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ABSTRACT

Realistic, scalable, and controllable generation of furniture layouts is essential
for many applications in virtual reality, augmented reality, game development
and synthetic data generation. The most successful current methods tackle this
problem as a sequence generation problem which imposes a specific ordering on
the elements of the layout, making it hard to exert fine-grained control over the
attributes of a generated scene. Existing methods provide control through object-
level conditioning, or scene completion, where generation can be conditioned on
an arbitrary subset of furniture objects. However, attribute-level conditioning,
where generation can be conditioned on an arbitrary subset of object attributes,
is not supported. We propose COFS, a method to generate furniture layouts that
enables fine-grained control through attribute-level conditioning. For example,
COFS allows specifying only the scale and type of objects that should be placed in
the scene and the generator chooses their positions and orientations; or the position
that should be occupied by objects can be specified and the generator chooses their
type, scale, orientation, etc. Our results show both qualitatively and quantitatively
that we significantly outperform existing methods on attribute-level conditioning.

1 INTRODUCTION

Automatic generation of realistic assets enables content creation at a scale that is not possible with
traditional manual workflows. It is driven by the growing demand for virtual assets in both the
creative industries, virtual worlds, and increasingly data-hungry deep model training. In the context
of automatic asset generation, 3D scene and layout generation plays a central role as much of the
demand is for the types of real-world scenes we see and interact with every day, such as building
interiors.

Deep generative models for assets like images, videos, 3D shapes, and 3D scenes have come a long
way to meet this demand. In the context of 3D scene and layout modeling, in particular auto-regressive
models based on transformers enjoy great success. Inspired by language modeling, these architectures
treat layouts as sequences of tokens that are generated one after the other and typically represent
attributes of furniture objects, such as the type, position, or scale of an object. These architectures are
particularly well suited for modeling spatial relationships between elements of a layout. For example,
(Para et al., 2021) generate two-dimensional interior layouts with two transformers, one for furniture
objects and one for spatial constraints between these objects, while SceneFormer (Wang et al., 2021)
and ATISS (Paschalidou et al., 2021) extend interior layout generation to 3D.

A key limitation of a basic autoregressive approach is that it only provides limited control over the
generated scene. It enforces a sequential generation order, where new tokens can only be conditioned
on previously generated tokens and in addition it requires a consistent ordering of the token sequence.
This precludes both object-level conditioning, where generation is conditioned on a partial scene,
e.g., an arbitrary subset of furniture objects, and attribute-level conditioning, where generation is
conditioned on an arbitrary subset of attributes of the furniture objects, e.g., class or position of target
objects. Most recently, ATISS (Paschalidou et al., 2021) partially alleviates this problem by randomly
permuting furniture objects during training, effectively enabling object-level conditioning. However,
attribute-level conditioning still remains elusive.

We aim to improve on these results by enabling attribute-level conditioning, in addition to object-level
conditioning. For example, a user might be interested to ask for a room with a table and two chairs,
without specifying exactly where these objects should be located. Another example is to perform
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Figure 1: Motivation. Current autoregressive layout generators (A) provide limited control over the generated
result, since any generated value (denoted by black triangles) can only be conditioned on values that occur
earlier in the sequence (values that are given as condition are denoted with c). Our proposed encoder-decoder
architecture (B) adds bidirectional attention through an encoder, allowing the model to look ahead, so that all
values in the sequence can be given as condition. This enables conditioning on an arbitrary subset of objects or
object attributes in a layout. In C1, C2 only the position of an object, shown as pink cuboid, is given as condition
and COFS performs context-aware generation of the remaining attributes. In D1, only object types are provided
as condition, and D2 adds the bed orientation to the condition. Note how the layout adapts to fit the updated
condition.

object queries for given geometry attributes. The user could specify the location of an object and
query the most likely class, orientation, and size of an object at the given location. Our model thereby
extends the baseline ATISS with new functionality while retaining all its existing properties and
performance.

