (1) are defined by intractable expectations. To address
this problem, we propose two alternative objectives whose unconstrained optima approximate the
solution to (1). These objectives still involve expectations under py, but we show how to compute
unbiased estimates of their gradients, which permits their minimization by stochastic optimization.

We call our algorithms optimizing the two surrogate loss functions CGM-relax and CGM-reward
(Algorithms 1 and 2, respectively). These algorithms require only that one can draw samples « ~ py
and compute py(x) and Vg log pg(x).

2.1 THE RELAX LOSS

The relax loss avoids the intractability of imposing the calibration constraint exactly by replacing it
with a constraint violation penalty

£relax(9) = ” Epe [h(ib)} _ h*||2 +ADkL (p9 ” p@huse)v )
Lviﬂl LKL

where A > 0 is a hyperparameter that trades off between satisfying the calibration constraint and
minimizing the KL divergence. In our experiments we choose A by a grid-search. In the limit as
A — 0, £V is the dominant term in the relax loss, and we expect the minimizer of (2) to approach
the solution of the calibration problem (1).

Suppose we have M independent samples {x,,}M_, from py. To estimate L% we separately
estimate the KL divergence (LXL) by

Z p0 xm
me1 pebase (wm)
and the constraint penalty (£¥°') by
| M 2 1 M | M 2
£ = | =5 h(zp) - h*|| - —— h(xn,) — — Y h(xm, 3

where the second term is a bias correction. Combining these estimators yields our overall estimator
for the relax objective, £ = £¥iol 4+ XKL Appendix B.1 shows £ is unbiased for L3,

2.2 THE REWARD LOSS

The reward loss avoids the intractability of imposing the calibration constraint exactly by leveraging
a connection between the calibration problem (1) and the maximum entropy problem (Jaynes, 1957;
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Kullback, 1959; Csiszar, 1975). We first introduce the maximum entropy problem, then show how to
approximate its solution with samples from pg, . Lastly, we propose the reward loss as a divergence
to this approximate solution and describe connections to reward fine-tuning.

Maximum entropy problem. The maximum entropy problem solves

argmin Dgr, (p || po,.), suchthatE,[h(xz)] =h" 4)
PEP (Popy, )

where P(p) is the collection of probability distributions that have a density with respect to p. The
calibration problem and the maximum entropy problem differ only in their domains: the domain
of the calibration problem is generative models py in the same parametric class as pg,, ., rather
than the nonparametric set P(pg,,.. ). Despite this difference, we obtain an alternative objective by
considering the solution to (4). The following theorem characterizes this solution.

Theorem 2.1. Under assumptions, there exists a unique solution to (4) that has the form
Pa () o po,,, () exp {ra-(x)}, ralz) = a'h(z). )

Appendix C provides further exposition to the maximum entropy problem as well as a proof.

The domain of the calibration problem may not contain p,+. But if the class of generative models
is very expressive, its optimum pg- will be close to pe,+. This observation suggests a second way to
remove the constraint in equation (1): fine-tune py to minimize a divergence to pe,-.

In Appendix C.3 we demonstrate that, surprisingly, a similar statement can be made for the re-
lax loss: when py is sufficiently expressive, the optimum of the relax loss is close to py(x)
Do () €XP {7e, ()}, Where axy depends on the regularization strength A > 0 and is not generally
equal to a*. However, as A — 0, ||, — a*|| approaches zero at rate A. This formalizes our intuition
from Section 2.1 that as A — 0, the relax loss solves the calibration problem.

Estimating p,+. The idea of minimizing a divergence to po+ introduces a challenge: even when
the solution po~ to the maximum entropy problem (4) exists, its parameters o™ are not immediately
computable. To address this challenge, we leverage Wainwright & Jordan (2008, Theorem 3.4),
which states that, under conditions, solving problem (4) is equivalent to computing

argmax o' h* — log </ exp{ra(w)}pgm(a})da:) . (6)

[0 4

In other words, by solving (6) one obtains the parameters a* of 7, (), which then determine the
solution p+ to the maximum entropy problem up to a normalizing constant.

However, a difficulty of solving (6) is that the integral in the second term will be intractable for most
generative models. We propose drawing N independent samples {x,, })_, from py, . and replacing
the integral with respect to pg, . by the integral with respect to the empirical distribution that places
probability mass N ! on each of the samples x,,,

N
1
ay = argmaxa' h* — log (N Z exp{ra(:cn)}> i @)
« n=1

Problem (7) is concave, and when &y is well-defined (see Appendix C.2), it can be found by convex
solvers. We demonstrate in Appendix C.4 that &y converges to a* in the limit of many samples N,
and we derive an expression for the asymptotic variance of ay .

L£revad and its estimation. With &y in hand, we formulate our second loss as a divergence to ps,, -
For simplicity and because it avoids the requirement to compute the normalizing constant of pg ,,,
we again choose the KL divergence. In particular, we define the reward loss £** to be

L£%(0) = Dxo (po || pay) = Ep,[10g po (@) /P ()] + Epy [-1a (2)] +C, ®)

LKL =Dy (Pe I Poyae ) L£r

where C' = E,, [exp{ra, (z)}] is a normalizing constant that does not depend on 6.
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Algorithm 1 CGM-relax fine-tuning Algorithm 2 CGM-reward fine-tuning
Require: py, .., h(-),h", M, and A Require: py,..,h(:),h", M, N
ol . > Estimate o* for reward
> Initialize and optimize ii.d.
L1y N ~ Doy
P = Pbiase P Sase
while not converged do &y « argmaxa'h’ —log 3~ exp{ra(@n)}
> Sample and compute weights > Initialize and optimize
ii.d. e
L1y TN pstopfgrad(é) Do . Pbyase
W,y — p9($m>/pstopfgrad(0) (1) while not converged do .
) ) > Sample and compute weights
> KL loss with LOO baseline - 2., »
lm lngs op-grad(@ (wm)/pé’ ase(wm) Lo M Pstop-grad(f)
ZLOO « lmt_p j\/[ld(l )z: L ;m/ W, < Po (wm)/pstopfgrad(G) (mm)
m — m'#m
LKL, 1 S w JLOO > KL loss with LOO baseline
m
Mo I =108 Pstop-graa(0) (Tm)/Poy s (Tm)
> Constraint violation loss JLOO g Ml > ) Lt
* m — m’#m
@m%wm(h(wm)_h ) o E\KL<_ sz lLOO
val — Hﬁ Ehm||2 _ ﬁVar[hlIM], M m 'm
Varlhia] = & S [[Bm — 5 3 b |12 Dngggatlve reward with LOO baseline

o —ra(®Tm) — L Dtz T (@)
> Total loss and update o~ 1 ﬁ%ol 7
~ Ay LN = w,r
Erelax — )\E\KL 4 £v101 M mim
6 « gradient-step(6), Vo L) > Total loss and update
Ereward — Z:\KL + Er
6 + gradient-step(6, Vo L")

We call 7o () the reward and L% the reward loss because £%@4 coincides with the objective
of reward fine-tuning algorithms. The goal of reward fine-tuning is to fine-tune the base generative
model pg, . to a tilted version of itself, where the tilt is determined by a so-called reward r(x).

Just as for £X in the relax loss (2), Monte Carlo sampling provides an unbiased estimate of £".
This, in turn, gives us an unbiased estimate of the reward loss Lreward

2.3  GRADIENT ESTIMATION

We next describe our approach to computing unbiased estimates for the gradients of £™#(f) and
L£%@d(g), This enables optimization of the relax and reward losses via stochastic optimization. We
leverage the score function gradient estimator (Williams, 1992; Ranganath et al., 2014) and a similar
importance sampling-based gradient estimator for the relax loss.

Score function gradient estimation. The primary challenge to computing gradients is the inability
to directly exchange the order of the gradients and expectations taken with respect to 6. That is,
because VoL(0) = VoE,, [f(x,0)] # E,,[Vof(x,0)], VoL(0) can not in general be usefully ap-
proximated by M =1 " Vg f(2,,,0) from samples x,,, of py. To address this challenge, we observe

po()

L(0)=L(6,0):=E [ fa:,b‘}, 9
( ) ( ) Po Do ( .’B) ( )

for any set of model parameters 6’. Since the expectation in equation (9) does not depend on 6, we

can approximate its gradient with Monte Carlo samples from pg.. Moreover, since the choice of 6’

is arbitrary, we can choose 6'=60, draw independent samples x,,, from pg, and compute

, 1 1
[VoL(0.0)] [o=0~ 57D po@) Voo @n) (@, O)] (10)
The density ratio pp(x,,)/pe’(.,) in equation (9) can be understood as the weights of an im-
portance sampling estimate against target pg with proposal py. Perhaps unintuitively, when 6’=60
this ratio is necessarily equal to one by construction but its gradient is the “score” function
(Vopo(xm))/pe(xm) = Vlog pe(x) which is non-trivial in general (Mohamed et al., 2020). Al-
gorithms 1 and 2 each demonstrate an implementation that computes these weights with a copy
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Figure 1: Calibrating mixture proportions in a 1D GMM. A: The CGM-relax and CGM-reward
solutions closely approximate the maximum entropy solution. B: (top) The CGM-relax regulariza-
tion parameter A trades off between constraint satisfaction and closeness to the base model (bottom)
CGM-reward is accurate when enough samples N are used to estimate a*.

of the parameters @ detached from the computational graph, which we denote by st op~grad(f).
Although the term £Y! that appears in the relax loss is not of the form E,, [f(z, )], we can still
construct an unbiased estimate to its gradient using importance sampling (see Appendix B.2).

Although score function gradient estimates are known to suffer from high variance (Mohamed
et al., 2020), we show that, paired with variance reduction strategies (Appendix B.2), they per-
form well even in problem settings with high-dimensional latent variables, such as diffusion models
and masked language models (Section 4.1).

3  SIMULATIONS: DETERMINING WHEN CGM THRIVES AND STRUGGLES

To understand the success and failure cases of CGM, we perform evaluations in a tractable “toy”
setting. This setting allows us to understand the role of the CGM hyperparameters A and N, and to
test CGM in challenging problem settings, including rare events and high-dimensional constraints.

Simulation setup and evaluation. We consider fine-tuning a diffusion model targeting a Gaussian
mixture model (GMM) to reweight the mixture proportions of each mode. Here, py(x) is a gen-
erative model of continuous paths & = (z(t)):c[o,1], Whose evolution is described by a stochastic
differential equation (SDE). To sample from py, one first draws 2(0) from the tractable initial distri-
bution and then simulates the SDE starting from time ¢=0 up until time t=1. Appendix D.1 provides
additional background on diffusion models.

Evaluating CGM on diffusion models targeting reweighted GMMs has several advantages. First, we
may choose the base diffusion model so that the final marginal py(x(1)) exactly matches a target
GMM (Anderson, 1982; Song et al., 2021); this enables us to focus solely on calibration rather than
fitting the base model. And since the calibration constraint depends on the path only at time =1,
we can compute the KL divergence of the maximum entropy solution to the base model, and thereby
measure the suboptimality of the solutions produced by CGM.

Selecting hyperparameters for CGM-relax and CGM-reward. We first initialize our base model
Doy, Such that pg,._(x(1)) is a one-dimensional Gaussian mixture with two well separated modes
(Figure 1 A). We define the calibration problem with statistic h(x) = 1{x(1) > 0} to upweight the
mass in right mode from E,, _[h(z(1))] = 0.5to h* = 0.8.

For CGM-relax we observe that the regularization parameter A trades off between constraint satis-
faction and deviation from the base model (Figure 1B). With large A the model deviates little from
Do, but does not satisfy the constraint, whereas for small A the model satisfies the constraint but has
KL to pg,,. that exceeds that of the maximum entropy solution. For CGM-reward, we observe that
increasing N results in more accurate recovery of the variational parameters o™ and thereby a bet-
ter approximation to the maximum entropy solution. For appropriate hyperparameters, both solve
the calibration problem to high accuracy (Figure 1B). In the remaining experiments, we perform
grid-search to select A in CGM-relax and use N = 10° samples to estimate a* in CGM-reward.
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Figure 2: A: CGM effectively upweights the probability of a rare mode in a 1D GMM. B: CGM-
relax calibrates the base model to up to 10% constraints, whereas CGM-reward is not well-defined for
>30 constraints. When ay is fixed to a* (red dashed line), CGM-relax outperforms CGM-reward.

Upweighting rare events. Increasing the proportion of generations belonging to rare classes is
central to applications including protein ensemble modeling (Lewis et al., 2025) and reinforcement
learning (O’Kelly et al., 2018). To assess the performance of CGM in this setting, we consider
variations of the GMM reweighting problem in which we consider increasingly small mixture pro-
portions 7 = Ep, [h(z(1))] of the mode to upweight by calibration. We vary 7 from h* = 0.8

(already calibrated) to 10~°, and use a constant batch size M = 102

We find that both algorithms perform well with base model event rarity as small as 7 = 1073;
the majority of miscalibration is reduced without divergence from the base model much larger than
the maximum entropy solution (Figure 2A). This is surprising since for 7 = 1072, most batches
sampled from pyg, . contain no samples belonging to the second mode. Performance degrades below
this threshold, but we suspect larger batch sizes would allow upweighting even rarer events.

