
Flat-LoRA: Low-Rank Adaption over a Flat Loss
Landscape

Tao Li1, Zhengbao He1∗, Yujun Li2, Yasheng Wang2, Lifeng Shang2, Xiaolin Huang1
1 Department of Automation, Shanghai Jiao Tong University

2Huawei Noah’s Ark Lab
{li.tao, xiaolinhuang}@sjtu.edu.edu

Abstract

Fine-tuning large-scale pre-trained models is prohibitively expensive in terms
of computational and memory costs. Low-Rank Adaptation (LoRA), a popular
Parameter-Efficient Fine-Tuning (PEFT) method, provides an efficient way to fine-
tune models by optimizing only a low-rank matrix. Despite recent progress made
in improving LoRA’s performance, the connection between the LoRA optimization
space and the original full parameter space is often overlooked. A solution that
appears flat in the LoRA space may exist sharp directions in the full parameter
space, potentially harming generalization performance. In this paper, we propose
Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a
flat region of the full parameter space. Instead of relying on the well-established
sharpness-aware minimization approach, which can incur significant computational
and memory burdens, we utilize random weight perturbation with a Bayesian
expectation loss objective to maintain training efficiency and design a refined
perturbation generation strategy for improved performance. Experiments on natural
language processing and image classification tasks with various architectures
demonstrate the effectiveness of our approach.

1 Introduction

Pre-training followed by fine-tuning is a widely adopted training pipeline among modern machine
learning practitioners for achieving state-of-the-art (SOTA) performance [1, 2, 3, 4], leveraging
the versatile knowledge within the pre-trained models. However, the enormous size of these pre-
trained models makes fine-tuning all parameters for downstream tasks resource-intensive, making
it impractical to store optimizer states or multiple model weights when dealing with multiple tasks.
Recently, Low-Rank Adaptation (LoRA) [5] has been proposed to address this resource challenge. In
LoRA fine-tuning, only a low-rank matrix is optimized and then added to the pre-trained weights after
training, incurring no additional computational or memory costs during inference. This approach
significantly reduces the number of trainable parameters, thereby lowering the training cost as well as
storage cost when dealing with different tasks.

Many works have been proposed to enhance the performance of LoRA by introducing more dedicated
budgets for rank allocation [6], decomposing optimization for direction and magnitude updates [7],
or designing better initialization strategy for LoRA parameters [8, 9], etc. These studies demonstrate
the significant potential for improving LoRA performance. However, the connection between the
LoRA optimization space and the original full parameter space is often overlooked. Essentially,
LoRA restricts training to a much lower-dimensional subspace, and its performance depends on the
properties of the solutions within this subspace in relation to the full parameter space, as the merged

∗The first two authors contribute equally.

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).



weights are ultimately used during inference. As illustrated in Figure 1, a flat minima in the LoRA
space (blue) may exhibit sharp direction (red) in the view of the full parameter space, which may
degenerate the generation performance.

X

4
2

0
2

4

Y

4
2

0
2

4

l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1: Illustration of LoRA optimization. LoRA
constrains training in a lower-dimensional sub-
space (blue). A flat minima in LoRA subspace
(blue curve) may exhibit sharp direction in full pa-
rameter space (red curve).

It is widely believed that a flatter loss land-
scape can lead to better generalization per-
formance [10, 11]. This idea has given rise
to a well-established training strategy called
Sharpness-Aware Minimization (SAM), which
has shown great generalization improvement
in training neural networks. Applying SAM
to large language models (LLMs)’ training to-
gether with LoRA is certainly promising, but
there are several issues should be discussed.
First, unlike the existing attempts that flatten
the landscape in a LoRA subspace [12], which
is not aware of the sharpness outside the LoRA
space, we pursue a solution that aligns with a
flatter loss landscape in the full weight space.
Second, the original SAM doubles the training
time cost, which is impractical for fine-tuning large models. Additionally, to capture the sharpness
in the full parameter space, we need to calculate the gradients of the full weight parameters, which
contradicts the principles of parameter-efficient fine-tuning (PEFT). To cope with these challenges,
we propose using random weight perturbations to maintain time and memory efficiency and design
effective generation strategies to improve generalization performance.

Our main contribution can be summarized as follows:

• We propose Flat-LoRA that firstly aims to optimize the sharpness of the loss landscape
within the full parameter space where the low-rank adaptation resides. It incurs minimal
additional computational and memory costs and can be easily integrated with existing
techniques to enhance LoRA performance, delivering consistent improvements.

