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ABSTRACT

EEG modeling faces two core challenges: nonlinear, non-stationary dynamics
and severe channel mismatch across datasets. We introduce Brain Signal Ren-
dering (BSR), a new paradigm that reframes EEG representation learning as a
rendering problem. BSR transforms EEG spectrograms into spatialized dynamic
"EEG videos’, making representations invariant to electrode layouts and sam-
pling protocols while preserving neural topology. Building on this, we propose
EEG Consolidation — a unified multi-task training paradigm that integrates het-
erogeneous EEG-video data to adapt models to EEG-specific dynamics, improve
data efficiency, reduce overfitting, and boost cross-task generalization. Crucially,
BSR with EEG Consolidation enables subject-level few-shot learning, where each
subject is treated as a distinct task requiring adaptation from minimal data. We
validate this setting as a realistic benchmark and demonstrate substantial perfor-
mance gains, establishing a scalable and interpretable framework toward founda-
tion models for brain signals.

1 INTRODUCTION

Electroencephalography (EEG) offers one of the richest and most accessible windows into brain
activity, driving advances in seizure detection (Shoeb & Guttag, |2010; |Chen et al.l 2025} [Tegon
et al.| [2025), motor imagery (Ma et al., [2022), and emotion recognition (Duan et al., 2013} [Zheng
& Lul [2015). Despite decades of progress, two fundamental barriers persist: (i) EEG signals are
inherently nonlinear and non-stationary, making their spatiotemporal dynamics difficult to capture;
(ii) electrode layouts vary widely across datasets, resulting in severe channel mismatch that impedes
cross-domain generalization.

Recent deep learning advances, from task-specific networks (Jing et al., [2023)) to large-scale foun-
dation models (Yang et al., |2023; Jiang et al.l |2024b; Wang et al., 2024a3b)), have improved EEG
representation learning significantly. Yet these models largely retain rigid, channel-first architec-
tures that overlook a core reality of EEG: channels are not independent features, but samples from
a spatially structured sensor array. This limitation hinders their ability to adapt in few-shot settings,
especially under channel heterogeneity, making existing large-scale evaluation protocols insufficient
for real-world EEG deployment.

A New Perspective: EEG as a Physical Projection. We depart from this channel-first paradigm
by reinterpreting EEG not as a flat vector, but as the output of a physical measurement process.
Electrodes form a two-dimensional sensor array that projects latent neural dynamics in three spa-
tial dimensions plus time. From this viewpoint, channel mismatch is not noise but a change in
perspective — analogous to how multiple cameras capture different projections of the same scene.
This reframing transforms the objective of EEG representation learning: from directly learning task-
specific embeddings to inverting the projection and recovering the underlying spatiotemporal neural
dynamics.

Brain Signal Rendering (BSR). Motivated by the insight that EEG should be treated as a physical
measurement process, we propose Brain Signal Rendering (BSR), a novel framework bridging raw
EEG signals and powerful video foundation models. BSR treats EEG spectrograms as structured
projections of a latent neural field and transforms them into a physically grounded visual format: a
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Figure 1: Brain Signal Rendering (BSR) framework, which spatializes EEG spectrograms into dy-
namic “EEG videos”.

dynamic image sequence or 'EEG video’. This is achieved by spatializing electrodes according to
their physical coordinates, preserving the topology of neural activity as illustrated in Figure[I] The
resulting representation encodes both spectral content and electrode geometry, making it directly
compatible with video foundation models such as VideoMAE (Tong et al.,|2022)), whose spatiotem-
poral inductive biases align naturally with neural dynamics.

By decoupling representation learning from task-specific classification, BSR enables robust gener-
alization across datasets and rapid adaptation to new conditions. Building on this, we introduce
EEG Consolidation — a consolidated multi-task training paradigm that integrates heterogeneous
EEG-video data. EEG spatialization renders representations invariant to electrode layouts and sam-
pling protocols, enabling diverse datasets to be unified for joint training. This consolidation not only
improves data efficiency and accelerates learning, but also reduces overfitting and markedly boosts
generalization across tasks, paving the way toward scalable, adaptable EEG representation learning.

Our BSR framework, together with EEG Consolidation, enables subject-level few-shot learning. A
key challenge in real-world EEG applications is adapting to new subjects, where variability in acqui-
sition hardware, protocols, and individual physiology severely limits generalization. To rigorously
test this ability, we introduce subject-level few-shot learning as our main experimental benchmark.
Here, each subject is treated as a distinct task, requiring adaptation with only a few recorded sessions.
This setting directly evaluates model adaptability in realistic deployment scenarios, and we demon-
strate that BSR combined with multi-task EEG Consolidation delivers substantial performance gains
under this demanding regime.