Scalability to high-dimensional models and constraints. We next evaluate how performance de-
pends on the dimensionality, k, of the GMM and the constraint. We take the base model to be a
product of one-dimensional GMMs with marginals as in Figure 1A. For the calibration constraint,
we choose the h(x) = [1{x(1)[1] > 0},..., 1{x(1)[k] > 0}], where x(1)[¢] is the ith dimension
of (1) and h* = [0.8,...,0.8]. Since both the base model py,,, and maximum entropy solution
Do~ are independent across dimension, the KL distance between these two distributions grows lin-
early in dimension. The multimodality of this model, with 2k modes, mimics the multimodality of
practical generative models. We perform CGM-relax and CGM-reward with batch size M = 10%.

In this high-dimensional regime, significant discrepancies emerge between CGM-relax and CGM-
reward (Figure 2B). CGM-relax consistently eliminates the majority of constraint violation up to
k=103, albeit with a non-trivial excess KL divergence to py,,. compared to the maximum entropy
solution py~ that increases linearly with dimension. Although CGM-reward performs well for low-
dimensional constraints (<10), we found that the empirical maximum entropy problem (7) was
infeasible with high probability for >30 constraints. In fact, even when ay is fixed to its oracle
value a* (Figure 2B), CGM-relax still outperforms CGM-reward.

4 CASE-STUDIES WITH DIVERSE MODELS, DATA, AND CONSTRAINTS

We evaluate the capacity of CGM-reward and CGM-relax to solve practical calibration problems
through three applications involving diverse model, data, and constraint types. Section 4.1 calibrates
a diffusion model (Lin et al., 2024) and a masked language model (Hayes et al., 2025) of protein
structure to more closely match statistics of natural proteins. Section 4.2 calibrates a normalizing
flow model (Zhai et al., 2025) of images to eliminate class imbalances on the basis of LLM image-
to-text annotations. Lastly, Section 4.3 calibrates a small autoregressive LM to eliminate gender bias
in generated children’s stories (Eldan & Li, 2023).

Across all examples, CGM reduces the majority of calibration error without significantly degrading
the quality of generations. Consistent with our results in Section 3 we find that optimally-tuned
CGM-relax outperforms CGM-reward, which falls short of meeting the calibration constraints.
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Figure 3: A: Samples from the Genie2 protein generative models before and after calibration with
CGM-relax (A=10"2). B: CGM-relax reduces the distance of secondary structure content to natural
proteins by >4 times for Genie2 and >2 times for ESM3 while maintaining biophysical plausibility.

Baselines. Only two prior works have proposed algorithms for the calibration problem. Khalifa
et al. (2021) propose a method for LLMs that we compare to in Section 4.3. Second, Shen et al.
(2024) propose a method for class-balancing in diffusion models. However, it assumes an existing
probabilistic classifier and so is not applicable in our setting.

Compute cost. All experiments are run on single H100 GPUs (Appendix E provides detail).

4.1 CALIBRATING PROTEIN DESIGN MODELS TO MATCH STATISTICS OF NATURAL PROTEINS

Diffusion generative models have become a central tool in protein design (Trippe et al., 2023; Watson
et al., 2023). However, heuristics such as reduced noise during sampling (see e.g., Yim et al.,
2023) have been necessary to ensure a high proportion of the sampled structures are biophysically
plausible. These heuristics substantially reduce the diversity of samples compared to proteins found
in nature and thereby pose a trade-off between reliability and diversity. For two such protein design
models, we investigate whether this trade-off can be mitigated by calibrating the models to match
the secondary structure composition of natural proteins.

Protein models Genie2 and ESM3 and their miscalibration. The two protein design models we
consider are (1) Genie2 (Lin et al., 2024), a 15M parameter equivariant diffusion model, and (2)
ESM3-open (Hayes et al., 2025), a 1.4B parameter masked language model on tokenized represen-
tations of protein backbones. For each model, we generate protein backbones consisting of 100
amino acids i.e. residues. Both Genie2 and ESM3-open suffer low diversity compared to natural
protein domains in the CATH dataset (Sillitoe et al., 2021); specifically, they produce few genera-
tions with high beta-strand content (Figure 3A). Beta strands, along with alpha helices and loops,
constitute what is known as a protein’s secondary structure.

Calibration constraints on secondary structure diversity. To represent protein secondary struc-
ture as a calibration constraint, we use the empirical bivariate cumulative density function (CDF)
of the fraction of residues in alpha-helical and beta-strand segments. We place up to d = 99 cut-
off pairs (7a,i,75,:) € [0,1]? and define a d-dimensional indicator vector h(z) with components
h(x)li] = I{fa(x) < 70, fo(x) < 785}, @ = 1,...,d, where f,(x) and fz(x) are the
secondary-structure fractions of protein structure . We set the calibration target h* to the corre-
sponding values of the CATH empirical bivariate CDF at these cutoffs.

Results. Performing calibration with CGM-relax yields a nearly fivefold improvement in the di-
versity of sampled protein structures for Genie2 and a twofold improvement for ESM3-open, as
quantified by the symmetrized KL distance between the secondary structure distributions of the
generative models and CATH domains (Figure 3B). This improvement comes at the cost of an in-
creased proportion of ‘design failures’, as defined in Appendix E.1. The ESM3-open base model
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Figure 4: Generatlons from the conditional TarFlow model (Zha1 et al., 2025) before and after
calibration with CGM-relax (A = 10~%). CGM reweights the proportions of animals generated and
produces realistic images. Some artefacts exist after calibration (see e.g., fox).

generates a high proportion of design failures compared to Genie2 (consistent with Xiong et al.
(2025), for example) and this fraction increases slightly upon calibration with CGM.

CGM-reward achieves more modest improvements in secondary structure diversity, which may in
part be due to difficulty in computing & . In order for equation (7) to be feasible with N = 2.5x 10>
samples, we need to reduce the number of cutoff pairs from 99 to 15. CGM-reward fine-tuning
reduces the symmetrized KL distance to CATH by two times for Genie2 and 1.6 times for ESM3-
open. However, for Genie2, CGM-reward also produces fewer design failures than CGM-relax.

The gains in secondary structure diversity achieved by CGM cannot be obtained by simply increas-
ing the sampling noise of Genie2 or the sampling temperature of ESM3. In Figure 3B, we show that
increasing the sampling noise of Genie2 to o = 1 improves structure diversity, but at the cost of 5.3
times more design failures (failure rate 74%) than CGM. The same is true for ESM3 with increased
sampling temperature 7 = 1, which yields a 1.3 times higher failure rate of 97%.

4.2 CALIBRATING CLASS PROPORTIONS IN A CONDITIONAL FLOW MODEL

We next demonstrate that CGM is capable of effectlvely calibrating state-of- the art normalizing
flow models. Normalizing flows generate samples x € RF accordmg toxr = fe !(€), where € ~ p,
is a distribution from which sampling is tractable and fp(x) is a map that is invertible in x for
each 0 (Tabak & Vanden-Eijnden, 2010; Rezende & Mohamed, 2015). By the change-of-variable
formula, the density of « is p.(fo(x))|det(dfp(x)/dx)|. This expression enables computation of
exact likelihoods for maximum likelihood training and calibration.

For our calibration problem, we consider the 463M-parameter TarFlow model (Zhai et al., 2025),
which parameterizes fy as an autoregressive vision transformer (Dosovitskiy et al., 2021) such that
attention is performed over a sequence of image patches. We examine the model trained condi-
tionally on the 256 x 256 AFHQ dataset (Choi et al., 2020), which consists of images of animals
faces belonging to one of three classes: {cat, dog, wildlife}. The wildlife class is further
comprised of {1ion, tiger, fox, wolf, cheetah, leopard}. We observe that, con-
ditional on the wildlife class, approximately 36% of generations from the TarFlow model are lions
and very few (< 7% total) are foxes or wolves. We apply CGM to calibrate the conditional TarFlow
model to generate samples from the wildlife class with equal proportions. For h, we query GPT
05-mini to classify each image as containing one of the six animals or None.

Results. We find CGM-relax reduces miscalibration to the base TarFlow model with little visible
degradation of sample realism (Figure 4). CGM-relax (A=10"%) reduces the total variation distance
of animal proportions, as classified by an image-to-text model, to the uniform distribution from
0.306 to 0.108. Despite apparent sample quality, the Fréchet inception distance to real images in the
AFHQ wildlife class is larger than for the base model (21.9 vs. 15.9). Since this metric is sensitive
to class proportions, we evaluate the calibrated model on the training dataset after balancing classes.
This discrepancy may be explained by visual artifacts introduced in some samples: animals outside
the wildlife class (~ 8%), and apparent “blending” of classes (Figure 8 shows random samples).
While py fine-tuned with CGM-reward remained close to pg,,., it did not satisfy the constraints.

4.3 ELIMINATING PROFESSION-SPECIFIC GENDER IMBALANCE IN CHILDREN’S STORIES

As a third example, we calibrate a language model that generates short children’s stories to re-
move gender bias. TinyStories-33M is an autoregressive transformer trained on children’s stories
generated by GPT-3.5 and GPT4 (Eldan & Li, 2023). We find significant imbalances in prompt-
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Figure 5: A: Gender imbalance and distance from base-model (symmetrized KL from pre-trained
TinyStories-33M). B: Gender imbalance for professions included and heldout from calibration be-
fore and after CGM-relax (A = 0.1). Points below the diagonal were improved by CGM.

conditional generations that introduce a character’s profession. For example, only 16% of stories
beginning “Once upon a time there was a lawyer” feature a female lawyer, whereas 41% of U.S.
attorneys were women in 2024 (American Bar Association, 2024).

Gender parity as a calibration constraint and conditional calibration. We evaluate whether
CGM can eliminate profession-specific gender imbalance in stories completed from the prompt
“Once upon a time there was a <profession>” across eight professions that ex-
hibit gender bias under the base model: doctor, lawyer, teacher, pilot, chef, scientist, nurse, and
artist. In contrast to earlier experiments, this requires conditional calibration: for each profession
i with prompt prompt,, we aim to find 6 such that E, [h(x) | prompt;] = 0, where « represents a
completed story, and h(x) € {—1,0,1} encodes the character’s gender (male, ambiguous, or
female, respectively). Rather than fine-tuning a separate model for each profession, we amortize
training costs by fine-tuning a single model with the sum of CGM losses for each condition.

Results on explicitly calibrated professions. Both CGM-reward and CGM-relax reduce gender
imbalance, as measured by the average absolute per-profession frequency difference (Figure 5A).
As expected, decreasing the regularization strength A\ improves constraint satisfaction at the cost
of greater distance to the base-model, as measured by symmetrized KL. Notably, even the least-
regularized model attains a low symmetrized KL of 1.7, which corresponds to an average token log-
probability difference of < 0.01 nats/token. Appendix E.4.4 provides example generations before
and after fine-tuning showing no visible degradation in story quality.

Compared to Khalifa et al. (2021), CGM-reward yields a small but statistically significant improve-
ment in both miscalibration and distance to the base model. CGM-relax reduces gender imbalance
by over five times more than Khalifa et al. (2021) but deviates further from the base-model.

Transference of calibration to heldout professions. We evaluate how conditional calibration af-
fects the calibration of “held-out” professions not considered during fine-tuning. Such generalization
could be particularly valuable in applications where it is impractical to foresee and explicitly cal-
ibrate for every possible prompt. To evaluate this, we consider six held-out professions: sheriff,
judge, accountant, dancer, athlete, and baker. While CGM does not result in gender parity for the
held-out professions, many are significantly improved (Figure 5B).

5 CONCLUSION

CGM-relax and CGM-reward provide practical approaches for calibrating generative models to sat-
isfy distribution-level constraints. In applications to protein design, conditional image generation,
and language modeling, CGM consistently reduces calibration error under hundreds of simultaneous
constraints and in models with up to one billion parameters while preserving generation quality.

Still, our results highlight that the calibration problem is not yet solved. Current objectives leave
residual error, especially in the rare-event setting that is especially relevant to protein structure mod-
eling, for example. More broadly, the CGM framework is tied to models with tractable likelihoods,
raising the challenge of extending calibration to VAEs, GANs, and other implicit models. These
open questions point to calibration as a practical tool as well as a fruitful research direction.
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6 ETHICS STATEMENT

This work develops algorithms for calibrating generative models by aligning distribution-level statis-
tics to desired targets. Our motivation is to improve the fidelity of generative models across diverse
domains, including, but not limited to, protein design, image generation, and language modeling.
Potential ethical benefits include reducing harmful biases (e.g., gender imbalance in text outputs)
and improving scientific utility (e.g., protein structure design). However, as is the case for all works
that fine-tune generative models, our methods could also be misused to enforce constraints that am-
plify harmful or discriminatory content. We emphasize that the choice of constraints should be made
responsibly, with careful attention to societal and scientific impacts.

All datasets used in this work are publicly available, and no sensitive personal data were employed.

7 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility of our theoretical and empirical results. The-
ory. All mathematical claims are supported by detailed theorem statements and proofs in Appen-
dices B and C, and assumptions for all claims are clearly stated. Algorithms. We provide complete
pseudocode for the algorithms we propose (Algorithms 1 and 2), including clear descriptions of loss
estimation and gradient computation. Our implementations are entirely reproducible from these al-
gorithms. Experiments. For each of our experiments in Sections 3 and 4, we specify the datasets,
models, and calibration constraints in detail. Hyperparameter choices (e.g., model architecture, op-
timizer, learning rate, number of epochs, batch size M, regularization strength A, sample size V)
are reported in Appendices D and E. We include additional samples from the pre-trained (i.e. base)
and fine-tuned (i.e. calibrated) generative models in these appendices. Code. Upon publication, we
will release a public codebase implementing CGM-relax and CGM-reward for arbitrary generative
models. We will include scripts to reproduce experimental results.
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A EXTENDED DISCUSSION OF RELATED WORK

The calibration problem. Several previous works have proposed algorithms whose goal it is to
impose distributional constraints on generative models. However, each of these methods applies only
to specific model classes and either suffers from poor empirical performance or imposes constraint
satisfaction during training time (rather than fine-tuning).

