
Self-Select: Optimizing Instruction Selection for
Large Language Models

Keshav Ramji†
University of Pennsylvania
keshavr@upenn.edu

Alexander Kyimpopkin†

University of Pennsylvania
alxkp@upenn.edu

† equal contribution

Abstract

The same question can often be presented in different ways, depending on the
audience and the intent with which it is being posed. To determine whether large
language models (LLMs) demonstrate preferences for one phrasing over another
regardless of semantic content, we introduce Self-Select, a method for selection
of a preferred instruction template, and generation of high-quality synthetic data
samples. This algorithm makes use of a meta-prompt to decide on an instruction
template, given a task and candidate templates then generates n new samples using
the chosen template. We evaluate Self-Select on numerical reasoning and sentiment
classification tasks, using a variety of instruction-tuned and base models, providing
insights into their abilities and biases in performing instruction selection. We
find that permuting the instruction template ordering in the prompt leads to vastly
different choice distributions, suggesting that decisions may be influenced more by
inductive biases than by semantic understanding, even after instruction tuning.

1 Introduction

Large Language Models (LLMs) have demonstrated their ability to both generate seemingly novel
data as well as critique generated responses ([27], [32], [53], [14]). At the same time, many models
require large amounts of human labeled training data, motivating recent exploration of methods
for synthetic data generation. That is, using model generated data to improve performance on a
downstream task, largely by fine-tuning a model on a data mixture consisting of an existing corpus
for the task and the synthetically generated data.

For a given task, instructions can be presented with several possible structures, which we call
templates, and new data may be generated using many of these possible templates ([49]). While the
differences in these instruction formats may be evident to humans – after all, users may present the
same question in various ways to a conversational agent – it is unclear the extent to which template
selection influences the quality of the generated data, nor whether LLMs can distinguish the merits of
one template against another. Therefore, by framing this decision problem as one posed to the model
for a particular task, we can gain valuable insights into the ability of the instruction-tuned models to
distinguish between instructions, compared to vanilla pre-trained language models.

In our work, we propose a new algorithm, Self-Select, for generation of synthetic data samples
corresponding to a model-selected instruction template. In the first module, SELECT, we introduce
a meta-prompt for the model to consider the set of provided templates, and choose the template
it perceives to be the best. Then, in the GENERATE module, we fit in-context exemplars to the
chosen template, and prompt the model to generate new samples that follow the same structure as the
exemplars. To ensure that the final n samples for the particular task are of sufficient quality, we verify

Foundation Models for Decision Making Workshop at NeurIPS 2023.

Figure 1: Overview of the Self-Select algorithm, which consists of SELECT and GENERATE modules.
In the former, we provide a meta-prompt and several templates for the task, and obtain the selected
template. In the latter, we first generate samples according to the provided template, and use model
self-critique to determine whether those samples are of sufficiently high quality. For those that are
insufficient, we use in-context refinement examples and attempt to improve the response.

the output samples relative to a benchmark; depending on the task, this can be chosen to be a metric
(with a threshold for admittance into the final set) or even a model-generated label of the response
quality. If a sample is deemed to be of insufficient quality, we prompt the model to refine its response,
conditioned on the previous output, such that the new response takes its place as a candidate. Thus,
upon the algorithm’s termination, n samples per task of interest will be obtained; these samples can
be used to fine-tune the model, or themselves be applied as exemplars for few-shot prompting.

We evaluate the Self-Select algorithm on two tasks – numerical reasoning (arithmetic) and sentiment
classification, and benchmark the performance of each model in zero-shot and few-shot prompted
settings, with and without model fine-tuning. Our results show that models are able to successfully
identify the template it deems to be optimal, and can generate high-quality samples corresponding to
the templates given by a hand-selected prompt structure. This provides preliminary evidence of the
ability for LLMs to optimize instruction selection via meta-prompts, building on the recent findings
of [50], and generate faithful synthetic data samples, in line with [55].

2 Algorithmic Approach

Given a set of possible instruction templates for a task, such as those manually curated in FLAN
([46]), Self-Select firstly chooses the instruction it deems to be most appropriate for the task, given
the task description, generates new data which fit the structure of the template (with regards to the
terms to be "filled in"), and then uses a quality control criterion to re-sample responses if they are
of insufficient quality. This mechanism to determine when refinement is necessary may be defined
several ways by the user, and can be specified for the particular task.