Contributions. This work makes four key contributions. (1) We introduce Brain Signal Render-
ing (BSR), a physics-informed framework that reframes EEG modeling as a rendering problem and
transforms raw signals into spatiotemporal video representations suitable for video foundation mod-
els such as VideoMAE. (2) We propose EEG Consolidation, a multi-task fine-tuning paradigm that
integrates heterogeneous EEG-video data to update VideoMAE. This process adapts VideoMAE
to the unique spatiotemporal characteristics of EEG data, enabling improved cross-task representa-
tion learning and robustness. (3) We define Subject-level Few-shot Learning, a new benchmark
that evaluates subject adaptation by treating each individual as a distinct task and requiring models
to adapt with only a few calibration sessions. (4) Through extensive experiments across multiple
datasets, we show that BSR consistently outperforms prior EEG representation learning methods,
establishing a scalable, interpretable, and data-efficient foundation for EEG modeling.

2 RELATED WORKS

Deep Models for EEG Data. Recent advances in deep EEG modeling have explored various archi-
tectures for cross-dataset generalization and task adaptability. BIOT (Yang et al., 2023) segments
EEG into fixed-duration patches per channel and employs independent temporal and spatial em-
beddings to enable cross-data pre-training. LaBraM (Jiang et al., |2024b)) extends this approach by
incorporating a neural tokenizer and large-scale pretraining, achieving notable performance gains.
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CBraMod (Wang et al [2024b) and EEGPT (Wang et al., |2024a) further demonstrate the effec-
tiveness of deep architectures in single-task fine-tuning scenarios. More recent works, such as Neu-
roLM (Jiang et al.,[2024a)) and UniMind (Lu et al.; 2025)), advance toward multi-task EEG decoding,
underscoring the growing interest in unified EEG modeling.

Few-shot Learning for EEG Data. Benchmarking EEG foundation models remains a dynamic
area of research. AdaBrain-Bench (Wu et al., [2025), for example, introduces a few-shot evaluation
protocol that uses a fixed percentage of data for training, differing from our subject-level few-shot
learning paradigm, which explicitly treats each subject as a distinct adaptation task to evaluate gen-
eralization in realistic deployment scenarios. Our work contributes to this landscape by proposing
a physically grounded EEG-to-video representation and a consolidated multi-task training strategy,
enabling robust subject-level few-shot learning across heterogeneous EEG datasets.

VideoMAE for Few-shot Learning VideoMAE (Tong et al., 2022) represents a breakthrough in
self-supervised video representation learning, leveraging large-scale unlabeled video data to learn
powerful, generalizable features that excel in few-shot settings. Its masked autoencoding paradigm
enables the model to capture rich spatiotemporal dependencies efficiently, making it highly ro-
bust for cross-domain generalization. For example, Hatano et al. (Hatano et al., [2024)) show that
VideoMAE achieves significant gains in cross-domain few-shot action recognition by training sep-
arate models on multiple modalities and optimizing for domain-invariant features. Samarasinghe
et al. (Samarasinghe et al., 2023) demonstrate that a VideoMAE-pretrained universal encoder can
transfer effectively to unseen domains in few-shot video understanding tasks. We adopt VideoMAE
as our backbone because its design naturally aligns with Brain Signal Rendering (BSR), which
converts EEG into spatiotemporal “video” sequences encoding spectral and spatial neural dynam-
ics. VideoMAE'’s strength in capturing rich spatiotemporal patterns and its efficiency in low-data
regimes make it ideal for EEG videos. Combined with EEG Consolidation, this synergy forms a
unified framework for robust subject-level few-shot EEG learning. Additionally, we also note that
our framework is compatible with other recent video foundation models beyond VideoMAE; explor-
ing such extensions lies beyond the scope of this work and is orthogonal to our core contributions.
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Figure 2: Framework of the BSR Render-Reconstruct pipeline.

3 METHODS

3.1 BRAIN SIGNAL RENDERING

Task Definition. Given a raw EEG sample represented as X € R°*!, where ¢ denotes the number
of electrode channels and [ denotes the number of sample timestamps, we aim to predict the task-
specific one-hot label y € N™, where m represents the number of classes for the downstream EEG
task.