Most closely related to the present work, Khalifa et al. (2021) fine-tune autoregressive language
models to match distributional constraints. Like CGM-reward, their approach also targets the maxi-
mum entropy solution (5), but through a different divergence; they choose the KL divergence in the
“forward” direction, Dky. (pe || Po), rather than in the “reverse” direction, Dy, (po- || o), as in
CGM-reward.

Empirically, the approximate solutions to the calibration problem (1) found by Khalifa et al. (2021)
fall shorter of constraint satisfaction compared to CGM, particularly CGM-relax. Khalifa et al.
(2021) achieves comparable, albeit slightly worse, performance to CGM-reward in the TinyStories
gender rebalancing experiment (Section 4.3), reducing miscalibration by roughly 85%. CGM-relax,
on the other hand, reduces constraint violation up to 98%.

In follow-up work, Go et al. (2023) propose an algorithm for aligning language models to a speci-
fied target distribution by minimizing an arbitrary f-divergence (such as the forward or reverse KL
divergence). One example they consider is when the target distribution is the maximum entropy
distribution corresponding to some constraint functions; the choice of forward KL then reduces to
Khalifa et al. (2021). However, they obtain < 50% reduction in constraint violation.

Shen et al. (2024) proposes a method for balancing class proportions in text-to-image diffusion
models. They rely on an optimal transport objective that applies narrowly to diffusion models and
find empirically their approach falls short of meeting desired class proportions.

In concurrent work, Cardei et al. (2025) impose constraints on discrete diffusion models at sampling
time using an augmented Lagrangian method. Their algorithm involves simultaneously optimizing
the model output and a set of Lagrange multipliers. Also concurrent to our work, Gutjahr et al.
(2025) finetunes a diffusion generative model subject to inequality constraints on the expected value
of a statistic to maximize an expected reward with a KL penalty to the base model. Their approach
applies only to diffusion models and continuous normalizing flows.

Incorporating distributional constraints during training. Several other works have sought to
impose distributional constraints during training time but differ from CGM in that they are not fine-
tuning procedures and apply only to a specific model classes. Wu et al. (2020) propose a method
for training generative adversarial networks (GANS) that includes a penalty term similar to £V
that encourages agreement with statistics of the training data. Zhu et al. (2024) solve for the maxi-
mum entropy model of short (length 7) protein sequences with expected “fitness” surpassing a fixed
threshold. Khalafi et al. (2024) propose a primal-dual algorithm to enforce distributional constraints
on diffusion models; their constraints, however, are specified at the level of entire distributions,
rather than their moments. Friedrich et al. (2023) develop a training procedure for diffusion models
that balances the conditional distributions of samples, given some attribute e.g., gender.

Reward fine-tuning and conditional generation. As we point out in Section 2.2, the idea of
minimizing the KL divergence of the generative model to an exponential tilt of the base model (5)
connects CGM to the rich research topic of reward fine-tuning. Reward fine-tuning algorithms, used
in the contexts of reinforcement learning (Rafailov et al., 2023; Fan et al., 2023; Black et al., 2024;
Wallace et al., 2024) and preference optimization (Tang, 2024; Uehara et al., 2024; Domingo-Enrich
etal., 2025), minimize the same loss (8) as CGM-reward, but with r () replaced by a user-specified
“reward”. Unlike reward fine-tuning algorithms, though, CGM does not require a reward; rather, the
constraints themselves act as the reward.

Conditional generation (Dhariwal & Nichol, 2021; Ho & Salimans, 2021; Denker et al., 2024) can
also be viewed through the lens of model calibration, where the calibration constraint is the indicator
function of the set C' from which one would like to sample h(x) = 1{x € C} and h™, the target
proportion of samples that belong to C, approaches 1. In this case the optimal variational parameter
o approach infinity, and the maximum entropy solution approaches py,, . (z)1{x € C}.
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Calibration of molecular ensembles. Computational methods for producing Boltzmann ensem-
bles frequently fail to exactly align with experimental observables that measure ensemble averages;
this misalignment can arise from inaccuracies in the energy functions used or insufficient sampling.
Several works have sought to calibrate these ensembles to agree with ensemble observables. In the
context of molecular dynamics simulations, (Rézycki et al., 2011; Kofinger et al., 2019; Bottaro
et al., 2020) leverage Theorem 2.1 to reweight Monte Carlo samples of molecular configurations
to match experimental observations of ensemble averages. Lewis et al. (2025) consider a diffusion
generative model approximation of protein structure ensembles and introduce an auxiliary training
loss that resembles £1°!, but they do not demonstrate whether this approach leads to a significant
reduction in calibration error.

Calibration in prediction problems. Beyond generative modeling, calibration is a major topic in
supervised machine-learning. In the context of classification the goal is to have, among a collection
of predictions with a given class probability, the fraction of labels of that class in agreement with
that prediction probability (Dawid, 1982). This can be obtained with post-hoc calibration procedures
such as Platt scaling (Platt, 1999) or conformal methods (Shafer & Vovk, 2008) for more general
prediction sets.

B CGM-RELAX AND CGM-REWARD ALGORITHMS

In this section, we provide further detail on the CGM-relax and CGM-reward algorithms. First,
we show in Appendix B.1 that our estimates for the relax and reward losses are unbiased. In Ap-
pendix B.2 we then discuss how to compute our gradient estimates for the relax and reward losses,
and we show they are unbiased.

Throughout this section we will make the following regularity assumptions on the generative model
pe and the constraint functions h.

Assumption B.1 (Regularity of pg). The functions p;(x)/pe(x), Vips(x)/pe(x), logps(x),
V;log ps(x) are uniformly dominated by a function that is square integrable with respect to pg(x),

for all 6 belonging to some neighborhood of 6. Also, h(x), log pg,,. (x) have finite second moment
under pg ().

These assumptions are sufficient to exchange integration and differentiation in Appendix B.2 via
Dominated Convergence.

B.1 LoSS ESTIMATES

We begin by proving that our estimates for £ and £"%4 are, on average, correct. We acknowl-
edge that unbiasedness is not the end all be all. For instance, there exists a biased estimator for the

term £ = ||E,, [h(z)] — h*||?, namely max{L" 0}, that strictly dominates our estimator £"!
in terms of risk (in particular, its variance is smaller). Still, the concept of unbiasedness is useful.

Proposition B.2. L“* is unbiased for the relax loss L™,

Proof. Following our presentation in Section 2.1, we prove unbiasedness of Lretax by showing that

LKL is unbiased for £XU = Dy; (py || pe,..) and that £¥°! is unbiased for £¥°!, the squared norm
difference between the expectation of h under py and the target expectation h*.

As for EKL, its expectation is

M M

1 x 1

AKL Po(Tm)

B [B] = 5 D Jlow 2T ] = 5 S D (o 7)< D 0 | i)

m=1

In the first equality we invoke the linearity of expectation and in the second we use our assumption
that {z,, }}_, are sampled from pj.
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And for £¥°!, we recall that for a real- Valued random variable Z, E[Z?] = E[Z ]2 + Var(Z). By

applying this equality to each dimension of - Zm Lh =37 Z%zl( (z,,) — h™), we obtain
M 2 1 )
o |37 3 Fon| = B b1 + 78 ble) - By B@I% (D

where h(x) = h(x) — h*. Next, we replace the final term in (11) with E,,, [m Yom (12
&3 huwe||?]. The quantity M( T 2m [ — = 3,0 B ||? is simply the trace of the sample
covariance matrix of {h, }M_ scaled by +-. The sample covariance of {hm }M_ is unbiased for
Cov[h]. Rearranging the above expression yields

LA 1 U 1 &
IEp, [R()]|1* = Mmz.lh’” ~ e |G fﬁmz_lh
This proves £ is unbiased for ||E,, [h(z)] — h*||2. O
Likewise, we demonstrate that our estimator for the reward loss is unbiased.
Proposition B.3. £ is unbiased for the reward loss L7,
Po(Em)

Proof. In the proof of Proposition B.2 we already demonstrated - e Z is unbiased

m=1198 5, )

for LK. By an identical argument, — M Zm | Tay (@) is unbiased for L = E,,[—ra, (z)]
(again, it is a Monte Carlo estimate).

B.2 UNBIASED GRADIENT ESTIMATES

As we detailed in Section 2.3, the naive idea of taking the unbiased loss estimators Zrela", Erewa‘d and

differentiating them with respect to 6 will not yield unbiased estimates for the gradients of £™%* and
£ This is because the probability distribution with respect to which the expectation is taken
also depends on @, which needs to be taken into account in the gradient estimate.

For CGM-reward, we propose using the gradient estimator

M
~ 1 Lm
Greward _ i E (VG logpe (wm)) ( log pjze((x)) —Tay (:[:m) - LOOm>
m—1 base m
(12)

1 Pa(mn')
LOO,, = M1 Z <10gl) _T&N(xm/) 5

m/#m pebase (wm/

The expression (12), excluding LOO,,, is known as the score function gradient estimate or, in the
terminology of reinforcement learning, the REINFORCE gradient estimate (Williams, 1992). This
is because the term Vg log pg(,,) is known as the “score” of the calibrated model at «,,. In Sec-
tion 2.3 we derived the score function gradient estimate by rewriting £°%*¢ as an expectation with
respect to another distribution py/, differentiating the Monte Carlo estimate to the expectation under
per, and evaluating the gradient at the choice §’ = #. We formalize this argument in Proposition B.4.

The term LOO,,, in (12) is known as the leave-one-out baseline (Kool et al., 2019) corresponding to
sample x,,,. It is a particular instance of a baseline or control variate, which is a term that has expec-
tation zero under py but is correlated with each individual term in the estimate (Lavenberg & Welch,
1981; Ranganath et al., 2014; Mohamed et al., 2020). Indeed, we observe that by independence of
the samples {x,,, }*_,, it holds that for each m # m’,

,[@atogmaten)) {iog L) — e (o) |
By, (Volown ()] By [1og 202 g (0] 0.

Consequently, while the inclusion of LOO,,, does not affect the unbiasedness of our gradient esti-
mate, it can reduce its variance.
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Proposition B.4. Grevard s ynbiased for the gradient of the reward loss, ¥ g L7,

Proof. We start by writing out the gradient of £V directly:

Vgﬂreward(e) = VoE,, [10g po(x) —ray (SE):|

pgbm(m)
_ o po(x) S .
=90 [ {52205 vt fmia
- Po(2) o po(2) — Ty (T x
Ve/pstopgrad(e)(w) {1 gpebase(w) aN( )}pstopgrad(S)(d )

9] polx

=E,, |:(V9 log pg()) {log po(@) Tay () H +E,,[Vologpe(x)]. (13)
Pbae (:E)

For the equality (x), exchange of the gradient and derivative is permissible by the conditions we

stated at the beginning of the section via Dominated Convergence. The second term is the gradient

is the expected score, which is zero. And so the gradient of the reward loss is

VoL w(9) = B, [(w log py (@)) {log pf 9(2) ~Tay (w)}] - (14)

Looking at our gradient estimator Grevard i (12) and ignoring the leave-one-out averages, we see
that it is exactly the Monte Carlo estimate of the gradient of £%*4 (14). O

Dropping the potentially noisy expected score term in (13), as is done by Ranganath et al. (2014),
also reduces variance of our gradient estimator.

Deriving an unbiased gradient estimate for the relax loss is more challenging, since the loss cannot
be simply expressed as the expectation under py of some objective. It is clear that, just as we did for
the reward loss, one can compute an unbiased estimate for the gradient of £X! in the relax loss

M
~ 1 po(Tm) ) 1 P (T )
GxL = — Vo lo Ty log ———~—~ - LOO,, |, LOO,, = — log ———*.
UM Z (Vologpo(@m)) ( s Dy () M-1 Z 5 Phse (Trn)

m=1 m/#m

And so it only remains to compute an unbiased gradient estimate for £V, To do so, we first recall
the unbiased estimator £V for £¥°' that we introduced in Section 2.1

2 1 Moy 1Mo
_M(M—l); h’”_MmZZ:Ih’”/

with h,, = h(xz,,) — h*. We then replace {ﬁm}M by {wmﬁm}M where w,, — 2(&m)

m=1 m=1° por (Tm
are weights defined by another probability distribution pg:. {w,,}M_, are known as impoi‘timc)e
sampling weights with proposal distribution py. and target distribution pg. To estimate the gradient
of |[E,, [h] — h*||? = ||E,, [h]]|2, we compute the gradient of £V ({w,, R, }}_,) with respect to
6 and then evaluate the result at #’ = . This is equivalent to first evaluating £V ({w, huy, }M_, ) at
¢ = stop-grad(f) and then computing the gradient, where pg:op-graq(s) is €qual in distribution
to pg but does not track gradients. This yields the overall gradient estimator for the relax loss

M
é\vrelax _ )\aKL + ngviol <{ p@(wm) fbm} ) ]

Pstop-grad(9) (.’Bm)

2

3

P 1 L
LV[O]({h'rrt}vAy/{:l) = HM Z b,
m=1

m=1

The intuition behind this gradient estimate is that, from Proposition B.2, we know L',A“"l({hm}%:l)
(i.e. without the importance sampling weights) is unbiased for ||E,, [h] — h*||>. The only reason we
cannot directly differentiate this estimate is that {x,, }}/_, depend on 6 since they are sampled from
po. To address this issue, we instead sample {asm}ﬂj\f:1 from a different probability distribution, py,
that does not depend on 6. In our gradient estimate, we take §' = stop-grad(f). To account for

the fact that we are no longer sampling from py, we multiply each h,, by the respective importance
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sampling weight w,, = %.

when we sample {@,, }}_, i.i.d. from py and replace {h., }M_, by {wmhm, }M_, in the estimator

L£Y°!, it remains unbiased for |E,, [R]]|?. Then, since the samples {,, }*/_, no longer depend on 6,

The most important piece of our argument involves showing that,

o~

we can differentiate the estimate £"°! to obtain an unbiased gradient estimate.

