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Abstract

In this paper, we introduce SCALE, a collab-001
orative framework that connects a compact002
Specialized Translation Model (STM) and a003
general-purpose Large Language Model (LLM)004
as one unified translation engine. By intro-005
ducing translation from STM into the triplet006
in-context demonstrations, SCALE unlocks re-007
finement and pivoting ability of LLM, thus008
1) mitigating language bias of LLMs and par-009
allel data bias of STMs, 2) enhancing LLM010
speciality without sacrificing generality, and011
3) facilitating continual learning in a LLM-012
tuning-free way. Our comprehensive experi-013
ments show that SCALE significantly outper-014
forms both LLMs (GPT-4, GPT-3.5) and su-015
pervised models (NLLB, M2M) in either high-016
resource or challenging low-resource settings.017
Moreover SCALE demonstrates the scalability018
by only updating the lightweight STM and wit-019
ness consistent system improvement, an aver-020
aged 4 BLEURT score across 4 languages with-021
out tuning LLM. Interestingly, SCALE could022
also effectively exploit the existing language023
bias of LLMs by using an English-centric STM024
as a pivot to conduct translation between any025
language pairs, outperforming GPT-4 by an026
average of 6 COMET points across eight trans-027
lation directions. Furthermore we provide an028
in-depth analysis of SCALE’s robustness, trans-029
lation characteristics, latency costs and inherent030
language bias, providing solid foundation for031
future studies exploring the potential synergy032
between LLMs and more specialized models.033

1 Introduction034

Large Language Models (LLMs) have recently rev-035

olutionized the field of natural language processing036

(OpenAI, 2023; Touvron et al., 2023a; Anil et al.,037

2023; Peng et al., 2023) and brought a paradigm038

shift in machine translation (MT) by delivering039

exceptional performance without relying on bilin-040

gual data (Brown et al., 2020; Garcia et al., 2023).041

Moreover, as a unified multi-task learner, LLMs042

represent a substantial step towards artificial gen- 043

eral intelligence (Bubeck et al., 2023), with the 044

potential to transcend not only the language barri- 045

ers emphasized by previous MT research but also 046

cultural boundaries (Yao et al., 2023). 047

Despite their advancements, LLM-based trans- 048

lation systems still confront several challenges. 049

Firstly, there exists a significant language bias 050

towards English (e.g., 92.1% of the GPT-3 pre- 051

training corpus is English, while French, the sec- 052

ond largest, represents only 1.8%), which signif- 053

icantly constraints multilingual ability, especially 054

for those low-resource languages (Scao et al., 2022; 055

Hendy et al., 2023; Zhang et al., 2023). Secondly, 056

as the go-to approach for improved system perfor- 057

mance, fine-tuning is non-trivial for LLMs due to 058

(1) the trade-off between speciality and general- 059

ity (Lin et al., 2023; Cheng et al., 2023a), and (2) 060

the prohibitively high cost associated with tuning 061

large-scale models. In contrast, traditional Special- 062

ized Translation Models (STMs)—those based on 063

encoder-decoder architecture, trained with labeled 064

data and significantly smaller in size (Sutskever 065

et al., 2014; Vaswani et al., 2017)—serve as spe- 066

cialists for specific translation tasks and could be ef- 067

ficiently fine-tuned. Nevertheless, due to restricted 068

model capacity, these models exhibit limitations 069

in general language capabilities and may be prone 070

to parallel data bias, such as the memorization of 071

low-quality samples (Raunak et al., 2022). 072

In this paper, we demonstrate for the first time 073

the possibility to unify these two asymmetric trans- 074

lation engines in a single framework. Our work, 075

SCALE, connects LLMs and STMS by utilizing the 076

LLM’s most enigmatic capability: in-context learn- 077

ing. Rather than employing source-target pairs as 078

in conventional few-shot translation (Garcia et al., 079

2023; Vilar et al., 2023), SCALE would first sample 080

translations from a STM and then use triplets as in- 081

context demonstrations consisting of a source sen- 082

tence, an STM-generated set and a target sentence, 083
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Figure 1: The SCALE framework, comprised of a lightweight specialized model and a frozen large language model
with triplet in-context demonstrations.