2.1 Instruction Template Selection

For the given task t, we wish to consider the set of potential candidate instruction templates, in order
to select the best one; this set is denoted as St. The SELECT module involves querying the model
using a meta-prompt, given the |St| template options:

τ =M(mp | t, St) (1)

We define the structure of the meta-prompt as follows (specific examples of meta-prompts used in our
work are given in Appendix A), yielding a prompt index. This, in turn, is mapped to the particular
template within the St set:

"The following templates correspond to different problems. Choose which one best fits
the problem above. Respond with Template: <NUM>"

2

It is to be noted that meta-prompting using the above query may be done with either zero-shot or
few-shot settings, wherein one can provide demonstrations of a human annotator-chosen optimal
template for framing a particular problem as an instruction, perhaps subject to certain desirable
criteria. However, this is beyond the present scope of our empirical exploration, given the emphasis of
this work is on the comparison of the behaviors between base models and instruction-tuned models,
and their respective abilities to perform template selection as a means to elicit their instruction
preferences.

Algorithm 1: Self-Select Algorithm
Inputs : Large Language ModelM
T ← Set of tasks
St ← Set of candidate templates for task t
Xt ← Set of in-context exemplars for initial generation for task t
Rt ← Set of in-context exemplars for refinement for task t
mp : meta-prompt
gp : generation-prompt
rp : refinement-prompt
µt : Response quality metric for task t with quality threshold λt

n : Number of samples to generate per task

for each task t ∈ T :
τ =M(mp | t, St) ▷ Meta-prompt yields selected instruction
F ,W = {}
for each iteration i ∈ 1, 2, . . . n:

yi =M(gp | τ,Xt) ▷ Sample responses, given template
W =W ∪ {yi}

end for
while |W | ≠ {}

if max refinement iterations reached: ▷ 2nd Stopping criterion for refinement
return F

γi = µt(yi)
if γi ≥ λt: ▷ Response quality check

F = F ∪ {yi}
W =W \ {yi}

else:
y′i =M(rp | yi, Rt) ▷ Response refinement
W = W ∪ {y′i} \ {yi}

end while
return F

end for

Figure 2: The Self-Select algorithm and the assumed notation. Please see Section 2 (Algorithmic
Approach) for a more comprehensive discussion of the method.

2.2 Synthetic Data Generation and Refinement

The GENERATE module encompasses both generation of new samples (a user-defined value of n,
per task) and refinement based on a user-defined metric, subject to a scoring threshold per sample. In
this module, we sample a new response for the refinement prompt, conditioned on both the previous
response and a small set of manually-curated examples for refinement for that particular task. For
example, for arithmetic tasks, refinement only occurs when the provided answer is incorrect, and thus
the in-context example set, Rt, consists of ⟨(xi, yi), (xi, y

′
i)⟩ pairs, where yi is an incorrect response

and y′i is correct.

y′i =M(rp | yi, Rt) (2)

3

Refinement ensures that the Self-Select algorithm enables quality control on responses – for genera-
tions deemed acceptable based on the threshold and criterion, we add those samples to the set F , and
return F upon termination of the loop, for the current task.

However, as the LLM may prove to be incapable of refining its response to the level of sufficiency,
we enforce a stopping criterion on the basis of the number of refinement iterations that have occurred;
prior work ([27]) demonstrates that weaker (smaller, non-instruction-tuned) models may struggle
with iterative refinement procedures. This guarantees termination within a fixed number of iterations,
even if it results in producing fewer than the desired n high-quality samples.

One may look to use 0-1 critiques generated by the model as a means to determine response sufficiency
(that is, if the model deems the response quality to be good, it assigns a score of 1 to that response; else
assigns 0). This could also be replaced with a known reference metric for a particular task, including
semantically-oriented metrics like BERTScore ([54]) or for mathematical tasks, custom-defined
metrics based on the outcomes of a call to a calculator API (e.g. Wolfram Alpha); hence, this is
defined generally as µt in Algorithm 1.

3 Experimental Setup and Results

3.1 Numerical Reasoning

0 1 2 3 4 5 6

0

20

40

60

80

100

Template Number

%
C

ho
ic

e

Llama-2-70B-Chat GPT-3.5 GPT-4
Llama-2-70B Chat (Sh.) GPT-3.5 (Sh.) GPT-4 (Sh.)