‘We make this argument mathematically precise in the following proposition:

Proposition B.5. Grelax s unbiased for the gradient of the relax loss, Vg L.

Proof. From Proposition B.2, we know that GKL is unbiased for Vg £XL, and so it only remains to
verify that the second term is unbiased for Vo £V! = Vy||E,, [h] — h*||?. To this end, by repeating
the proof of Proposition B.2 (i.e. using the definition of the variance), it is straightforward to show

= [|Ep, [R]]I*.
Do’ (mm) be
In other words, L',A“"l({wmﬁm}%:l) is unbiased for £"°!. However, since the samples {z,, }}_,
are drawn from py/, a probability distribution that does not depend on 6, then we can exchange the
gradient and expectation by appealing to Dominated Convergence under the assumptions stated at
the beginning of the section. In particular, we have

EP@'

E VeEViOI {pe(wm) h }M — V,E Zviol {pe(wm) h }M
Per Do (wm) " m=1 Per p@’(wm) " m=1
_ VQEViOI,
where the final line follows from the unbiasedness of £V ({wy,fup, }M_,) for £Y!, O

As we discussed, the key insight from the proof of Proposition B.5 is that, by introducing importance
weights, we can compute an unbiased estimate to |E,, [h] — h*||*> = ||E,,[h]|| without sampling
directly from py. Notice that in our argument, the only step that relied upon the choice of 6/ =
stop-grad(f) was when appealing to Dominated Convergence to exchange the gradient and the
expectation. One could also sample {z,, }*._, independently from another distribution p.!

C MAXIMUM ENTROPY PRINCIPLE

In this section, we provide an overview of the maximum entropy principle, which we use in Sec-
tion 2.2 to define the reward loss £V First, in Appendix C.1 we formally state and prove the
maximum entropy principle. In Appendix C.2, we provide greater detail on our estimate c for
the parameters a® of the maximum entropy solution. In Appendix C.3, we characterize the re-
lationship between the relax and reward losses by considering a problem whose solution is close
to the optimum of the relax loss, and which resembles the maximum entropy problem. Lastly, in
Appendix C.4, we study the behavior of the estimate c v in the limit as the number of samples N
becomes large.

Prior to jumping into the details of the maximum entropy principle, we work through an illustrative
example that we discuss throughout this section.

Example. Suppose z € R, h(z) = 1{z > 0}, and h* € R. Also define h, = P, (= > 0),
and assume 0 < hp < 1. In this example, the calibration problem amounts to either upweighting or
downweighting the amount of probability mass /, that lies above 0 under the base model py,,... By
Theorem 2.1, the maximum entropy solution has the form po+ x py,,.. () exp{a*h(x)} for some
a* € R that we need to determine. From this expression for pe«, we obtain

1
B hyexp(a*) + (1 — hp) (1= ho),

1—h*=E,_.[1 - h(z)]

h* =E,_.[h(z)] hy exp(a™).

" exp(a*) + (1 — hy)

'For the case of a general distribution p/, the integrability conditions with respect to py stated at the
beginning of the section must be modified to integrability conditions with respect to py.
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h*(1—h
= log(ﬁ) Fol-

*

Dividing the first equation by the second and rearranging yields o

lowing the same argument for the empirical distribution of {z,}2_;, our estimator for a* is
ay = log(gfhi:)ygzv)), where gy = = SN y.y, = =z, > 0} £ Bernoulli(hy) for

i.4.d.
Lp ~ peba»e :

C.1 PRECISE STATEMENT

Since the maximum entropy problem is not specific to generative model calibration, we present it in
a more general setting. In particular, we consider X := (X, X') a measurable space, P a probability
measure defined on X, h : X — R? an X-measurable constraint function, and h* a target value
for the moment of h. The maximum entropy problem corresponding to probability measure P,
constraint h, and target moment h* is

o, D QI P), st Eglh(e) = k. (15)

Choosing P = pg,,. yields the maximum entropy problem corresponding to the calibration problem.

As we mentioned in Section 2.2, we impose a condition on the target moment h* to ensure (i) there
exists a solution to the maximum entropy problem (ii) and this solution is an exponential tilt of P.

Assumption C.1 (Interior moment condition). Define the subset M of R? comprised of all possible
moments of h attainable by probability distributions ¢ having a density with respect to P

M= { [ @)Qde)

h* lies in the relative interior of M, written relint(M).

QeP(p), [ Inw)a) < oo} .

Since M is convex, the condition h* € M can equivalently be stated as for every y # h™ in M,
there exists some z in M and € (0, 1) for which h* = kz + (1 — k)y.

To see why Assumption C.1 is necessary for the solution to be an exponential tilt of py, ., recall the
example discussed at the beginning of Appendix C. In this case, relint(M) = (0,1). If h* ¢ [0, 1],
then there clearly does not exist any probability distribution p having density with respect to pg,,.
for which E,[h(z)] = h*. And if h" is either 0 or 1, then the solution to the maximum entropy
problem is proportional to pg,.. (€)1{x < 0} or py,, (x)L{x > 0}, respectively. Neither of these
solutions is an exponential tilt of pg, ., equation (5).

Our proof of the maximum entropy principle leverages classical convex duality (Rockafellar, 1970)
by showing that (15) is a convex problem, defined on the infinite-dimensional space of all probability
densities for which h has a finite moment. The corresponding dual problem is

sup a'h* — Ap(a), Ap(a):=log (/exp{ra(:c)}P(dw)>, (16)

a€cR?

which is concave. Ap : RY — R U {+oc} is known as the log-normalizer or cumulant generating
function corresponding to the exponential family

exp{ra(x) — Ap(x)} P(dx). (17)
We will make the standard assumption that the domain of Ap is open
Assumption C.2 (Domain of log-normalizer). The subset = = {a € R? | Ap(ax) < oo} is open.

Whenever Ap is finite, (17) is a well-defined probability measure on X. = is known as the natural
parameter space of the exponential family (17). When Assumption C.2 holds, the exponential
family is said to be regular. The log-normalizer A p possesses many nice properties: for instance, it
is convex and infinitely differentiable on = (see Lemma C.11). Convexity can be seen by taking two
derivatives of Ap(a):

J(h(@) = VaAp(@))(h(@) — VaAp(a)) expira(@)}P(dz)

Vedrl) = Jexplra(a)}Plda) -

22



Under review as a conference paper at ICLR 2026

See Wainwright & Jordan (2008) for background on exponential families.

Unlike the primal problem (15), the dual problem (16) is defined on finite-dimensional Euclidean
space, which makes it simpler to analyze. We first argue by weak duality that the value of (15) is at
least as large as (16). We then identify a vector a* and a distribution Q* for which the primal and
dual objectives are equal. By weak duality, this implies that Q* is optimal for the primal problem.
Theorem C.3 (Kullback & Khairat (1966)). Suppose Assumptions C.1 and C.2 hold. Then there
exists a probability measure Q* € P(P) with density dQ*/dP x exp (rox(x)). Moreover, Q* is
the solution to the maximum entropy problem (15) and is unique up to P-null sets.

Proof of Theorem C.3. We first rewrite (15) as a convex problem

inf ¥(q) + 9(Aqg)

¥(g) = {f a(@)log(q(e) Pde) ifq20 {o ify,=landy, = h"

)

+00 else +o0o else
At = ( [ a@pae). [ naae)plao)

defined on the space of X-measurable functions ¢ for which [ |g(z)|P(dz) < oo and
J Ih(z)||g(z)P(dx) < co. A is a bounded, linear map defined on this space. ¢ is convex and
lower semi-continuous (Léonard, 2014, Corollary 2.3), and g is convex. By Fenchel-Rockafellar
duality (Borwein & Zhu, 2005, Corollary 4.4.4), weak duality holds for the maximum entropy prob-
lem and its dual (16).

By Lemma C.11, Ap is infinitely differentiable on =. Moreover, Wainwright & Jordan (2008,
Theorem 1) states that VAp is a surjective mapping from = onto relint(M). Hence, there exists
a* € E for which VAp(a*) = h™. The value of the dual at a* is

(a*)Th* — Ap(a®).

By differentiating the dual objective at a*, we obtain,

B . . _ J h(z)exp{ra-(z)} P(dz)
0=Va(a h" — Ap(a)) = h* = T eire ()] P (@)

In other words, the distribution Q* € P(P) defined such that dQ* /dP  exp{ra~(x)} satisfies the
moment constraint Eq- [h(x)] = h*. Moreover, the value of the primal objective at Q* is
Diw (Q" | P) = (a*)Th* — Ap(a),

which is equal to the value of the dual objective at a*. By weak duality, we conclude Q* is the
solution to the maximum entropy problem.

Uniqueness follows from the fact that the KL divergence 1 is strictly convex. O

C.2 ESTIMATING THE MAXIMUM ENTROPY SOLUTION

Next, we discuss our estimator ay for the parameters a* of the maximum entropy solution. In
particular, we provide verifiable conditions under which &y is well-defined, and we show that
this estimator can be interpreted as the solution to a finite-sample version of the maximum entropy
problem (4).

So far, the only assumptions we have made on the maximum entropy problem (15) are the relative
interior condition on h* (Assumption C.1) and the openness condition for the domain of Ap (As-
sumption C.2). As we demonstrated in Appendix C.1, these conditions ensure that the solution to
the maximum entropy problem exists and is unique. However, the solution to the dual problem need
not be unique. Suppose, for example, that h is d-dimensional but has two identical components
h(z)[i] = h(x)[j]. Then if a* is optimal for the dual problem, so is a* —te[i] +te[j] forall t € R,
where e[i] and e[j] denote the ¢ and jth standard basis vectors, respectively. Specifically, the set of
optima for the dual problem is a hyperplane in R?. In order to estimate a*, we want to ensure that
the dual problem (16) also has a unique maximum.
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As suggested by our example, in order to ensure that the dual optimum is unique, it suffices to
remove linear redundancies among the statistics h(x).

Assumption C.4 (Uniqueness of Dual Optimum). No linear combination of the components of
h(x) is equal to a constant with P probability one.

If Assumption C.4 holds, then the exponential family (17) is said to be minimal.

For non-trivial generative models, solving the dual problem (16) for P = pg, ., is intractable since
Apeb (a¢) cannot be computed in closed-form. The estimator & that we propose in (7) involves

first drawing N independent samples {x,, }/\_, from the base model py,, . and then solving the dual
problem with the integral replaced by the empirical average from our samples. This is equivalent
to solving the dual problem for P equal to the empirical distribution of our samples % 25:1 O, »
where 0, is the delta function at .

However, in order for & to be well-defined, the interior point condition and uniqueness of the dual
optimum must hold for the maximum entropy problem with P = % 22;1 0, . For this problem,
these two conditions are straightforward to verify: (i) h™ lies in the the relative interior of the convex
hull of {h(z,)}"_, and (ii) the empirical covariance matrix of {h(z,, )} _, has full rank. For the

example we provided at the beginning of the section, conditions (i) and (ii) are satisfied if and only
if {h(x,)} ={0,1} and h* € (0,1).

It is possible for Assumptions C.1 and C.4 to hold for pg,,. but not for 3 Z;V:l 0g,,. For our
example, if {h(z,)} = {0} and h* = 0 (or {h(z,)} = {1} and A* = 1), then the maximum
entropy solution exists and is equal to Q* = % Zf:;l 0, , but every vector a € R is optimal

for the dual problem (16). However, we show in Appendix C.4 that the probability of this event
approaches zero as the number of samples N approaches infinity.

C.3 CONNECTION BETWEEN THE RELAX AND REWARD LOSSES

In this section, we elucidate the connection between the relax and reward losses. We first introduce a
problem corresponding to the relax loss that, similar to the maximum entropy problem (4), is defined
on the space P(py,,, ) of probability distributions that have a density with respect to pg,,.. When the
generative model class py is sufficiently expressive, the solution to this problem well approximates
the minimizer of the relax loss. We then show that, under conditions, the solution to this related
problem approaches the solution to the maximum entropy problem as A — 0. This confirms our
intuition that when A — 0, minimizing the relax loss is equivalent to solving the calibration problem.

Asin Appendix C.1, we let X := (X, X') be a measurable space, P be a probability measure defined

on X, and h : X — R9 be a X-measurable function, and h* be a target moment. We consider the
problem

inf AD P) + |Eg[h] — h*||?, st.Eo[|h|] < 18

oda Al (@ || P) + [[Eq[h] | alllh[]] < oo (18)

In convex analysis (e.g., Boyd & Vandenberghe, 2004; Ben-Tal & Nemirovski, 2023), (18) is known
as a penalty problem.

When P = pg,,.. then (18) agrees with the problem of minimizing the relax loss (2), except the
domain of the problem is P(pg,,. ) rather than the class of generative models pg. Suppose momen-
tarily that the infimum of the objective (18), denoted by @, is attained. The minimizer of the relax
loss (2) will not in general be equal to 0 since () does not lie in the class of generative models.
However, as we argued when we proposed the reward loss, we would expect () and the minimizer
of the relax loss to be close in KL distance when the class of generative models py is sufficiently
expressive.