The main technical difficulty in achieving attribute-level conditioning is due to the autoregressive
nature of the generative model. Tokens in the sequence that define a scene are generated iteratively,
and each step only has information about the previously generated tokens. Thus, the condition can
only be given at the start of the sequence, otherwise some generation steps will miss some of the
conditioning information. The main idea of our work is to allow for attribute-level conditioning using
two mechanisms: (i) Like ATISS, we train our generator to be approximately invariant to object
permutations by randomly permuting furniture objects at training time. This enables object-level
conditioning since an arbitrary subset of objects can be given as the start of the sequence. To condition
on a partial set of object attributes however, the condition is not restricted to the start of the sequence.
Attributes that are given as condition follow unconstrained attributes that need to be generated. (ii) To
give our autoregressive model knowledge of the entire conditioning information in each step, we
additionally use a transformer encoder that provides cross-attention over the complete conditioning
information in each step. These two mechanisms allow us to accurately condition on arbitrary subsets
of the token sequence, for example, only on tokens corresponding to specific object attributes.

In our experiments, we demonstrate four applications: (i) attribute-level conditioning, (ii) attribute-
level outlier detection, (iii) object-level conditioning, and (iv) unconditional generation. We compare
to three current state-of-the-art layout generation methods (Ritchie et al., 2019; Wang et al., 2021;
Paschalidou et al., 2021) and show performance that is on par or superior on unconditional generation
and object-level conditioning, while also enabling attribute-level conditioning, which, to the best of
our knowledge, is currently not supported by any existing layout generation method.

2 RELATED WORK

We discuss recent work that we draw inspiration from. In particular, we build on previous work in
Indoor Scene Synthesis, Masked Language Models, and Set Transformers.

Indoor Scene Synthesis: Before the rise of deep-learning methods, indoor scene synthesis methods
relied on layout guidelines developed by skilled interior designers, and an optimzation strategy such
that the adherence to those guidelines is maximized (Yu et al., 2011; Fisher et al., 2012; Weiss et al.,
2019). Such optimization is usually based on sampling methods like simulated annealing, MCMC, or
rjMCMC. Deep learning based methods, e.g. (Wang et al., 2019; Ritchie et al., 2019; Wang et al.,
2021; Paschalidou et al., 2021) are substantially faster and can better capture the variability of the
design space. The state-of-the-art methods among them are autoregressive in nature. All of these
operate on a top-down view of a partially generated scene. PlanIT and FastSynth then autoregressively
generate the rest of the scene. FastSynth uses separate CNNs+MLPs to create probability distributions
over location, size and orientation and categories. PlanIT on the other hand generates graphs where
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nodes are objects and edges are constraints on those objects. Then a scene is instantiated by solving a
CSP on that graph.

Recent methods, SceneFormer (Wang et al., 2021) and ATISS (Paschalidou et al., 2021) use trans-
former based architectures to sidestep the problem of rendering a partial scene which makes PlanIT
and FastSynth slow. This is because using a transformer allows the model to accumulate information
from previously generated objects using the attention mechanism. SceneFormer flattens the scene
into a structured sequence of the object attributes, where the objects are ordered lexicographically in
terms of their position. It then trains a separate model for each of the attributes. ATISS breaks the
requirement of using a specific order by training on all possible permutations of the object order and
removing the position encoding. In addition, it uses a single transformer model for all attributes and
relies on different decoding heads which makes it substantially faster than other models while also
having significantly fewer parameters.

Masked Language Models: Masked Language Models (MLMs) like BERT (Devlin et al., 2019),
ROBERTa (Liu et al., 2019), and BART (Lewis et al., 2020) have been very successful in pre-
training for language models. These models are pretrained on large amounts of unlabeled data in
an unsupervised fashion, and are then fine-tuned on a much smaller labeled dataset. These fine-
tuned models show impressive performance on their corresponding downstream tasks. However, the
generative capability of these models has not been much explored except by Wang et al. in (Wang &
Cho, 2019), which uses a Gibbs-sampling approach to sample from a pre-trained BERT model. Follow
up work in Mansimov et al. (Mansimov et al., 2020), proposes more general sampling approaches.
However, the sample quality is still inferior to autoregressive models like GPT-2 (Radford et al., 2019)
and GPT-3 (Brown et al., 2020). More recently, MLMs have received renewed interest especially in
the context of image-generation (Issenhuth et al., 2021; Chang et al., 2022). MaskGit (Chang et al.,
2022) shows that with a carefully designed masking schedule, high quality image samples can be
generated from MLMs with parallel sampling which makes them much faster than autoregressive
models. Edi-BERT (Issenhuth et al., 2021) shows that the BERT masking objective can be succesfully
used with a VQGAN (Esser et al., 2021) representation of an image to perform high quality image
editing. Our model most closely resembles BART when used as a generative model.