Figure 3: Results on instruction template selection for the numerical reasoning task. The bars with
the striped lines correspond to the same model as the solid bar, but where the striped bars are results
with shuffled instruction options, mapped back to their original template numbering.

For numerical reasoning, we selected two-number addition with one to five digit numbers, using
the prompt in Figure 4. Our meta-prompt consists of seven possible options with slight changes in
instruction format, such as how each operand is specified or identifying particular qualifiers on the
operands and the resulting quantities.

We experimented with the Llama-2 7B and 13B variants, with and without chat-tuning [39], as well as
MPT-7B and MPT-7B-instruct [38] and find that these smaller models struggle to perform instruction
selection, instead generating seemingly random code segments. We believe this result to be tied to the
use of curly brackets (i.e. {}) as a means to specify an argument to be filled in its place for a given
template – this choice was done to maintain the ambiguity of the argument to be inserted, with an
emphasis on the structure implied by the template. That being said, curly brackets most often occur
in programming languages (hence the term "curly-bracket languages") such as C and C++. Thus, it is
likely that models that have seen some program synthesis data (whether solely in the pre-training
corpora, for base models, or in the fine-tuning data as well, for instruction-tuned models) would
interpret the template as code, when presented with the options in the meta-prompt, and thus generate
code in response.

4

SELECTION: The following templates correspond to different problems.

Choose which one best fits addition. Respond with Template: <NUM>

Template 0 : Addition; Problem: {} + {} = ; Answer: {}

Template 1 : Addition;
Problem: {} + {} = {}

Template 2 : Addition; Generate a problem following this template:
{} + {} = {}

Template 3 : Generate an addition problem using the following template:
num_1 + num_2 = answer

Template 4 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are integers

Template 5 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are numbers

Template 6 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are real numbers

Choose the best template by returning its number.

Figure 4: Above is the prompt used for the numerical reasoning task, with 7 manually curated
templates for performing addition, with slight differences in how the problem is phrased.

We ran the template selection task 50 times per model (45 times for GPT-4 with unshuffled template
choices, due to query rate limits), with the GPT-3.5, GPT-4, and Llama-2-70B-Chat models. We also
performed this experiment with the aforementioned smaller models, but found their generations to be
highly inconsistent and noisy with code samples, rather than a proper template selection. It is worth
noting that of these three models, GPT-4 often elaborated on its logic even when unprompted to do so
– behaviors in desirable templates from GPT-4’s perspective include simplicity, straightforwardness,
being "the most general", and clarity. As a result, on occasion, GPT-4 would output multiple potential
options for its instruction of choice, based on its reasoning path to classify certain characteristics of
groups of templates; for example, "Templates 0, 2, 4, and 6 provide explanatory text followed by a
simple format for the problem."

There exists prior literature demonstrating LLMs’ sensitivities to the order of choices in making
decisions – in multiple choice questions ([30]), in-context examples ([56]), and response critique and
evaluation ([42]). This led us to examine whether shuffling the instruction template options would
have an impact on the models’ preferred choice; maintaining the same option as before would indicate
a degree of semantic understanding and having learned the differences between structures. In both
the unshuffled (Table 1) and shuffled (Table 2) settings, we found that small models had difficulty
following instructions, while the large instruction-tuned and/or chat-tuned models demonstrated a
near deterministic preference for a specific template. That being said, in the shuffled case, all three
models chose a completely different template compared to their selections in the original prompt
ordering. Notably, all three models coalesced on a single choice in the shuffled regime. They all
selected template 2. These results are shown for the original ordering and shuffled templates in Tables
1 and 2, respectively, and consolidated in Figure 3. Indices are given in terms of the original indices
before shuffling for comparison.

We additionally generated 9,600 examples using a similar template to the ones given above; shown
below to validate the feasibility of our proposed GENERATE module. An example of one such
prompt is shown in Figure 5. Our model was able to generate data which consistently tracked both

5

the requested format and digit requirements for many of our samples, even with the Llama-2-7B-
Chat model, in line with the current state of generative models, enabling use of these samples for
knowledge distillation via fine-tuning or as in-context demonstrations.

Template (Unshuffled) GPT-3.5 GPT-4 Llama-2-70B-Chat

Template 0 0% 0% 100%
Template 1 88% 4.9% 0%
Template 2 12% 2.4% 0%
Template 3 0% 0% 0%
Template 4 0% 92.7% 0%
Template 5 0% 0% 0%
Template 6 0% 0% 0%

Total 100% 100% 100%

Table 1: Results on instruction template selection for the numerical reasoning task with 50 samples
(45 for GPT-4), using an unshuffled list of template options.