Introducing the problem (18) is helpful insofar as, similar to the maximum entropy problem, we can
obtain a closed-form expression for the solution @ .

Proposition C.5. Suppose Assumption C.2 holds. Then there exists a unique solution to the fixed
point equation

2
o= —X(VaAp(a) —h"), acE
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Moreover, Qy defined by dQ»/dP o< exp{a, h(z)} is the unique solution to (18).

Our proof closely resembles that from Appendix C.1 for the maximum entropy principle. Namely,
we invoke Fenchel-Rockafellar duality (Rockafellar, 1970) to relate the convex problem (18), de-
fined on the space of probability densities with respect to P with finite h moment, to its concave
dual problem

acRP

sup Fi(a), Fr(a)= A (—2|o¢||2 — Ap(a) + aTh*> (19)

defined on Euclidean space. We then show that vy is the unique solution to the dual problem, and
we use this solution to construct a solution to the primal problem. Interestingly, a is the unique
solution to the dual problem even when there is redundancy among the constraints h (i.e. Assump-
tion C.4 does not hold).

Proof of Proposition C.5. We first rewrite the problem (18) as

ilgf Y(q) + g(Aqg),
[ a(z)log(q(x))P(dx) ifq>0 [y, =R ify,=1
wia) = {119 120 (g = {21 h

A = ( [ at@pia). [ r@a@rm)

defined on the space of X-measurable functions ¢ for which [ |g(x)|P(dx) < oo and
J IIh(z)||g(x)P(dz) < oo. As in the proof of Theorem C.3, A is a bounded, linear map de-
fined on this space. 1 is convex and lower semi-continuous (Léonard, 2014, Corollary 2.3), and g
is convex. By Fenchel-Rockafellar duality (Borwein & Zhu, 2005, Corollary 4.4.4), weak duality
holds for the problem (18) and its dual (19).

Define the probability measure @), that is equal to the base distribution tilted by 7o () = o h(x)
ie. dQeo/dP x exp{rq(x)}. Then by Lemma C.11, F) is infinitely differentiable on =, and taking
two derivatives of F () yields

VaFi(@) = A (~Fa- Vadr(@) +h' ). VAR(@) = (-1~ Vidr(a)).

Since V2, Ap(a) = Varg,[h(x)] = 0, then the problem (19) is strongly concave. And by our
assumption that = is open, F () is equal to —oo for a belonging to the boundary of =. Together
with strong concavity, this implies a unique maximizer o) of F) exists.

In particular, vy, is the unique o € R that satisfies the fixed-point equation
A 2
VaoFr(a) = A <—2a — VaA(a) + h*> =0 = a= —X(VaAp(a) —h").

And the probability measure (), satisfies

ADk1 (Qay || P) + [[Eq,, [R(z)] — 7|
2
:)\(aIVaAP(aA) —Ap(ay)) + %HaAHQ

(.« A A2 2
=Aay [k — 5% — Ap(a) +ZH04A||

:F bY (a by ) .
By weak duality, this implies ()5 := Qq, is optimal for the primal problem. Moreover, strict
convexity of ¢ implies that the optimum of the primal problem is unique. O

Next, we show that as the regularization parameter A — 0, then @ achieves the minimum possible
Euclidean norm constraint violation i.e. Euclidean norm difference between Eq, [h] and h*. We
also give a finite A bound on the constraint violation.
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Proposition C.6. The distribution Q) satisfies

A |[Eexlh(@)] - k7l = inf - [Eqlh(z)] — A7}
Di(Q || P)<oo

Moreover, we have the finite-sample bound on the Euclidean norm constraint violation of Q)

[Eq,[n@)] ~ k'l < inf {v/ADs (@ P) + [Eqlh(@)] A}

Proof. Fix € > 0 and let Q. be such that |[Eq_ [h(x)] — h™|| < infoep(p) [[Eqlh(x)] — h™|| + ¢.
Then by the optimality of @), for the objective (18),
[Eq, [h(2)] — h*[|* < ADxL (Qx || P) + [Eq, [R(2)] — h7||?
< ADk1 (Q: || P) + [Eq. [h(x)] — h™[1%. (20)
Our choice of (). yields
[Eq, [h(2)] — h*[|* < ADx (Q- || P) + ol [Elh(z)] — A7 +e.

Taking A — 0 and then ¢ — 0 yields the first result. Replacing Q). with @ € P(P) in (20) and
taking the infimum over () yields the second result. O

In the setting of Proposition C.9 where a solution to the maximum entropy problem exists, then a
bound on the Euclidean norm constraint violation of @ is simply y/ADkr (Q* || P). This implies
that [Eq, [h(x)] — k[ = O(VA).

From our proof of Proposition C.6, it is clear that we did not take advantage of the structure in the
solution @». When Assumptions C.1 and C.4 hold, we can obtain a faster rate of convergence of

Eq, [h(x)] to h™, and we can show that a converges to the parameters a* of the maximum entropy
distribution.

Proposition C.7. Suppose Assumptions C.1, C.2, and C.4 hold, which imply that the maximum
entropy solution dQ* /dP  exp{rq~(x)} exists. Then oy — a* as X — 0. In particular,

(i) lox — e[| = O(N)
(ii) [|Eq, [h(z)] — h*|| = O(})
(iti) |Dgr (Qx || P) — Dk (Q* || P) | = O(A)

Proof. Prior to proving (i)-(iii), we first establish ||ay — a*|| = o(1). From the proof of Proposi-
tion C.5, we know that o, maximizes A\™1F) () = —%||a||? — Ap(a) + " h* for each A > 0.
And from (16), we know that a* maximizes Fo(a) = —Ap(a)+a ' h*. Clearly, F)\(a) — Fy(a)
pointwise as A — 0. Since each of F\ and Fj is concave on =, a classical result in convex analysis
Rockafellar (1970, Theorem, 10.8) implies that the convergence F) () — Fy(c) is uniform on
closed, bounded subsets of = containing a*.

Fix € > 0 such that the Euclidean ball of radius € centered at a* is contained in =. By Assump-
tion C.4, Fy is strictly concave, since then for a € =, Vo Ap(a) = Varg, [h(z)] > 0 where
dQqa/dP x exp{rq(x)}. Hence there exists a  such that for all ||a — a*|| =€,

Fyla) > k> Fy(a™).

This is because the left-hand side of the above inequality attains its minimum on the compact set
|l — @*|| = € and (ii) by strict concavity this minimum must be strictly greater than the right-hand
side. Moreover, by uniform convergence of F to Fy, there exists A\ > 0 such that for all A < A,
and all |0 — a*|| = €

Fi(a) > k> Fy(a™). (21)

Since F) is also concave, (21) implies that the maximizer of F), a, must lie in the Euclidean ball
of radius € centered at a*. This establishes ||a) — a*|| = o(1).
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We are now prepared to prove (i). By Taylor expanding Vo Ap () at o), about a*, we obtain

Vadp(ay) =h" + Vo Ap(a®)(ay —a) + 7y, [ra] = o(ax — ) 22)
By Proposition C.5, vy satisfies @y = —3(VaA(ax) — h*). Multiplying (22) by —2/A and
substituting in this expression for av) yields
2 2 * * 1
ay=——V,Ap(a®)(ay —a”) + —r,.
A A
Solving for ax) — a* yields
2 ! 1
oy —af =— T+ V2 Ap(a*) ¥+ —r)
A A
— A\ +2V2Ap(a) ot + 7y (23)
for 7y = o(]Jayx — @*||). And because ||ay — a*|] = o(1), then for all A sufficiently small,

7]l < %||ax — a*|. Taking the norm of both sides of (23) and rearranging yields

-1

oy — o[ < 2\ (AT + 2V2 Ap(a®)) ' o

for all \ sufficiently small. This proves (i).
For (ii), the relationship cty = —2 (Vo A(ay) — h*) yields

[Equ [h(@)] — k7] = [Vad(an) = b7 < Sllax — o] + Slla’[ = O(A).

Lastly for (iii),

D1 (Qx || P) = ayEq, [h(z)] — Ap(a)
= (ayh" + ON) = {Ap(a”) + Vadp(a®) (ar — a”) +ofar — a™[|)}
=a,h* — Ap(a®) + O(N)
=D (Q" || P) + O(\).
[

In Section 2.2 we derived the reward loss as the KL divergence of the model pg to the maximum
entropy solution p+. The relax loss can also be viewed as a divergence to a tilt of the base model
Doy €Xcept that the tilt depends on the current model py. In particular, the stationary points of the
relaxed loss are exactly the stationary points of the objective

2

DL (p9 ” p9base) + X(EPSQ(G) [h'(m)} - h*)T]Epe [h’(x)] 24)

This can be seen by taking the gradient of (24). By identifying a = —%(Epsg(e) [A(x)] — h™)
and o, X py,,. () exp{a h(x)}, we observe that (24) is exactly equal to Dxr. (P || Ga)- Go can
be understood as our current best approximation to the solution of (18). Unlike the solution of
(18), though, E,, [h(z)] is not equal to E;,__ ,, [h(x)]. For sufficiently expressive class of generative

models py, we would expect Ey, [h(x)] and E,, _ , [h(x)] to be approximately equal at the optimum.

C.4 CONSISTENCY AND ASYMPTOTIC NORMALITY

In this section, we discuss the large sample behavior of the estimator & for the parameters a* of
the reward loss. Under Assumptions C.1, C.2, and C.4, we show that as N — oo and d remains
fixed, then avjy is close to a* with high probability. And under stronger conditions, we demonstrate
that ay has a limiting normal distribution. The asymptotic behavior of & has previously been
studied in the subject of empirical likelihood (Qin & Lawless, 1994; Kitamura & Stutzer, 1997;
Owen, 2001).
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WEe first aim to establish that &y is close to a* with high probability as N — oo i.e. & is consistent
for a*. Define the functions

1 N
Ala) := A4y, (a), Ay(a):=log (N > exp{ra(acn)}),
n=1

where Ap is defined in Appendix C.1. Observe that A is random and depends on the independent
samples {x,, }_, drawn from py, .. The dual problem corresponding to py,, . maximizes ' h(zx)—
Agra), whereas the dual problem corresponding to the distribution of samples {x,, }2'_; maximizes
o' h(x)—An(a). By the Strong Law of Large Numbers (SLLN), forany o € =, Ay (o) — A(x)
with pg,,. probability one. In order for our estimator &y to approach a*, though, we need to
argue that the dual objective corresponding to {x,, }_, uniformly approaches the dual objective
corresponding to py,,. on some neighborhood containing a*.

Lemma C.8. For any closed, bounded subset K of =,
sup |Ax (@) — A(@)| =0
acK

with py, ., probability one.

Proof. By the SLLN, we can construct a Borel set N of probability zero under py,,. such that on
its complement Ay () — A(c) holds for each a € =N Q% (apply the SLLN for an individual
a € 2N Q¢ then take a union over probability zero sets).

Rockafellar (1970, Theorem 10.8) states that if a sequence of finite convex functions defined on
an open, convex set C' converges pointwise on a dense subset of C' to a limiting function, then the
limiting function is convex on C, and the convergence is uniform on closed and bounded subsets of

C. Applying this result to our setting, on the complement of N
sup |Ax (@) — A(@)| = 0
acK

for K a closed and bounded subset of =. In particular, since = is open, we can choose K to be a
closed neighborhood (of positive diameter) containing a*. O

Once we have proven uniform convergence, our proof of consistency for & is nearly identical to
our proof that ||y — a*|| = o(1) in Proposition C.7.

Proposition C.9 (Consistency of ay). Suppose Assumptions C.1, C.2, and C.4 hold. Then for any
e >0,

Pp"bm( |aN - Oé*” > 6) —0 as N — oo.

Proof. From Appendix C.1, we know that both A and Ay are convex functions. Moreover by
Assumption C.4, V2 A(a) = Var,_. [h(z)] > 0, where go-(x)  pg,..(x)exp{rq-(z)}. This
implies A is strictly convex.

By Lemma C.8, there exists a closed, bounded subset K of containing a* and with positive diameter
on which sup, ¢y |An(a) — A(a)| — 0 with pg,, probability one. Fix € > 0 sufficiently small
such that the Euclidean ball centered at o* of radius € is contained in K. Just as in the proof of
Proposition C.7, there exists some x € R such that for all [|ac — a*|| = e,

a'h* — Ala) <k < (a*)Th* — A(a™).

Fix § > 0. By uniform convergence, there exists N. s € N such that VYN > N, ; and for all
o — ™| =,

a"h* — Ay(a) <k < (a*)Th* — Ax(a®).

with probability at least 1 — & under py,,.. And since the dual objective corresponding to {x,, }2_,
is concave, this implies that, on this event, its maximum occurs in the Euclidean ball of radius e.

In other words, we have proven that for every € > 0,6 > 0, there exists N s such that for every
N 2 N, €,05

Pp,.. (lany —a™[| >¢€) <.
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Next, we show that under stronger conditions on the problem, &y has a normal limiting distribution,
and we derive its variance.

Proposition C.10 (Asymptotic normality of ay). Suppose Assumptions C.1, C.2, and C.4 hold.
Moreover, assume 2o € E, for 2 defined in Appendix C.1. Then the estimator &y is asymptotically
normal:

VM(ay — o) 5 N(0, (Var,,. [h(2))) " S(Var,. [h(z)]) ),
Ey,, [(h(z) — B*)(h(z) — h*)T exp{raa- (z)}]
(Epe,w [exp{ra~(x)}])?