Set Transfomers: Zaheer et al. (Zaheer et al., 2017) introduced a framework called DeepSets
providing a mathematical foundation for networks operating on set-structured data. A key insight
is that operations in the network need to be permutation invariant. Methods based on such a
formulation were extremely successful, especially in the context of point-could processing (Charles
et al., 2017; Ravanbakhsh et al., 2016). Transformer models without any form of positional encoding
are permutation invariant by design. Yet, almost all the groundbreaking works in transformers
use some from of positional encoding, as in objection detection (Carion et al., 2020), language
generation (Radford et al., 2019; Brown et al., 2020), and image-generation (Chang et al., 2022). One
of the early attempts to use a truly permutation invariant set transformer was in Set Transformer (Lee
et al., 2019), who methodically designed principled operations that are permutation invariant but
could only achieve respectable performance in toy-problems. However, recent work based on (Lee
et al., 2019) shows impressive performance in 3d-Object Detection (Chenhang He & Zhang, 2022),
3d Pose Estimation (Ugrinovic et al., 2022), and SFM (Moran et al., 2021).

3 METHOD

Our goal is to design a generative model of object layouts that allows for both object-level and attribute-
level conditioning. Attribute-level conditioning enables more flexible partial layout specification,
for example specifying only the number and types of objects in a layout, but not their positions,
or exploring suggestions for plausible objects at given positions in the layout. An overview of our
architecture is given in Figure 2.

3.1 LAYOUT REPRESENTATION

We focus on 3D layouts in our experiments. A 3D layout L = (I,B) is composed of two elements
- a top-down representation of the layout boundary I, such as the walls of a room, and a set of
k three-dimensional oriented bounding-boxes B = {Bi}ki=1 of the objects in the layout. The
boundary is given as a binary raster image and each bounding box is represented by four attributes:
Bi = (τi, ti, ei, ri), representing the object class, center position, size, and orientation, respectively.
The orientation is a rotation about the up-axis, giving a total of 8 scalar values per bounding box.
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Figure 2: COFS Overview. (Left): The model is a BART-like encoder-decoder model, with bidirectional
attention in the encoder and an autoregressive decoder. The encoder encodes the layout as a set without ordering
information and therefore does not receive (absolute) position tokens. However, to disambiguate a single object,
the encoder receives additional information in the form of Relative Position Tokens Ri, and the Object Index
Tokens Oi. During training, object order is randomly permuted in a layout and a random proportion of tokens is
replaced with a [MASK] token. The decoder outputs a sequence representation of the set and is trained with
Absolute Position Tokens Pi. It performs two tasks - 1. copy-paste: the decoder copies the unmasked attributes
to their proper location 2: mask-prediction: the decoder predicts the actual value of the token corresponding to a
[MASK] token in the encoder input. (Right): During inference, to measure likelihood, we create a copy of the
sequence with each token masked out. The decoder outputs a probability distribution over the possible values of
the masked tokens.

The layout is arranged into a layout sequence S by concatenating all bounding box parameters.
Additionally, special start and stop tokens SOS and EOS are added to mark the start and the end of a
sequence: S = [SOS;B1; . . . ;Bk;EOS], where [; ] denotes concatenation. The layout boundary I is
not generated by our method, but it is used as condition, Section 3.3 provides details.

3.2 GENERATIVE MODEL

We use a transformer-based generative model, as these types of generative models have shown great
performance in the current state of the art. Originally proposed as a generative model for language,
transformer-based generative models represents layouts as a sequence of tokens S = (s1, . . . , sn) that
are generated auto-regressively; one token is generated at a time, based on all previously generated
tokens:

p(si|S<i) = fθ(S<i), (1)
where p(si|S<i) is the probability distribution over the value of token si, computed by the generative
model fθ given the previously generated tokens S<i = (s1, . . . , si−1). We sample from p(si|S<i) to
obtain the token si. Each token represents one attribute of an object, and groups of adjacent tokens
correspond to objects. More details on the layout representation are described in Section 3.1.

Limitations of traditional conditioning. To condition a transformer-based generative model on a
partial sequence C = (c0, . . . , cm), we can replace tokens of S with the corresponding tokens of C,
giving us the sequence SC . This is done after each generation step, so that the probability for the
token in each step is conditioned on SC<i instead of S<i:

p(si|SC<i) = fθ(S
C
<i). (2)

Each generated token si in SC (i.e. tokens that are not replaced by tokens in C) needs to have
knowledge of the full condition during its generation step, otherwise the generated value may be
incompatible with some part of the condition. Therefore, since each generated token si only has
information about the partial sequence SC<i of tokens that are closer to the start of the sequence, the
condition can only be given as start of the sequence:

SC =

{
ci if i ≤ |C|
si otherwise.