Template (Unshuffled #) GPT-3.5 GPT-4 Llama-2-70B-Chat

Template 0 0% 0% 0%
Template 1 0% 2% 0%
Template 2 70% 96% 100%
Template 3 0% 0% 0%
Template 4 0% 0% 0%
Template 5 30% 2% 0%
Template 6 0% 0% 0%

Total 100% 100% 100%

Table 2: Results on template selection for the numerical reasoning task with 50 samples, with shuffled
templates (mapped back to original numbering). (Samples with 2 or more results were excluded)

We have an arithmetic task below:
Generate in JSON {n} more correct examples, following the template below:

[
{

Problem: num_1 + num_2 =
Answer: num_3
Where num_1, num_2, and num_3 are {d} digit numbers

},
.
.
.

] ’’’

Figure 5: Above is the prompt for generation of n new samples following the LLM-chosen template,
as specified in the GENERATE module of the Self-Select algorithm.

3.2 Sentiment Classification

We experimented on the sentiment classification task using 10 templates corresponding to the IMDB
dataset ([26]), from the FLAN ([46]) work. These include "How would you describe the sentiment of
this review?", "Generate a movie review with answer sentiment.", and "Would you say this review is
positive or negative?" (note that these are paraphrased). Similar to the numerical reasoning task, we
also consider both unshuffled and shuffled template choices, to further examine models’ consistency.

6

0 1 2 3 4 5 6

0

20

40

60

80

Template Number

%
C

ho
ic

e

Llama-2-70B-Chat GPT-3.5 GPT-4
Llama-2-70B Chat (Sh.) GPT-3.5 (Sh.) GPT-4 (Sh.)

Figure 6: Results on instruction template selection for the sentiment classification task. The bars with
the striped lines correspond to the same model as the solid bar, but where the striped bars are results
with shuffled instruction options, mapped back to their original template numbering.

GPT-4 similarly attempts to provide a line of reasoning for its choices: its criterion includes looking for
the most direct, unambiguous, clear, and neutral template. The inclusion of "neutral" is particularly
noteworthy, as it suggests GPT-4’s inherent understanding of the requirements of the sentiment
analysis task, and the objective to be unbiased in a certain direction with the instruction itself. We
find that both GPT-3.5 and GPT-4 have a higher degree of variability for this task as compared to the
numerical reasoning task, across 3 options.

Once again, we find that shuffling the instruction options results in a vastly different "preference"
distribution, with only GPT-4 maintaining its primary choice from the unshuffled setting. Furthermore,
we find that the smaller 7B and 13B models still struggle to produce outputs in the desired format
(i.e. a template number) and hallucinate information, rendering them unable to consistently perform
instruction selection (albeit, Llama-2-13B-Chat can still generate valid template numbers on rare
occasion). We present these results in Tables 3 and 4 in Appendix B, and are summarized in Figure 7.

4 Related Work

4.1 Instruction Tuning

Several prior works demonstrate the effectiveness of instruction tuning as a promising framework for
yielding greater generalization to a wide variety of tasks ([46], [31], [28], [24], [6]). Recently, there
has been growing interest in minimizing the amount of instruction-following data necessary to still
obtain strong instruction-tuned models ([37], [17], [22], [5]). On a similar lens, it has been shown that
small but well-curated datasets can lead to strong alignment to human preferences ([57]). However,
open questions remain on what level of semantic understanding, rather than simply superficial pattern
following can be learned by instruction tuning [20]. Some models tuned via instruction tuning
exhibit good performance in tasks in the specific corpus, but fail to meaningfully improve on robust
benchmarks due to a lack of data [15]. Other recent work [44] has successfully used synthetic
data with self-filtering methods to bootstrap a much larger corpus and attempt to address the data
bottlenecks in instruction tuning. Approaches such as [55] reinforce the value of template-based
generators by leveraging them through a pre-trained language model distilled to yield more fluent
and faithful responses. Our work aims to continue the exploration into effective means of generating
high-quality synthetic instruction-following data, such that even a relatively small number of samples,
when distilled, can yield strong instruction-tuned models, while simultaneously achieving fluency
and accuracy as a robust language agent.

