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Abstract
Recent advances such as Chain-of-Thought001
prompting have significantly improved large002
language models (LLMs) in zero-shot med-003
ical reasoning. However, prompting-based004
methods often remain shallow and unstable,005
while fine-tuned medical LLMs suffer from006
poor generalization under distribution shifts007
and limited adaptability to unseen clinical sce-008
narios. To address these limitations, we present009
TAGS, a test-time framework that combines010
a broadly capable generalist with a domain-011
specific specialist to offer complementary per-012
spectives without any model fine-tuning or013
parameter updates. To support this general-014
ist–specialist reasoning process, we introduce015
two auxiliary modules: a hierarchical retrieval016
mechanism that provides multi-scale exem-017
plars by selecting examples based on both018
semantic and rationale-level similarity, and019
a reliability scorer that evaluates reasoning020
consistency to guide final answer aggregation.021
TAGS achieves strong performance across nine022
MedQA benchmarks, boosting GPT-4o accu-023
racy by 13.8%, DeepSeek-R1 by 16.8%, and024
improving a vanilla 7B model from 14.1% to025
23.9%. These results surpass several fine-tuned026
medical LLMs, without any parameter updates.027

1 Introduction028

Large Language Models (LLMs) have recently029

demonstrated promising capabilities in medi-030

cal question answering (MedQA), achieving031

strong performance on a range of benchmark032

datasets (Singhal et al., 2025; Jin et al., 2022; Chen033

et al., 2023a,b; Zhou et al., 2023; Gao et al., 2024).034

However, despite these advances, recent studies035

have shown that even state-of-the-art models fre-036

quently fail on complex cases requiring deep do-037

main knowledge, multi-step reasoning, and general-038

ization to out-of-distribution clinical scenarios (Xu039

et al., 2024; Fan et al., 2025; Shi et al., 2024).040

To improve LLM reasoning in MedQA, two041

major research directions have emerged. The042

first involves prompting-based strategies, such as 043

Chain-of-Thought (CoT) (Wei et al., 2022) and 044

Multi-Agent Systems (MAS) (Chen et al., 2025b,a), 045

which guide LLMs through structured multi-step 046

reasoning or simulate expert collaboration. How- 047

ever, empirical studies (Tang et al., 2025) have 048

revealed that interactive multi-agent reasoning is 049

frequently brittle, with redundant outputs, unsta- 050

ble communication, and poor coordination under- 051

mining reliability. Recent benchmarks report high 052

failure rates for such systems, with multi-agent 053

discussions yielding limited improvements over 054

single-agent baselines (Cemri et al., 2025). The 055

second direction focuses on fine-tuning LLMs on 056

domain-specific medical data, yielding specialist 057

models like HUATUOGPT (Chen et al., 2024c) and 058

MEDLLAMA (Qiu et al., 2024). Although these 059

models perform well on in-distribution tasks, they 060

tend to overfit their training domains and exhibit 061

limited adaptability to emerging knowledge or un- 062

seen questions (Yang et al., 2024b; Ye et al., 2024). 063

While prior work has made progress on reason- 064

ing, retrieval, and domain adaptation, these compo- 065

nents are typically developed in isolation and lack 066

integration into a unified, inference-time frame- 067

work. As a result, existing approaches fall short in 068

three critical aspects for robust MedQA: acquiring 069

up-to-date medical knowledge, supporting diverse 070

and complementary reasoning strategies, and ensur- 071

ing answer reliability under distribution shift, all 072

without relying on any parameter updates. This mo- 073

tivates our work: designing a structured, test-time 074

reasoning framework that unifies generalist and 075

specialist perspectives with retrieval-augmented 076

prompting and verification. 077

Our motivation stems from the observation that 078

single-agent prompting often lacks the depth and 079

diversity required for complex medical reasoning, 080

while multi-agent systems tend to produce redun- 081

dant or inconsistent outputs due to unclear role as- 082

signments and weak complementarity. To address 083
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these limitations, we propose TAGS (Test-time084