(3)

Typically both the objects and the attributes of the objects in the sequence are consistently ordered
according to some strategy, for example based on a raster order of the object positions (Para et al.,
2021), or on the object size (Wang et al., 2019). Therefore, a generative model f ordered

θ that is only
trained to generate sequences in that order cannot handle different orderings, so that in general:

f ordered
θ (SC<i) ̸= f ordered

θ (πo(S
C
<i)), (4)
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where πo is a random permutations of the objects in sequence S<i. The consistent ordering improves
the performance of the generative model, but also presents a challenge for conditioning: it limits
the information that can appear in the condition. In a bedroom layout, for example, if beds are
always generated before nightstands in the consistent ordering, the layout can never be conditioned
on nightstands only, as this would preclude the following tokens from containing a bed.

Object-level conditioning. Recent work (Paschalidou et al., 2021) tackles this issue by forgoing
the consistent object ordering, and instead training the generator to be approximately invariant to
permutations πo of objects in the sequence:

fθ(S
C
<i) ≈ fθ(πo(S

C
<i)), (5)

This makes generation more difficult, but enables object-level conditioning by allowing conditioning
on arbitrary subset of objects, as now arbitrary objects can appear at the start of the sequence.
However, since only objects are permuted and not their attributes, it does not allow conditioning
on subsets of object attributes. Permuting object attributes to appear at arbitrary positions in the
sequence is not a good solution to enable attribute-level conditioning, as this would make it very hard
for the generator to determine which attribute corresponds to which object.

Attribute-level conditioning. We propose to extend previous work to allow for attribute-level
conditioning by using two different conditioning mechanisms, in addition to the approximate object
permutation invariance: First, similar to previous work, we provide the condition as partial sequence
C. However, unlike previous work, some tokens in the condition are unconstrained and will not
be used to replace generated tokens. We introduce special mask tokens M in C to mark these
unconstrained tokens. For example, if all tokens corresponding to object positions and orientations in
C are mask tokens, the positions and orientations will be generated by our model, only the remaining
tokens: object types and sizes will be constrained by the condition. The constrained sequence SC , is
then defined as:

SC =

{
ci if i ≤ |C| and ci ̸= M
si otherwise.

(6)

Second, to provide information about the full condition to each generated token, we modify fθ to
use a transformer encoder gϕ that encodes the condition C into a set of feature vectors that each
generated token has access to:

p(si|SC<i, C) = fθ(S
C
<i, C

g) where Cg = {gϕ(c1, C), . . . , gϕ(c|C|, C)}, (7)

where Cg is the output of the encoder, a set of encoded condition tokens. We use a standard
transformer encoder-decoder setup (Vaswani et al., 2017) for fθ and gϕ, implementation details are
provided in Section 3.3, and the complete architecture is described in detail in the appendix.

Parameter probability distributions. The generative model outputs a probability distribution over
one scalar component of the bounding box parameters in each step. Probability distributions over
the discrete object class τ are represented as vectors of logits lτ over discrete choices that can be
converted to probabilities with the softmax function. Similar to previous work (Paschalidou et al.,
2021; Salimans et al., 2017), we represent probability distributions over continuous parameters, like
the center position, size, and orientation, as mixture of T logistic distributions.

p(b) =
1∑
i πi

T∑
i=1

αiLogistic(µi, σi), p(τ) = softmax(lτ ), (8)

where b is a single scalar attribute from ti, ei, or ri. The mixture weight, mean and variance of the
logistic distribution components are denoted as α, µ, σ, respectively. Each probability distribution
over a continuous scalar component is parameterized by a 3T -dimensional vector, and probability
distributions over the object class are represented as nτ -dimensional vectors, where nτ is the number
of object classes.

3.3 IMPLEMENTATION

Condition encoder gϕ: To encode the condition C into a set of encoded condition tokens Cg, we
use a Transformer encoder with full bidirectional attention. As positional encoding, we provide two
additional sequences: object index tokens Oi provide for each token the object index in the permuted
sequence of objects; and relative position tokens Ri provide for each token the element index inside
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the attribute tuple of an object. Since the attribute tuples are consistently ordered the index can be
used to identify the attribute type of a token. These sequences are used as additional inputs to the
encoder. The encoder architecture is based on BART (Lewis et al., 2020), details are provided in the
appendix.