Spatial-Temporal Spectrum Preprocessing. Firstly, we preprocess the raw EEG data separately
along its temporal and spatial dimensions. To capture the time-varying frequency content of EEG
signals, we apply the Short-Time Fourier Transform (STFT), denoted as stft(-), which decomposes
the signal into a sequence of frequency spectra over time. This operation extracts both frequency and
amplitude information from the inherently non-stationary EEG data, thereby enhancing its temporal-
frequency representation. We then compute the magnitude (abs(+)) of the resulting complex spec-
trogram to obtain the final temporal feature map F:

F = abs (stft(X;t,d)), FeR"*/, (1)
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where ¢ and d denote the STFT window size and hop length, respectively; n = 1 + |[=L] is the
number of time windows, c is the number of EEG channels, and f is the number of frequency bins.

While F contains rich time—frequency information, it lacks explicit spatial encoding. Since each
channel in F corresponds to an EEG electrode with known spatial coordinates on the scalp, we ex-
ploit this inherent spatial structure to embed positional information through channel rearrangement.
To formalize this process, we define a user-specified channel spatialization map matrix § € N**®,
where each element specifies the target spatial location for the corresponding channel. For instance,
if S[1,4] = 4 and F[:, 4] corresponds to electrode FP2, this indicates that the FP2 spectrum should
be rendered at the fourth patch in the first row of the spatial map, as illustrated in Figure[I] We then
apply a brain signal spatialization algorithm to transform F into a spatially organized representation:

F=S(F,S), FeRwMwx/ 2

where S(-) denotes the spatialization operation, and F is a structured spatiotemporal EEG feature
map suitable for subsequent multimodal processing.

Algorithm 1 Brain Signal Spatialization S

1: Input: fourier amplitude spectrum F € R™* €</ spatialization map S € N**xv
2: Initialize a spatialized 4D spectrum tensor F of sizen x h x w x f
3: fori=1tohdo

4 for j = 1towdo

5: if S[i, j] > 0 then

6 F[:, i, 7] « F[:, S[i, ]|

7 else

8: F[:, i, 7] < 0txn

9: end if
10: end for
11: end for

12: Return F

Rendering Process. After obtaining the 4D Fourier frequency map F € R"*"*wxf e transform
it into a structured EEG video representation

Vv c RanxfoS

using our brain signal renderer R, as formalized in Equation (3). The renderer R, comprises
a sequence of cascaded deconvolution (transposed convolution) layers with equal kernel size and
stride, which preserves the time—frequency content while mapping the spatialized EEG features into
a dense RGB representation. Specifically, given the spatialized spectrum corresponding to a single
time window F; € R"*%*/ the renderer produces an image-shaped tensor V,; € RH*Wx3.

V=[V, Vs, ..., V,

where H and W are hyperparameters of the renderer defining the spatial resolution of each frame,
and n denotes the number of time windows. The resulting tensor V constitutes a spatiotempo-
ral sequence, effectively an EEG video, which preserves both spectral and spatial information for
downstream video-based processing.

", Vi=R,(F), i=12...n, 3)

Reconstruction Process. To train the renderer R,,, we jointly learn a reconstructor Ry that inverts
the rendering process by reconstructing the spatialized Fourier frequency map F;, as formalized in
Figure[2| The reconstructor produces F; € R"*%*/ as formalized in Equation :

F=[F,Fy ... ,F] ., Fi=RypV), i=12....n )

]’ F

where F € R"*h*wxf ig the reconstructed spatialized feature map. The reconstructor Ry adopts
a symmetrical architecture to the renderer, replacing each deconvolution (transposed convolution)
layer with a corresponding convolution layer, while maintaining identical kernel dimensions, stride,
and layer depth. This symmetry ensures effective inversion of the rendering process while preserving
spectral and spatial information. Implementations of the renderer and reconstructor used in this
study are detailed in Table
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The entire system is trained end-to-end with an L1 reconstruction loss, defined as:
1 X -
/.Zf:N;‘F—F‘, N=nxhxwx f, 5)

where N is the total number of elements in F and IE, ensuring the loss measures the element-wise
absolute error over the entire spatiotemporal frequency representation.