Generalist–Specialist framework with retrieval-085

augmented reasoning and verification), a modular,086

inference-only framework that enhances medical087

question answering through structured reasoning088

collaboration. At its core, TAGS relies on a Gener-089

alist–Specialist Reasoning Collaboration (GSRC)090

module, which facilitates complementary reason-091

ing between a generalist agent and a specialist092

agent. Each agent brings a different perspective093

to the problem: the generalist offers broad clinical094

insights, while the specialist contributes precise,095

domain-specific reasoning. This collaboration is096

designed to produce diverse and accurate reasoning097

paths for challenging medical questions.098

To support GSRC, we introduce two auxiliary099

modules. First, to promote diverse and contex-100

tually grounded reasoning, we propose a Hier-101

archical Retrieval Augmentation (HRA) mecha-102

nism that leverages external, high-quality medical103

Chain-of-Thought (CoT) exemplars. HRA oper-104

ates in two stages: it first retrieves semantically105

relevant CoT exemplars based on the input ques-106

tion–answer (QA) pair to serve as initial references107

for both agents. Then, after the agents generate108

their initial reasoning steps, HRA performs a sec-109

ond round of retrieval based on the generated ra-110

tionales to obtain reasoning-level exemplars that111

further guide and enrich subsequent inference. Sec-112

ond, to ensure the reliability of the generated an-113

swers along with their reasoning chains, we intro-114

duce an Uncertainty-Aware Answer Aggregation115

(UAAA) module. UAAA evaluates the consistency116

between the reasoning path and the final answer117

produced by each agent, and aggregates the out-118

puts based on a confidence score and inter-agent119

agreement, yielding a robust and interpretable fi-120

nal prediction. This design effectively mitigates121

issues common in previous methods, such as in-122

sufficient reasoning depth and diversity in single-123

agent prompting and redundant or conflicting out-124

puts arising from ambiguous roles in multi-agent125

systems, ultimately producing more accurate and126

robust medical reasoning outcomes.127

Extensive experiments across nine MedQA128

benchmarks validate the robustness and adaptabil-129

ity of TAGS under both non-fine-tuned and fine-130

tuned settings. Our method consistently outper-131

forms strong prompting and agent-based baselines132

across multiple foundation models, including GPT-133

4o (18.0% to 31.8%), DeepSeek-R1 (27.2% to134

44.0%), and Qwen-2.5-7B (14.1% to 23.9%). No-135

tably, we show that even without retrieving seman- 136

tically similar exemplars, TAGS maintains strong 137

performance by exposing models to diverse reason- 138

ing patterns rather than specific answers. 139

2 Related Work 140

2.1 Medical Question Answering 141

Medical question answering (MedQA) aims to pre- 142

dict accurate answers to domain-specific clinical 143

or biomedical questions, often posed in a multiple- 144

choice format. Existing benchmarks span a vari- 145

ety of formats and reasoning challenges, including 146

clinical exam-style questions, evidence-based in- 147

ference, and multi-subject distractor-rich scenar- 148

ios (Pal et al., 2022). Recent approaches leverage 149

large language models (LLMs) or chain-of-thought 150

prompting to enhance reasoning (Singhal et al., 151

2025). MedCoT (Liu et al., 2024) explicitly inte- 152

grates multi-step rationale generation with hierar- 153

