
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINE-GRAINED URBAN TRAFFIC FORECASTING
ON METROPOLIS-SCALE ROAD NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Traffic forecasting on road networks is a complex task of significant practical
importance that has recently attracted considerable attention from the machine
learning community, with spatiotemporal graph neural networks (GNNs) becoming
the most popular approach. The proper evaluation of traffic forecasting methods re-
quires realistic datasets, but current publicly available benchmarks have significant
drawbacks, including the absence of information about road connectivity for road
graph construction, limited information about road properties, and a relatively small
number of road segments that falls short of real-world applications. Further, current
datasets mostly contain information about intercity highways with sparsely located
sensors, while city road networks arguably present a more challenging forecasting
task due to much denser roads and more complex urban traffic patterns. In this
work, we provide a more complete, realistic, and challenging benchmark for traffic
forecasting by releasing datasets representing the road networks of two major cities,
with the largest containing almost 100,000 road segments (more than a 10-fold
increase relative to existing datasets). Our datasets contain rich road features and
provide fine-grained data about both traffic volume and traffic speed, allowing for
building more holistic traffic forecasting systems. We show that most current imple-
mentations of neural spatiotemporal models for traffic forecasting have problems
scaling to datasets of our size. To overcome this issue, we propose an alternative
approach to neural traffic forecasting that uses a GNN without a dedicated module
for temporal sequence processing, thus achieving much better scalability, while
also demonstrating stronger forecasting performance. We hope our datasets and
modeling insights will serve as a valuable resource for research in traffic forecasting
and, more generally, urban computing and smart city development.

1 INTRODUCTION

Accurate traffic forecasting on road networks is a critical task with significant practical implications for
urban planning, logistics optimization, and the daily experience of commuters (Li et al., 2018; Derrow-
Pinion et al., 2021; Lim & Zohren, 2021; Jiang & Luo, 2022). In recent years, substantial efforts
from the machine learning community have been dedicated to this challenge, with spatiotemporal
graph neural networks (GNNs) emerging as the dominant methodology due to their inherent ability
to model complex spatial and temporal dependencies (Cini et al., 2023).

However, the development and proper evaluation of advanced traffic forecasting methods depend
critically on the availability of realistic and comprehensive benchmarks. Unfortunately, current
publicly available traffic datasets have significant drawbacks that hinder progress in the field. In the
existing traffic forecasting benchmarks (Jagadish et al., 2014; Li et al., 2018; Yu et al., 2018; Guo
et al., 2019; Song et al., 2020; Liu et al., 2023), nodes represent sensors located on roads that measure
traffic speed, and edges are constructed based on location proximity (road travel distance between the
sensors). These sensors are sparsely distributed and are mostly located on intercity highways, which
leads to a number of limitations. First, the overall number of locations (road segments) with available
measurements is relatively small, ranging from 207 to 8,600 in the largest currently available dataset.
Second, there is no graph structure available between the sensors due to their sparsely distributed
locations. Thus, in the existing datasets, graph edges are heuristically constructed based on the road
distances, leaving the natural graph structure arising from adjacent road segments underexplored.
Finally, since sensors are typically located on intercity highways, their measurements fail to capture
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complex urban traffic within cities, which is a critical limitation, since traffic conditions within large
cities affect daily commutes of millions of people.

To address these problems, our work provides a realistic and challenging benchmark specifically
tailored for urban traffic forecasting. We release novel datasets representing the detailed road networks
of two major cities. The largest of these datasets encompasses information for almost 100,000 distinct
road segments of a major city of approximately 5.5 million residents. Our datasets contain rich
road features and provide fine-grained temporal data capturing both traffic volume and traffic speed,
enabling the development and evaluation of more holistic and nuanced traffic forecasting systems.

Using our datasets, we examine several existing implementations of neural traffic forecasting models
and show that most of them struggle to scale to data of this magnitude. To overcome this issue, we
propose an efficient approach to neural traffic forecasting that uses a GNN without a dedicated module
for temporal sequence processing, thus achieving much better scalability, while also demonstrating
stronger forecasting performance.

We hope our proposed datasets and modeling insights will stimulate further advancements in traffic
forecasting and, more broadly, support progress in the related fields of urban computing and smart
city development.

2 BACKGROUND

2.1 TRAFFIC FORECASTING

The goal of traffic forecasting is to predict future traffic conditions (e.g., traffic speed or traffic volume)
based on historical observations. Typically, observations are provided by sensors located at specific
road segments. Traditional approaches that rely on statistical models, such as ARIMA or Kalman
filters, often fall short in capturing the complex, nonlinear spatiotemporal dependencies present in
real-world traffic systems. Recent advances in deep learning, particularly in representation learning
on graphs and sequences, have led to a surge of interest in neural methods for traffic forecasting,
aiming to model spatial and temporal components jointly and more effectively.

One of the pioneering works in this direction is Diffusion Convolutional Recurrent Neural Network
(DCRNN) proposed by Li et al. (2018), which formulates the traffic forecasting problem as a
spatiotemporal sequence modeling task, representing the traffic network as a directed graph and
utilizing diffusion convolution over the graph structure to capture spatial dependencies, integrated
with a recurrent neural network (RNN) to model the temporal component. This work was one of the
first to use graph-based convolutions in traffic forecasting, so it became the groundwork for many
subsequent methods.