3.2 FINE-TUNING VIDEOMAE WITH EEG VIDEOS

The rendered output V € R HXWX3 pogsesses the same spatiotemporal properties as ordinary
video inputs. Since no numerical range constraints are imposed during the rendering stage, we nor-
malize each frame V; using Contrast Limited Adaptive Histogram Equalization (CL-AHE), denoted
as T(-), to obtain the final video representation:

V,=T(V,), i=12...,n (6)

This normalization ensures consistent intensity distribution across frames, enhancing the stability
and performance of subsequent video-based processing. We then leverage a pre-trained video foun-
dation encoder and fine-tune it for various downstream EEG tasks.

In this work, we adopt VideoMAE (Tong et al.,2022) as our pre-trained video encoder V, motivated
by its strong capability to capture spatiotemporal patterns through masked autoencoding and its
superior generalization performance. Following the default VideoMAE setup, we append a linear
layer on top of the average-pooled hidden states as the task-specific head 7. Before being fed into
VideoMAE, all rendered EEG videos v are resized to a resolution of (224,224) and temporally
sampled to 16 frames, ensuring compatibility with the pre-trained encoder and enabling efficient
fine-tuning.

Updating BSR-VideoMAE via EEG Consolidation. Prior EEG modeling often fine-tunes models
separately for each dataset, limiting shared knowledge and increasing training cost. Our EEG-to-
video rendering produces representations invariant to timestamps and electrode layouts, enabling
integration of heterogeneous datasets into a consolidated training paradigm.

On the other hand, VideoMAE, designed for natural videos, cannot optimally handle EEG-video data
without adaptation. To address this, we propose EEG Consolidation — a multi-task fine-tuning strat-
egy that unifies diverse EEG-video data to update BSR-VideoMAE, aligning it with EEG-specific
spatiotemporal dynamics.

EEG Consolidation leverages common patterns across tasks and complementary information from
multiple datasets, improving efficiency, robustness, and generalization. This approach not only
reduces overfitting and accelerates learning but also enables VideoMAE to fully exploit the potential
of our rendering-based EEG-to-video framework across diverse EEG tasks. Specifically, suppose
there are M tasks. For each task m, the corresponding dataset is mapped through a unified pre-
trained video encoder V and a task-specific head H,, to obtain the final classification logits via
composing functions,

Gm = Hm o V(Vm), m=1,2,... M. 7)
The multiple tasks are learned jointly by optimizing the aggregated multi-task loss:
M
min )\m ' ‘C(m) ~m7 m)s 8
RC T mz::l (G ) ®

where £(") denotes the task-specific loss function and \,, is a binary indicator:
_— 1, if any data X, exists in the current training batch,
"™ 10, otherwise.
In this study, we use the cross-entropy loss for all £(").

Discussion. Our BSR-VideoMAE, empowered by EEG Consolidation, demonstrates strong poten-
tial as a universal EEG foundation model. By transforming EEG into video-like representations,
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Table 1: Basic information of the datasets
Datasets # Channels  # Classes Duration  # Samples  # Subjects (for Few-shot)

Pre-training

TUAB 19 2 10 seconds 409455 —
TUEV 19 6 5 seconds 113353 —
Subject-level Few-shot

SEED 62 3 10 seconds 13860 15
SEED-VII 62 7 10 seconds 27340 20
SHU-MI 32 2 4 seconds 11988 25
BCICIV-2a 22 4 4 seconds 5184 9

it opens the door to transfer powerful capabilities from video models to EEG tasks. Early scaling
experiments show promising results (see Appendix [D), but fully realizing this vision requires con-
solidating vastly more EEG-video data and substantial computational resources. We view this as a
key future direction and invite the community to contribute to advancing BSR-VideoMAE toward a
truly generalizable EEG foundation model.

3.3 SUBJECT-LEVEL FEW-SHOT LEARNING

A key challenge in EEG analysis is the substantial variability across subjects, arising from differ-
ences in acquisition equipment, sampling protocols, and individual neurophysiological characteris-
tics. This inter-subject variability often leads to poor generalization of models trained on existing
datasets when applied to new individuals, thereby limiting the practical applicability of EEG-based
systems in real-world scenarios.

The motivation for subject-level few-shot learning is to explicitly evaluate and improve a model’s
ability to adapt to new subjects using minimal labeled data. This setting reflects realistic application
scenarios, such as personalized brain-computer interfaces, where collecting extensive labeled EEG
data for every new user is impractical.

To this end, we propose a novel benchmark task called subject-level few-shot learning, where each
subject is treated as a distinct task. For a new subject s, we treat all sampled data from that subject as
the subject-specific dataset Dy = {(X ;, ys, j)}évzsl, where N; denotes the total number of samples

available. We divide D; into a small training subset D" and a testing subset D, with |DFin| <
|Ds|.