which unlocks refinement and pivoting ability of084

LLMs. With SCALE, we could (1) mitigate both085

language bias of LLMs by utilizing an STM that086

concentrates on a specific language pair, and paral-087

lel data bias of STMs by using a general-purpose088

LLM as the main body of the system; (2) enhance089

the speciality of LLMs without compromising gen-090

erality; (3) facilitate continual learning within the091

framework by updating only the lightweight STM,092

thus avoiding expensive LLM fine-tuning. By em-093

ploying SCALE, we create a more efficient and094

effective system that combines the best of both095

translation engines.096

Our comprehensive experiments reveal that097

SCALE considerably outperforms LLMs (e.g.,098

GPT-4) and STMs (e.g., NLLB) even in the099

challenging low-resource setting. Moreover, in100

Xhosa→English direction, SCALE experiences101

consistent improvement by a 4 BLEURT score102

without tuning LLM and surpasses few-shot GPT-103

4 by 2.5 COMET score and 3.8 BLEURT score104

when equipped with a compact model consisting105

of merely 600M parameters. Interestingly, SCALE106

could exploit the existing language bias of LLMs107

by using an English-centric STM as a pivot to con-108

duct translation between any language pairs, outper-109

forming GPT-4 by an average of 6 COMET points110

across eight translation directions. Furthermore,111

we conduct an in-depth analysis of the robustness,112

translation characteristics, latency costs and inher-113

ent language bias associated with SCALE. Our114

findings provide valuable insights and encourage115

further research in the synergy between LLMs and116

small specialized models.117

2 The SCALE Framework118

In this section, we present SCALE and provide119

an overview illustrated in Figure 1. Popularized120

by GPT-3 (Brown et al., 2020), In-context Learn-121

ing (ICL) allows LLMs to perform a wide variety of 122

tasks, even newly created ones (Bills et al., 2023), 123

by providing a few demonstrations. For a trans- 124

lation task from a source language X to a target 125

language Y , an LLM with parameters θ carries out 126

ICL by conditioning on k source-target paired ex- 127

amples E = (x1, y1)⊕(x2, y2)⊕...(xk, yk) and the 128

test source sentence x, generating the target y in an 129

auto-regressive manner as yt ∼ pθ(yt|E, x, y<t). 130

In this scenario, the LLM must analyze the pro- 131

vided examples to discern the input distribution, 132

output distribution, input-output mapping, and for- 133

matting to successfully complete the task (Press 134

et al., 2022; Wei et al., 2023). Different from con- 135

ventional ICL, SCALE introduces an intermediate 136

variable Z as reference between source x and tar- 137

get y, transforming each demonstration example 138

into a triplet (x,Z, y). The variable Z is a gener- 139

ation set sampled from a specialized translation 140

model MX 7→Y trained on a labeled dataset. The 141

final input to the LLM consists of the instruction, 142

demonstrations, and source sentence combined in a 143

prompt template: T ((x1,Z1, y1)⊕(x2,Z2, y2)...⊕ 144

(xk,Zk, yk)), (x,Z)). Unlike language understand- 145

ing tasks that have fixed label set (Xu et al., 2023), 146

the hypothesis space of translation model is actu- 147

ally infinite, so we could sample multiple gener- 148

ation paths from STM for one single source sen- 149

tence to provide a more comprehensive generation 150

guide for LLM. The SCALE framework, though 151

conceptually straightforward, demonstrates several 152

advantages over STMs and LLMs: 153

Refinement For X to Y translation task, when 154

the intermediate variable Z is from MX 7→Y(x), 155

SCALE essentially conduct few-shot learning in 156

a multi-task way by introducing an additional re- 157

finement task. Refinement has long been proved 158

effective in MT (Xia et al., 2017; Cheng et al., 159

2022). In this refinement process, we pass sampled 160
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sentences and their confidence score (token level161

probability) from STM to an LLM. The LLM then162

digests the information carried by the sampled set163

and infers the generation space of the STM, which164

guides the LLM to generate the output that is more165

consistent with the local data distribution (Xu et al.,166

2023). And since the final translation is delivered167

by an LLM, SCALE could also mitigate the paral-168

lel data bias from STMs and exhibit robustness by169

not merely copying and pasting the draft translation170

from STMs as shown in §5.3.171

Pivoting Considering the predominantly172

English-centric nature of most LLMs (Brown173

et al., 2020; Touvron et al., 2023a), SCALE174

could employ an intermediate variable Z from175

MX 7→English(x) where the target language Y is not176

necessarily English. And here Z serves as a pivot177

point for LLMs to enhance their understanding178

of the source sentence and yield improved179

translations. This can also be regarded as a form of180

knowledge transfer from high-resource languages181

to low-resource languages (Kim et al., 2019).182

Scalability A significant limitation of the exist-183

ing LLM-based translation systems is the inher-184

ent complexity of LLM continual learning. This185

complexity arises from several factors, including186

the balance between speciality and generality (Lin187

et al., 2023), the catastrophic forgetting problem188

(Yong et al., 2023), and the substantial compu-189

tational demands. In contrast, SCALE offers a190

more efficient and streamlined approach for scala-191

bility. By exclusively and effectively updating the192

lightweight MX 7→· component, SCALE ensures193

that the LLM remains untouched, thus preserving194

its general language capabilities. This selective195

updating process not only mitigates the issue of196

catastrophic forgetting but also reduces the com-197

putational burden of fine-tuning associated with198

large-scale models.199

3 Experimental Setup200

3.1 Dataset201

Our evaluation datasets encompass a diverse set of202

languages, spanning both low- and high-resource203

ones. To facilitate reproducibility, all our evalua-204

tion datasets come from publicly available devtest205

split of Flores-200 (NLLB Team et al., 2022).206

3.2 Translation Systems207

We compare our approach with cutting-edge aca-208

demic systems including both specialized mod-209

els and LLMs, as well as one commercial sys- 210

tem, Microsoft Translator. To our knowledge, 211

these models are among the strongest and most 212

representative of their respective categories. For 213

supervised models, we consider M2M100 (Fan 214

et al., 2021), the first multilingual encoder-decoder 215

translation model that can translate between any 216

pair of 100 languages without relying on English 217

data; NLLB (NLLB Team et al., 2022), a super- 218

vised translation model suite capable of delivering 219

high-quality translations directly between 200 lan- 220

guages and remains state-of-the-art performance. 221

For LLMs, we consider: XGLM-7.5B (Lin et al., 222

2022), a multilingual generative language models; 223

GPT-3.5, a GPT model specially optimized for con- 224

versational purpose; GPT-4 (OpenAI, 2023), the 225

latest version of GPT-series. 226

We use both GPT-3.5 and GPT-4 from Microsoft 227

Azure OpenAI Service. Without further notice, the 228

number of few-shot samples in LLM and SCALE 229

are set to 10 and the sample selection strategy fol- 230

lows Agrawal et al. (2022). The prompt we use 231

could be found in the Appendix A. 232

3.3 Evaluation Metrics 233

Because neural metrics have shown higher cor- 234

relation with human preference (Freitag et al., 235

2022; Rei et al., 2020) and are widely adopted 236

by recent literatures (Hendy et al., 2023; Garcia 237

et al., 2023), we mainly evaluate our system with 238

(1) COMET-22, a reference-based neural met- 239

ric (Rei et al., 2022a) combining direct assess- 240

ments, sentence-level score, and word-level tags 241

from multidimensional quality metrics error anno- 242

tations, (2) COMETKiwi, a refrence-free quality 243

estimation model from Rei et al. (2022b), and (3) 244

BLEURT (Sellam et al., 2020), a learnable eval- 245

uation metric with a regression model trained on 246

ratings data. For completeness, we also include the 247

results of lexical metrics such as spBLEU (NLLB 248

Team et al., 2022) and chrF++ (Popovic, 2017). 249

4 Experimental Results 250

In this section, we conduct various experiments to 251

show the effectiveness of our framework. In §4.1, 252

we verify the effectiveness of the SCALE refine- 253

ment ability. In §4.2, we focus on non-English 254

pairs to test the pivoting ability of SCALE. In §4.3, 255

we show the scalability of our framework with a 256

fixed LLM and an evolving STM. 257

3



COMET-22 COMETKiwi BLEURT COMET-22 COMETKiwi BLEURT
eng_Latn→khm_Khmr khm_Khmr→eng_Latn