• We propose to use expected Bayesian loss to optimize the sharpness for keeping the training
efficiency and design effective generation strategy to generate random weight perturbation
to enhance the generalization performance, making it easy for practical usage.

• Experiments on natural language processing and computer vision tasks with various archi-
tectures to demonstrate that our approach can achieve state-of-the-art performance.

2 Related Work

Flat minima and generalization. The connection between the flatness of local minima and general-
ization has received much attention [11, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Recently, many works
have tried to improve the model generalization by seeking flat minima [22, 23, 24]. For example,
[13] proposed Entropy-SGD to search for flat regions by minimizing local entropy. [25] designed
SmoothOut framework to smooth out the sharp minima. Notably, Sharpness-Aware Minimization
(SAM) [26] established a generic training scheme for seeking flat minima by formulating the opti-
mization as a min-max problem and encouraged parameters sitting in neighborhoods with uniformly
low loss, achieving state-of-the-art generalization improvements across various tasks. However, it
requires twice the training time as regular training, limiting its application to large model training.
Another promising branch of methods recovers flat minima by minimizing the expected Bayesian
training loss under random weight perturbation (RWP) [24], which is efficient as no additional
gradient step is required. [27] further enhance generalization performance by introducing an adaptive
random perturbation generation strategy and a mixed loss objective. However, when applying these
approaches to PEFT training, we must be mindful of the additional memory and time costs they may
introduce.

Low-rank adaption. Recent works have indicated that the intrinsic dimension for optimizing deep
neural networks (DNNs) may be much lower than the number of parameters [28, 29, 30]. [31]
demonstrated that the training trajectory of DNNs can be low-dimensional and propose subspace

2



optimization to enhance training efficiency and robustness [32]. Low-Rank Adaptation (LoRA) was
proposed to model the weight changes for each layer during fine-tuning, aiming to reduce training
costs. It effectively decreases the number of trainable parameters, thereby lowering the memory
burden for training and storage. This approach is currently mainstream because it avoids adding
any overhead during inference while often demonstrating strong performance. Many works have
been proposed to enhance the performance of LoRA by introducing more dedicated budgets for rank
allocation [6], decomposing optimization for direction and magnitude updates [7], designing better
initialization strategy for LoRA parameters [8, 9], or better aligning each gradient step to the full
fine-tuning [33], etc.

3 Method

In this section, we first give a brief review on the low-rank adaption (LoRA). We then introduce
our LoRA optimization objective considering the flatness of the landscape. We finally describe our
random perturbation generation strategy for effectively improving the generalization performance.

3.1 LoRA: Low-Rank Adaption

Based on the finding that DNNs’ optimization happens in a subspace with much smaller dimensions
than the number of parameters [28, 31], LoRA utilizes low-rank matrices to model the weight change
for each layers’ weights W ∈ Rn×m during the fine-tuning as ∆W = s ·BA, where s is a scaling
factor, B ∈ Rn×r and A ∈ Rr×m with the rank r ≪ {n,m} to achieve parameter efficiency.

For the original output h = Wx, the modified forward pass is

h = Wx+∆Wx = (W + s ·BA)x. (1)

During the initialization of LoRA, matrix A is commonly initialized with Kaiming distribution [34]
and matrix B is set to zeros. During the training, only the low-rank matrices A and B are optimized
with the pre-trained weight W being frozen. During the inference, the low-rank matrices ∆W are
merged to the pre-trained weight W, and in this way there is no additional computational or memory
costs.

3.2 LoRA with a Flat Landscape

Despite recent efforts to improve LoRA performance, most studies focus solely on finding solutions
that perform well within the LoRA solution space, specifically the rank r matrix space Mr =
{∆W ∈ Rm×n | rank(∆W) = r}. For example, following the well-established sharpness-aware
minimization (SAM) objective [26], [12] apply SAM to LoRA parameters and study the scale-
invariant properties of these parameters with SAM:

min
A,B

max
∥(ϵA,ϵB)∥≤ρ

L (W + (B+ ϵB)(A+ ϵA)) , (2)

where L(·) denotes the loss objective. However, focusing solely on the properties of the optimization
space defined by LoRA parameters may have limitations. During inference, the low-rank adaption
∆W is merged into the pre-trained weights W. A solution that performs well within the LoRA space
may be situated in a sharp region of the full parameter space, as illustrated in Figure 1, which could
potentially harm overall generalization. To be more clear, we have