Boundary encoder gIψ: To allow conditioning on the layout boundary I , we prepend a feature vector
encoding zI of the boundary to the input of the condition encoder, as shown in Figure 2, so that
the encoder receives both zI and the condition sequence C. Similar to ATISS, we use an untrained
ResNet-18 (He et al., 2016) to encode a top-down view of the layout boundary into an embedding
vector.

Generative model fθ: The generative model is implemented as a Transformer decoder with a causal
attention mask. Each block of the decoder performs cross-attention over the encoded condition tokens
Cg . As positional encoding, we provide absolute position tokens P , which provide for each token the
absolute position in the sequence S. This sequence is used as additional input to the generative model.
The output of the generative model in each step is one of the parametric probability distributions
described in Eq. 8. Since the probability distributions for discrete and continuous values have a
different numbers of parameters, we use a different final linear layer in the generative model for
continuous and discrete parameters. Similar to the encoder, the architecture of the generative model
is based on BART (Lewis et al., 2020).

Training: During training, we create a ground truth sequence SGT with randomly permuted objects.
We generate the condition C as a copy of SGT and mask out a random percentage of the tokens
by replacing them with the mask token M. The boundary encoder gIψ, the condition encoder gϕ
and the generative model fθ are then trained jointly, with the task to generate the full sequence
SGT. For unmasked tokens in C, this is a copy task from C to the output sequence S. For masked
tokens, this is a scene completion task. We use the negative log-likelihood loss between the predicted
probabilities p(si) and ground truth values sGT

i for tokens corresponding to continuous parameters,
and the cross-entropy loss for the object category τ . The model is trained with teacher-forcing.

Sampling: We generate a sequence auto-regressively, one token at a time, by sampling the probability
distribution predicted by the generative model (as defined in Eq. 7) in each step. We use the same
model for both conditional and unconditional generation. For unconditional generation, we start with
a condition C where all tokens are mask token M. To provide more complete information about
the partially generated layout to the encoded condition tokens Cg, we update the condition C after
each generation step by replacing mask tokens with the generated tokens. Empirically, we observed
that this improves generation performance. An illustration and the full algorithm of this approach is
shown in the supplementary. Once a layout has been generated, we populate the bounding boxes with
objects from the dataset with a simple retrieval scheme. For each bounding box, we pick the object of
the given category τ that best matches the size of the bounding box. In the supplementary, we present
an ablation of the tokens Oi, Ri, and P that we add to the conditional encoder and generative model.

4 RESULTS

Datasets: We train and evaluate our model on the 3D-FRONT dataset (Fu et al., 2021). It consists of
of about 10k indoor furniture layouts created by professional designers. We train on the BEDROOM
category and follow ATISS preprocessing which removes a few problematic layouts that have
intersections between objects, mislabeled objects, or layouts that have extremely large or small
dimensions. For further details on the preprocessing, we refer the reader to ATISS (Paschalidou et al.,
2021). This yields approximately 6k/224, 0.6k/125, 3k/516 and 2.6k/583 total/test set layouts for
BEDROOM, LIBRARY, DINING, LIVING, respectively.

Baseline: ATISS (Paschalidou et al., 2021) is the most recent furniture layout generation method
that provides the largest amount of control over the generated layout, and is therefore most related
to our method. However, ATISS does not provide pretrained models, hence we train their models
using the official code 1 matching their training settings as closely as possible. While ATISS does
not support attribute-level conditioning, we can still use it as a baseline by applying the sampling
procedure defined in Eq. 6: we sample tokens as usual, but when reaching a token that is given as
condition (i.e. a token in C that is not a mask token), we use the value given as condition instead of
the sampled value.

1https://github.com/nv-tlabs/atiss, commit 0cce45b
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Figure 3: NLL comparison. We compare the NLL
of our method to ATISS in three settings: (Uncond.)
We measure unconditional generation performance
as the NLL of BEDROOM test set layouts in our
model. (Object) We measure the NLL of layouts gen-
erated with object-level conditioning and (Attribute)
attribute-level conditioning. Note how our method
performs slightly better than ATISS on unconditional
generation and object-level conditioning, while show-
ing a clear advantage in attribute-level conditioning.
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Figure 4: Perceptual Study. We compare the percent-
age of comparisons in which users found either method
more realistic, and the percentage of results in which
users did not find any obvious errors such as object in-
tersections. Results show a large advantage for COFS
in realism of layouts generated with attribute-level con-
ditioning (-attrib), and a smaller, but still significant
advantage in the percentage of error-free layouts.. This
advantage is also present in the unconditional setting.