chical expert feedback. Concurrently, biomedical 154

LLMs such as MedLLaMA 1, HuatuoGPT (Chen 155

et al., 2024c), and OpenBioLLM (Pal and Sankara- 156

subbu, 2024) have achieved strong zero-shot or few- 157

shot performance on MedQA benchmarks. How- 158

ever, these models typically rely on direct answer 159

generation and lack explicit mechanisms for multi- 160

agent reasoning or consistency verification. In con- 161

trast, our method introduces a retrieval-augmented 162

multi-agent framework that performs staged rea- 163

soning and employs a dedicated verifier to assess 164

the reliability of generated answers, promoting ro- 165

bustness and interpretability. 166

2.2 Retrieval-Augmented Reasoning 167

Retrieval-augmented reasoning enhances predic- 168

tion quality, factual consistency, and interpretability 169

by incorporating external knowledge into the rea- 170

soning process. Early works such as RAG (Lewis 171

et al., 2020) retrieve text passages to guide open- 172

domain generation, while later methods extend re- 173

trieval to more structured forms, such as few-shot 174

demonstrations (Izacard et al., 2023) or intermedi- 175

ate reasoning paths (Shi et al., 2023). In the con- 176

text of chain-of-thought (CoT) prompting, retrieval 177

has been explored to select relevant questions, ra- 178

tionales, or multi-step reasoning exemplars that 179

better align with the target task (Xu et al., 2022; 180

He et al., 2025). Despite these advances, most 181

existing frameworks rely primarily on question- 182

level similarity and often neglect deeper alignment 183

1https://huggingface.co/johnsnowlabs/
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Outside Training Data
Question: 
Child with Type I Diabetes. What is the advised time 
for fundus examinations from the time of diagnosis?
Options: 
A. After 5 years 
B. After 2 years
C. After 10 years
D. At the time of diagnosis

Reasoning Process: 
Diabetic retinopathy is a complication of diabetes that 
affects the eyes. It is caused by damage to the blood 
vessels of the light-sensitive tissue at the back of the eye 
(retina)…

Question: 
What is the last stage of cell that undergoes cell division 
during the maturation process of red blood cells?
Options: 
A. reticulocyte 
B. orthochromatic normoblast
C. polychromatic normoblast
D. pronormoblast

Current Test Data

𝑇𝑇1 𝑇𝑇1

𝑇𝑇1

𝑇𝑇𝑆𝑆,2 𝑇𝑇𝐺𝐺,2

𝑇𝑇𝑆𝑆,2 𝑇𝑇𝐺𝐺,2
argmax

Final answer

Reasoning Consistency 
Evaluator (RCE)

(C) Uncertainty-Aware Answer 
Aggregation(UAAA)(B) Generalist-Specialist Reasoning Collaboration (GSRC)

(A) Hierarchical Retrieval Augmentation(HRA)

Specialist Agent 𝑆𝑆 General Practitioner 𝐺𝐺

Specialist Agent 𝑆𝑆 General Practitioner 𝐺𝐺

𝑅𝑅𝐺𝐺,1 𝐴𝐴𝐺𝐺,1𝑅𝑅𝑆𝑆,1𝐴𝐴𝑆𝑆,1

𝑅𝑅𝑆𝑆,2𝐴𝐴𝑆𝑆,2 𝑅𝑅𝐺𝐺,2 𝐴𝐴𝐺𝐺,2
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c𝑆𝑆,1 𝑐𝑐𝑆𝑆,2 𝑐𝑐𝐺𝐺,1 𝑐𝑐𝐺𝐺,2

𝑅𝑅𝑆𝑆,1
𝑅𝑅𝐺𝐺,1

Semantic Retrieval

Rationale Retrieval

Semantic Retrieval

Rationale Retrieval

Figure 1: Overview of the proposed TAGS framework. The architecture consists of three modules: (A) HRA
(Hierarchical Retrieval Augmentation), a two-stage retrieval process that selects semantically relevant exemplars
(T1) and refines them based on rationale alignment (TG,2, TS,2). (B) GSRC (Generalist-Specialist Reasoning
Collaboration) employs dual-agent reasoning across two rounds, generating four candidate (Rationale, Answer)
pairs. (C) UAAA (Uncertainty-Aware Answer Aggregation) assesses rationale consistency using the RCE and
aggregates reliability scores (c) to determine the final answer.