Building on this, Yu et al. (2018) proposed Spatiotemporal Graph Convolutional Network (STGCN)
that replaces RNNs with temporal convolutional layers, resulting in improved computational effi-
ciency. This architecture employs separate modules for spatial and temporal components, alternating
between graph convolutional networks (GCNs) for aggregating local structural information and 1D
convolutions for processing sequential information.

Later works sought to address the limitations of previous models by introducing more intricate and
flexible mechanisms. For instance, Attention-based Spatial-Temporal Graph Convolutional Networks
(ASTGCN) by Guo et al. (2019) incorporate spatial and temporal attention to dynamically weigh
the importance of different nodes and time steps, potentially improving the model’s ability to focus
on specific patterns. Similarly, Graph WaveNet by Wu et al. (2019) introduces adaptive adjacency
matrices and dilated temporal convolutions to enable the model to learn latent spatial structure and
long-range temporal dependencies more efficiently. Another work in this direction is Adaptive Graph
Convolutional Recurrent Network (AGCRN) by Bai et al. (2020) that learns node embeddings and
constructs adaptive graphs dynamically, decoupling model performance from reliance on predefined
graph structures.

Further, Zheng et al. (2020) introduce a fully attention-based architecture in Graph Multi-Attention
Network (GMAN), avoiding both recurrent and convolutional components, and combining spatial
and temporal attention to dynamically model the spatiotemporal patterns at each time step. Together
with other examples, such as Dynamic Spatial-Temporal Aware Graph Neural Network (DSTAGNN)
by Lan et al. (2022) and Spatial-Temporal Transformer Networks (STTNs) from Xu et al. (2020),
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these works mark a trend in the field towards attention-based models and even more sophisticated
methods for capturing complex dependencies in the data.

As can be seen, many recent models incorporate multiple complex components, such as hierarchical
attention or adaptive adjacency learning, which can significantly complicate implementation and
introduce overheads in computation. Consequently, scaling to large traffic networks with tens of
thousands of sensors can become a great challenge for these models, since implementing and training
them efficiently is a non-trivial task, and the real-time deployment of such models can be hindered by
their computational complexity.

For most of the discussed models, there are publicly available implementations that have been
introduced by the authors of the original works or provided by the authors of existing traffic forecasting
benchmarks (Liu et al., 2023). However, as we discuss further, the currently available traffic datasets
do not allow us to thoroughly evaluate these implementations and ensure their practical usability
for large-scale traffic forecasting, since they do not provide enough road feature information and
complete city road network to test the performance of traffic forecasting models.

2.2 LIMITATIONS OF EXISTING DATASETS

By far the most popular datasets for traffic forecasting are METR-LA and PEMS-BAY introduced
by Li et al. (2018). In these datasets, nodes represent sensors located on roads that measure traffic
speed, and edges are constructed based on location proximity (road travel distance between the
sensors). METR-LA is based on data from loop detectors in the highways of Los Angeles County
(Jagadish et al., 2014) and PEMS-BAY is based on data from California Department of Transportation
(CalTrans) Performance Measurement System (PeMS, Chen et al., 2001). Some works also use other
datasets collected from the same PeMS data source: these datasets may include different subsets of
sensors or measurements during different periods of time, but the general structure of these datasets
is mostly the same (Yu et al., 2018; Guo et al., 2019; Song et al., 2020). Most works on GNN-based
traffic forecasting evaluate their models exclusively on METR-LA, PEMS-BAY, or other datasets
obtained from the PeMS data.

We note that these standard datasets are extremely small: METR-LA has only 207 nodes (sensors),
while PEMS-BAY has only 325 nodes. Other traffic forecasting datasets obtained from the PeMS
data also typically have up to a few hundred nodes. Recently, a larger dataset based on PeMS data
was proposed: LargeST (Liu et al., 2023) with 8,600 nodes, which is still relatively small compared
to the amount of data that needs to be processed by traffic forecasting systems in large cities. The
small size of standard datasets de-emphasizes model efficiency and leads to proposed models being
very resource-intensive and thus not scalable to real-world applications, as we will discuss later.

To obtain a graph structure, previous works (Li et al., 2018; Yu et al., 2018; Wu et al., 2019; Liu et al.,
2023) connect two sensors if the road network distance between them is below a certain heuristically
chosen threshold. The real road graph structure cannot be used, since sensors are sparsely located.
Thus, the only option is to use a heuristic for constructing a graph in the absence of information about
the network connectivity. As a result, the real network connectivity is not provided with any of the
standard datasets, which is a significant limitation.

Further, in all currently available traffic forecasting datasets, sensors (graph nodes) are sparsely
distributed and only cover a relatively small number of roads. We provide the visualizations of the
geographic distribution of sensors in METR-LA, PEMS-BAY, and LargeST datasets in Figure 1. It
can be seen that sensors in these datasets are sparse and most of them have only two direct neighbors
in the road graph (the sensors right before and after on the same road), with only a small share of
sensors located near intersections. This limits the possibility of using these datasets to study complex
traffic patterns. The reason for this is that these datasets mostly focus on large interstate highways
which, despite having numerous sensors, feature sparse sensor distribution. At the same time, city
streets are almost not represented in these datasets. However, urban traffic is arguably more complex,
presents unique patterns, and is more challenging to forecast.