The objective is to fine-tune the pre-trained VideoMAE model using only D", and then evaluate
its performance on D'
min L&) (Hy 0 V(R(DFM)), ys), )

0y ,04¢,

where £(*) denotes the loss function for subject s (e.g., cross-entropy), and R denotes the EEG
Video rendering process.

By focusing on rapid adaptation to unseen subjects with only a few samples, subject-level few-
shot learning provides a realistic and rigorous measure of the generalization ability of EEG video
models, and demonstrates the practical advantage of our rendering-based EEG-to-video framework
combined with VideoMAE fine-tuning.

4 EXPERIMENTS

4.1 EVALUATION DATASETS

For pre-training VideoMAE via EEG Consolidation and for comparisons with baseline methods, we
use two EEG datasets. The TUAB dataset/Obeid & Picone|(2016) is designed for abnormal detection
and consists of two categories: normal and abnormal. The TUEV dataset (Obeid & Picone, (2016)
is an event classification benchmark with six categories, namely spike and sharp wave (SPSW),
generalized periodic epileptiform discharges (GPED), periodic lateralized epileptiform discharges
(PLED), eye movement (EYEM), artifact (ARTF), and background (BCKG).
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For subject-level few-shot fine-tuning, we use four EEG datasets. The SEED dataset (Duan et al.,
2013} Zheng & Lu, 2015) targets emotion classification with three categories (negative, neutral,
positive), and each subject has three sessions, split into train:validation:test of 1:1:1. The SEED-
VII dataset (Jiang et al.,[2025) extends this to seven emotion categories (happy, surprise, neutral, sad,
disgust, fear, anger); each subject has four sessions, but as no single session covers all categories, we
used a 2:2 train:test split (sessions 1 and 3 for training, sessions 2 and 4 for testing). The SHU-MI
dataset (Ma et al., 2022)) is a large-scale motor imagery dataset with two classes (left-hand, right-
hand), also split 1:1:1 across three sessions. Finally, the well-known BCICIV-2a dataset (Brunner,
et al., |2008) focuses on motor imagery with four classes (left-hand, right-hand, both feet, tongue),
where we adopt the official 1:1 train:test split. In addition to these, we use the large-scale TUEG
dataset |(Obeid & Picone| (2016), containing 26,846 clinical EEG recordings collected from 2002
to 2017, to pre-train the BSR renderer. All EEG data are down-sampled to 200 Hz and stored
in unipolar form, which differs from some baselines such as BIOT (Yang et al.| [2023). Detailed
information about these datasets is summarized in Table[Il

4.2 EXPERIMENTAL SETUP

Evaluation Metrics. We evaluate model performance using a set of metrics tailored to each task.
For binary classification, we report balanced accuracy (B-Acc.), area under the receiver operating
characteristic curve (AUROC), and area under the precision-recall curve (AU-PR), where AU-PR is
particularly robust for imbalanced datasets by focusing on the positive class. For multi-class clas-
sification, we report balanced accuracy, Cohen’s Kappa (), which adjusts for chance agreement
between predictions and labels, and the weighted F1 score (F1w), the harmonic mean of precision
and recall weighted by class sample sizes. Balanced accuracy measures the average per-class recall,
mitigating the influence of class imbalance, AUROC quantifies the model’s ability to discriminate
between positive and negative classes across thresholds, and Cohen’s Kappa provides a robust mea-
sure of prediction-label agreement beyond chance. These metrics together provide a comprehensive
evaluation of model performance across different EEG tasks.

Experiment Platform. All experiments were conducted on a machine with 8§ x NVIDIA H100-
80G GPUs, an Intel Xeon Gold 6330 CPU, and 200 GB RAM, using Python3.11.11, PyTorch2.5.1,
and CUDA12.2. Video I/O was implemented with OpenCV-Python and PIL.

Baselines. To evaluate BSR, we compared against five FFT-based baselines. FFCL (Li et al.| [2022)
uses a CNN-LSTM fusion network for motor imagery classification, combining spatial and temporal
features. ContraWR (Yang et al., 202 1)) applies self-supervised learning to improve sleep staging by
leveraging unlabeled EEG data. CNN-Transformer (Peh et al.|[2022) employs a CNN-Transformer
hybrid with belief matching loss for multi-type EEG artifact detection, maximizing artifact rejection
while preserving clean signals. BIOT (Yang et al., 2023)) presents a flexible biosignal encoder for
multi-dataset pre-training and task-specific fine-tuning across diverse EEG formats. LaBraM (Jiang
et al.,|2024b) proposes a unified EEG foundation model to address the limitations of specialized deep
learning approaches.