∇LϵA(W) = B⊤∇L(W), (3)

∇LϵB(W) = ∇L(W)A⊤, (4)

and then we can obtain the worst case perturbation ϵA and ϵB via first-order Taylor expansion:

ϵA = ρ
B⊤∇L(W)√

∥B⊤∇L(W)∥2 + ∥∇L(W)A⊤∥2
, (5)

ϵB = ρ
∇L(W)A⊤√

∥B⊤∇L(W)∥2 + ∥∇L(W)A⊤∥2
, (6)

3



The equivalent weight perturbation applied to W by Equ (2) is

BϵA + ϵBA+ ϵBϵA = cBB⊤∇L(W) + c∇L(W)A⊤A+ c2∇L(W)A⊤B⊤∇L(W), (7)

where c = ρ√
∥B⊤∇L(W)∥2+∥∇L(W)A⊤∥2

is a scaling factor. One can see that the perturbation

direction is not aligned with the direction ∇L(W), which maximizes the loss of the merged weights
as in SAM. Notably, when B is initialized as zero as defaulted in [5], B will remain small during the
training [35] and Equ. (7) becomes:

BϵA + ϵBA+ ϵBϵA ≈ c∇L(W)A⊤A. (8)

This means Equ (2) only optimizes the sharpness along the column space spanned by A, which
constitutes a small subspace of the full parameter space. As demonstrated in Table 4, solely applying
SAM constraints on the LoRA parameters does not effectively improve the generalization.

Therefore, it is crucial to consider the loss landscape of L(W +∆W), and we need to find a low
rank adaption ∆W that positions the merged weights in a flat region of the full parameter space. Our
flat loss objective can be formulated as follows:

min
A,B

max
∥ϵ∥≤ρ

L(W +BA+ ϵ). (9)

However, directly applying SAM to optimize the sharpness of the merged weight space has several
disadvantages: 1) it doubles the training cost, which is less desirable with large models, and 2)
it requires storing an additional copy of weights for perturbation, which contradicts the principle
of parameter-efficient fine-tuning. To achieve a flatter loss landscape while maintaining time and
memory efficiency, we propose relaxing the maximization problem in Eq. (9) to an expectation,
resulting in the following Bayesian expected loss objective:

min
A,B

E
ϵ∼N (0,σ2I)

L(W +BA+ ϵ), (10)

where σ controls the variance magnitude of the noise, which we will describe in the next section.
This expected loss can be seen as applying a smoothing filter over the loss landscape within the full
parameter space, and optimizing it can help recover flatter minima [24]. For each optimization step,
we would sample a noise ϵ and calculate the perturbed gradient to optimize the low-rank matrices
A and B. Note that the noise is generated based on the model weights, thus incurring no additional
gradient steps as SAM does.

3.3 Effective Random Perturbation Generation

We then describe how to effectively generate random weight perturbation, which is the core for
improving the generalization performance. Let W′ = W + s · BA. In this paper, we have
experimented with various schemes for noise generation and hope to find the most effective one for
random weight perturbation generation that could benefit the community. For the merged weight
W′ ∈ Rm×n that represents a linear layer with input dimension n and output dimension m, our
design considers the following two perspectives:

• Filter structure: we aim to generate the weight noise by filter [24]. There contains m filters
W′ = (W′

1,:,W
′
2,:, · · · ,W′

m,:) that process the input X ∈ Rn. Elements within a filter of
larger norm should receive a larger strength of perturbation.

• Input dimension: the variance introduced to the forward pass by the added random weight
perturbation is independent of the input dimension, which helps transfer hyper-parameters
across models with different widths. Given an input dimension n, the magnitude of noise
added to each element should be scaled by a factor of 1/n.

Finally, our new weight noise generation scheme is formulated as follows:

ϵ ∼ N
(
0,

σ2

n
diag(∥W′

1,:∥22, ∥W′
2,:∥22, · · · , ∥W′

m,:∥22)Im×n

)
, (11)

where Im×n denotes a matrix of size m× n with all ones. Here σ is the hyper-parameter that needs
to be chosen for controlling the perturbation strength.