3 NEW city-traffic DATASETS

In our work, we present the first openly available datasets for large-scale and fine-grained study of ur-
ban traffic. We collect two spatiotemporal graph datasets from two major cities: city-traffic-M
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(a) METR-LA (b) PEMS-BAY (c) LargeST

Figure 1: Visualization of existing traffic forecasting datasets. Nodes correspond to sensors; graph
structure is heuristically constructed based on road distances; layout is defined by sensor locations.

(a) city-traffic-M (b) city-traffic-L

Figure 2: Visualization of the proposed datasets. Nodes correspond to road segments; graph structure
is defined by road adjacency; layout is defined by segment locations.

with more than 50, 000 nodes and city-traffic-L with almost 100, 000 nodes. These datasets
differ significantly from the previous traffic forecasting datasets in what the graphs represent and how
they are constructed. While previous datasets only have information about traffic at the locations of
sensors, which are only placed at some roads and are generally sparse, the information in our datasets
was obtained from GPS measurements rather than sensors, and therefore the measurements are avail-
able at a fine-grained level of individual road segments. Thus, our graphs have nodes corresponding
to all road segments in the two considered cities. Further, while previous datasets construct edges
heuristically based on travel distance between sensors, our graph has edges representing actual road
connectivity, which can provide much more information. In our graphs, a directed edge connects
two road segments if they are incident to each other and moving from one segment to the other is
permitted by traffic rules. Next, our datasets have rich node features describing the properties of
road segments, including speed limits — important information absent from all widely used traffic
forecasting datasets. Our datasets are also the first providing information on traffic volume and traffic
speed simultaneously, allowing for a more holistic approach to traffic forecasting. Thus, our datasets
represent a realistic setting of traffic forecasting by a traffic monitoring system, which contrasts with
the previous datasets that only roughly approximate it due to incomplete data. Some characteristics
of our and existing datasets are shown in Table 1.

What makes our datasets fundamentally different from the currently widely used ones is that they
focus on urban traffic with its high road density and complex patterns and dynamics. We provide
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Table 1: Dataset characteristics
dataset speed volume # roads # road attributes real connectivity reference

PeMSD7(M) ✓ ✗ 228 6 ✗ Yu et al. (2018)
PeMSD7(L) ✓ ✗ 1,026 0 ✗

METR-LA ✓ ✗ 207 3 ✗ Li et al. (2018)
PEMS-BAY ✓ ✗ 325 3 ✗

PEMS03 ✗ ✓ 358 1 ✗

Song et al. (2020)PEMS04 ✗ ✓ 307 0 ✗
PEMS07 ✗ ✓ 883 0 ✗
PEMS08 ✗ ✓ 170 0 ✗

LargeST ✗ ✓ 8,600 9 ✗ Liu et al. (2023)

city-traffic-M ✓ ✓ 53,530 26 ✓ ours
city-traffic-L ✓ ✓ 94,009 26 ✓

0
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12

average traffic volume

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

22

26

30

34

average traffic speed

city-traffic-M city-traffic-L

Figure 3: The weekly dynamics of target variables averaged across all roads in the proposed datasets.

the visualizations of our datasets in Figure 2. It can be seen that our road networks are much more
interconnected and present more complex structural patterns than in the previous datasets.

For each road segment, we provide two dynamic variables: current traffic speed and volume, both
estimated using high-resolution GPS signals transmitted by vehicles. This data is provided at a
5-minute granularity, spanning from July 1st, 2024, to November 1st, 2024. For speed, missing
values can occur due to insufficient GPS signals for certain road segments at specific timestamps. For
example, in city-traffic-L, the proportion of missing speed values can range from 5% to 25%,
depending on the time of day — a level of missingness consistent with real traffic data. For traffic
volume, there are no missing values.

Finally, for each road segment, we provide 26 static attributes that describe various properties of the
segment, including its length, speed limit, coordinates of the segments’ endpoints, quality of road
surface, indicator to masstransit lane, presence of crosswalk, restriction for certain types of vehicles,
and so on. Road attributes are a mixture of numerical, categorical, and binary features. More detailed
information about the proposed datasets can be found in Appendix A.

In Figure 3, we visualize the behavior of dynamic target variables: traffic volume and speed. For
each variable and each city, we average the values over all road segments in the city. One can clearly
see the daily traffic patterns — e.g., there are noticeable traffic jams in the morning and evening on
working days, which are indicated by the rapid decrease of average traffic speed and increase of traffic
volume. The same target variables change more gradually and have smaller variance on holidays.
While the average speed in city-traffic-M and city-traffic-L is similar, traffic volumes
differ significantly. Figure 4 also provides the distribution of traffic volume and speed for each of the
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Figure 4: The histograms of traffic volume and speed in the proposed datasets.

datasets. It can be seen that the amount of traffic varies significantly across the considered cities. A
more in-depth discussion of the difference between the datasets can be found in Appendix B and C.