NLLB 76.3 77.8 59.5 86.1 85.4 72.2
M2M100 59.6 58.5 34.2 69.6 71.6 54.0
Microsoft 70.1 70.9 54.7 80.2 80.5 63.3
XGLM 28.1 32.2 19.7 48.6 53.7 21.6
GPT-3.5 68.8 69.3 55.7 73.3 73.0 53.2
GPT-4 74.3 74.7 53.7 84.6 84.0 69.9
SCALE 79.6 80.3 61.1 87.1 85.9 73.9

eng_Latn→amh_Ethi amh_Ethi→eng_Latn
NLLB 84.4 80.7 72.8 86.9 84.5 73.6
M2M100 69.9 68.5 60.7 72.3 72.0 54.8
Microsoft 84.1 80.1 72.6 87.5 84.6 74.7
XGLM 28.0 28.2 20.7 50.2 43.9 17.8
GPT-3.5 66.5 63.2 54.9 58.8 54.2 31.7
GPT-4 77.1 73.4 61.5 83.2 81.9 67.3
SCALE 84.7 81.7 74.4 88.0 85.3 75.7

Table 1: Results of low-resource languages. The best results are in bold and the second best are with underscore.
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Figure 2: Translation results from Lao to both low- and high-resource languages, where GPT-4 uses few-shot
prompting and SCALE-pivot uses English as the pivot language. For more results please refer to Appendix D

4.1 SCALE Refinement258

Although LLMs perform comparably with super-259

vised models on high-resource languages, they still260

struggle with languages with very limited resource261

(Garcia et al., 2023; Vilar et al., 2023). To vali-262

date the generality of our framework, we evaluate263

in both low- and high-resource setting. For high-264

resource language, we include English (eng_Latn),265

Czech (ces_Latn) and Chinese (zho_Hans); for low-266

resource ones, we include Khmer (khm_Khmr) and267

Nepali (npi_Deva). We adopt three kinds of base-268

lines as described in §3.2. For supervised NLLB269

model suite, we choose the NLLB-3.3B version,270

and for SCALE-refine, the LLM is GPT-4 and the271

STM is NLLB-3.3B for fair comparison.272

The low-resource results are displayed in Table 1.273

As observed, few-shot LLMs, including GPT-4,274

significantly trail behind specialized models in all275

translation directions. In contrast, our framework,276

by combining LLMs and STMs, demonstrates su-277

perior performance over few-shot GPT-4 by an 278

absolute 5 COMET score on average, and sur- 279

passes the strong NLLB model in 4/4 directions. 280

The high-resource results are shown in Table 2, 281

leading to the following observation: (1) differ- 282

ent from low-resource ones, the few-shot GPT-4 283

already surpasses supervised counterparts (NLLB 284

and M2M100) by a significant margin; (2) SCALE 285

continues to offer improvements, albeit less sub- 286

stantial than those observed in low-resource set- 287

tings; (3) SCALE exhibits strong robustness when 288

paired with a less performant STM (especially in 289

eng_Latn→zho_Hans direction). 290

4.2 SCALE Pivoting 291

In this section, we demonstrate the performance 292

of SCALE-pivot, in which the variable Z is not di- 293

rectly pertinent to the current translation directions 294

but functions as a pivot. Specifically, we examine 295

the performance of few-shot GPT-4 and SCALE- 296

pivot on Lao→ Y translations, where Y represents 297
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COMET-22 COMETKiwi BLEURT COMET-22 COMETKiwi BLEURT
eng_Latn→ces_Latn ces_Latn→eng_Latn

NLLB 90.1 84.8 80.3 88.4 85.5 78.6
M2M100 88.2 83.2 77.3 87.3 84.6 76.6
Microsoft 90.3 84.9 79.9 88.5 84.9 77.5
XGLM 27.7 81.9 14.5 57.5 51.6 40.7
GPT-4 92.0 86.8 82.7 89.4 85.0 80.3
SCALE 92.4 87.1 83.4 89.2 86.0 80.5

eng_Latn→zho_Hans zho_Hans→eng_Latn
NLLB 78.0 70.9 58.1 86.1 83.7 74.5
M2M100 83.4 80.8 67.3 85.0 82.9 72.3
Microsoft 86.6 82.1 69.9 86.3 82.9 75.1
XGLM 80.0 75.4 62.0 43.6 74.5 57.0
GPT-4 88.8 84.7 73.4 88.0 84.8 77.8
SCALE 89.1 84.7 73.6 88.3 84.9 77.9

Table 2: Results of high-resource languages. The best results are in bold and the second best are with underscore.