Prior to stating the proof of Proposition C.10, we build some intuition by working out the asymptotic
variance for the example we presented at the beginning of the section. Recall that the constraint
function is h(x) = 1{x > 0}, h™ is its target value, and hy, = Py,,_(x > 0) is the expected value of
h under py,, . By directly solving for & in the expression (5) for the maximum entropy solution,
we showed ay = log(%
T 50 D6,,..- Next, we compute

Var,_. [h(x)] = h*(1 — h")
(R*)2(1— hy) + (1 — B exp(2a)hy  (R)2(1 = hy) + EZP B0 ana g ey

), where gy = + Zfz\le Yp» Y, = h(xzy,) 4 Bernoulli(h;) for

Y= = -
(hy exp(a®) + (1 — hyp))? (1—hb )2 he(1 = hy)
1—h*
Combining these two yields the asymptotic variance
1
Var, .|h(x *22:7,
Pa [ ( )] hb<1 . hb)

according to Proposition C.10. In other words, the estimator &y has greatest asymptotic variance
when hy, is close to either 0 or 1. Notice that we can compute the asymptotic variance of &y
directly (i.e. without using Proposition C.10) by applying the delta method to ¢, and the function

zZ log(?l*_(l,;')zz)

), in which case we obtain the same value.

The proof of Proposition C.10 relies on the technical result Lemma C.11, the statement and proof of
which we defer to the end of the section.

Proof of Proposition C.10. Let Dy be the set on which the strong duality holds for P =

% ZnNzl 0, and the dual optimum is uniquely achieved. From the proof of Proposition C.9, we
can see Ppem (Dy) — 1as N — oco. Moreover, on the set Dy, &y is the unique root of

N
Tl a) =0, wlw,a) = (h(@) - h)explrale)}.

Also, from the proof of Proposition C.9, we know that Assumption C.4 implies Var,_, [h(x)] is
positive definite.

By Van der Vaart (2000, Theorem 5.21), if we can show ¢ (x, a) satisfies the Lipschitz condition
[(x, o) = P(x, )| < M(z)||a — | (25)

for all &, &’ belonging to some neighborhood of a* and E,, [M ()?] < oo, then the previous
facts imply that &y is asymptotically normal with variance

Ep,,. [(R(2) = K)h(zx) " exp{ra-()}] ! (Ep,  [exp{ra- (2)}]) =

—Var,,_ . [h()] !
(Epe,,. [exp{ra-()}])(Ep, [(h(z) — R)h(2) " exp{ra-(=)}]7") "

Vary, . [h(z)] =1
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And so it remains only to establish the Lipschitz condition (25). First, we compute the derivative of
1) with respect to o

Vat(@,a) = (h(z) = h")h(z) Vo exp{ra(@)} = Vo exp{ra(@)} — B (Vaexplra(@)})
Next, we appeal to Lemma C.11, which tells us that for all « belonging to an open neighborhood

of a*, the derivatives of exp{r ()} have norm dominated by a function M () that is py,,. square
integrable. Also, by the Mean Value Theorem, for all ¢, &’ belonging to this neighborhood,

’(/)(SC, (X) - '(/J(xa a/> = Vw(% d)(a - al>
for some & on the line segment connecting « to a’. By taking the norm on both sides and using
(IVY(z, &)|| < M(x), we obtain the Lipschitz condition (25). O

Lemma C.11. Under the assumptions of Proposition C.10, there exists an open neighborhood of o*
on which all derivatives of exp{ra ()} with respect to o are dominated by a py,,, square integrable
function.

Proof. In Proposition C.10, we assume Epe [exp{ra2a~(z)}] < oo; in other words, 2a* is con-

tained in the natural parameter space =. Let ¢ be defined such that the Euclidean ball of radius e
centered at 2a* is contained in Z. Fix any & such that ||&—a*|| < £/(2d), where d is the dimension
of the constraint h(x). Then by Cauchy-Schwarz

exp{a’ h(z)} < exp{(a”) "h(z) +¢/(2d)|[h(z)]}. (26)

Define the 2d vectors (3 l)) by 85D = efl], BV = —ell], where e[l] denotes the ith
standard basis vector. Then we can upper bound the second term using

exp{|[(x ||}<Hexp{|hz H (exp{hu(x)} + exp{—hu(x <Zz exp {d(B) h(@)} .
Plugging this bolurlld into (26) ylelds:
exp{a” h() }<Z2dexp{ +(e/2)8") Th(=) } . @7)
Squaring both sides of (27) yields -
(exp{@"h(z)})? < 2% f) f)exp {<2a* +(e/2)(B" + ﬁ““)))Th(w)} . @8
=1 k=1

However, we notice ||2a* + (¢/2)(8" + B™) — 2a*|| < &, so each term on the right-hand side
of (28) has finite expectation under py, .. This implies exp{rq ()} is dominated by the right-hand
side of (27), which is square integrable under py,,_, for all ||a — a*|| < €/(2d).

As for the derivatives of exp{rq(x)}, notice that the kth derivative with respect to «,

v exp{ra(x)}, is given by h(x)®* exp{rq(x)}, where ® denotes the tensor product. More-
over, by equivalence of norms, for any 7 > 0 there exists constants ci,cr > 0 such that
|h(z)®F| < ckxllh(z)||* < crrexp{T||h(z)|/}. So by choosing 7 such that the Euclidean ball
of radius € + 2dr centered at 2* is contained in N (2a*), our same argument yields a dominating

function of the form (27) for || — || < &/(2d), with exponent (a* + (¢/2+d7)3) Th(z). O

D SIMULATION EXPERIMENTS ADDITIONAL DETAILS

In this section, we provide details for our experiments calibrating mixture proportions in a product
of GMMs (Section 3). First, in Appendix D.1 we give background on continuous-time diffusion
models, including how we sample from py and compute densities pg /p with respect to a dominating
measure p. This enables us to employ CGM-relax and CGM-reward for calibrating a pre-trained
diffusion model. In Appendix D.2, we describe how the base diffusion model can be initialized to
generate exact samples from a GMM or product of GMMs. Lastly, in Appendix D.3 we provide
details regarding our implementation of the CGM calibration algorithm, including optimizer, neural
network architecture, and hyperparameters.
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D.1 CONTINUOUS-TIME DIFFUSION MODELS

Consider the measurable space (C' [O 1%, Beyo 1]k) of k-dimensional continuous functions defined
on the interval 0 < ¢ < 1. Bgjg 1) is the Borel sigma-field corresponding to the supremum norm on

C[0,1]%. A continuous-time diffusion model is the solution to
dx(t) = bg(x(t), t)dt + o(t)dw(t), x(0) ~ Dinits (29)

where (w(t))o<i<1 is a standard d-dimensional Brownian motion, by is modeled by a neural
network, and pjni is a known distribution from which sampling is tractable. When the drift
be : RF x [0,1] — R* and diffusion o : [0,1] — [0,00) coefficients are bounded and by satis-
fies the Lipschitz continuity condition ||bg(x,t) — bg(y, t)|| < C1(1+ ||x —y||) for some C; € R
and all t € [0,1], =,y € R*, the SDE (29) admits a unique solution (Oksendal, 2013, Theorem
5.2.1). We denote the solution, which is a probability distribution on (C[0, 1]*, Bcg 11+ ). by pe-

Sampling from diffusion models. In general, solving the SDE exactly (29) is intractable. How-
ever, there exist numerous numerical methods for drawing approximate samples from py, including
the Euler-Maruyama method and strong Ito-Taylor approximations (Kloeden & Platen, 1999, Chap-
ter 10). For our experiments, we use the Euler-Maruyama method, which discretizes [0, 1] into T

time bins [0, 1/77],...,[(T—1)/T, 1] and then samples a path (Z(t))o<:<1 according to Z(0) ~ Pinit
Z(t+ At) = z(t) + Atbg(2(t),t) + o(t)VALz(t), 0 < At < 1/T (30)

for each t = 0,1/T,...,(T — 1)/T, where z(0),...,z((T — 1)/T) are independent standard
normal random variables. The Euler-Maruyama method with additive noise o (t) has strong order of
convergence 1, meaning that its error in approximating the solution to the SDE (29) is

Ep[|Z2() —2(®)] <C(T™), 0<t<1

for C' a constant independent of 7. In other words, as we increase the number of time bins 7', we
can expect our sample paths drawn according to the Euler-Maruyama scheme to more faithfully
approximate samples from the distribution pyg.

Computing densities. In order to employ CGM-relax and CGM-reward, it is necessary that py
and py,,. have densities with respect to one another. However, unlike in the problem setting where
the generative model py is defined on Euclidean space, it is not immediately clear whether this is the
case and, if so, how to compute these densities.

In order to answer this question, we further assume there exists a x > 0 such that o(¢t) > & for all
times 0 < ¢ < 11i.e. the SDE (29) is uniformly elliptic.2 Under this assumption, Girsanov’s Theorem
(Cameron & Martin, 1944; Girsanov, 1960) tells us that pg and py,,, have probability densities with
respect to one another, and it provides an expression for these densities.

Theorem D.1 (Girsanov’s Theorem). Suppose the SDEs
vi(x) s de(t) = by(x(t),t)dt + o(t)dw(t), 0<t<1
va(x) : de(t) = (by(x(t), 1) + o (t)ba(2(t), t))dt () w(t), 0<t<1

satisfy o(t) > 0, 0 < t < 1, have the same initial law v1(x¢) = vo(xo), and admit unique, strong
solutions, vy and vs. Suppose also

[ngﬂ _exp{ /b2 /Hb2 Idt} (31)

is a vi-martingale, where (w"*(t))o<i<1 is a vi-Brownian motion and dw}*(t), i = 1,...,k
denotes the Ito stochastic integral. Then the probability measure vs has a density with respect to v.
In particular, for any bounded functional ® defined on C|0, 1],

1241 (CU)

*Uniform ellipticity is not a necessary assumption, but it ensures that (31) is a bona fide martingale. Under
the weaker assumption ¢ > 0, one can check Novikov’s condition (Oksendal, 2013).

B.[8(2)] = B, [0() [2D)] } .
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Under our assumptions, ||o(t)~!(be(z(t),t) — bg,.(z(t),t))| is bounded, which implies
([po(x) /Poy.. (2)]t)o<i<1 is a martingale with respect to pg,,... Consequently, Girsanov’s Theorem
tells us that the probability density of pg with respect to py,,.. is given by

p w’
— base dt
L2 ep{z / ol / Jua(a(2), ) } )

ug(x(t),t) == o (1)~ (bo(2(1), 1) — bp,,. ((t), 1))

This expression for the density of py with respect to pg,,. allows us to compute the KL divergence
between the probability measures py and py,,. according to

1 1
3 | Enlutao.olfd.

The stochastic integral term vanishes since it has expectation zero.

Dkr (o || Poye) =

When (Z(t))o<¢<1 is sampled from the Euler-Maruyama approximaton to py,,., we approximate
(32) by replacing the integrals with

1 T-1
/ o (&(8), t)sdu™ (£) V2 ug(@(t/T), t/T)i(=((t +1)/T) — 2(¢/T))
0 t=0
1 T-1
/ ug(E(t), t)idt =~ T~ > " ug(@(t/T),t/T);
0 t=0
where 2(0), ..., z((T—1)/T) are the same random variables from (30). This same approximation to

the density ratio (32) can be derived by writing out the density ratio of pp(2(0), Z(1/T),...,Z(1))
and Py, (Z(0),2(1/T),...,x(1)), where Py is the probability distribution defined by the Euler-
Maruyama discretization of pg.

Efficient gradient computation. From Appendix B.2, we know that CGM-relax and CGM-
reward require computing gradients of the density ratio:

Ve— Z/ Voo ()~ by (1), t)idw; ™ (1)

Pstop-grad(9) (:13

k T-1
ATV N Voo (t/T) be((t/T),t/Y )i(2((t +1)/T) — 2(t/T))
=1 t=0
T-1
=T V2N " o(t/T)  (2((t+1)/T) — 2(t/T)) <ZV9b9 (t/T), t/Y)) (33)
t=0

In general, computing this gradient all at once is intractable for high-dimensional diffusion models
like Genie2 (Lin et al., 2024). However, we observe from equation (33) that the gradient is simply
a sum across time, meaning that it can computed in chunks. In practice, we divide {0, ..., 7T} into
[T/chunk_size] blocks of approximately equal size, where chunk_size is the largest chunk
size that can fit into memory. We also point out that these gradients can be computed in parallel
across multiple GPUs.

D.2 INITIALIZING THE BASE DIFFUSION MODEL
In each of our synthetic data experiments, we initialize our base diffusion model pg,,  such that
Doy (2(1)) is equal to a GMM, or a product of GMMs. We achieve this by representing py,, . as the

reversal of a forward diffusion process. A forward diffusion process draws samples from the target
GMM density (1) ~ prareer and then noises them according to the linear SDE

p:da(t) = %m(t):c(t)dt + o(t)dw(t), 0 <t <1. (34)

32



Under review as a conference paper at ICLR 2026

When the diffusion coefficient is chosen such that o(t) = +/k(t) and the linear coefficient

(k(t))o<t<1 satisfies k(t) > 0, fol k(t)dt = +o0, then 3(:1:(0)) 4 N(0,T). We choose (t) =t L.
Simply, (34) turns samples from pyeec into Gaussian noise. In practice, since the drift and diffusion
coefficients defined by x(t) are unbounded (which violates the assumptions necessary for existence
and uniqueness of the solution to the SDE from Appendix D.1), we cap «(t) at some large M.