4.3 PRE-TRAINING SETTINGS AND RESULTS

For the BSR framework, both the Video Renderer and VideoMAE require pretraining, with struc-
tural hyperparameters detailed in Table The renderer was unsupervisedly pretrained on the
TUEG (Obeid & Picone, 2016)) dataset for 200 epochs using the Adam optimizer with a learning rate
of 1 x 10~°. For VidleoMAE pretraining, we loaded weights from Kinetics-400 (Kay et al., [2017)
and jointly fine-tuned on TUAB and TUEV (Obeid & Picone,2016) for 10 epochs using the AdamW
optimizer (learning rate 1 x 10~°, weight decay 1 x 10~%) with a cosine annealing scheduler. To
prevent potential data leakage from overlap between LaBraM’s official pretraining dataset and our
few-shot sets, we did not use the official LaBraM-base weights, and instead pretrained LaBraM-base
separately on TUAB and TUEV for 50 epochs using the model’s recommended hyperparameters and
official vqnsp weights.

During testing, we observed that the trained renderer is highly robust. Even when the test data is
subjected to various random noise disturbances, the quality of the rendered videos remains consis-
tent. This provides stable input features for subsequent few-shot tuning and demonstrates significant
practical value for real-world applications.
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Table 2: Hyperparameters for BSR Renderer and Reconstructor

Layer Renderer - ConvTranspose2d Reconstructor - Conv2d
(in-ch, out-ch, kernel-size, stride)  (in-ch, out-ch, kernel-size, stride)
1 (101, 50, 2, 2) (3,6,2,2)
2 (50,25,2,2) 6,12,2,2)
3 (25,12,2,2) (12,25,2,2)
4 (12,6, 2,2) (25,50, 2,2)
5 (6,3,2,2) (50, 101, 2, 2)

Table 3: Subject-level few-shot learning results for the emotion classification task

SEED SEED-VII
Methods Pretrain B-Acc. K Flw  B-Acc. K Flw
FFCL — 0.4100 0.1103 0.3570 0.1682 0.0280 0.1216
ContraWR — 0.3589 0.0353 0.2124 0.1569 0.0237 0.0976
CNN-Transformer — 0.4421 0.1594 0.3322 0.1629 0.0204 0.0938
BIOT — 0.3677 0.0511 0.2245 0.1928 0.0524 0.1303
LaBraM TUAB+EV 03932 0.0864 0.3342 0.1428 0.0000 0.0203

BSR-VMAE (ours) TUAB+EV  0.4800 0.2169 0.4500 0.1948 0.0558 0.1559

4.4 SUBJECT-LEVEL FEW-SHOT FINE-TUNING

In this experiment, we show that BSR-VideoMAE sets a new state-of-the-art in few-shot EEG-video
learning, outperforming all baselines and demonstrating unmatched robustness across datasets.

For both BSR-VideoMAE and LaBraM, we initialized model weights from pretraining on the TUAB
and TUEV datasets. In contrast, all other baseline methods were trained from scratch, which places
them at a disadvantage in leveraging prior knowledge. A key advantage of BSR-VideoMAE is its
consistent input size of 224 x 224 x 3 for all experiments, ensuring uniform processing and ro-
bustness. Other methods rely on variable input channel configurations determined by the number of
electrodes in each dataset, introducing additional variability and potential optimization challenges.

Since each subject represents an independent dataset, we report the average performance across all
subjects to ensure fair and comprehensive evaluation. Tables [3] and ] summarize the results for
emotion classification and motor imagery tasks, respectively, with the best performance in bold and
the second-best underlined.

Across all few-shot experiments, BSR-VideoMAE consistently outperforms competing methods, es-
tablishing it as an effective model for EEG-video representation learning. Notably, the improvement
is particularly pronounced on the SEED and SHU-MI datasets, which likely have fewer categories
and thus a relatively easier classification space. Some baseline methods fail to converge in these
settings, resulting in zero x scores, indicating that the limited data in few-shot tasks is insufficient
for reliable training without a robust pretrained model.