4.1 QUANTITATIVE RESULTS

Metrics: For unconditional generation, we use the negative log-likelihood of test set sequences in
our model as main quantitative metric. A small NLL shows that a model approximates the dataset
distribution well. For both object-level and attribute-level conditioning, we use the NLL of the
generated sequences as metric. This includes the condition tokens that come from the test set. If
the generated layout does not harmonize with the condition, the NLL will be high. Additionally, we
performed a perceptual study for attribute-level conditioning and unconditional generation (details
are given below and in the supplementary material, respectively).

Choosing conditions: For object-level conditioning, we remove three random objects from each
test set sequence to obtain condition sequences C. For attribute-level conditioning, conditions C are
obtained from test set sequences by replacing all tokens except size and position tokens with mask
tokens, effectively conditioning on the sizes and positions of all objects, and letting the generator
infer the types and orientations of all objects.

Discussion: Figure 3 shows NLL results on the BEDROOM category. For unconditional generation,
we can see that we perform on par or slightly better than ATISS. We believe that our slight advantage
here might be due a more fine-grained sequence representation of the layout on our side, which allows
for more detailed attention. For object-level conditioning, our performance is slightly better than
ATISS, again because of detailed attention. Our main contribution, however, lies in attribute-level
conditioning, where we can see a clear advantage for our method. Since ATISS cannot look ahead in
the sequence, any generated token cannot take into account future condition tokens. The bidirectional
attention of our encoder enables look-ahead and gives the generator knowledge of all future condition
tokens, giving us generated layouts that can better adapt to the supplied condition.

4.2 PERCEPTUAL STUDY

We conducted two perceptual studies to further evaluate the quality of generated furniture layouts
compared to ATISS. One of the studies focused on unconditionally generated layouts and the other on
layouts generated with attribute-level conditioning. For this purpose, we randomly sampled layouts
from the BEDROOM layouts evaluated in the previous section for both COFS and ATISS. Subjects
were shown a pair of layouts generated from the same floorplan boundary by COFS and ATISS, and
asked three questions: which of the layouts looked more realistic, and for each of the two layouts, if it
showed obvious errors like intersections. A total of 9 subjects participated in the unconditional study,
and 8 subjects participated in the attribute-level study. More details about setup can be found in the
supplementary. Figure 4 shows the results. We can see that the our method produces significantly
more realistic layouts compared to ATISS. The error plots on the right-hand side show that this only
in some part due to avoiding obvious errors such as intersections.

4.3 QUALITATIVE RESULTS

A few examples of furniture layouts generated with attribute-level conditioning are shown in Figure 1
and in Figure 5. See the captions for details. Figure 6 additionally shows how attribute-level
conditioning can be used to perform sequential edits of a furniture layout.
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GT

Figure 5: Attribute-level conditioning: On the left, we show a GT floorplan. We set the condition to include
two beds facing opposite directions and sample. The model generates two plausible layouts for this challenging
case (see supplementary). On the right, we constrain the location of the next object to be sampled. The location
is highlighted in pink. In this example, the network automatically infers the proper class and size. The constraints
force the inferred size into a narrow range, such that the chair even matches the style of the chairs in the example
on the left, even though we use a simple object-retrieval scheme.

Figure 6: Sequential edits with attribute-level conditioning: We show how COFS can be used to selectively
edit parts of a scene. Left shows GT and the other two are samples with classes and orientation as condition.
When we change orientation of a few objects, COFS produces realistic layouts affecting only a part of the scene.
More details in the supplementary.

Figure 7: Object-level conditioning. In the top row, we show examples of object-level conditions that were
used to condition generation of the scenes shown below. The generated layouts all plausibly combine the
generated objects with the objects given as condition into realistic layouts.

In Figure 7, we show layouts generated with object-level conditioning, providing the objects shown
in the top row as condition. Note how our method generates plausible layouts in each case.