A foundational result in diffusion processes (Anderson, 1982) states that the reversal of (34) is
another diffusion process that is given by

1

P de(t) = {a(t)va log p (z(t)) + QA(t)a:(t)} dt + o(t)dw(t), 0<t<1  (35)

with o (2(0)) < 7 ((0)). The probability distributions defined by (34) and (35) are equal in law.
p(z D p y y (34) ( q

V2 log p(x(t)) is called the score of the forward process (34).

Equation (35) is useful since it tells how to generate samples from pyge: first draw samples from
—

p((0)) = N(x(0) | 0,1), then solve the SDE (35) numerically using Euler-Maruyama, for exam-
ple. However, for general target distributions peyrger, the score of the forward process is intractable,
which yields the backward diffusion process (35) also intractable. The score matching algorithm
(Song et al., 2021) trains diffusion models by parameterizing the neural network drift function
as bp(x(t),t) = o(t)?se(x(t)) + 3r(t), where sg(x(t)) is a neural network approximation to

Ve log p (2(t)).

In the case of a GMM, though, the score of the forward process is tractable. Indeed, for
Prarget(2(1)) = > mN (2(1) | p;, i), we compute

P (e(t) = / B (@(8) (1)) Prarge (1)) (1)
Y / N (lm(t)e(1), s DN (1) | g, 2o)da(1)

= mN (@) |m(t) g, 5T+ m(t)°S;),

1. Fors(t) = t71, we

we initialize pg, _(z)

where m(t) and s(¢) are defined by the forward diffusion process (x(t))o<¢
have m(t) = t'/2 and s(t) = (1 — ¢)'/2. Using this expression for p (z(t)
to the exact reversal of the forward process (34) according to (35).

)

D.3 EXPERIMENTAL DETAILS

We perform all synthetic data experiments using Adam (Kingma & Ba, 2015) with default momen-
tum hyperparameters 5 = (0.9,0.999) and a cosine decay learning rate schedule (Loshchilov &
Hutter, 2016). We perform 2 x 10> CGM iterations for every experiment. Training was completed
on a single H100 GPU.

In the diffusion generative model, we parameterize the drift function by as

bo((1), 1) = 7(1)*{Va log B (1)) — wo(, 1)} + 3A(1)a(1).

ug is a neural network with two hidden layers of dimension 256 and SiLLU activations, and

log ;(m(t)) is the analytical score of the forward process that we described in Appendix D.2. In ad-
dition to x(t), we feed as input to uy a sinusoidal time embedding of dimension 32. By initializing
the weights of the output layer of ug to zero, we ensure that py is initialized at py, ., the reversal of

the forward diffusion process Z

All synthetic data experiments are performed with batch size M = 10*. For CGM-relax, we select
A by first performing calibration for each \ on a log linear grid from 10° to 10~2 with 10 grid points.
We choose the value of \ for which (£V1°')!/2 is reduced by a factor of 10 and £X is the smallest.
If no such value exists, we choose A for which LKL is smallest. For CGM-reward, we compute & x
using N = 10° samples from py,...
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Table 1: Training configurations for experiments. Batch (sub-batch) indicates the number of samples
per batch and the sub-batch size used to fit gradient computations into memory. # steps is the number
of training steps. S{; denotes the set of all sequences with vocabulary size V' and length L.

Hyperparameter Genie2 ESM3-open  TarFlow  TinyStories-33M
Initial learning rate 107° 107 10-6 2 x 106
Batch (sub-batch) 64 (16) 256 (64) 256 (16) 512 (64)
Training steps 100 100 50 200
« Space (R100%3)100 (S100 )50 R256x256x3 5128,%00
Constraint dims (k) 99 99 6 8
Model parameters 15M 1.4B 463M 33M
Training time (hrs) 48 2.3 3 0.1

E CASE STUDY ADDITIONAL DETAILS

In this section, we describe the experimental setup for our case studies with CGM-relax and CGM-
reward from Section 4. We provide explanations regarding the generative model classes py, CGM
constraint functions h and targets h*, choice of CGM hyperparameters A and N, model architec-
tures, and training procedures. We also include additional samples from our models before and after
calibration.

Just as in our synthetic data experiments, we perform all experiments using Adam with default
momentum hyperparameters 5 = (0.9,0.999) and a cosine decay learning rate schedule. Additional
common training details are shown in Table 1. All models were trained on a single H100 GPU.

E.1 CALIBRATING GENIE2

For our experiments with Genie2, we represent py as a continuous-time diffusion model defined over
three-dimensional protein backbone coordinates with drift function defined by the SE(3)-equivariant
encoder-decoder architecture from Lin et al. (2024).

Since Genie2 is trained as the reversal of a discrete-time noising process (a DDPM, see Ho et al.,
2020), we first convert the discrete-time denoising diffusion model to a (continuous-time) diffusion
model. We achieve this by redefining the final timestep 7" of the original denoising process to be
time 1 of the continuous-time process. To define the drift function, we take the DDPM transition
mean defined at each time ¢ in the discrete-time process, divide it by 1/7° = T, and define the
drift function to be equal to the resulting value in between times ¢/T and (¢ + 1)/7T. The diffusion
coefficient is similarly defined by the DDPM transition standard deviation at each time ¢ in the
discrete-time process, but is instead scaled by 7"'/2. This approach of converting the DDPM into
a continuous-time diffusion model ensures that when the SDE is solved under the Euler-Maruyama
scheme using a grid of 7" timesteps (i.e. the original time grid used to define the DDPM), one samples
from the original DDPM.

We perform sampling using 102 timesteps and a non-uniform time grid: we sample the first 50
steps on the interval [0,0.05] and the remaining steps on the interval [0.05, 1]. We point out that
the original Genie2 model was trained with 10® denoising steps; we find that reducing the number
of sampling steps dramatically decreases the runtime of CGM calibration. Our sampling scheme
is possible since we redefined the base generative model to be a continuous-time diffusion process.
We computed self-consistency metrics for the base Genie2 model sampled on the original time grid
(with 102 steps) and on our proposed grid (with 102 steps), we did not observe any difference in
sample quality.

For CGM-relax, we calibrate to k=99 constraints on the bivariate CDF of alpha helix and beta strand
content. And for CGM-reward, we calibrate to k=15 constraints using N = 2.5 x 10* samples from
Doy - Since sampling from the Genie2 base model is time intensive, the sampling cost to compute
ay (with small variance) is a downside to CGM-reward. Results reported in Figure 3 are averages
over 3 trials, with two standard errors.
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Self-consistency RMSD and design failures. To assess the quality of our generations, we com-
pute the root mean-square deviation (RMSD) between C,, atoms resulting from (i) unfolding our
generated structures into predicted amino sequences, (ii) refolding each of these predicted sequences
into a protein structure, and (iii) aligning the predicted structures to the original structure. The self-
consistency RMSD (scRMSD) is defined as the smallest RMSD between the given structure and
one of the corresponding predictions. We use ProteinMPNN (Dauparas et al., 2022) for our inverse
folding model and ESMFold (Lin et al., 2023) for our folding model; we compute scRMSD from
8 sequences. The pipeline we employ was developed by Lin & Nguyen (2024). Once we have
determined the scRMSD of a generated structure, we classify it as a “design failure” if its sScRMSD
is greater than 2A. Intuitively, designability is a binary measure of whether or not a structure could
have been plausibly produced by folding an amino acid sequence.

Secondary structure annotation. As discussed in Section 4.1, we measure the diversity of a
collection of protein structures by computing the proportion of residues that lie in each of the three
protein secondary structure types. For the CATH domains and Genie2, we perform annotations
using the Biotite package (Kunzmann & Hamacher, 2018), which considers only C,, backbone
atoms. For the CATH proteins (Sillitoe et al., 2021), we obtain the secondary structure distribution
by annotating the domains collected and published by Ingraham et al. (2019).
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Figure 6: Random samples from the Genie2 model before calibration (top), after calibration using
CGM-relax with 99 bivariate CDF constraints (middle), and after calibration using CGM-reward
with 15 bivariate CDF constraints (bottom).
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E.2 CALIBRATING ESM3-OPEN

In order to apply CGM to ESM3, we need to be able to sample from the model and to compute
gradients of sample log-probabilities with respect to the model’s parameters.

Sampling method. Following the method used by Hayes et al. (2025), sampling is achieved by
treating the model as a discrete time Markov chain that starts at a sequence of mask tokens and ends
at a sequence of fully unmasked structure tokens. Each step ¢ of the chain consists of three steps and
transitions from state (i — 1) to (7).

1. Pick token indices U () to unmask uniformly at random without replacement from the
masked tokens of x(i — 1).

2. Use the model to predict a categorical distribution Wéj ) (-] @(i — 1)) for j € U(7) for each
of the newly unmasked tokens given the previous partially masked state.

3. Sample the values of those tokens from the predicted categorical distributions, resulting in
|U (7)| more unmasked tokens.

As implemented by Hayes et al. (2025), we use T' = 50 steps to sample 100-residue sequences
and follow a cosine unmasking schedule. The cosine schedule determines the number of masked
positions at each sampling step as

T 1
) 1= 1 —— =0,...,T.
7(4) round( OOXCOS(QT)), 1=0,...,

Early sampling steps unmask few tokens per step, while later ones sample many at once. Intuitively,
this let’s the model sample more tokens in parallel once it has more information to predict the final
sequence. Note that the number of tokens unmasked at step ¢ > 01is |U(i)| = r(i — 1) — r(4).

Transition probabilities. A Markov chain can be characterized by its initial state distri-
bution, (0) ~ mo(«(0)) and its transition probabilities for going from one state to the
next. The ESM3 sampling method starts fully masked, so has initial distribution o (2(0)) =
1{«(0) is fully masked}. The transition probabilities follow from the sampling procedure and are

po(a(i) | x(i—1) =C(@) [ = @@= -1)), (36)

JGU()

where C/(i) is a constant that accounts for randomly choosing which tokens to unmask. C'(¢) does
not depend on 6 or the sampling trajectory (x(0),x(1),...,x(T)), since every unmasking order
is equally likely. Note U (i) can be computed from x(i — 1) and (%) by finding which tokens are
masked in (¢ — 1) and not in &(%).

Trajectory log-probability. As in the neural SDE setting (Appendix D.1), the marginal likelihood
of &7 is intractable, so we treat samples « as entire trajectories, x = (z(0), (1), z(2),...,z(T)).
Using the Markov property, the log-probability of a trajectory is

log pg () = log <7To xo Hpe i) | x(i - 1)))

1=1

T
=log mo(xo) + Z log H w(]) Jl | ®i1) (by equation (36))
i=1 JEU(D)
T
= Z H 7r9 Jllx(i — 1)) (mo(x(0)) = 1 by construction)
i=1 JEU(i)
T
:Z +Z > logr (x(i)[j] | (i — 1))
i=1 i=1jeU(i)
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Parameter gradients. Now that we have defined the log-probability of &, we can compute gradi-
ents with respect to 6 as

Vo log pp(x ZC +Z >~ logmi ()] | =(i — 1))

i=1jeU(3)

—Z > Velognd ((i)lj] | (i — 1)),

=1 jeU (i)

which conveniently is a sum over sampling steps. The decomposition of the gradient into a sum
over sampling steps let’s us compute parameter gradients using constant memory with respect to the
number of sampling steps, which is critical for high-parameter-count models such as ESM3-open.

Secondary structure annotation. We use the ESM3 structure decoder and the ESM3 function
ProteinChain.infer_oxygen to get heavy atom coordinates from sampled structure tokens.
We then pass the coordinates to the Python package PyDSSP (Minami, 2023) to annotate secondary
structure.
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Figure 7: Random samples from the ESM3-open model before calibration (top), after calibration
using CGM-relax with 99 bivariate CDF constraints (middle), and after calibration using CGM-
reward with 15 bivariate CDF constraints (bottom).
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Figure 8: Random samples from the conditional TarFlow model trained on the AFHQ dataset (blue
background) and the same model fine-tuned using CGM-relax (A=10"*) (orange background), with
annotations by GPT o5-mini (white box). Red boxes denote poor-quality samples, and red crosses
denote incorrect annotations. Although the model calibrated with CGM-relax produces animals with
more balanced class proportions, it also produces fewer realistic samples.

E.3 CALIBRATING TARFLOW

As we described in Section 4.2, our goal when calibrating the TarFlow model (Zhai et al.,
2025), trained conditionally on the Animal Faces HQ (AFHQ) dataset (Choi et al., 2020), is
to generate more diverse samples from the wildlife class. By directly examining the AFHQ
dataset, we identify six animals: {lion, tiger, wolf, fox, leopard, cheetah};
we do not further distinguish among these animals e.g., leopard versus snow leopard. Within
the AFHQ training dataset, these animals are represented in the wildlife class with proportions
{0.2615,0.2254, 0.0897,0.0933,0.2003,0.1290}, as annotated by GPT 05-mini.

Our motivation for choosing this problem was twofold. First, the quality of images generated
by the base TarFlow model is high, such that a pre-trained classifier could attain high accu-
racy without fine-tuning. Second, we observed that the wildlife images generated by the base
TarFlow model contained predominantly lions and leopards (Figure 8), and rarely contained foxes
or wolves. From 5 x 10® samples annotated by GPT 05-mini, we computed animal proportions
{0.3590, 0.1260, 0.0404, 0.0256,0.2704,0.1752}.

For image classification, we prompted GPT o5-mini to classify each image according to the follow-
ing prompt:

You are labeling animal photos.
Return JSON only: {"label": <one of the options>, "confidence": <0..1>}.
Choose exactly one from: lion, tiger, wolf, fox, leopard, cheetah or none.