7

SELECTION: The following templates correspond to different problems.
Choose which one best fits sentiment

Template 0 : {text}

Did this review think positively or negatively of the movie?
{options_}

Template 1 : {text}
Would you say this review is positive or negative?
{options_}

Template 2 : {text}

Is the sentiment of this review positive or negative?
{options_}

Template 3 : Please tell me the sentiment of the following review: {text}
{options_}

Template 4 : {text}
What is the sentiment of this review?
{options_}

Template 5 : Determine the sentiment:
{text}
{options_}

Template 6 : Write a {answer} movie review.

Template 7 : {text}
How would you describe the sentiment of this review?
{options_}

Template 8 : Generate a movie review with {answer} sentiment.

Template 9 : What’s an example of a movie review? {text}

Choose the best template by returning its number.

Please respond with the number of the chosen template

Figure 7: Above is the prompt used for the sentiment classification task, with 7 manually curated
templates for performing addition, with slight differences in how the problem is phrased.

4.2 Chain-of-Thought and Refinement Approaches

4.2.1 Chain-of-Thought Prompting

Chain-of-Thought (CoT) prompting was introduced in [47], inducing the model to generate step-
by-step rationales, which provided insights into their ability to perform more complex, multi-step
reasoning tasks. [19] found evidence of the effectiveness of zero-shot chain-of-thought prompting
through "Let’s think step by step"; the Optimization by Prompting (OPRO) algorithm introduced in
[50], when applied to prompt optimization, shows that for the PaLM-2 model, "Take a deep breath
and work on this problem step-by-step" is the most effective prompt for the GSM8K dataset. [25] uses
symbolic reasoning chains as a means to induce faithful explanations, which motivates our future line
of exploration into LLMs’ abilities to articulate its instruction selection decisions. [43] introduces a
decoding strategy known as self-consistency for the chain-of-thought setting, which enables sampling
of multiple reasoning paths and chooses the most consistency answer via aggregation. Another
recent work [41] demonstrates that chain-of-thought reasoning still largely holds even with invalid

8

intermediate reasoning steps, and suggests that query relevance and coherence (consistent ordering of
the steps) are the key principles for successful CoT prompting.

4.2.2 Extensions on Chain-of-Thought

While CoT assumes a linear reasoning path that reaches the desired results, recent works have
motivated more intricate formulations that may further improve performance on more complex tasks.
[51] introduces Tree-of-Thoughts (ToT), enabling broader exploration across multiple chains of
reasoning, self-evaluation of the current state (thought), and graph traversal (backtracking), resulting
in more robust problem-solving abilities. The Algorithm-of-Thoughts (AoT; [34]) method uses
in-context examples of graph search algorithms (DFS and BFS paths) on top of the ToT framework,
resulting in more fluid exploration of subproblems / individual thoughts as opposed to a rooted tree.

Graph-of-Thoughts (GoT; [3]) proposes a generalization of sorts on the ToT approach, no longer
confining the thought structure to a tree, and introducing the notions of aggregation and refinement.
Thought aggregation in GoT is task-specific, and enables parallel reasoning chains to be condensed
into one (e.g. via summarization or merging); similar to our work and other in-context refinement
strategies, individual thoughts can be scored and ranked using a general scoring function. In the
present work, we largely explore tasks that are solvable within a single step, but this can be modified
to support multi-step reasoning via CoT (or similar) framing of the generation prompt.

4.2.3 Refinement and Feedback Mechanisms

In prior literature, there are many approaches for providing feedback on model generations, and
incorporating said feedback into informing subsequent decisions by the model. There are extensive
precedents for using human evaluation as a feedback mechanism for human-in-the-loop systems ([1],
[7], [36], [13], [4], [45]). Feedback mechanisms may include use of scalar reward models trained
from human preference data as a proxy method ([28], [2], [1], [58], [21], [18], [12]), which have
gained traction recently with growing interest in efficient and effective methods of aligning LLMs /
Foundation Models more broadly and the rising prevalence of reinforcement learning from human
feedback (RLHF). Model generated feedback methods ([33], [32], [53], [11]) are also an area of
growing interest, as they also provide insights into the capabilities of strong LLMs such as GPT-4 in
serving as an effective evaluation substitute for performing human evaluation ([23], [16]).