a language set encompassing both low-resource298

and high-resource languages. For the low-resource299

languages, we include Assamese (asm_Beng), Ar-300

menian (hye_Armn), Amharic (amh_Ethi), Xhosa301

(xho_Latn), and we have German (deu_Latn),302

Czech (ces_Latn), Bulgarian (bul_Cyrl) and Greek303

(ell_Grek) for the high-resource setting.304

The results are presented in Figure 2. Upon ex-305

amining the GPT-4 performance in isolation, it is306

evident that the inherent language bias has a consid-307

erable impact on translation performance. In partic-308

ular, the GPT-4 model generally performs well in309

high-resource settings; however, it tends to struggle310

in low-resource scenarios. Moreover, our findings311

highlight that employing SCALE-pivot can effec-312

tively enhance the performance of GPT-4 across313

both low- and high-resource settings. Interestingly,314

the performance gains achieved through SCALE-315

pivot are more pronounced in high-resource set-316

tings, with an average improvement of 6.8 COMET-317

22 score compared to 5.2 for low-resource set-318

tings. This outcome suggests that incorporating319

SCALE-pivot can further boost the already strong320

performance of GPT-4 in high-resource situations,321

while also providing a notable improvement in low-322

resource contexts.323

4.3 SCALE Scalability324

In this section, we explore the scalability of our325

framework by keeping the LLM fixed and solely up-326

dating the STM. Specifically, we use M2M100-12B327

and NLLB model suite ranging from 600M to 3.3B328

as our evolving STM. We conduct experiments329

on the Xhosa → English direction and adopt the330

prompt format of SCALE-refine. The experimen-331

tal results are displayed in Figure 3, leading to the 332

following observations: (1) The overall framework 333

can be consistently improved with a fixed LLM 334

and a continuously evolving STM; (2) SCALE, 335

when equipped with a small model containing only 336

600M parameters, can outperform GPT-4 with an 337

absolute 2.5 COMET-22 score and a 3.8 BLEURT 338

score; (3) Equipped with an STM (M2M100) of 339

relatively lower performance than original few-shot 340

GPT-4, SCALE demonstrates strong robustness by 341

not merely copying and pasting the less satisfactory 342

reference answer provided by M2M100, which we 343

detailedly investigated in §5.3. 344

Interestingly, we also observe that the growth 345

patterns exhibited by lexical metrics and neural 346

semantic metrics differ. For M2M100 and NLLB- 347

600M as STM, both metrics experience substantial 348

improvement, while for NLLB-1.3B and 3.3B as 349

STM, SCALE maintains the same lexical accu- 350

racy while continually enhancing translation per- 351

formance as measured by neural semantic metrics. 352

5 Further Analysis 353

5.1 Translation Characteristics 354

To gain a deeper understanding of the translation 355

characteristics of different systems (LLMs, STMs, 356

and SCALE) beyond overall translation quality, we 357

employ the following measurements, as suggested 358

by Hendy et al. (2023): 359

1. Translation Fluency: Since LLMs are opti- 360

mized by predicting the next token, their trans- 361

lations tend to display a language modeling 362

bias that favors fluency over adequacy. To 363

investigate this, we utilize an independently 364
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Figure 3: Translation results from Xhosa→English with evolving STMs. More results are in Appendix E
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trained open-source language model (Llama-365

2-13B (Touvron et al., 2023b)) to measure the366

perplexity score of the translation output.367

2. Translation Non-Monotonicity: This met-368

ric evaluates the extent to which a translation369

adheres to the source sentence’s structure, cal-370

culating the deviation from the diagonal in the371

word-to-word alignment. Translations that are372

more paraphrastic or less literal tend to deviate373

from closely tracking the source word order374

across language pairs (Hendy et al., 2023). We375

apply the non-monotonicity metric proposed376

by Schioppa et al. (2021).377

3. Unaligned Source Words: Another measure378

of literalness is the count of unaligned source379

words (Hendy et al., 2023). When accounting380

for quality, less literal translations are likely381

to include more words that do not align with382

those in the source sentence.383

We present the Translation Fluency results of 384

X → English translation in Figure 4, where X re- 385

mains the same as used in Section 4.1. It is evident 386

that regardless of the translation quality delivered 387

by the LLM, whether superior (SCALE) or infe- 388

rior (GPT-4) compared to the STM (NLLB), the 389

LLM translation generally demonstrates higher flu- 390

ency than the STM. Additionally, in 6 out of the 8 391

languages examined, SCALE produces lower per- 392

plexity scores than the original GPT-4 output. This 393

suggests that the STM-generated variable Z can ef- 394

fectively aid the GPT-4 model in further decreasing 395

its generation uncertainty. 396

For Non-Monotonicity and Unaligned Source 397

Words, we choose Xhosa→English translation 398

with different STMs, and the results are shown in 399

Figure 5. We also include PPL score for complete- 400

ness. We find that both the USW and NM scores 401

for STM are higher than those of GPT-4. This 402

indicates that even though STM provides higher 403
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# Path COMET-22 BLEURT spBLEU
1 80.4 73.2 35.6
2 81.2 74.3 37.1
3 81.4 74.7 38.0
4 81.5 74.8 38.3
5 81.4 74.9 38.4

Table 3: Translation results from Xhosa→English with
multi-path sampling. All the experiments are conducted
by one-shot SCALE-refine and only differ in the number
of sampled paths from STM.