The calibration function h(x) € R® was a one-hot encoding of the output and was equal to the
zero vector if the image was labeled as including none of the animals. Although we required the
model to state its confidence when labeling the images, we did not use these confidence scores for
fine-tuning. Our target h™ was the uniform distribution over animals. Note that since some of the
samples from the base model are classified as None, then the components of h(x) are not linearly
dependent (i.e. we can estimate ™).
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We performed calibration with regularization parameter A = 10~*, and sample size N = 5 x 103.
We assessed the success of calibration using two metrics: the total variation (TV) distance of the
distribution over animal proportions (using 5 x 103 annotated images) to the uniform distribution
and the FID, computed using only the samples belonging to the wildlife class in the AFHQ training
dataset. We use 5 x 10% samples from the generative model to compute FID. It is important to note
that the FID is an imperfect metric for assessing the quality of generated images since it will be lower
for models whose animal class makeup is similar to that of the training distribution. To account for
this, we evaluated CGM-relax on the maximum entropy reweighting of the training dataset to the
uniform distribution over animal classes. In other words, we up or down weighted images belonging
to a particular animal class in order to sample the six animals belonging to wildlife class with equal
probability.

Our best model, calibrated using CGM-relax with A = 10~%, obtained class proportions
{0.2248,0.0854,0.1750, 0.1566, 0.1668, 0.1086 }, evaluated using 5 x 10® samples from the model;
0.0828 of the samples were labeled as None. CGM-relax reduces the miscalibration error by nearly
three times, from a TV distance of .306 to .108 (Figure 9). However, the FID score increases from
15.9 to 21.9. CGM-reward is unsuccessful at calibrating the base model; both miscalibration and
FID is roughly the same as the base model. Since CGM-reward remains close to the base model, we
evaluate FID on the original AFHQ training dataset.

In Figure 8, we provide random generations from both the pre-trained and the model calibrated with
CGM-relax with A = 10~*. By examining samples from the calibrated model, we observe two axes
along which sample quality worsens. First, some of the samples (those labeled as None) are dogs
or cats, which lie outside the AFHQ wildlife class. Second, a greater proportion of samples depict
blends of multiple animals.
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Figure 9: Calibrating TarFlow with CGM-relax reduces the TV distance of animal class labels to
the uniform distribution by approximately three times. However, CGM-relax also produces fewer
realistic samples, as measured by FID.
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E.4 CALIBRATING TINYSTORIES-33M
E.4.1 AUTOREGRESSIVE SAMPLING AND LOG-LIKELIHOODS

Following the setup used by Eldan & Li (2023), we sample in the standard autoregressive fashion
with no temperature scaling. To compute sequence log-likelihoods, we consider the prompt as given
and ignore tokens generated after the first end-of-sequence (EOS) token. Let m be the length of the
prompt and n the index of the first EOS token. Then sequence x has log-probability

n
logpg(z) = > logpe(wi|w<i).

i=m+1

For computational efficiency during training and evaluation, we set the maximum length of each
story to be 200 tokens.

E.4.2 TINYSTORIES CONSTRAINT DEFINITION

To calibrate TinyStories-33M, we use a simple heuristic procedure to detect the gender of the story’s
character associated with the profession in the prompt. The procedure returns 1 for female, —1 for
male, and 0 if the gender cannot be determined. Given a generated story, our procedure is as follows.

(1) Pronoun at sentence two. If the second sentence begins with a third-person singular pronoun,
we assign gender based on that pronoun. This is common with our prompt templates, e.g., “Once
upon a time there was a doctor named Sam. She was very kind...”.

(2) First-sentence scan. If step (1) is inconclusive, we iterate through the words in the story’s first
sentence. If a title (“Mr.”, “Mrs.”, “Miss”, “Ms.”) appears, we assign the corresponding gender.
Otherwise, we treat each word as a potential first name and query the gender—guesser package

(Pérez et al., 2016). If the package classifies the token as “male”, “mostly male”, “female”, or
“mostly female”, we assign the corresponding gender; otherwise we continue scanning.

(3) No evidence. If no gender is detected, we assign O (unknown).

We acknowledge the limitations of this simple approach but consider it sufficient for a proof of
concept.

Conditional constraint via sum-of-losses. We wish to satisfy the conditional calibration con-
straints

E[h(z) | prompt;] =0, fori=1,...,k

which encodes that the male and female labels should be balanced for each of the k professions.
We implement this as a sum of CGM losses Zle Ei, where EAZ is the reward or relax loss for the
conditional generative model py(x | prompt,). During every training batch, we sample 64 stories
for each of the eight professions, resulting in a total batch size of 512.

E.4.3 TINYSTORIES-33M FIGURE DETAILS

Both panels of Figure 5 were created using 20 replicates per model with different Pytorch seeds,
with points indicating the mean metric value across replicates. 2,048 stories were sampled per
profession for each replicate, resulting in 14 x 2,048 = 28, 672 stories per model. Due to the high
number of samples and replicates, two-times-standard-error-of-the-mean error bars are smaller than
the markers, so are not shown.
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Khalifa 2021 baseline. Khalifa et al. (2021) use the same method as CGM-reward to define an
approximate target distribution pg . Unlike CGM-reward, they minimize the forward KL

Pax (w)]

po(x)

=Ep. 0 iraa(0) [

Dut (e || 70) = Ep,, [1o

pay(®)  Pay(@)
Pstop-grad(0) (w) pg((l:)

Pa(®) ( )logpe(w)] +C

Pstop-grad(e)\ L

] (importance sampling)

=Ep. 0 araa(0) [

~T ~
P (@) exp (G2 — Ay, (Gn))
pstop*grao(‘g) - log p@ (:13) + C

=E
Pstop-grad(8) (.’B)

(by definition of pg, )

B P (@) exp (a}) )

logpe(z) | +C,

stop-gra 9
Pstop-geaa(f) pstopfgrad(e)(w)

where C' and K are constants that do not depend on §. C' can be ignored as it has no affect on pa-
rameter gradients, and K can be absorbed into the learning rate. Similar to CGM-reward, gradients
of this KL-divergence are estimated using Monte Carlo. For a fair comparison, we use the same &
and batch size to train Khalifa et al. (2021), CGM-reward, and CGM-relax.

Distance from base-model (symmetrized KL) definition. For each fine-tuned model, we sample
N = 2,048 stories {x;}}Y, per profession, and compute log-probabilities log pg(z;) and base-
model log probabilities log py,,.. (x;). We estimate the per-profession backward KL as

po (T
Dk (po || Poyee) N Z pg (; )
base g

The forward KL uses importance sampling estimate

D1 (P, || Po)

Z prN :Cl pebuxe (ml)
i—1 wz Do (wz)

We add our estimates for the forward and backward KL for each profession to get the symmetrized
KL, then report the average symmetrized KL across all eight professions.

Gender imbalance definition. For each model replicate, we compute the number of male (#male)
and number of female (#female) characters in 2,048 samples for each profession. The miscalibra-
tion for a single profession is defined as

#male — #female

#male + #female |’

which takes maximum value 1 if all samples used the same gender and minimum value 0 if there are
an equal number of each gender. The overall miscalibration values shown on the y-axis of Figure SA
were computed by taking the average miscalibration for the eight professions used during finetuning.

Estimating KL for the max-entropy solution. Using N = 2,048 samples from the base-model
for each profession, we compute an estimate & of a* for each profession using the procedure out-

lined in Appendix C.2. We then compute importance weights for each sample w; = exp(a—r:ci),
which we use to compute normalized weights w; = w;/ Z —, wj. To estimate the forward and
backward KL divergences, we treat base-model probabilities as 1/N and use

N 1/ QAR w;
Pa) N*E log , Dki (pa || Pebusc)“ﬁzl/]lvbg l/ZzV
i=1 =t

DkL (Phee
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This procedure was repeated 20 times for different sampling seeds to ensure variance from estimat-
ing o had little effect on the outcome. The resulting error bars for the symmetrized KL are smaller
than the marker size.

E.4.4 EXAMPLE GENERATIONS

We provide example generations for four prompts before and after finetuning with CGM-relax with
A = 0.1. To conserve space, more example generations will be provided on GitHub upon publica-
tion.

Listing 1: Samples from TinyStories-33M

Once upon a time there was a doctor named Jack. He was fit and strong, loved helping people.One day, Jack was
working on an operation. He soon came across a little girl named Mary who was scared. Even though Jack
told her not to worry, he said "hello" to her.Mary was still scared, and the doctor could tell her not
to worry. He said that everything would be okay for her to do the operation. Mary felt a little bit
better .Jack helped Mary and made sure she was fit. He even helped her little brother and made sure that
she was always safe.At the end of the operation, Mary was smiling. She thanked Jack for his help and for
helping her son. She had learned lessons about not being scared and having someone stronger than her.

Once upon a time there was a lawyer named Matt. He was very new and people stopped to talk to him. He came
across a big building which said "Quiet down." Matt thought it was a bad idea but he was very curious. So
he did as he was told and soon his house became quiet.All of a sudden he heard a voice and it said, "

What are you doing?" It was the jail officer!Matt replied, "I thought it was a good idea to reverse the
law in this house."The jail officer said, "Smart Jackie, you know a lot! This house is the law of the
world." Matt smiled and said, "But it was fun to reverse the law."The jail officer nodded and said, "Yes

it was. But the law hates them."Matt thanked the jail officer and went on his way.The moral of the story
is that it pays to be creative, but also to be careful when you

Once upon a time there was a teacher named Miss Jane. She loved to answer any questions and her class was
empty .One day, when Miss Jane was busy writing something on the top of her desk, she heard a voice
coming from her kitchen floor. She looked down to see a small mouse squeezing a piece of cheese into the
board.Miss Jane gasped and said, " mouse, that's naughty! Put that cheese down!"The mouse replied, "No,
I won't. I'm making sure no one steals the cheese."Miss Jane was getting frustrated and said, "That's
not right. You must ask before you litter into someone else's work. That's not nice."The mouse knew from
the right place and quickly put the cheese back. Miss Jane saw what he had done and said, "That's the
right thing to do!"Missy stared at him in amazement and said, "I suppose you won't tell everyone what to
do with it again!"

Once upon a time there was a pilot named Bobby. He flew a plane on his travels.One day, Bobby was flying in
his plane when he saw a tree fall. He crashed the plane right into the tree. Bobby felt so sorry. He
called for help, but no one was around.Suddenly, he saw a 3-year—old child standing alone above the tree

Bobby flew to the child and offered to help. He told the little girl not to worry and helped him onto
his plane. Together, they flew the plane back to its home in the tree. Bobby and the 3-year—old child
became good friends after that until finally Bobby had to fly on time.The end.

Listing 2: Samples from CGM-relax (A = 0.1) model

Once upon a time there was a doctor named Susie. She was a very patient and kind lady who always supported
others. Every day she took her to see lots of patients. She always tried to help them feel better. She
was always so kind and always willing to lend a hand.One day, a patient called Sally came to see Susie.
Sally was very sick and needed help. Susie was always so gentle and caring, not taking extra time to
help others. When Sally asked her if she was okay, Susie just smiled and reassured her that she would be

alright soon. She was so patient with Sally as she played and chased around the toy store.It was so
nice to see how patient and caring Susie is between helping others. She continues to be sure to always
lend a hand whenever she can and remember to be there for her when feeling ill.

Once upon a time there was a lawyer named Cass. Cass and Tim went to a big city. They decided to sit on the
corner. It was a little dizzy when they sat because they were too dizzy.At the office, Mommy and Daddy
talked to the boss. They asked the lawyer for help. They listened to his ideas and his ideas. The lawyer
gave them big smiles. He showed them how to mix some ingredients together to make a cookie. The lawyer'
s ideas and his ideas fit the cookie dough. His ideas were so neat and the cookie dough was extra yummy!
The lawyer thanked him and said, "Thanks for your help. You kept your ideas nice and happy." Cass and
Tim smiled as they watched the lawyer leave the office. They waved goodbye as they walked away, still
feeling happy each

Once upon a time there was a teacher named Mr. Jam and Mrs. Bunny. Mr. Bunny has very cool haircuts that
everyone wanted. One day Mrs. Bunny said, "Tomorrow we will have a new surprise."The next morning, Mrs.
Bunny came over to Rob's house. When they got to the house Mrs. Bunny said, "I have a new surprise for
you!" She pulled out a big bicycle ticket.Mr. Bunny said, "This is for you my grandkids. Now settle down
and take it for a ride." The little bunnies were so happy!They sat quietly and quietly , taking turns on
the bicycle. Then Mrs. Bunny gave them a surprise, a cool drink. The little bunnies were so excited.
They each had a cool drink!All the bunnies were so happy to be outside on such a cool day. And they
thanked Mrs. Bunny for the special surprise.

Once upon a time there was a pilot named Judy. She loved to measure everything: trees, houses, farms, and
anything else. She was really careful to measure each inch so that every time that she got a bit closer
to the number. One day Judy was flying to measure a star in the sky. She drew a line through the line
with her finger and measured it for a long time. She was almost done when something terrible happened.
One of the letters flew too close and hit Judy in the face. It hurt a lot!Judy was very frightened and
ran away from the window to escape from the bad hit. But unfortunately the bad letter kept rolling
closer and closer until it was right at the edge of the world. Judy was so scared and upset she couldn't
believe it! She had been measured and measured, but still got past the bad letter.The bad letter that
Judy had measured was gone forever and Judy was left feeling very sad and lonely.
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