at the reasoning level. Our framework addresses184

this limitation by employing a hierarchical retrieval185

strategy: first retrieving question-option exemplars,186

then refining based on CoT similarity. This enables187

alignment in both problem context and reasoning188

structure, thereby improving downstream multi-189

agent reasoning.190

2.3 Multi-Agent Systems for Reasoning191

Multi-agent systems (MAS) have emerged as a192

promising approach to enhance the robustness, di-193

versity, and reliability of reasoning in complex194

tasks, including medical question answering. By195

orchestrating multiple reasoning paths or personas,196

MAS frameworks aim to mitigate biases and cap-197

ture complementary perspectives, which are par-198

ticularly critical in high-stakes medical decision-199

making. Recent studies have explored various200

MAS paradigms for medical reasoning. MedA-201

gents (Tang et al., 2023) proposes a collaborative202

multi-agent framework where multiple agents in- 203

dependently generate answers and a majority vot- 204

ing scheme determines the final prediction. MDA- 205

gents (Kim et al., 2024a) further enhances this 206

idea by introducing dynamic collaboration and 207

adaptive feedback mechanisms among agents dur- 208

ing the reasoning process. MedPrompt (Chen 209

et al., 2024d) adopts a multi-round prompting 210

strategy combined with ensemble voting to im- 211

prove medical QA performance. Additionally, 212

frameworks like Multi-Persona (Wang et al., 2023) 213

and Self-Refine (Madaan et al., 2024) leverage 214

self-collaboration and iterative self-feedback to 215

strengthen individual agent reasoning capabilities. 216

While multi-agent collaboration has demonstrated 217

effectiveness in improving answer quality, it also 218

introduces notable challenges. As highlighted in 219

recent evaluations (Tang et al., 2023), excessive 220

agent interactions may lead to reasoning conflicts, 221

unstable decision paths, and increased inference 222
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costs. Recent studies (Cemri et al., 2025) further223

reveal that over-complex MAS architectures often224

suffer from systemic failures, such as miscommu-225

nication, vague role specification, and weak verifi-226

cation. Moreover, most existing MAS frameworks227

lack explicit mechanisms to assess the internal con-228

sistency between generated reasoning and final an-229

swers, which can limit reliability in clinical con-230

texts. To address these limitations, we propose a231

lightweight General-Specialist Reasoning Collabo-232

ration (GSRC) strategy that pairs a generalist and a233

specialist agent in a complementary manner, pro-234

moting stable and robust medical reasoning with235

minimal inter-agent conflicts.236

3 Methodology237

We propose TAGS (Test-time General-238

ist–Specialist Reasoning with Retrieval-239

Augmentation and Uncertainty-Aware Verifi-240

cation), a parameter-efficient framework for241

medical question answering that operates entirely242

during inference. At its core is the General-243

ist–Specialist Reasoning Collaboration (GSRC),244

a dual-agent design that promotes reasoning245

diversity and domain alignment without requiring246

any parameter updates. To support GSRC, we247

introduce two auxiliary modules: Hierarchical248

Retrieval Augmentation (HRA), which supplies249

diverse and rationale-aligned exemplars, and250

Uncertainty-Aware Answer Aggregation (UAAA),251

which selects the final answer by evaluating the252

consistency of each reasoning path. As shown in253

Figure 1, these components form an integrated254

pipeline that enables robust, zero-shot clinical QA255

without model fine-tuning.256

3.1 Hierarchical Retrieval Augmentation257

Hierarchical Retrieval Augmentation (HRA)258

grounds reasoning in up-to-date evidence while259

injecting diverse paths for chain-of-thought (CoT)260

generation through a two-stage retrieval scheme.261

We retrieve from a frozen medical-QA corpus D262

whose entries are di = (Qi, Oi, Ai, Ri), where Ri263

denotes the CoT rationale. We use a frozen text264

encoder E(·) based on M3-Embedding (Chen et al.,265

2024b), with 1024-dimensional output.266

Stage 1: Initial semantic retrieval. We begin267

by embedding the query using a frozen encoder.268

Let z = E(Q⊕ O), where the question Q and its269

options O are concatenated in standard order (A,270

B, C, D). Cosine similarity is computed against all271

candidate embeddings E(Qi ⊕ Oi) in the corpus. 272

The top-K retrieved examples form: 273

T1 = Top-K
{
di ∈ D : sim(z, E(Qi⊕Oi))

}
. (1) 274

Stage 2: Rationale-guided retrieval. After 275

Round-1 reasoning yields preliminary rationales 276

RG,1 and RS,1, we retrieve exemplars whose stored 277

rationales best match these CoTs: 278

TG,2 = Top-K
{
di ∈ D : sim(rG, E(Ri))

}
, (2) 279

280
TS,2 = Top-K

{
di ∈ D : sim(rS , E(Ri))