translation quality, it results in less literal transla-404

tions. However, for SCALE, it effectively reduces405

GPT-4’s NM score while maintaining a moderate406

USW score. This suggests that during the SCALE407

refinement process, the model primarily adheres408

to the original LLM output structure while taking409

cues from STM’s word selection. We also show410

several concrete cases in Appendix C.411

5.2 Multipath Sampling412

In this section, We list the results of multi-path413

sampling strategy in Table 3. We test with414

Xhosa→English with one-shot SCALE-refine. The415

results show that without increasing the shot num-416

ber in the few-shot learning, using STM to generate417

more generation paths could consistently improve418

the overall performance, which could be useful in419

the extremely low-resource setting where demon-420

stration samples are hard to acquire.421

5.3 Ablation422

In this section, we conduct an ablation study for423

each key design in our framework. We examine the424

following variants: (1) without confidence: This425

model follows the same setting as the SCALE-426

refine in §4.1, except that we do not pass the confi-427

dence score of each token as input. (2) zero-shot:428

This variant removes all in-context-learning exam-429

ples, keeping only the translation instruction and430

the reference answer from STM. (3) one-shot: This431

model utilizes only one-shot, in contrast to the ten-432

shot results presented in §4.1. (4) zero-shot-M2M:433

This model also implements zero-shot, but the STM434

used is M2M100, a less performant model than the435

original few-shot GPT-4. This is employed to as-436

sess the robustness of our framework.437

The outcomes of our ablation study are show-438

cased in Table 4. It is evident that each component439

in our framework perform effectively, with the in-440

context-learning setting providing the most perfor-441

mance gain. This indicates that simply offering a 442

reference answer to the LLM without in-context 443

samples does not adequately guide the model in 444

utilizing those references effectively. Furthermore, 445

the number of ICL examples is also an essential 446

factor in the process. 447

Regarding the SCALE zero-shot-M2M variant, 448

its performance is significantly inferior to that of 449

the few-shot LLM due to the poor quality of the 450

M2M100 output. From this observation, we can 451

conclude that the robustness of SCALE, as illus- 452

trated in Figure 3, primarily stems from the power 453

of in-context learning. This learning approach in- 454

forms the LLM about which elements to trust and 455

which to disregard, ultimately improving the over- 456

all translation performance and robustness.

COMET-22 BLEURT
M2M100 68.0 59.0
NLLB 80.7 74.0
GPT-4 78.8 70.8
SCALE 82.1 75.7

w/o confidence 81.6 74.9
zero-shot 81.4 74.8
one-shot 81.7 75.3
zero-shot-M2M 76.4 68.2

Table 4: Ablation results for SCALE.
457

5.4 Generation Latency 458

LLM SCALE
# shot # len. total # len. STM LLM total

0 101.37 7.19 161.13 1.87 7.43 9.3
1 198.00 7.46 516.92 1.87 8.33 10.2
10 951.91 9.52 2489.72 1.87 14.17 16.04

Table 5: Latency of LLM (BLOOM-175B) and SCALE
(BLOOM-175B + NLLB-3.3B) measured in seconds.

In this section, we conduct a detailed evaluation 459

of the overhead introduced by SCALE in compari- 460

son to few-shot LLM. The additional latency arises 461

from two factors: first, the time required to gener- 462

ate the variable Z for the current source sentence 463

x using STM, and second, the increased latency 464

caused by the LLM due to the extended context. 465

We utilize one of the largest open-source LLMs 466

(BLOOM-176B) for this analysis. As shown in 467

Table 5, we observe that the incurred latency can 468

be primarily attributed to the extended context win- 469

dow due to the quadratic time complexity of the 470

transformer. Exploring methods to accelerate this 471
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Figure 5: Perplexity, Unaligned Source Words percentage and Non-Monotonicity score for Xhosa→English.

Javanese Tamil Urdu Amharic
# Speakers 98 M 84.12 M 71.29 M 25 M

GPT-4 83.9/75.8 83.5/80.8 80.0/80.4 77.1/73.4
NLLB 86.4/76.4 86.5/82.9 80.7/80.4 84.4/80.7

SCALE 86.6/77.5 87.8/84.7 82.0/81.7 84.7/81.7

Table 6: COMET-22 and COMETKiwi score for four
languages sorted by the extend of resource.

process based on STM-generated output using spec-472

ulative decoding techniques remains future work473

(Xia et al., 2022; Yang et al., 2023).474

5.5 Inherent Language Bias475

In this section, we investigate whether the inherent476

language bias of LLM could be alleviated by comb-477

ing output from a specialized model. Due to the478

limited transparency of the GPT-4 model, we turn479

to a potential indicator, the number of native speak-480

ers, to illustrate the extent of a language’s resources.481

We tested on four languages following the setting482

of SCALE-refine. As shown in Table 6, the per-483

formance of few-shot GPT-4 diminishes with the484

number of native speakers, while our framework,485

SCALE, consistently and effectively mitigates this486

language bias, outperforming both few-shot GPT-4487

and the supervised NLLB model.488

6 Related Work489

The use of LLM for translation tasks has gar-490

nered significant interest in recent times. Brown491

et al. (2020) initially demonstrated the efficacy492

of prompting an LLM with a few examples to493

achieve noteworthy results, particularly in high-494

resource languages (Vilar et al., 2023; Lin et al.,495

2022). Following the release of ChatGPT, several496

studies have examined its overall translation per-497

formance(Jiao et al., 2023; Hendy et al., 2023),498

along with works focusing on the issue of halluci- 499

nation (Guerreiro et al., 2023) , literalness (Raunak 500

et al., 2023a), multilinguality (Zhu et al., 2023) and 501

incidental bilingualism problem (Briakou et al., 502

2023). A comprehensive analysis conducted by 503

Garcia et al. (2023) revealed the unreasonable ef- 504

fectiveness of few-shot LLMs. Furthermore, a di- 505

verse range of research has attempted to enhance 506

LLM-based translation systems through cultural 507

awareness (Yao et al., 2023), refinement (Chen 508

et al., 2023), retrieval-augmentation (Cheng et al., 509

2023b), post-editing (Raunak et al., 2023b), and 510

comparison (Zeng et al., 2023). 511

Our work also shares similarities with a series 512

of studies aiming to build collaboration between 513

LLMs and other systems. Luo et al. (2023) propose 514

equipping LLMs with a knowledge-guiding mod- 515

ule to access relevant information without tuning 516

LLM. Hendy et al. (2023) propose to use Microsoft 517

Translator system as the primary translation system, 518

and then use GPT as a fallback system. Xu et al. 519

(2023) introduce SuperICL and achieve significant 520

improvements in various language understanding 521

tasks. 522

7 Conclusion 523

In this paper, we present a novel framework 524

SCALE, which effectively combines the strengths 525

of Large Language Models (LLMs) and compact 526

Specialized Translation Models (STMs) through 527

in-context learning. By providing triplet in-context 528

demonstrations, SCALE unlocks the refinement 529

and pivoting capabilities of LLMs, demonstrated 530

by comprehensive experiments in various settings. 531

Our results offer crucial understanding for subse- 532

quent research investigating the possible synergy 533

between LLMs and more specialized models. 534
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8 Limitations535