4



Analysis on forward variance. We then interpret adding random weight perturbation as variance
injection during the forward propagation. Consider the hypothesis that the variance of the input X is
var(X). Then we have:

var(W′
i,:X) = ∥W′

i,:∥22 · var(X), (12)

var ((W′ + ϵ)i,:X) = (1 + σ2)∥W′
i,:∥22 · var(X). (13)

Thus, by injecting weight perturbations, we introduce variance with a rate of σ2 into the forward
pass. It is important to note that since we introduce a magnitude of 1/n for noise generation (see
Equ. (11)), this variance ratio is independent of the input dimension. Additionally, we note that this
variance will not increase exponentially during the forward propagation of the network due to the
presence of layer normalization.

Storing random seed for memory efficiency. Memory is an important factor to consider to PEFT
training. To optimize Eqn. (10), we first generate random perturbation ϵ and then perform gradient
descent with ∇L(W + s ·BA+ ϵ). Thus, we need to store the weight perturbation for recovering
the weight after obtaining the perturbed gradient. When model is large, storing a copy of weight
perturbation is prohibitive. Luckily, for random weight perturbation, we only need to store the seed
for random generator and corresponding norms for each filter ∥W′

1,:∥22, ∥W′
2,:∥22, · · · , ∥W′

m,:∥22,
allowing us to recover the random perturbation ϵ when necessary. This approach incurs minimal
additional memory and offers significant advantages over SAM, which requires calculating the full
gradient, thereby necessitating a hard copy of the perturbation that cannot be reduced.

Integration to mixed precision training. Finally, we note that the noise injection step can be
seamlessly integrated into mixed-precision training even without the need to store the filter norms,
which is commonly used in large-scale training. Specifically, in mixed-precision training, we maintain
two copies of the weights: the full-precision FP32 weights and the half-precision BF16 weights in
memory. We can inject noise during the half-precision auto-cast step, thus eliminating the need to
store a copy of the weight perturbation or the filter norms.

4 Experiments

In this section, we evaluate the performance of Flat-LoRA on various benchmark datasets. We first
conduct experiments on Natural Language Understanding tasks using a subset of GLUE datasets [36]
with T5-base model [37]. We then experiment over image classification tasks with CLIP ViT-B/32
model [38]. We finally give ablation studies and discussions on our method.

4.1 Experiments on Natural Language Understanding

Setting. We finetune the T5-Base model on several datasets from GLUE benchmark, including MNLI,
SST, CoLA, QNLI, and MRPC. Performance is evaluated on the development set using accuracy as
the primary metric. We use lora with rank 8 and 16 with lora alpha 16. We finetune the models with
10 epochs with a cosine learning rate schedule, except for MNLI and QNLI we use 1 epochs. We
use learning rate of 0.0005 for LoRA fine-tuning and 0.0001 for full fine-tuning with weight decay
0.1. The random perturbation strength σ is set to 0.05 with an cosine increasing strategy. Mean and
standard deviations are calculated over 3 independent trials.

Results. As shown in Table 1, Flat-LoRA consistently outperforms LoRA for ranks 8 and 16, achiev-
ing average performance gains of 0.38% and 0.56%, respectively. In some cases, the performance of
LoRA deteriorates when increasing the rank from 8 to 16, as seen with the MRPC dataset, which is
relatively small and susceptible to overfitting. Flat-LoRA effectively addresses the overfitting issue
and achieves greater improvements with increasing LoRA rank, demonstrating the advantages of our
flat loss objective.

4.2 Experiments on Image Classification

Setting. We finetune the CLIP-ViT-B/32 model on five image classification tasks, including CIFAR-
10/100 [39], Cars [40], SVHN [41], and DTD [42]. We resize all input image to a size of 224x224
and freeze the classification head. We try LoRA with rank 8 and 16 and finetune the models with 10

5



Table 1: Results (%) on fine-tuning T5-base with Full Fine-tuning and LoRA variants on a subset of
GLUE datasets.

Method MNLI SST2 CoLA QNLI MRPC Avg.