4 EXPERIMENTS

In this section, we evaluate the scalability and forecasting performance of existing neural spatiotem-
poral models on our fine-grained traffic datasets. We benchmark several established architectures
and highlight their limitations in handling datasets of our size and complexity. To address these
limitations, we then introduce a simple but effective model that scales well to large dataset sizes and
also outperforms existing baselines in forecasting accuracy. We describe the experimental setup in
Appendix D.

4.1 MODELS

Simple graph-agnostic baselines First, we evaluate several naive baselines to establish reference
points for model performance. These baselines rely on simple heuristics derived from past traffic
values. The simplest of these baselines is the previous strategy, which predicts the most recently
observed value at each road segment. We also consider baselines that use the daily and weekly
periodicity in traffic patterns, which is commonly observed in urban traffic dynamics. Namely, we
predict traffic speed/volume by using the corresponding value either one day or one week ago from
the target timestamp. We refer to these methods as previous 1 day/week ago. Next, we include simple
statistical baselines such as the global mean, median, as well as node-wise mean and node-wise
median which are the mean and median computed independently for each road segment. These naive
baselines do not exploit the graph structure. We also evaluate a linear model that can be considered
as a basic graph-agnostic baseline.

Spatiotemporal baselines For our experiments, we have selected four popular models from the
literature that are frequently used by other works on graph-based time series forecasting and that
could scale to our datasets (see below). To process the temporal dimension of the data, they utilize
either recurrence or convolution mechanisms:

• DCRNN (Li et al., 2018) — a diffusion convolutional recurrent neural network that exploits
recurrent cells supplied with a graph convolution operation;

• GRUGCN (Gao & Ribeiro, 2022) — a combination of recurrent temporal encoder and graph
convolutional spatial encoder, which are stacked consecutively;

• STGCN (Yu et al., 2018) — a spatiotemporal graph neural network that is composed of alternat-
ing temporal and graph convolution operations;

• GWN (Wu et al., 2019) — a spatiotemporal graph neural network that stacks graph convolutions
and causal dilated temporal convolutions.

For our experiments, we adapt the implementations from the LargeST repository (Liu et al., 2023).
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Scalable traffic forecasting approach Our datasets are much larger than the ones currently used
in the literature. Thus, they present a significant scaling challenge to deep learning models. We
investigated the models available in Torch Spatiotemporal (Cini & Marisca, 2022) as well as in the
codebase of LargeST (Liu et al., 2023), the largest previous traffic forecasting dataset, and found
that only four models listed above can be trained on city-traffic-M on a GPU with 80GB
VRAM. However, even these models require very long training time. This led us to investigate the
sources of the inefficiency of the currently available methods and look for ways to design more
scalable models.

The GNN-based models for traffic forecasting proposed in previous works typically use recurrence,
convolution, or attention mechanisms to process the temporal dimension of the data. However, these
mechanisms are relatively resource-intensive since they maintain a separate vector representation
for each timestamp in the lookback window for each node in the graph. Thus, for a dataset with n
graph nodes, a lookback window of t timestamps, and a hidden dimension of size d, each layer of
such models requires at least O(ntd) memory. While the aforementioned mechanisms differ in their
required number of operations (and their ability to parallelize them), for all of them it is at least linear
in the number of vector representations, which is O(nt), and each of these representations is involved
in at least one matrix-vector multiplication, so each layer also performs at least O(ntd2) operations.
Thus, for datasets with a large number of nodes or a necessity to use a long lookback window, the
time and memory requirements of such models quickly become prohibitive.

However, in the time series literature, several recent works have been exploring an alternative
direction that allows processing the temporal dimension much more efficiently (Oreshkin et al., 2019;
Zeng et al., 2023; Zhang et al., 2022; Das et al., 2023; Li et al., 2023; Yi et al., 2024). These works
concatenate all past time series values in the lookback window into a single input vector and transform
it into a single vector representation (e.g., with one linear layer). This vector representation is then
processed with an MLP-based model (Zeng et al. (2023) do not use an MLP at all and directly make
predictions with just one linear layer). Despite the simplicity of this approach, it has been shown that
it can compete with other models or even outperform them, all while being significantly, sometimes
orders of magnitude, more efficient.

In this work, we propose to exploit this approach for graph-based traffic forecasting. Specifically, we
take the idea of encoding each time series in a multivariate dataset into a single vector representation
with a linear layer and adapt it to graph-based forecasting setting by replacing the following MLP
with a GNN. Since, crucially, this approach requires maintaining only a single vector representation
per graph node (in contrast to t vector representations required by other methods), in the case of
graph-based traffic forecasting, it has per-layer memory complexity of only O(nd), which allows it
to efficiently scale to much larger datasets, such as the ones we propose in our work.

Our proposed model consists of a linear layer that encodes the temporal information of a single
time series into a latent vector representation and a multilayer GNN that allows representations of
different time series to interact according to the graph connectivity. According to the categorization
of temporal graph models introduced by Gao & Ribeiro (2022), models sharing our approach are
time-then-graph models (in contrast to more popular time-and-graph models), but their component
for processing the temporal dimension is extremely simplified (e.g., to a single linear layer) for the
purpose of efficiency.