}
. (3) 281

By aligning on reasoning paths rather than surface 282

form, Stage 2 injects complementary evidence be- 283

yond surface similarity, reducing the limitations of 284

purely semantic matching. 285

3.2 Generalist–Specialist Collaboration 286

Given the retrieved exemplar sets from HRA, Gen- 287

eralist–Specialist Reasoning Collaboration (GSRC) 288

performs dual-agent inference in two rounds by 289

coupling broad medical knowledge with focused 290

domain expertise. The system consists of a gener- 291

alist agent G and a specialist agent S, both instan- 292

tiated as prompted roles of the same frozen LLM 293

without parameter updates. 294

An auxiliary LLM role first infers the medical 295

specialty most relevant to the query (Q,O), yield- 296

ing a label s (e.g., cardiology). This label is then 297

injected into the prompt for S as “You are a medical 298

specialist in the field of [s]”, guiding its reasoning 299

toward domain-specific knowledge while preserv- 300

ing the core semantics of (Q,O). Further details 301

are provided in Appendix B. The collaboration un- 302

folds in two rounds that iteratively refine rationales 303

and answers. 304

Round 1: Initial hypothesis generation. Both 305

agents receive the query (Q,O) together with the 306

semantically retrieved set T1 (§3.1); the specialist 307

additionally sees the inferred specialty s. Each 308

agent produces an initial CoT and answer: 309(
RG,1, AG,1

)
= G

(
Q,O, T1

)
,(

RS,1, AS,1

)
= S

(
Q,O, T1, s

)
.

(4) 310

These preliminary CoTs trigger Stage 2 of HRA, 311

which returns the rationale-aligned exemplar sets 312

TG,2 and TS,2. 313

Round 2: Refined reasoning with aligned ex- 314

emplars. Using the tailored sets, the agents gener- 315

ate updated rationales and answers: 316(
RG,2, AG,2

)
= G

(
Q,O, TG,2

)
,(

RS,2, AS,2

)
= S

(
Q,O, TS,2, s

)
.

(5) 317
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Finally, the four (rationale, answer) pairs are gath-318
ered into a candidate set319