These results demonstrate that BSR-VideoMAE’s transformer-based architecture, combined with
EEG-video pretraining and consistent input processing, delivers superior generalization and stability
across diverse datasets and tasks. This makes BSR-VideoMAE not only the top-performing model
in our experiments but also a strong candidate for practical EEG-video applications.

4.5 ABLATION STUDY ON SUBJECT-LEVEL FEW-SHOT LEARNING

Here we conduct a quantitative evaluation on different pretraining datasets, to show that our model
not only sets a new state-of-the-art but also confirms the feasibility of bridging neurophysiologi-
cal and visual domains through a unified multimodal learning paradigm. Our rendered EEG data
preserves temporal and spatial spectral structures closely resembling those of native video data, en-
abling us to leverage the strong generalization capability of the original VideoMAE—trained solely
on large-scale video—to fit and extract implicit EEG signals. However, since the original Video-
MAE has never been exposed to neurophysiological visual data, it still faces challenges when di-
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Table 4: Subject-level few-shot learning results for the motor imagery task

SHU-MI BCICIV-2a
Methods Pretrain B-Acc. AUROC AU-PR B-Acc. K Flw
FFCL — 0.5271 0.5608 0.5644 0.2935 0.0581 0.2673
ContraWR — 0.5105 0.5886 0.5962 0.2843 0.0458 0.2505
CNN-Transformer — 0.5388 0.5988 0.5992 0.2531 0.0041 0.1132
BIOT — 0.5456 0.5790 0.5828 0.2735 0.0314 0.1931
LaBraM TUAB+EV  0.5288 0.5535 0.5568 0.2650 0.0201 0.1802

BSR-VMAE (ours) TUAB+EV  0.5808  0.6144  0.6247 0.3029 0.0705 0.2821

SHU-MI 2-cls BCICIV-2a 4-cls SEED 3-cls SEED-VIl 7-cls
0.8 0.4 0.8 0.4
mmm Kinetics+TUH Pretrain
0.6 0.3 0.6 0.3 mmm Kinetics Pretrain
0
2
504 0.2 0.4 0.2
Q
=
0.2 0.1 ‘l 0.2 i 0.1 ‘
0.0 0.0 0.0 0.0 L
B-Acc AUROC AU-PR B-Acc. K Flw B-Acc. K Flw B-Acc. K Flw

Figure 3: Ablation study on subject-level few-shot fine-tuning experiment.

rectly adapting to EEG-video tasks. To investigate this, we compare two pretraining strategies: (/)
Video-only pretraining: using Kinetics-400 dataset exclusively. (2) Multimodal pretraining: com-
bining Kinetics-400 video data with EEG mix dataset (TUAB + TUEV, denoted as TUH).

We evaluate both models on four few-shot benchmarks, with results shown in Figure E} Our results
reveal several important findings: (1) The multimodal model consistently outperforms the video-
only baseline, demonstrating the clear benefits of incorporating EEG training data for cross-modal
learning and generalization. (2) Interestingly, the performance gap between the two models is rel-
atively small, suggesting that our rendered EEG data successfully approximates the distribution of
native video, retaining similar temporal and spatial spectral properties. (3) This close distributional
alignment validates the core innovation of our approach: rendering EEG data into video format
enables effective transfer learning without large-scale EEG-specific pretraining.

Overall, our multimodal pretraining strategy achieves the strongest performance across all bench-
marks, establishing it as the most effective approach for EEG-video representation learning. This
highlights both the power of VideoMAE’s transformer architecture and the critical advantage of
integrating EEG data during pretraining.

5 CONCLUSIONS AND FUTURE WORKS

We present Brain Signal Rendering (BSR), a framework that transforms EEG signals into spa-
tiotemporally structured videos, enabling unified multi-task learning and robust subject-level few-
shot adaptation across heterogeneous datasets, tasks, and electrode configurations. By pairing EEG-
to-video representations with pre-trained video encoders and EEG Consolidation, BSR achieves
strong performance and generalization in diverse BCI tasks, reframing EEG modeling as a render-
ing problem rather than a channel-first learning task.

This work establishes a new direction for EEG modeling by reframing it as a rendering problem
and validating the potential of cross-domain EEG representation learning. Looking ahead, two
promising directions can further amplify this impact: (1) Efficiency scaling—exploring lighter or
EEG-specialized encoders to reduce computational cost without sacrificing performance; (2) Ren-
dering exploration—investigating alternative transformation methods beyond STFT to broaden the
framework’s applicability across EEG tasks and modalities. These avenues promise to advance
BSR toward a scalable, adaptable foundation for EEG representation learning, paving the way for
practical, high-performance brain-computer interface systems.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we only use LLMs for polish writing and related work discovery.