In this paper, we acknowledge the following lim-536

itations and strive for improvement as our future537

work:538

(1) While SCALE has demonstrated consider-539

able advancements over both LLMs and STMs540

across diverse scenarios, our evaluation has pre-541

dominantly concentrated on the GPT-series as a542

black-box model. To comprehensively investigate543

the underlying mechanisms of SCALE, we aim to544

extend our research to future developments involv-545

ing powerful multilingual LLMs with fully trans-546

parent architectures, weights, and training data dis-547

tribution.548

(2) Although SCALE is the first work to com-549

bine LLM and STM into a unified framework, the550

interaction between these two elements is on the551

prompting level. Future work will explore more552

sophisticated integrations, such as applying knowl-553

edge distillation from LLMs to STMs, to enhance554

the synergy between these two components.555

(3) The introduction of extended contexts in556

SCALE is an inevitability that may present signif-557

icant challenges for systems where response time558

is critical. Developing strategies to accelerate this559

process, such as using the output from STMs to560

perform online speculative decoding, remains an561

area for further investigation and improvement.562
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A Prompt Example838

In Table 7, we list the prompt we use for few-shot839

LLM and in Table 8, for our SCALE framework.840

We use Chat Markup Language version from Azure841

to format our prompt1.842

B Data Statistics843

We list the detailed data information for SCALE-844

refine and SCALE-Pivot experiments in Table ??.845

The number of dev set is 997 and 1012 for devtest846

set in flores-200 (NLLB Team et al., 2022).847

C Translation Cases848

In this section, we list several translation cases from849

different languages in Figure 6, 7, 8, 9.850

D More languages covered with851

SCALE-pivot852

In addition to using Lao as the source language for853

translations into Assamese, Armenian, Amharic,854

Xhosa, German, Czech, Bulgarian, and Greek with855

SCALE-pivot, we demonstrate the versatility of856

our method by also testing Xhosa as the source857

language. The results are depicted in Table 10,858

which exhibit similar patterns with Lao as source859

languages.860

E More languages covered with861

SCALE-update862

In addition to using Xhosa as the source language863

for translations into English with SCALE-update,864

we demonstrate the versatility of our method by865

also testing Lao, Assamese and Amharic as the866

source language. The results are depicted in Table867

11, which exhibit similar patterns with Xhosa as868

source languages.869

1https://learn.microsoft.com/en-us/azure/
ai-services/openai/how-to/chatgpt?pivots=
programming-language-chat-ml
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Instruction

< |im_start| >system
Assistant is an intelligent chatbot designed
to help users translate from ${source_language} to ${target_language}
< |im_end| >

Examples

< |im_start| >user
Source: ${source_1}
Target: ${target_1}
...
Source: ${source_n}
Target: ${target_n}

Input

Source: ${source}
< |im_end| >
< |im_start| >assistant
Target:

Table 7: Prompt of Chat Markup Language format for few-shot LLM.

Instruction

< |im_start| >system
Assistant is an intelligent chatbot designed
to help users translate from ${source_language} to ${target_language}

Context:
· Assistant would would be given a potentially useful reference answer
from a fine-tuned model
· The number in brackets denotes the confidence score of a fine-tuned model
to generate the token.
< |im_end| >

Examples

< |im_start| >user
Source: ${source_1}
Potentially useful reference answer 1: ${reference_1}
Potentially useful reference answer 2: ${reference_2}
Target: ${target_1}
...
Source: ${source_n}
Potentially useful reference answer 1: ${reference_1}
Potentially useful reference answer 2: ${reference_2}
Target: ${target_n}

Input

Source: ${source}
Potentially useful reference answer 1: ${reference_1}
Potentially useful reference answer 2: ${reference_2}
< |im_end| >
< |im_start| >assistant
Target:

Table 8: Prompt of Chat Markup Language format for SCALE.
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code language # dev length # devtest length script family resource

asm_Beng Assamese 40.55 41.67 Bengali Indo-European low
hye_Armn Armenian 43.91 45.31 Armenian Indo-European low
amh_Ethi Amharic 38.87 39.64 Ge’ez Afro-Asiatic low
xho_Latn Xhosa 35.31 36.37 Latin Atlantic-Congo low
uig_Arab Uyghur 40.77 42.41 Arabic Turkic low

khm_Khmr Khmer 52.77 53.79 Khmer Austroasiatic low
npi_Deva Nepali 34.36 35.48 Devanagari Indo-European low
eng_Latn English 28.99 30.28 Latin Indo-European high
deu_Latn German 37.57 39.16 Latin Indo-European high
ces_Latn Czech 36.63 38.10 Latin Indo-European high
bul_Cyrl Bulgarian 37.99 39.45 Cyrillic Indo-European high
rus_Cyrl Russian 39.42 40.21 Cyrillic Indo-European high

Table 9: Data statistics for all the tested languages in the paper.

Armenian Assamese Amharic Lao German Czech Bulgarian Greek
# Resource Low Low Low Low High High High High
10-shot GPT-4 68.3 65.6 69.3 58.5 74.4 80.8 79.1 78.6
SCALE-pivot 71.7 67.4 71.4 59.6 77.9 83.7 82.7 81.4

Table 10: Translation results from Xhosa to both low- and high-resource languages, where GPT-4 uses few-shot
prompting and SCALE-pivot uses English as the pivot language.