4.4 OUTLIER DETECTION

We can also use COFS to perform outlier detection. To estimate the likelihood of each token, we
follow (Salazar et al., 2020) and replace the token at ith position with [MASK]. This can be performed
in parallel by creating a batch in which only one element is replaced with [MASK]. The likelihood
of one object is then the product of likelihoods of all its attributes. Attributes or objects with low
likelihood can then be resampled. Results on several of the layout categories of our dataset are shown
in Figure 8. This can be thought of as a form of attributed-conditioned generation .

4.5 ADDITIONAL EXPERIMENTS WITH UNCONDITIONAL GENERATION

Here we present additional experiments with unconditional generation. We include two additional
state-of-the art methods for unconditional generation, FastSynth (Ritchie et al., 2019) and Scene-
Former (Wang et al., 2021), in our quantitative experiments.

We use a set of metrics that mostly derive from (Ritchie et al., 2019; Paschalidou et al., 2021). They
are defined in greater detail in the supplementary. Following (Ritchie et al., 2019), we report the KL-
divergence between the distribution of the classes of generated objects and the distribution of classes
of the objects in the test set. We further report the Classification Accuracy Score (CAS) (Paschalidou
et al., 2021). Additionally, we compute the FID by rendering the populated layout from a top-down
view using an orthographic camera at a resolution of 256×256. We report the FID computed between
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Figure 8: Outlier detection: Our model can utilize bidirectional attention to reason about unlikely arrangements
of furniture. We can then sample new attributes that create a more likely layout. In contrast, ATISS can only
sample whole objects. Top row: An object is perturbed to create an outlier (highlighted in blue). Bottom row:
The object can be identified by its low likelihood, and new attributes sampled which place it more naturally.

these rendered top down images of sampled layouts and the renders of the ground truth layouts.
Additional details are given in the supplementary.

Results are shown in Table 1. The results suggest that overall, COFS performs roughly on par or
slightly superior to ATISS, with slightly inferior results in the CAS metric, comparable results in
the FID metrics, and more substantially improved results in the KL-divergence metric. Examples of
unconditionally generated layouts are shown in the supplementary.

Table 1: Comparison on Unconditional Generation: We provide floorplan boundaries from the Ground Truth
as an input to the methods and compare the quality of generate layouts. We retrain the ATISS model and report
metrics. The retrained model is called ATISS∗.

CAS ×102(↓) KL-Divergence ×103 (↓) FID (↓)

BEDROOM LIVING DINING LIBRARY BEDROOM LIVING DINING LIBRARY BEDROOM LIVING DINING LIBRARY

FastSynth 88.3 94.5 93.5 81.5 6.4 17.6 51.8 43.1 88.1 66.6 58.9 86.6
SceneFormer 94.5 97.2 94.1 88.0 5.2 31.3 36.8 23.2 90.6 68.1 60.1 89.1
ATISS∗ 61.1 76.4 69.1 61.77 8.6 14.1 15.6 10.1 73.0 43.32 47.66 75.34
Ours 61.0 78.9 76.1 66.2 5.0 8.1 9.3 6.7 73.2 35.9 43.12 75.72

5 CONCLUSIONS

We proposed a new framework to produce layouts with auto-regressive transformers with arbitrary
conditioning information. While previous work was only able to condition on a set of complete
objects, we extend this functionality and also allow for conditioning on individual attributes of objects.
Our framework thereby enables several new modeling applications that cannot be achieved by any
published framework.

Limitations and Future Work. We now discuss limitations of our
model. The first is related to our simple object retrieval scheme based
only on bounding box sizes. This often leads to stylistically different
objects in close proximity even if the bounding box dimensions are
only slightly different. We show such an example in the inset (left).
The second is related to the training objective of the model - we only consider the cross entropy/NLL.
Thus, the network does not have explicit knowledge of design principles such as non-intersection, or
object co-occurrence. This means that the model completely relies on the data being high-quality to
ensure such output. In the supplementary, we highlight the fact that certain scenes in the dataset have
problematic layouts, and our method cannot filter them out. We show an example of intersections in
the inset (center). Thirdly, the the performance on the LIVING and DINING datasets is not as good as
the other classes, which is clear from the CAS scores. This is in part because the datasets are small
but also have significantly more objects than BEDROOM or LIBRARY. This leads to accumulated
errors. We would like to explore novel sampling strategies to mitigate such errors. Lastly, while the
conditioning works well, it is not guaranteed to generate a good layout. For example, in the inset
(right), we set the condition to be two beds opposite each other, but the network is unable to place
them in valid locations. Adding explicit design knowledge would help mitigate such arrangements,
but we leave that extension to future work.
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