Our approach can use any GNN architecture. For our experiments, we use GNNs with two popular
spatial graph convolution mechanisms: mean aggregation, which was popularized in modern GNNs by
Hamilton et al. (2017), and transformer-like multihead attention aggregation that has been popularized
in GNNs by Shi et al. (2021) (note that this is attention over graph neighbors, not global attention).
We refer to these models as GNN-Mean and GNN-TrfAttn. Following Platonov et al. (2023);
Bazhenov et al. (2025), we augment our GNNs with skip connections (He et al., 2016), layer
normalization (Ba et al., 2016), and MLP blocks, which often significantly improve their performance.

We show that our approach, despite its simplicity and efficiency, often leads to better forecasting
quality than prior methods. We also show that its efficiency allows it to use much longer lookback
windows with a negligible impact on computational cost (since only a single linear layer is affected),
which often further improves the forecasting performance. We hope that these findings will encour-
age further development of efficient methods for traffic modeling and graph-based spatiotemporal
forecasting in general.
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Table 2: Performance of simple baselines and spatiotemporal models, MAE on the test set is reported.
MLE indicates setups which did not fit in GPU memory.

city-traffic-L city-traffic-M
volume speed volume speed

na
iv

e
ba

se
lin

es

mean 9.4130 11.8283 2.8480 11.7040
median 7.5765 11.5509 2.0627 11.1612
node-wise mean 5.3547 5.9122 1.5265 5.4479
node-wise median 5.2967 5.8183 1.4913 5.3751
previous 2.6405 4.5764 0.9567 4.2404
previous 1 day ago 2.8076 5.8273 0.9876 5.5497
previous 1 week ago 2.5396 5.6997 0.9264 5.4758

Linear model 2.284± 0.000 4.229± 0.001 0.806± 0.000 3.951± 0.001

sp
at

io
te

m
po

ra
l DCRNN 2.212± 0.054 3.988± 0.012 0.765± 0.007 3.704± 0.014

GRUGCN 2.255± 0.011 4.074± 0.014 0.765± 0.011 3.717± 0.020
STGCN MLE MLE 0.777± 0.011 3.663± 0.016
GWN 2.368± 0.006 4.516± 0.008 0.792± 0.004 4.204± 0.083
GNN-Mean 2.038± 0.021 3.753± 0.005 0.737± 0.004 3.397± 0.011
GNN-TrfAttn 2.050± 0.029 3.724± 0.010 0.733± 0.006 3.353± 0.007

4.2 RESULTS

Model comparison First, we compare the performance of the considered models; the results are
shown in Table 2. Following previous studies, we use the lookback window of 12. Among the
considered naive baselines, the best results for traffic volume prediction are achieved by the predictor
taking the value one week ago from the target timestamp; for speed prediction, the best naive predictor
employs the latest known value. These metric values should serve as a necessary sanity check to
ensure that the designed models actually capture useful information for the given forecasting task.
Thus, as expected, the linear model consistently outperforms the presented naive baselines, which
demonstrates that using historic observations is essential for precise traffic forecasting. More advanced
spatiotemporal methods, in turn, have better performance than all graph-agnostic approaches, which
indicates that using structural information about the road network is important for accurate traffic
forecasting. Among the considered graph-aware methods, the best results are almost always achieved
by the proposed GNN-TrfAttn model. These results suggest that models with more flexible
mechanism for aggregating structural information, such as Transformer self-attention, have more
potential for generalizing to complex traffic networks, so they should be especially considered when
developing more effective backbones for spatiotemporal traffic forecasting.

Effect of lookback window In the next series of experiments, we vary the lookback window among
the following options: [12, 24, 36, 48, 72] and consider the best-performing and efficient model GNN-
TrfAttn with 2 layers and 512 hidden dimension size. As can be seen from Table 3, better results
can usually be achieved for larger lookback windows, which proves that more complete information
about how the target variable changed in the past is important for more accurate predictions in the
future. At the same time, these results show that even such a simple module for processing the
temporal component as a linear projection of historical variables into latent space of GNN model
allows it to scale to greater amounts of data, while preserving computational efficiency.

Scalability of the models We report the total training time in hours for all evaluated models across
different datasets and lookback window sizes of 12 and 48 in Table 4. As the lookback window
increases from 12 to 48, the considered sequential models, especially DCRNN, GWN, and STGCN,
exhibit significantly worse scaling behavior. In case of STGCN on city-traffic-L dataset with
a lookback of 48, training fails to complete within 250 hours. This poor scalability is attributed to the
need to maintain and process an explicit temporal state for each input timestamp, which grows linearly
with the lookback size. In contrast, our proposed models GNN-Mean and GNN-TrfAttn require
consistently low training time across all configurations. This demonstrates that such a non-sequential
full-batch design is significantly more scalable and computationally efficient, particularly as the
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Table 3: Effect of lookback horizon on model performance, MAE on the test set is reported.

city-traffic-L city-traffic-M
lookback volume speed volume speed

GNN-TrfAttn

12 2.042± 0.027 3.818± 0.004 0.748± 0.008 3.504± 0.010
24 2.033± 0.026 3.778± 0.006 0.751± 0.007 3.457± 0.013
36 2.017± 0.010 3.773± 0.015 0.744± 0.009 3.431± 0.010
48 2.021± 0.021 3.761± 0.000 0.743± 0.005 3.428± 0.008
72 2.021± 0.016 3.743± 0.002 0.743± 0.013 3.414± 0.009

Table 4: Training time in hours for different models across two datasets and two lookback window
sizes. TLE indicates models that did not converge within a 250 hours time limit.

city-traffic-L city-traffic-M
Lookback 12 48 12 48

DCRNN 7.52 31.17 5.13 21.06
GRUGCN 2.24 7.63 1.24 4.12
STGCN 26.55 TLE 6.38 211.19
GWN 6.84 27.81 4.17 17.13

GNN-Mean 1.45 1.79 0.77 0.90
GNN-TrfAttn 1.88 2.09 1.06 1.18

temporal input dimension grows. These results highlight the importance of scalability aspect for
practical application of traffic forecasting models.