Full FT 86.19±0.04 94.15±0.09 82.84±0.12 93.10±0.04 89.22±0.23 89.10

LoRA (r=8) 86.24±0.02 94.55±0.07 82.20±0.22 93.06±0.03 88.97±0.42 89.00
Flat-LoRA (r=8) 86.20±0.04 94.75±0.20 83.19±0.38 93.16±0.09 89.59±0.37 89.38
LoRA (r=16) 86.49±0.06 94.52±0.21 82.89±0.44 92.97±0.05 88.89±0.64 89.15
Flat-LoRA (r=16) 86.51±0.01 94.84±0.02 84.08±0.31 93.28±0.03 89.83±0.64 89.71

1 4 16 64
Rank

88.0

88.5

89.0

89.5

Te
st

 A
cc

ur
ac

y 
(%

)

LoRA
Flat-LoRA

(a) MRPC with T5-Base

1 4 16 64
Rank

86.5

87.0

87.5

88.0

88.5

89.0

89.5

Te
st

 A
cc

ur
ac

y 
(%

)

LoRA
Flat-LoRA

(b) CIFAR-100 with ViT-B/32

Figure 2: Performance comparison under different lora ranks. We keep lora alpha to 16 and vary the
lora ranks among {1, 4, 16, 64}. Experiments are conducted with three independent trials.

epochs with a cosine annealing schedule. The learning rate is set to 0.0005 for LoRA and 1× 10−5

for full fine-tuning with weight decay 0.1. The random perturbation strength σ is set to 0.15 with an
cosine increasing strategy. Mean and standard deviations are calculated over 3 independent trials.

Results. We measure the performance with classification accuracy and report the results in Table 2.
We observe that Flat-LoRA consistently outperforms LoRA with ranks 8 and 16, showing average
improvements of 0.56% and 0.74%, respectively. Notably, Flat-LoRA with rank 8 surpasses both
LoRA with rank 16 and full fine-tuning by 0.28%. These results confirm the effectiveness of our flat
loss objective on improving LoRA performance.

Table 2: Results (%) on fine-tuning CLIP ViT-B/32 with full fine-tuning and LoRA variants on image
classification datasets.

Method CIFAR-10 CIFAR-100 Cars SVHN DTD Avg.

Full FT 97.99±0.01 89.06±0.11 73.30±0.43 97.44±0.03 76.80±0.25 86.92

LoRA (r=8) 97.90±0.02 87.74±0.13 73.22±0.53 97.49±0.08 76.86±0.34 86.64
Flat-LoRA (r=8) 98.09±0.04 88.64±0.23 74.17±0.71 97.59±0.04 77.51±0.28 87.20
LoRA (r=16) 97.99±0.03 88.12±0.23 73.80±0.42 97.56±0.08 77.34±0.32 86.92
Flat-LoRA (r=16) 98.21±0.04 89.27±0.07 74.89±0.52 97.71±0.10 78.24±0.44 87.66

4.3 Results on Llama-2-7b

Setting. To evaluate the scalability of Flat-LoRA, we fine-tune Llama 2-7B [43] on two tasks: math
and code. We use a learning rate of 5e− 4 and cosine learning rate scheduler with a warmup ratio
of 0.03. We use LoRA with rank 8 and alpha 16 and the training epoch is set to 2. Following [9],
the backbone of Lllma 2-7B uses BF16 precision and the parameters of LoRA modules use FP32
precision for better performance. For math task, we finetune the model on MetaMathQA [44] and
evaluate it on GSM8K evaluation set [45]. For code task, we finetune the model on Code-Feedback

6



0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0

1

2

3

4

5

6

7

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0

1

2

3

4

5

6

7

Figure 3: Loss landscape visualization with different LoRA ranks: 1 (Left) and 16 (Middle), and
Full FT (Right), as well as different LoRA approaches: LoRA (Up) and Flat-LoRA (Down). Models
are fine-tuned on CIFAR-100 with CLIP ViT-B/32.

[46] and evaluate it on HumanEval [47]. We only use 100k training subsets for both tasks. The
random perturbation strength σ is set to 0.10 with an cosine increasing strategy.

Table 3: Results (%) on fine-tuning Llama 2-7B with
GSM8K and Human-Eval datasets.

Method GSM8K Human-Eval

LoRA (r = 8) 57.47±0.35 26.22±0.52

Flat-LoRA (r = 8) 60.65±0.23 27.93±0.79

Results. We measure the performance
of the math task by accuracy and the
code task by PASS@1 metric. From
the results in Table 3, we observe that
Flat-LoRA significantly enhances LoRA’s
performance under large-scale fine-tuning
scenarios, achieving an improvement of
+3.18% on the GSM8K dataset and 1.37%
on the Human-Eval dataset. It is important to note that here our LoRA performance is much stronger
than the results reported in previous works, e.g., 57.47% (ours) v.s. 42.08% [9] on GSM8K. Still,
Flat-LoRA continues to demonstrate significant accuracy improvements over the baseline approach,
highlighting the effectiveness of pursuing the flatness of the full parameter space when fine-tuning
large LLM models.