The notion of refinement has been explored through multiple lenses, including supervised learners to
perform refinement ([48], [32], [9], [52], [53]), and natural language feedback and refinement ([35],
[29], and feedback and refinement using the same model ([27], [51], [3]). Given our aim to explore
the decision making capabilities of LLMs of various sizes, in both zero-shot and few-shot settings, to
generate high-quality synthetic data, we take inspiration from in-context mechanisms for feedback
and refinement in designing the Self-Select algorithm, but note that a variety of other metrics (or
models) could be used for feedback generation.

5 Discussion

The distribution shifts present in these data as a result of shuffling the order raises questions about
the causal factors behind LLM preferences for template selection and beyond. Self-introspection
and critique as in Self-Refine [27] may provide avenues for understanding the degree to which
these models exhibit semantic understanding, as opposed to simple pattern matching via inductive
biases. This is perhaps related to the presence of multiple choice problems in either the pre-training
or instruction tuning corpus, resulting in biased preferences. These findings may also shed new
insights on the trustworthiness of knowledge distillation from larger instruction-tuned models to
induce instruction following. We would like to further explore the notion of refinement with different
models, given samples corresponding to the chosen template, and with various sufficiency criteria, as
this may enable our approach to enforce further checks on template-specific sample quality.

Further work and experiments may also include an extended exploration of what can be termed as
in-context meta-prompting; that is, providing exemplars for instruction selection, based on human
preferences for an ideal template. For example, the template that GPT-4 selected, while justifying
its choice as the most simple and straightforward, was not in agreement with the template that the

9

authors of this work would consider on that criteria. This may suggest new properties regarding LLM
steerability in decision making when performing in-context learning.

Studying the decision making process involved in instruction selection through the lens of semantic
understanding could perhaps focus on the attention mechanism; this has ties to cognitive neuroscience
literature ([40]) and computer vision applications ([8], [10]) as well. Prior behavioral studies suggest
that humans who excel in multiple-choice test scenarios, which are inherently similar to the instruction
selection problem, appear to shift their attention to more relevant examples over time, and given the
impact of the change in ordering on LLMs’ performance, this shift does not appear to be replicated.

6 Conclusion

In this work, we present Self-Select, a procedure for large language models to select their preferred
instruction template, and generate high-quality synthetic data, which may be used for self-training,
knowledge distillation, or in-context learning. We find that large language models, even strong
instruction-tuned models, are unable to consistently reason semantically about the structure and
contents of their instructions when presented with a decision to make in selecting one template over
the others, especially in a permutation-invariant manner. Shuffling the order of templates led to
substantial changes in the distribution of chosen templates for numerical reasoning and the primary
template for each model becoming common – before shuffling, each model had a strong preference for
a different template, while after shuffling, they now expressed a preference for the same instruction.
The distribution also shifted substantially upon shuffling for the sentiment classification task; in both
tasks, we found at least one model demonstrated a near-deterministic preference among the template
options. This leads us to conclude that in order for LLMs to exhibit semantic understanding (and thus,
some degree of judgement in instruction template decision making), they must be exposed to the same
data in several orderings, perhaps motivating data augmentation strategies using permutations. By
demonstrating the order dependence on the instruction selection outcomes, and thus, the nature of the
synthetic data generated from the Self-Select algorithm, we hope for this work to mark a contribution
to the ongoing development of large language models for decision making, regarding their suitability
for critical applications requiring robustness and high trustworthiness.

10

Acknowledgements

The authors would like to thank Bronco AI for computational resources. We thank the anonymous
reviewers for their feedback and suggestions.

References
[1] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,

Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath,
Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine
Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann,
and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from
human feedback, 2022.

[2] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine
Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli
Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer,
Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston,
Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton,
Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben
Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan.
Constitutional ai: Harmlessness from ai feedback, 2022.

[3] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models, 2023.

[4] Zefan Cai, Baobao Chang, and Wenjuan Han. Human-in-the-loop through chain-of-thought,
2023.

[5] Yihan Cao, Yanbin Kang, and Lichao Sun. Instruction mining: High-quality instruction data
selection for large language models, 2023.

[6] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022.

[7] Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A.
Smith. All that’s ’human’ is not gold: Evaluating human evaluation of generated text, 2021.

[8] Abhishek Das, Harsh Agrawal, C. Lawrence Zitnick, Devi Parikh, and Dhruv Batra. Human
attention in visual question answering: Do humans and deep networks look at the same regions?,
2016.