C =
{
(Rk,r, Ak,r) | k∈{G,S}, r∈{1, 2}

}
, (6)320

which is then forwarded to the Uncertainty-Aware321

Answer Aggregation module (§3.3) for scoring and322

final selection.323

3.3 Uncertainty-Aware Answer Aggregation324

Uncertainty-Aware Answer Aggregation (UAAA)325

takes as input the candidate set C generated by326

GSRC (§3.2) and selects a single high-confidence327

answer through consistency-based scoring. To ac-328

complish this, we define a Reasoning Consistency329

Evaluator (RCE), implemented as a separate zero-330

shot role of the same frozen LLM.331

Given a candidate pair (Rk, Ak), the RCE as-332

sesses how well the rationale supports the answer333

in the context of the original query (Q,O), and334

assigns an integer score ck ∈ [0, 5], where higher335

values indicate stronger logical and clinical coher-336

ence. The scoring rubric is detailed in Appendix C.337

The final answer is selected as:338

Afinal = Ak⋆ , k⋆ = argmax
k∈C

ck. (7)339

In the case of ties, preference is resolved deter-340

ministically in the following order: specialist round341

2, generalist round 2, specialist round 1, and gen-342

eralist round 1. By explicitly verifying the internal343

consistency of each reasoning path, UAAA miti-344

gates hallucination propagation and stabilizes final345

predictions, all without any parameter updates.346

4 Experiments347

4.1 Experimental Setting348

Retrieval Dataset. We use the MedReason349

dataset (Wu et al., 2025) as our external retrieval350

corpus. It contains 32,682 medical QA pairs with351

clinically validated, step-by-step explanations gen-352

erated via a knowledge graph–guided pipeline353

based on PrimeKG (Chandak et al., 2023). Un-354

like general CoT datasets, MedReason ensures fac-355

tual correctness by filtering out chains that do not356

lead to the correct answer. We treat it as a struc-357

tured knowledge base for retrieving semantically358

or logically relevant examples at inference. Dataset359

construction details and examples are provided in360

Appendix D.361

Test Datasets. We evaluate TAGS on a cu-362

rated benchmark of nine medical QA datasets363

selected from the MEDAGENTSBENCH frame- 364

work (Tang et al., 2025), designed to assess com- 365

plex clinical reasoning. The benchmark includes 366

challenging subsets from: MedQA (Jin et al., 367

2021), a multilingual board-exam dataset (e.g., 368

USMLE); PubMedQA (Jin et al., 2019), derived 369

from biomedical literature with yes/no/maybe an- 370

swers; MedMCQA (Pal et al., 2022), covering 371

21 medical subjects from Indian medical exams; 372

MedBullets (Chen et al., 2024a), featuring long- 373

context clinical questions; MedExQA (Kim et al., 374

2024b), emphasizing explainable QA across five 375

specialties; MedXpertQA (Zuo et al., 2025), with 376

subsets targeting reasoning and understanding; 377

MMLU (Hendrycks et al., 2020) and MMLU-Pro 378

(Wang et al., 2024), general benchmarks with med- 379

ical subfields. 380

To better reflect real-world difficulty, we fol- 381

low the hard subset construction pipeline proposed 382

by MEDAGENTSBENCH. Questions are selected 383

based on model failure rates (<50% accuracy across 384

a set of strong models), medical topic coverage, and 385

reasoning depth. Specifically, we include 100 hard 386

questions each from MedQA, PubMedQA, MedM- 387

CQA, MedExQA, and MMLU-Pro; 100 from each 388

MedXpertQA subset (Reasoning and Understand- 389

ing); 89 from MedBullets; and 73 from MMLU. 390

This results in a total of 862 expert-verified in- 391

stances designed to stress-test the reasoning capa- 392

bilities of large language models. 393

Baselines. We first compare our method against 394

several widely adopted prompting and reasoning 395

strategies that do not involve model updates: (1) 396

CoT (Chain-of-Thought)(Wei et al., 2022): A 397

prompting technique that guides the model to artic- 398

ulate intermediate reasoning steps before producing 399

a final answer. (2) CoT-SC (Chain-of-Thought 400

with Self-Consistency)(Wang et al., 2022): An ex- 401

tension of CoT that generates multiple reasoning 402

paths and selects the most consistent answer via 403

majority voting. (3) Multi-Persona(Wang et al., 404

2023): A method that simulates multiple expert 405

personas to collaboratively reason through clinical 406

questions. (4) Self-Refine(Madaan et al., 2024): A 407

self-improvement framework in which the model 408

iteratively refines its own responses across multi- 409

ple reasoning stages. (5) MedAgents(Tang et al., 410

2023): A domain-specific multi-agent framework 411

that employs multiple specialist agents for collab- 412

orative clinical reasoning. (6) MDAgents(Kim 413

et al., 2024a): A lightweight variant of MedA- 414

gents that combines minimal agent collaboration 415
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Method MedQA PubMedQA MedMCQA MedBullets MMLU MMLU-Pro MedExQA MedXpert-R MedXpert-U Average

GPT-4o 32.0 9.0 25.0 19.1 24.7 21.0 18.0 7.0 6.0 18.0
+ few-shot 31.0 16.0 34.0 16.9 32.9 27.0 17.0 8.0 11.0 21.7
+ RAG 42.0 12.0 30.0 22.5 20.5 37.0 15.0 19.0 10.0 23.1
+ CoT 39.0 10.0 30.0 28.1 26.0 35.0 24.0 12.0 15.0 24.3
+ CoT-SC 37.0 6.0 35.0 30.3 30.1 43.0 22.0 10.0 14.0 25.3
+ Multi-Persona 45.0 15.0 25.0 29.2 37.0 42.0 21.0 10.0 16.0 26.7
+ Self-Refine 41.0 13.0 34.0 28.1 34.2 34.0 22.0 17.0 19.0 26.9
+ MedAgents 43.0 15.0 30.0 27.0 28.8 8.0 19.0 3.0 6.0 20.0
+ MDAgents 36.0 11.0 22.0 21.3 24.7 8.0 13.0 4.0 5.0 16.1
+ MedPrompt 34.0 11.0 26.0 22.5 26.0 22.0 16.0 14.0 9.0 20.1
+ Ours 54.0 13.0 32.0 33.7 45.2 47.0 17.0 22.0 22.0 31.8

Table 1: Performance heatmap by methods and datasets. All tasks are evaluated on the HARD set with Pass@1
Accuracy (%) using GPT-4o base model.