4.4 Ablation Study and Discussion

Comparison with Other Methods We then compare our approach with other recently proposed
methods for improving LoRA, including initialization-based methods such as PiSSA and LoRA-GA,
as well as optimization-based methods like DoRA and LoRA+. Our experiments are conducted on
the CoLA and MRPC datasets using the T5-base model with lora rank 8. The results are presented
in Table 4. We observe that Flat-LoRA consistently outperforms previous methods by 0.53%.
Furthermore, our flat loss objective can be easily integrated with earlier approaches to yield consistent
improvements by 0.31% to 0.93%. This highlights the effectiveness of considering the sharpness of
the full parameter space.

Note that here we adopt a stronger training baseline, including employing a larger learning rate and
longer training epochs, which achieves significantly better performance than the results reported
in previous work [9]. In fact, CoLA and MRPC are two datasets that achieve that most significant
improvement by LoRA-GA reported in the original paper [9]. Under our experimental settings,
LoRA-GA does not demonstrate advantages over vanilla LoRA and may even perform worse. This
may be because LoRA-GA provides a smart initialization strategy by maximizing gradient alignment
with full parameter training, allowing for quicker convergence to a good local optimum (e.g., achieved

7



in just one epoch as noted in [9]). However, this approach may not be optimal for reaching a better
global optimum.

Table 4: Comparison with other methods on GLUE subsets with T5-Base.
Method CoLA MRPC

LoRA [5] 82.20±0.22 88.03±0.14

PiSSA [8] 82.44±0.14 88.96±0.44

LoRA-GA [9] 81.83±0.21 87.58±0.41

DoRA [7] 83.16±0.15 89.46±0.37

LoRA+ [48] 81.65±0.34 89.30±0.47

Flat-LoRA (ours) 83.19±0.38 89.59±0.37

Flat-PiSSA (ours) 83.35±0.48 89.89±0.71

Flat-LoRA-GA (ours) 82.23±0.34 88.15±0.54

Flat-DoRA (ours) 83.56±0.27 89.99±0.47

Flat-LoRA+ (ours) 82.56±0.23 89.61±0.44

Results under different lora ranks. Following the settings in Section 4.1 and 4.2, we evaluate
the performance of Flat-LoRA under different LoRA ranks. The results are shown in Figure 2. We
observe that Flat-LoRA consistently outperforms LoRA across different LoRA ranks by +1.10% on
MRPC and +1.15% on CIFAR-100. Even at lora rank 1, which is typically underfitting, Flat-LoRA
still delivers a significant performance boost over LoRA. This highlights the importance of considering
the sharpness of the full parameter space. Additionally, as the LoRA rank increases, we observe
that LoRA’s performance can degrade due to overfitting, particularly on MRPC, which is a small
dataset with 3.7k data points. Flat-LoRA effectively mitigates this overfitting issue by identifying
flatter minima that generalize better. Thus, we conclude that Flat-LoRA enhances LoRA fine-tuning
performance not only in underfitting scenarios, where the rank is low and limited information from the
full parameter space is explored, but also in high LoRA rank situations, where the risk of overfitting
is more pronounced.

Landscape visualization. In Figure 3, we plot the loss landscape of the merged weights of LoRA
and Flat-LoRA with different loRA ranks. Following the plotting technique in [17], we uniformly
sample 11 × 11 grid points in the range of [−0.5, 0.5] from random “filter-normalized” direction.
We observe that Flat-LoRA obtains consistently flatter loss landscape than LoRA in both LoRA
fine-tuning and full fine-tuning senarios. An interesting observation is that when the LoRA rank is
small, the loss landscape of the merged weight space is typical sharper, indicating the significance
of considering the sharpness of the full parameter space when utilizing LoRA fine-tuning. Our
Flat-LoRA can enable flatter loss landscape as higher LoRA ranks, e.g., Flat-LoRA with rank=16
attains similar flat landscape as full fine-tuning, and obtain similar performance.

5 Conclusion

In this paper, we introduce Flat-LoRA, an efficient low-rank adaptation approach that aims to
optimize the sharpness of the loss landscape within the full parameter space that LoRA situates in.
Deviating from standard sharpness-aware approach that incurs significant computation and memory
burdens, we employ a Bayesian expectation loss objective minima and utilize designed random
weight perturbations to pursuit flat minima, maintaining the training speed and memory efficiency
characteristic of parameter-efficient fine-tuning. Flat-LoRA achieves state-of-the-art performance in
LoRA fine-tuning and can be easily integrated with previous methods for consistent improvements.
Extensive experiments on natural language processing and computer vision tasks demonstrate the
effectiveness of our approach.