COMET BLEURT spBLEU chrf++ COMET BLEURT spBLEU chrf++

xho_Latn lao_Laoo

STM

M2M100 68.0 59.0 25.7 46.3 67.8 57.5 13.2 37.9
NLLB-600M 78.1 70.4 35.0 54.4 84.6 70.3 33.5 55.3
NLLB-1.3B 80.2 73.1 38.9 57.6 85.8 72.1 36.4 57.7
NLLB-3.3B 80.7 74.0 40.1 58.3 86.9 73.8 39.4 60.1

10-shot GPT-4 78.8 70.8 34.5 53.3 80.0 63.7 24.5 45.7

SCALE

M2M100 79.1 71.6 34.4 53.7 82.5 67.3 26.8 48.8
NLLB-600M 81.3 74.6 38.2 57.2 86.3 72.9 34.1 55.4
NLLB-1.3B 81.9 75.3 39.4 58.3 86.6 73.5 35.5 56.6
NLLB-3.3B 82.1 75.7 40.0 58.6 87.2 74.4 38 58.5

hye_Armn amh_Ethi

STM

M2M100 75.9 58.9 23.7 47.9 72.3 54.8 18.5 41.3
NLLB-600M 86.3 73.4 36.6 58.8 84.7 69.2 30.8 53.6
NLLB-1.3B 87.7 75.6 40.2 61.4 86.2 71.9 34.0 56.3
NLLB-3.3B 88.3 77.0 43.0 63.2 86.9 73.6 36.4 58.0

10-shot GPT-4 86.2 73.1 35.6 58.2 83.2 67.3 27.1 48.9

SCALE

M2M100 86.7 74.1 35.8 58.6 84.6 69.7 29.3 51.0
NLLB-600M 88.1 76.3 39.3 61.0 87.3 74.2 35.3 56.6
NLLB-1.3B 88.5 77.0 41.2 62.2 87.8 75.1 36.6 57.8
NLLB-3.3B 88.8 77.8 42.3 63.1 88.0 75.7 37.6 58.5

Table 11: Results of SCALE-update with different STM (M2M100, NLLB-{600M,1.3B,3.3B}) measured on Xhosa,
Lao, Assamese and Amharic to English translation tasks.
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SOURCE የዳይነሶር ላባዎች የዳበረ ራቺስ የሚባል ዘንግ ስለሌለው፣ ነገር ግን ሌሎች የላባ

ባህርያት — ባርብስ እና ባርቡልስ — ስላለው ተመራማሪዎች ራቺስ ከእነዚህ ሌሎች

ባህርያት የቆየ ዝግመተ ለውጥ ውጤት እንደሆነ ይላሉ።

TARGET Because the dinosaur feathers do not have a well-developed shaft,
called a rachis, but do have other features of feathers — barbs and
barbules — the researchers inferred the rachis was likely a later
evolutionary development that these other features.

MS Translator Dinosaur feathers developed because it doesn’t have a rod called
rachis, but has other feather traits — barbs and barbules — that
researchers say is the result of older evolution of rachis from these
other traits.

NLLB dinosaur feathers did not develop a shaft called the rachis, but
other feather features, such as barbs and barbels, suggest that
the rachis was the result of an earlier evolution of these other
features.

GPT-4 As there is no known population of the extinct Laysan Rail on
Laysan Island, researchers suggest that the presence of rails on
the other islands—Barbados and Barbuda—indicates a prolonged
period of isolation and change.

SCALE Dinosaur feathers did not develop a shaft called the rachis, how-
ever, other feather features such as barbs and barbules suggest
that the rachis was the result of an earlier evolution of these other
features.

Table 9: Translation case from Amharic to English.

SOURCE बाइसन, एल्क, मूस, भालु र लगभग सबै ठूला जनावरहरूले जस्ता नरम देखिए पनि

आक्रमण गर्न सक्छन्।

TARGET No matter how docile they may look, bison, elk, moose, bears,
and nearly all large animals can attack.

MS Translator Bison, elk, moose, bears, and almost all large animals can attack
even if they look soft.

NLLB The Bible says: ”The one who is walking with wise persons will
become wise, but the one who is having dealings with the stupid
ones will fare badly”.

GPT-4 Bison, elk, moose, bears, and nearly all large animals, despite
appearing gentle, can be aggressive.

SCALE Bison, elk, moose, bears and nearly all large animals can attack
even though they appear docile.

Table 10: Translation case from Nepali to English.
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Figure 6: Translation case from Nepali→English.
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A.2 Data Statistics

We list the detailed data information for SCALE-refine and SCALE-Pivot experiments in
Table A.2. The number of dev set is 997 and 1012 for devtest set in flores-200 (NLLB Team
et al., 2022).

code language # dev length # devtest length script family resource
asm_Beng Assamese 40.55 41.67 Bengali Indo-European low
hye_Armn Armenian 43.91 45.31 Armenian Indo-European low
amh_Ethi Amharic 38.87 39.64 Ge’ez Afro-Asiatic low
xho_Latn Xhosa 35.31 36.37 Latin Atlantic-Congo low
uig_Arab Uyghur 40.77 42.41 Arabic Turkic low

khm_Khmr Khmer 52.77 53.79 Khmer Austroasiatic low
npi_Deva Nepali 34.36 35.48 Devanagari Indo-European low
eng_Latn English 28.99 30.28 Latin Indo-European high
deu_Latn German 37.57 39.16 Latin Indo-European high
ces_Latn Czech 36.63 38.10 Latin Indo-European high
bul_Cyrl Bulgarian 37.99 39.45 Cyrillic Indo-European high
rus_Cyrl Russian 39.42 40.21 Cyrillic Indo-European high

Table 7: Data statistics for all the tested languages in the paper.

A.3 Translation Cases

In this section, we list several translation cases from different languages.

SOURCE ভৰি থোৱা ৰিকাবে চলাও

ঁ

তাজনৰ ভৰি ৰখাত সহায় কৰে যিটো ঘোঁৰাৰ গা-

দীৰ দ

ু

য়োফালে তললৈ ওলমি থাকে।

TARGET Stirrups are supports for the rider’s feet that hang down on either
side of the saddle.