Method MedQA PubMedQA MedMCQA MedBullets MMLU MMLU-Pro MedExQA MedXpert-R MedXpert-U Average

DeepSeek-R1 38.0 11.0 28.0 36.0 32.9 36.0 20.0 20.0 23.0 27.2
+ few-shot 27.0 12.0 32.0 33.7 35.6 41.0 27.0 11.0 9.0 25.4
+ RAG 49.0 20.0 31.0 43.8 53.8 42.0 25.0 28.0 26.0 35.4
+ CoT 47.0 12.0 31.0 39.3 38.4 35.0 22.0 27.0 27.0 31.0
+ CoT-SC 52.0 14.0 32.0 43.8 45.2 38.0 24.0 17.0 26.0 32.4
+ Multi-Persona 52.0 18.0 37.0 42.7 42.5 38.0 26.0 23.0 26.0 33.9
+ Self-Refine 33.0 17.0 30.0 34.8 27.4 22.0 24.0 12.0 13.0 23.7
+ MedAgents 48.0 21.0 22.0 44.9 43.8 35.0 27.0 22.0 25.0 32.1
+ MedPrompt 46.0 14.0 30.0 38.2 45.2 27.0 24.0 8.0 7.0 26.6
+ Ours 55.0 28.0 35.0 52.8 61.6 53.0 26.0 36.0 49.0 44.0

Table 2: Performance heatmap by methods and datasets. All tasks are evaluated on the HARD set with Pass@1
Accuracy (%) using DeepSeek-R1 base model.

with retrieval augmentation to improve reasoning.416

(7) MedPrompt (Chen et al., 2024d): A retrieval-417

augmented prompting strategy that integrates se-418

mantically similar historical cases to enhance clini-419

cal inference.420

We additionally report results under a few-shot421

baseline, where five training examples from the422

target dataset are retrieved and used as in-context423

demonstrations for single-pass inference. We also424

include a RAG baseline, which retrieves the top-K425

most semantically similar questions with accom-426

panying CoTs from the MedReason dataset and427

feeds them directly to the model. This RAG set-428

ting shares the same retrieval setup but excludes429

agent collaboration and verification, highlighting430

the value of structured reasoning.431

We further evaluate our method against sev-432

eral strong open-source foundation models and433

their medically adapted variants: (1) Qwen2.5-434

7B (Yang et al., 2024a): A 7B general-purpose435

model instruction-tuned for diverse tasks, evalu-436

ated both with and without CoT prompting. (2)437

LLaMA-3-8B (Grattafiori et al., 2024): Meta’s lat-438

est 8B instruction-tuned model with improved rea-439

soning capabilities. (3) HuatuoGPT-o1-7B (Chen440

et al., 2024c): A 7B model fine-tuned for complex441

medical reasoning via reinforcement learning. (4)442

HuatuoGPT-o1-8B (Chen et al., 2024c): An en-443

hanced 8B version of HuatuoGPT, optimized for 444

clinical inference tasks. (5) MedLLaMA-3-8B- 445

v1.0 (Qiu et al., 2024): A medical-adapted vari- 446

ant of LLaMA-3 trained on biomedical corpora. 447

(6) MedLLaMA-3-8B-v2.0: An updated release 448

with improved performance on expert-level med- 449

ical benchmarks. (7) OpenBioLLM-8B (Pal and 450

Sankarasubbu, 2024): An open-source 8B biomed- 451

ical language model fine-tuned for healthcare and 452

life sciences applications. 453

Evaluation Metrics Following (Tang et al., 454

2023), we report Pass@1 Accuracy as the evalua- 455

tion metric, which measures whether the model’s 456

first generated answer exactly matches the ground- 457

truth answer. 458

Reproducibility. All experiments were con- 459

ducted using Python 3.10 and PyTorch 2.4.0 on 460

four NVIDIA H100 GPUs, each with 80 GB of 461

memory. For proprietary LLM baselines such as 462

GPT-4o and DeepSeek-R1, we accessed the mod- 463

els through their official APIs and ensured con- 464

sistent use of the same model version across all 465

runs. For open-source models, we directly loaded 466

checkpoint weights from their respective official 467

Hugging Face repositories to ensure reproducibility 468

and transparency. 469
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Method MedQA PubMedQA MedMCQA MedBullets MMLU MMLU-Pro MedExQA MedXpert-R MedXpert-U Average