References
[1] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2014.

8



[2] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain
Gelly, and Neil Houlsby. Big transfer (bit): General visual representation learning. In European
conference on computer vision (ECCV), 2020.

[3] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning (ICML), 2022.

[4] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In International Conference on Learning Representations
(ICLR), 2024.

[5] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations (ICLR), 2022.

[6] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International
Conference on Learning Representations (ICLR), 2023.

[7] Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In
International Conference on Machine Learning (ICML), 2024.

[8] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

[9] Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approxima-
tion. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
In Advances in Neural Information Processing Systems (NeurIPS), 1994.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 1997.
[12] Bingcong Li, Liang Zhang, and Niao He. Implicit regularization of sharpness-aware mini-

mization for scale-invariant problems. In ICML 2024 Workshop on Theoretical Foundations of
Foundation Models, 2024.

[13] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient
descent into wide valleys. In International Conference on Learning Representations (ICLR),
2017.

[14] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
In International Conference on Learning Representations (ICLR), 2017.

[15] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning (ICML), 2017.

[16] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

[17] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. In Advances in Neural Information Processing Systems (NeurIPS),
2018.

[18] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards
theoretically understanding why sgd generalizes better than adam in deep learning. Advances in
Neural Information Processing Systems, 33:21285–21296, 2020.

[19] Bingcong Li and Georgios B Giannakis. Enhancing sharpness-aware optimization through
variance suppression. arXiv preprint arXiv:2309.15639, 2023.

[20] Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5631–5640, 2024.

9



[21] Tao Li, Weisen Jiang, Fanghui Liu, Xiaolin Huang, and James T Kwok. Scalable learned model
soup on a single gpu: An efficient subspace training strategy. 2024.

[22] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring
scale invariant definition of flat minima for neural networks using pac-bayesian analysis. In
International Conference on Machine Learning, pages 9636–9647. PMLR, 2020.

[23] Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
model perturbation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[24] Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering flat
optima in the deep learning optimization landscape. In International Conference on Artificial
Intelligence and Statistics, pages 8299–8339. PMLR, 2022.

[25] Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li.
Smoothout: Smoothing out sharp minima to improve generalization in deep learning. arXiv
preprint arXiv:1805.07898, 2018.

[26] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
mization for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

[27] Tao Li, Qinghua Tao, Weihao Yan, Yingwen Wu, Zehao Lei, Kun Fang, Mingzhen He, and
Xiaolin Huang. Revisiting random weight perturbation for efficiently improving generalization.
Transactions on Machine Learning Research, 2024.

[28] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. In International Conference on Learning Representations
(ICLR), 2018.

[29] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace.
arXiv preprint arXiv:1812.04754, 2018.

[30] Yingwen Wu, Tao Li, Xinwen Cheng, Jie Yang, and Xiaolin Huang. Low-dimensional gradient
helps out-of-distribution detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[31] Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng Liu, and Xiaolin Huang. Low dimensional
trajectory hypothesis is true: Dnns can be trained in tiny subspaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(3):3411–3420, 2022.

[32] Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, and Xiaolin Huang. Subspace adversarial training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13409–13418, 2022.

[33] Zhengbo Wang and Jian Liang. Lora-pro: Are low-rank adapters properly optimized? arXiv
preprint arXiv:2407.18242, 2024.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[35] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In International Conference on Machine Learning (ICML), 2024.

[36] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations (ICLR), 2019.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research (JMLR), 21(140):1–67, 2020.

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), 2021.

[39] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report, 2009.

10



[40] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE international conference on computer vision
workshops (CVPRW), 2013.

[41] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning. Granada, 2011.

[42] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

[43] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[44] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In International Conference on Learning Representations
(ICLR), 2024.

[45] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[46] Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

[47] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[48] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large
models. In International Conference on Machine Learning (ICML), 2024.

11


	Introduction
	Related Work
	Method
	LoRA: Low-Rank Adaption
	LoRA with a Flat Landscape
	Effective Random Perturbation Generation

	Experiments
	Experiments on Natural Language Understanding
	Experiments on Image Classification
	Results on Llama-2-7b
	Ablation Study and Discussion

	Conclusion