5 DISCUSSION & FUTURE OPPORTUNITIES

Our work makes a twofold contribution to the field of traffic forecasting. First, we introduce
two novel large-scale datasets for fine-grained urban traffic forecasting: city-traffic-M and
city-traffic-L. These datasets address critical limitations of existing benchmarks by providing
the detailed coverage of urban road segments rather than sparse sensor locations; actual road network
connectivity instead of heuristically defined graphs; rich road segment features including speed
limits; and simultaneous information about traffic volume and speed. By capturing the complex road
structure and traffic conditions of two major cities, we provide the community with the data needed
for the development of holistic traffic forecasting systems and rigorous evaluation of corresponding
models. Second, our empirical analysis reveals scalability issues in existing neural traffic forecasting
models when applied to such large-scale traffic networks. To address these issues, we propose an
efficient GNN-based approach that achieves superior scalability and forecasting performance.

Future opportunities The proposed traffic datasets open several interesting avenues for future
research. The first direction is the development of efficient traffic forecasting methods. While our
proposed model shows decent performance, there is a continuous need to develop even better GNN
architectures or alternative deep learning models that can efficiently process large urban road networks
without sacrificing forecasting quality. Moreover, the presence of real connectivity structure and rich
node features enables the development of models that can effectively exploit such information. Since
our benchmark contains two different cities, it can be used to investigate how well models trained on
one city (e.g., city-traffic-M) can generalize to another (e.g., city-traffic-L), which is
a critical step towards universally applicable solutions for traffic forecasting. Our datasets provide a
good starting point for such studies. Moreover, each of our datasets contains two dynamic variables —
traffic volume and speed, which can be used to investigate the performance of forecasting models in
multitask settings. The detailed forecasts enabled by these datasets could be directly integrated into
adaptive traffic signal control systems, dynamic routing algorithms for logistics and navigation, and
long-term urban infrastructure planning tools.
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REPRODUCIBILITY STATEMENT

We provide all the details necessary to reproduce our experiments. Our datasets are shared via this
private Kaggle link, and our code, including training and evaluation scripts, can be accessed in our
anonymous GitHub repository. In Appendix D, we provide a detailed description of the experimental
setup including hardware and software configurations.

For compliance with the double-blind review policy, we have shifted the original coordinates in the
dataset. This transformation does not affect reproducibility since spatial features are standardized
with a linear scaler, and thus the distribution of features remains unchanged. The only exception
is Figure 2, which would appear distorted if plotted with shifted coordinates; for this figure we
used the original coordinates to reconstruct the actual road topology via a standard projection of the
coordinates from the Earth’s sphere onto the plane using the haversine formula. We will release the
original coordinates together with the public release of the datasets after the review process.
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A DATASET DETAILS

The data used in our benchmark is collected from a widely-used online map and navigation service
that estimates traffic congestion and travel time using high-resolution GPS signals transmitted by
vehicles. To select the road segments, we take the central geographic point within each city, consider
a circular area of a 15 kilometer radius, and include all road segments located within this area to the
dataset. The obtained set of road segments includes the city itself and may also cover some nearby
roads.

The traffic volume is estimated based on the number of vehicles that traverse each road segment
during a specific timestamp interval, as inferred from aggregated GPS traces. It is important to
note that the number of traverses represents an estimate rather than the actual traffic flow, as it is
derived solely from vehicles equipped with GPS. Consequently, the reported values systematically
underestimate the true traffic volume, but represent the dynamic of the traffic volume well. The speed
estimation is also derived from these GPS signals, using a proprietary internal algorithm developed
by the service provider.

Some characteristics of our datasets are reported in Table 5.

Table 5: Characteristics of new city-traffic datasets.

city-traffic-M city-traffic-L

# nodes 53,530 94,009
# edges 121,236 164,424
is directed ✓ ✓

# timestamps 35,449 35,449
# train timestamps 26,208 26,208
# validation timestamps 4,032 4,032
# test timestamps 5,209 5,209

train start Jul 1st 2024 00:00 Jul 1st 2024 00:00
validation start Sep 30th 2024 00:00 Sep 30th 2024 00:00
test start Oct 14th 2024 00:00 Oct 14th 2024 00:00
test end Nov 1st 2024 02:00 Nov 1st 2024 02:00

avg. in-degree / avg. out-degree 2.264 1.749
avg. node degree (undirected) 3.652 2.970
Gini coefficient of degree distribution 0.9 0.9