B ADDITIONAL INFORMATION FOR BRAIN SIGNAL RENDERING

FP1 FP2
F7 F3 Fz F4 F8
10-2(_) S_ystgm P = - o 7 TUEV Video
Spatialization Sample
T5 P3 PZ P4 T6
o1 02
FP1 FPZ FP2
AF7 | AF5 | AF3 | AF1 | AFZ | AF2 | AF4 | AF6 | AF8
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Figure 4: Spatialization matrix and EEG video examples.

Figure ] illustrates the spatialization for both the 10-20 and 10-10 systems, along with video exam-
ples from the TUEV and SEED datasets. It is important to note that the BSR renderer’s pre-training
is independent of any specific EEG system. Once pre-trained, the renderer can be directly applied
to any system defined by a user-specified spatialization matrix without requiring further training.

The code will be made publicly available upon paper acceptance.

C ADDITIONAL INFORMATION FOR SUBJECT-LEVEL FEW-SHOT

Hyperparameters.

* BSR-VideoMAE will be trained for 25 epochs for all experiments, with a learning rate
using the AdamW optimizer with a learning rate of le-5, weight decay of 1e-4 and a cosine
annealing scheduler.

* LaBraM is trained for 50 epochs with its recommended hyperparameters for all experi-
ments.

* For other baselines, if validation set is applicable, they will be trained for 50 epochs with
an early stop callback on AUROC (binary classification) or x (multiclass classification).
Elsewere they will be trained for 15 epochs to prevent overfitting. Other hyperparameters
are referred to (Yang et al.,[2023)).

To ensure the train-(val)-test split for all methods is strictly consistent, the rendering process on all
evaluation datasets does not access the raw data but the processed EEG segments, which are the
direct input of all baseline methods.

D FULL-DATASET FINE-TUNING

The BSR-VideoMAE model was trained jointly on the TUAB and TUEV datasets with the multi-
task fine-tuning strategy, loaded with weights pretrained on Kinetics-400, and evaluated without

12



Under review as a conference paper at ICLR 2026

further tuning on each dataset. For optimization, we used the AdamW optimizer with a learning
rate of le-5 and a weight decay of le-4. The training process incorporated a cosine annealing
scheduler and was performed with a gradient accumulation of 8. LaBraM was pre-trained for 50
epochs on the training partitions of the TUAB and TUEV datasets, followed by a separate 10-epoch
fine-tuning stage on each. We adopted the hyperparameter settings detailed in (Jiang et al., 2024b)).
All BIOT models were trained from scratch to avoid channel mismatch, as the official weights were
pre-trained with a bipolar electrode configuration. For the remaining baseline methods, we adhered
to the hyperparameter settings of (Yang et al., 2023). All reported results represent the average
performance over three runs with different random seeds.

Dataset Split Since the original TUAB and TUEV dataset already provides the split of training and
test sets, we use 10% of the training set for validation.

Table 5: Fine-tuning on TUAB and TUEV

TUAB TUEV
Methods B-Acc. AUROC AU-PR B-Acc. K Flw
FFCL 0.7510 0.8617 0.8718 0.3757 0.3273 0.6603
ContraWR 0.7746  0.8637 0.8711 0.3833 0.3510 0.6706
CNN-Transformer 0.7674  0.8796 0.8847 0.3360 0.3355 0.6646
BIOT 0.7858 0.8724  0.8768 0.4145 0.3379 0.6406
LaBraM 0.8002 0.8771 0.8810 0.4892 0.4336 0.7039

BSR-VideoMAE (Joint train)  0.7794  0.8652  0.8695 0.4206 0.4002 0.6862

Table 5| presents the fine-tuning results on the TUAB and TUEV datasets. The multi-task fine-tuning
was designed to enable BSR-VideoMAE to learn robust representations for few-shot learning, and
these full-dataset results serve as a baseline for comparison. One limitation may be the use of a
model pretrained on natural videos rather than EEG rendered videos, as mentioned in Figure [3]
Despite the challenges introduced by the multi-task setting and the natural video pre-training, BSR-
VideoMAE still achieved near state-of-the-art performance on TUEV and a competitive result on
TUAB, demonstrating the scalability and adaptability of the EEG Consolidation paradigm.
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