[9] Wanyu Du, Zae Myung Kim, Vipul Raheja, Dhruv Kumar, and Dongyeop Kang. Read, revise,
repeat: A system demonstration for human-in-the-loop iterative text revision. In Proceedings of
the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022), pages
96–108, Dublin, Ireland, May 2022. Association for Computational Linguistics.

[10] Li Fei-Fei, Asha Iyer, Christof Koch, and Pietro Perona. What do we perceive in a glance of a
real-world scene? Journal of Vision, 7(1):10–10, 01 2007.

[11] Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire,
2023.

11

[12] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization,
2022.

[13] Asma Ghandeharioun, Judy Hanwen Shen, Natasha Jaques, Craig Ferguson, Noah Jones, Agata
Lapedriza, and Rosalind Picard. Approximating interactive human evaluation with self-play for
open-domain dialog systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[14] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. Critic: Large language models can self-correct with tool-interactive critiquing, 2023.

[15] Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary llms, 2023.

[16] Veronika Hackl, Alexandra Elena Müller, Michael Granitzer, and Maximilian Sailer. Is gpt-4 a
reliable rater? evaluating consistency in gpt-4 text ratings, 2023.

[17] Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor, 2022.

[18] Jian Hu, Li Tao, June Yang, and Chandler Zhou. Aligning language models with offline
reinforcement learning from human feedback, 2023.

[19] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2022.

[20] Po-Nien Kung and Nanyun Peng. Do models really learn to follow instructions? an empirical
study of instruction tuning, 2023.

[21] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction, 2018.

[22] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need ii: phi-1.5 technical report, 2023.

[23] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
Nlg evaluation using gpt-4 with better human alignment, 2023.

[24] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V. Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data
and methods for effective instruction tuning, 2023.

[25] Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning, 2023.

[26] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[27] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023.

[28] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

[29] Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, and Jianfeng Gao. Check your facts and try again: Improving
large language models with external knowledge and automated feedback, 2023.

12

[30] Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of
options in multiple-choice questions, 2023.

[31] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari,
Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan
Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang,
Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang,
Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush.
Multitask prompted training enables zero-shot task generalization, 2021.

[32] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators, 2022.

[33] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen,
Kyunghyun Cho, and Ethan Perez. Training language models with language feedback at
scale, 2023.

[34] Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of
thoughts: Enhancing exploration of ideas in large language models, 2023.

[35] Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[36] Niket Tandon, Aman Madaan, Peter Clark, and Yiming Yang. Learning to repair: Repairing
model output errors after deployment using a dynamic memory of feedback, 2021.

[37] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[38] MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially
usable llms, 2023. Accessed: 2023-03-28.

[39] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[40] Meng-Jung Tsai, Huei-Tse Hou, Meng-Lung Lai, Wan-Yi Liu, and Fang-Ying Yang. Visual
attention for solving multiple-choice science problem: An eye-tracking analysis. Computers
Education, 58(1):375–385, 2012.

[41] Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan
Sun. Towards understanding chain-of-thought prompting: An empirical study of what matters.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2717–2739, Toronto, Canada, July 2023. Association for Computational Linguistics.

[42] Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu,
Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators, 2023.

13

https://github.com/tatsu-lab/stanford_alpaca

[43] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

[44] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instruc-
tions, 2023.

[45] Zijie J. Wang, Dongjin Choi, Shenyu Xu, and Diyi Yang. Putting humans in the natural language
processing loop: A survey, 2021.

[46] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2021.

[47] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2022.

[48] Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and
Yejin Choi. Generating sequences by learning to self-correct, 2022.

[49] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions,
2023.

[50] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2023.

[51] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

[52] Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair from
diagnostic feedback, 2020.

[53] Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong Kim, Hyeonbin Hwang, and Minjoon
Seo. Selfee: Iterative self-revising llm empowered by self-feedback generation. Blog post, May
2023.

[54] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert, 2019.

[55] Tianyi Zhang, Mina Lee, Lisa Li, Ende Shen, and Tatsunori B. Hashimoto. Templm: Distilling
language models into template-based generators, 2022.

[56] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 12697–12706. PMLR, 18–24 Jul 2021.

[57] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer
Levy. Lima: Less is more for alignment, 2023.

[58] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences,
2019.

14

Appendix A: Specific Prompts for the SELECT Module

SELECTION: The following templates correspond to different problems.