Each node in the dataset represents an individual road segment and has a set of 26 attributes, including
categorical and binary indicators of road type, accessibility, and structural properties. The full list of
feature names is the following:

• category — functional category of the road segment (e.g., major arterial, residential, service);

• edge_type — encodes the type of connection between the road segments;

• speed_mode — type of speed regulation pattern allowed on the segment (e.g., high-speed
corridor, restricted-speed street);

• speed_limit — the maximum legal speed limit on the segment;

• region_id — identifier of the administrative or city district containing the segment;

• can_bind_to_reverse_edge — indicates whether the segment allows binding to a
reverse-direction edge;

• dismount_bike — indicates if cyclists are required to dismount on the segment;

• has_masstransit_lane — indicates if the segment has a dedicated lane for public or
mass transit;

• ends_with_crosswalk — indicates if the segment ends with a pedestrian crosswalk;

12
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• ends_with_toll_post — indicates if the segment ends with a toll post;
• is_in_poor_condition — indicates whether the road surface is in poor condition;
• is_paved — indicates whether the segment is paved;
• is_restricted_for_trucks — indicates whether the segment is restricted for trucks;
• is_toll — indicates whether the segment is a toll road;
• access_[0...5]1 — boolean masks for road accessibility by different undisclosed transport

modes (exact mapping to vehicle types will be released by the provider);
• length — length of the road segment (in meters);
• num_segments — number of consecutive sub-segments composing the road segment;
• x_coordinate_start — latitude of the segment’s start point;
• y_coordinate_start — longitude of the segment’s start point;
• x_coordinate_end — latitude of the segment’s end point;
• y_coordinate_end — longitude of the segment’s end point.

Note that we apply ordinal encoding to the speed_limit feature. Thus, we provide the correspon-
dence of particular feature values and their ordinal codes:

• NaN → 0;
• 5 km/h → 1;
• 20 km/h → 2;
• 30 km/h → 3;
• 40 km/h → 4;
• 50 km/h → 5;
• 60 km/h → 6;
• 70 km/h → 7;
• 80 km/h → 8;
• 90 km/h → 9;
• 100 km/h → 10;
• 110 km/h → 11;

1There is a separate feature for each of 6 masks.
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B DIFFERENCES BETWEEN CITY-TRAFFIC-M AND CITY-TRAFFIC-L

While both datasets follow the same construction methodology, there are several notable differences
between city-traffic-M and city-traffic-L that make them complementary benchmarks.

In terms of scale, city-traffic-M contains 53,530 road segments and 121,236 directed edges,
while city-traffic-L is almost twice as large, with 94,009 segments and 164,424 edges. The
higher spatial resolution of city-traffic-L poses a particular challenge for the scalability of
spatiotemporal models, as the number of graph nodes directly determines memory and runtime costs.

In terms of topological properties, the two cities also vary significantly and have a different urban struc-
ture. city-traffic-L features a complex structure shaped by a large river crossing the metropoli-
tan area, which has led to the development of multiple islands connected by bridges. This creates
bottlenecks and high-traffic corridors that models must capture. By contrast, city-traffic-M
lacks such a riverine structure; its road network is more uniform, with a grid-like arrangement
and wide avenues even in the central districts. Average node degree of a road network also dif-
fers between the datasets: city-traffic-M has an average undirected degree of 3.65, while
city-traffic-L’s average is 2.97. This reflects the higher density and branching structure of
the smaller city versus the sparser but more geographically constrained connectivity of the larger one.

While the average traffic speed values are comparable between the two datasets, the same statistic
for traffic volume differs significantly: city-traffic-L records substantially higher overall
volume, reflecting its larger size. The weekly dynamics, shown in Figure 3, indicate more pronounced
rush-hour congestion patterns in city-traffic-L.
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Figure 5: The distribution of some spatial features in the proposed datasets.

Both datasets provide the same 26 static attributes per segment. However, their distribution is different
for the two proposed datasets. As Figure 5 shows, city-traffic-L has a greater fraction of
paved roads, and there are also notably more roads with crosswalks at their endpoints. On the other
hand, city-traffic-M has longer continuous road segments on average, and the fraction of roads
restricted for trucks is much greater.

Taken together, the two datasets provide complementary perspectives: city-traffic-M high-
lights fine-grained dynamics in a compact road network, while city-traffic-L captures large-
scale, heterogeneous urban traffic with more complex network structure. This difference is essential
for developing models that generalize across diverse city types, rather than overfitting to one particular
topology or traffic regime.
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C RELATION BETWEEN SPATIAL ROAD FEATURES AND ROAD TRAFFIC

In this section, we provide several figures with the weekly dynamics of target variables for different
road subsets depending on their static attributes and discuss how various spatial road features can
affect the traffic volume and speed.