MS Translator The legged rickshaw helps to keep the driver’s leg which hangs
down on either side of the horse’s mattress.

NLLB The foot rest helps to keep the rider’s feet which are sloping down-
wards on both sides of the horse’s saddle.

GPT-4 A heavily loaded Rickshaw helps balance the load by tilting to
both sides when going over bumps.

SCALE The stirrup helps to support the rider’s feet, which are sloping
downwards on both sides of the horse’s saddle.

Table 8: Translation case from Assamese to English.

Under review as a conference paper at ICLR 2024

SOURCE बाइसन, एल्क, मूस, भालु र लगभग सबै ठूला जनावरहरूले जस्ता नरम देखिए पनि

आक्रमण गर्न सक्छन्।

TARGET No matter how docile they may look, bison, elk, moose, bears,
and nearly all large animals can attack.

MS Translator Bison, elk, moose, bears, and almost all large animals can attack
even if they look soft.

NLLB The Bible says: ”The one who is walking with wise persons will
become wise, but the one who is having dealings with the stupid
ones will fare badly”.

GPT-4 Bison, elk, moose, bears, and nearly all large animals, despite
appearing gentle, can be aggressive.

SCALE Bison, elk, moose, bears and nearly all large animals can attack
even though they appear docile.

Table 11: Translation case from Nepali to English.

GPT-4

SCALE

Table 12: Translation case from Nepali to English.
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Es gibt eine Chance, dass es genauso verschwindet, wie es 
aussieht, als ob es einfach verschwindet.
Es ist auch nützlich, einen Ring zu tragen, nur scheint der Ring 
zu teuer zu sein.

SOURCE  बाइसन,  एल्क,  मूस,  भालु  र  लगभग  सबै  ठूला  जनावरहरूले  जस्ता  नरम  देखिए  पनि
आक्रमण  गर्न  सक्छन्।

TARGET  Auch  das  Tragen  eines  Rings  ist  hilfreich (nur keinen, der zu 
         teuer  aussieht

Figure 7: Translation case from Lao to German.
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Figure 7: Translation case from Assamese→English.
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SOURCE የዳይነሶር ላባዎች የዳበረ ራቺስ የሚባል ዘንግ ስለሌለው፣ ነገር ግን ሌሎች የላባ

ባህርያት — ባርብስ እና ባርቡልስ — ስላለው ተመራማሪዎች ራቺስ ከእነዚህ ሌሎች

ባህርያት የቆየ ዝግመተ ለውጥ ውጤት እንደሆነ ይላሉ።

TARGET Because the dinosaur feathers do not have a well-developed shaft,
called a rachis, but do have other features of feathers — barbs and
barbules — the researchers inferred the rachis was likely a later
evolutionary development that these other features.

MS Translator Dinosaur feathers developed because it doesn’t have a rod called
rachis, but has other feather traits — barbs and barbules — that
researchers say is the result of older evolution of rachis from these
other traits.

NLLB dinosaur feathers did not develop a shaft called the rachis, but
other feather features, such as barbs and barbels, suggest that
the rachis was the result of an earlier evolution of these other
features.

GPT-4 As there is no known population of the extinct Laysan Rail on
Laysan Island, researchers suggest that the presence of rails on
the other islands—Barbados and Barbuda—indicates a prolonged
period of isolation and change.

SCALE Dinosaur feathers did not develop a shaft called the rachis, how-
ever, other feather features such as barbs and barbules suggest
that the rachis was the result of an earlier evolution of these other
features.

Table 9: Translation case from Amharic to English.

SOURCE बाइसन, एल्क, मूस, भालु र लगभग सबै ठूला जनावरहरूले जस्ता नरम देखिए पनि

आक्रमण गर्न सक्छन्।

TARGET No matter how docile they may look, bison, elk, moose, bears,
and nearly all large animals can attack.

MS Translator Bison, elk, moose, bears, and almost all large animals can attack
even if they look soft.

NLLB The Bible says: ”The one who is walking with wise persons will
become wise, but the one who is having dealings with the stupid
ones will fare badly”.

GPT-4 Bison, elk, moose, bears, and nearly all large animals, despite
appearing gentle, can be aggressive.

SCALE Bison, elk, moose, bears and nearly all large animals can attack
even though they appear docile.

Table 10: Translation case from Nepali to English.
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Figure 8: Translation case from Amharic→English.
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SOURCE बाइसन, एल्क, मूस, भालु र लगभग सबै ठूला जनावरहरूले जस्ता नरम देखिए पनि

आक्रमण गर्न सक्छन्।

TARGET No matter how docile they may look, bison, elk, moose, bears,
and nearly all large animals can attack.

MS Translator Bison, elk, moose, bears, and almost all large animals can attack
even if they look soft.

NLLB The Bible says: ”The one who is walking with wise persons will
become wise, but the one who is having dealings with the stupid
ones will fare badly”.

GPT-4 Bison, elk, moose, bears, and nearly all large animals, despite
appearing gentle, can be aggressive.

SCALE Bison, elk, moose, bears and nearly all large animals can attack
even though they appear docile.

Table 11: Translation case from Nepali to English.

GPT-4

SCALE

Table 12: Translation case from Nepali to English.
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Es gibt eine Chance, dass es genauso verschwindet, wie es 
aussieht, als ob es einfach verschwindet.
Es ist auch nützlich, einen Ring zu tragen, nur scheint der Ring 
zu teuer zu sein.

SOURCE  बाइसन,  एल्क,  मूस,  भालु  र  लगभग  सबै  ठूला  जनावरहरूले  जस्ता  नरम  देखिए  पनि
आक्रमण  गर्न  सक्छन्।

TARGET  Auch  das  Tragen  eines  Rings  ist  hilfreich (nur keinen, der zu 
         teuer  aussieht

Figure 9: Translation case from Lao→German.
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