Choose which one best fits addition. Respond with Template: <NUM>

Template 0 : Addition; Problem: {} + {} = ; Answer: {}

Template 1 : Addition;
Problem: {} + {} = {}

Template 2 : Addition; Generate a problem following this template:
{} + {} = {}

Template 3 : Generate an addition problem using the following template:
num_1 + num_2 = answer

Template 4 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are integers

Template 5 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are numbers

Template 6 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are real numbers

Choose the best template by returning its number.

Figure 8: Above is the full meta-prompt for template selection with 7 options in the SELECT module
of the Self-Select algorithm. Note that this is the same prompt presented in Figure 3; included here
for completeness and comparison to its shuffled counterpart, Figure 9.

The templates shown here correspond to the selection process in the SELECT module, with the
two prompts given showing the original and permuted versions of the prompt, demonstrating the
preference shift evidenced in Figure 4. Observe that the set of templates are indeed the same, but
have a different index between the two versions. We note that these are just two of the 7! = 5040
possible orderings we could have prompted with, and yet they already elicit difference preferences
for each model.

15

SELECTION: The following templates correspond to different problems.
Choose which one best fits addition. Respond with Template: <NUM>

Template 0 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are numbers

Template 1 : Addition; Generate a problem following this template:
{} + {} = {}

Template 2 : Generate an addition problem using the following template:
num_1 + num_2 = answer

Template 3 : Addition;
Problem: {} + {} = {}

Template 4 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are integers

Template 5 : Addition; Problem: {} + {} = ; Answer: {}

Template 6 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are real numbers

Choose the best template by returning its number.

Figure 9: Above is the full meta-prompt for template selection with shuffled ordering of the templates.
Note that the templates are the same as those in Figure 8, but are re-indexed accordingly.

Appendix B: Results for Sentiment Classification Template Selection

Template (Unshuffled) GPT-3.5 GPT-4 Llama-2-70B-Chat

Template 0 50% 0% 0%
Template 1 20% 2.04% 96%
Template 2 30% 30.61% 0%
Template 3 0% 67.35% 0%
Template 4 0% 0% 0%
Template 5 0% 0% 4%
Template 6 0% 6% 0%
Template 7 0% 0% 0%
Template 8 0% 0% 0%
Template 9 0% 0% 0%

Total 100% 100% 100%

Table 3: Results on instruction template selection for the sentiment classification task, with unshuffled
options, with 50 samples (49 for GPT-4, as indecisive responses were omitted).

The results presented here correspond with the charts of Figure 7, for the sentiment classification task,
as discussed in Section 3.2. The above table demonstrates the selections for the initial ordering of
templates as given. We find that each model displays vastly different preferences across the instruction
options, with GPT-3.5 and GPT-4 being less consistent than Llama-2-70B-Chat in its selections. The
table below demonstrates the results when the template order is permuted before presenting them via
our model query, although for the purposes of comparison, we map the indices back to their original
numberings. As with the numerical reasoning task, we find that while the models are much closer to
agreement on the "best template," the top choice template for both GPT-3.5 and Llama-2-70B-Chat

16

changed entirely. We hypothesize that such a phenomenon could lend itself to future explorations
where we formally sample responses by multiple agents across several template index permutations
and template selection is done via majority voting, as we have done for this small case here. This
follows somewhat in the vein of self-consistency [43].

Template (Unshuffled) GPT-3.5 GPT-4 Llama-2-70B-Chat

Template 0 0% 6% 0%
Template 1 0% 2% 0%
Template 2 0% 0% 0%
Template 3 94% 92% 42%
Template 4 0% 0% 0%
Template 5 0% 0% 0%
Template 6 6% 0% 58%
Template 7 0% 0% 0%
Template 8 0% 0% 0%
Template 9 0% 0% 0%

Total 100% 100% 100%

Table 4: Results on instruction template selection for the sentiment classification task, with shuffled
options, mapped back to their original unshuffled numbering.

17

	Introduction
	Algorithmic Approach
	Instruction Template Selection
	Synthetic Data Generation and Refinement

	Experimental Setup and Results
	Numerical Reasoning
	Sentiment Classification

	Related Work
	Instruction Tuning
	Chain-of-Thought and Refinement Approaches
	Chain-of-Thought Prompting
	Extensions on Chain-of-Thought
	Refinement and Feedback Mechanisms

	Discussion
	Conclusion