On Figure 6, we show the dynamics of target variables across the roads with a specific value of the
speed_limit feature (in our case, we use the subset with speed_limit = 90 km/h for both
datasets). It can be seen that, on the roads with different speed limits, both traffic volume and traffic
speed can vary significantly, as particular speed limit values can impose a notable restriction on the
permitted traffic speed.
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Figure 6: The weekly dynamics of target variables averaged across different road subsets depending
on if they have speed_limit = 90 km/h. The percentage in the legend denotes the fraction of
nodes in the corresponding category.
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The next Figure 7 presents the target dynamics for the road subsets with different values of the
ends_with_crosswalk feature. When moving on the roads that end with crosswalks, drivers
have to slow down their vehicle in order to let pedestrians pass, which significantly affects the average
traffic speed registered on such roads and makes it much lower on average.
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Figure 7: The weekly dynamics of target variables averaged across different road subsets depending
on the value of ends_with_crosswalk. The percentage in the legend denotes the fraction of
nodes in the corresponding category.
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On Figure 8, we show the dynamics of targets variables for the subsets of roads that have different
values of the is_in_poor_condition feature. If a road is in poor condition, drivers have to
move on it more carefully and keep speed low in order to avoid any accidents. At the same time,
there are not so many such roads in both cities, so traffic volume on the roads with normal condition
is much higher on average.
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Figure 8: The weekly dynamics of target variables averaged across different road subsets depending
on the value of is_in_poor_condition. The percentage in the legend denotes the fraction of
nodes in the corresponding category.
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Figure 9 presents the target dynamics for the roads with different value of the is_paved feature.
The movement on paved roads is more convenient and fast, which leads to higher traffic speed on
average. Also, since pavement is a standard in road construction nowadays, the majority of roads in
both cities have necessary surface, and most traffic volume is distributed exactly over paved roads.
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Figure 9: The weekly dynamics of target variables averaged across different road subsets depending
on the value of is_paved. The percentage in the legend denotes the fraction of nodes in the
corresponding category.
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On Figure 10, we show the dynamics of targets variables across the roads with different values of
the length feature. It is natural that on longer roads, drivers can afford moving on higher speed,
in contrast to short roads that can connect different crossroads and crosswalks and may require to
constantly slow down the vehicle. Moreover, since longer roads cover greater distance and typically
connect locations with different logistic purpose in the larger city of city-traffic-L, they tend
to carry more traffic volume.
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Figure 10: The weekly dynamics of target variables averaged across different road subsets depending
on the value of length. The percentage in the legend denotes the fraction of nodes in the corre-
sponding category.
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Figure 11 shows the target dynamics for the roads belonging to the central part of city (in our case,
we decide to choose 25% of the roads) and to its periphery. In the city center, the structure of road
network can be more complex and require more maneuvers to pass through it, so the average traffic
speed on the central roads appears lower than on the peripheral ones. Further, since the city center in
the smaller city of city-traffic-M has a more developed and diverse infrastructure that serves
various needs of city residents, there is naturally more traffic volume.
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Figure 11: The weekly dynamics of target variables averaged across different road subsets depending
on whether they are located at the city center.

The presented figures show that our proposed datasets contain important spatial information about
road networks that has strong connection with the traffic speed and volume and thus is necessary to
be used for precise traffic forecasting.
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D EXPERIMENTAL SETUP

For GNN-Mean and GNN-TrfAttn, we use hidden dimension size of 512 and 4 residual blocks.
For baseline models, we first use default parameters from the LargeST. We employ learnable node
embeddings to represent road segments and enrich them with temporal context by encoding calendar
features such as day of week, week of year, and month of year using one-hot vectors. Additionally, we
apply sinusoidal encodings to continuous timestamps to enable the models capture periodic patterns
in traffic behavior.

All models are trained using the AdamW optimizer with a fixed learning rate of 0.0003. To ensure
comparability across experiments, we fix the effective batch size to 30 across all datasets and adjust
gradient accumulation steps as needed. Training is performed for 5 epochs, and each configuration is
repeated three times. We report the mean and standard deviation of validation and test Mean Absolute
Error (MAE), measured on designated subsets of timestamps.

All experiments are constrained to a single A100 GPU and 80GB of RAM and 120GB of system
RAM. For failed combinations, we try to decrease the number of model parameters — after several
attempts, if the configuration still fails, we exclude it from the comparison. All experiments use a full-
batch training mode without neighbor sampling. This choice is motivated by the need for consistent
and fair comparison between models, particularly because neighbor sampling introduces stochasticity
that can disproportionately affect certain architectures and complicate evaluation. Moreover, given
the scale of our datasets and the memory available on a single A100 GPU (80GB VRAM), full-batch
training remains feasible and provides deterministic gradient computations that improve stability and
reproducibility.

We use dgl==2.4.0+cu124 and torch==2.4.0+cu124 for our experiments.

E LIMITATIONS

While our benchmark provides novel and valuable data for fine-grained urban traffic forecasting, it
has certain limitations. First, we acknowledge that cities in different countries may exhibit different
traffic patterns. Consequently, the conclusions drawn from the two cities included in our benchmark
may not be directly generalizable to urban environments with substantially different traffic dynamics.
Additionally, as our benchmark spans only four months of data, it may not facilitate the evaluation
of models designed to capture long-term annual trends. However, we contend that for urban traffic,
which is characterized by rapidly changing conditions, the ability to capture local trends, such as
recent traffic conditions on a specific road segment and its adjacent segments, is often more critical.

F LLM USAGE

LLMs have been used to aid with polishing the writing of this manuscript. LLMs were not used
to generate research ideas, results, figures, or numerical values reported in tables. All experiments,
datasets, and analyses are fully conducted by the authors.
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