Qwen2.5-7B 16.0 16.0 24.0 4.5 13.7 26.0 9.0 10.0 8.0 14.1

Llama-3-8B 18.0 13.0 23.0 16.9 11.0 23.0 11.0 10.0 4.0 14.4

HuatuoGPT-o1-7B 22.0 21.0 26.0 12.4 13.7 29.0 9.0 11.0 7.0 16.8

HuatuoGPT-o1-8B 29.0 20.0 33.0 20.2 21.9 17.0 18.0 16.0 7.0 20.2

MedLlama-3-8B-v1.0 24.0 20.0 22.0 14.6 16.4 12.0 12.0 11.0 11.0 15.9

MedLlama-3-8B-v2.0 28.0 25.0 22.0 22.5 32.9 12.0 22.0 9.0 8.0 20.2

OpenBioLLM-8B 19.0 29.0 20.0 19.1 21.9 2.0 17.0 7.0 3.0 15.3

Qwen2.5-7B + Ours 28.0 25.0 24.0 14.6 35.6 25.0 16.0 18.0 29.0 23.9

Table 3: Comparison with fine-tuned medical LLMs on nine MedQA benchmarks.

4.2 Compared with Prompting and MAS470

We evaluate the effectiveness of TAGS by compar-471

ing it with a diverse set of prompting-based and472

multi-agent reasoning baselines across nine chal-473

lenging MedQA benchmarks. Tables 1 and 2 sum-474

marize the results in terms of Pass@1 Accuracy,475

evaluated on the HARD split using two founda-476

tional LLMs: GPT-4o and DeepSeek-R1. Under477

the GPT-4o setting, TAGS achieves the highest478

average accuracy of 31.8%, outperforming all base-479

lines including Self-Refine (26.9%), MedAgents480

(20.0%), and CoT-SC (25.3%). The most notable481

improvements appear on MedQA (+9.0 over Multi-482

Persona), MMLU (+8.2 over Multi-Persona), and483

MedXpert-R (+3.0 over RAG), highlighting the im-484

pact of verifier-guided aggregation and structured485

multi-agent reasoning. TAGS also surpasses stan-486

dard few-shot and RAG baselines by margins of487

+10.1 and +8.7 respectively. With the DeepSeek-488

R1 base model, TAGS achieves an average accu-489

racy of 44.0%, outperforming CoT-SC (32.4%),490

Multi-Persona (33.9%), and MedAgents (32.1%).491

Notably, MDAgents consistently failed under this492

setting due to format inconsistencies. TAGS also493

surpasses the few-shot and RAG baselines by mar-494

gins of +18.6 and +8.5, respectively, demonstrating495

the scalability of our framework across both gen-496

eral and domain-specific tasks.497

4.3 Compared with Fine-Tuned LLMs498

To further contextualize the performance of our499

TAGS framework, we evaluate its effectiveness500

when integrated with the Qwen2.5-7B base model501

and compare its performance against a series of502

prominent open-source and medically fine-tuned503

large language models across the same nine chal-504

lenging MedQA datasets. The results of this com-505

parison are presented in Table 3. As shown in the506

table, our TAGS framework substantially boosts507

the zero-shot question answering capability of the508

base Qwen2.5-7B model, improving its average ac- 509

curacy from 14.1% to 23.9%. In particular, TAGS 510

demonstrates robust performance gains on difficult 511

benchmarks such as MedQA (+12.0 percentage 512

points), MMLU (+21.9 percentage points), and 513

MedXpert-U (+21.0 percentage points). Notably, 514

our inference-only strategy even outperforms sev- 515

eral models that have been fine-tuned with domain- 516

specific medical corpora or expert feedback, such 517

as MedLLaMA-3-8B and the HuatuoGPT-o1 vari- 518

ants, on the majority of the evaluated datasets. 519

These results strongly highlight the significant po- 520

tential of structured retrieval and multi-agent rea- 521

soning, combined with uncertainty-aware verifica- 522

tion, to effectively close the performance gap with 523

models requiring extensive fine-tuning, while re- 524

taining the inherent flexibility and adaptability of a 525

zero-shot approach. 526

4.4 Ablation Study 527

We conduct an ablation study on the Qwen2.5- 528

7B model to assess the impact of each module in 529

the TAGS framework, focusing on two datasets: 530

MMLU and MedXpert-U. As shown in Table 4, 531

the baseline Qwen2.5-7B model without any mod- 532

ule achieves 13.7% and 8.0% accuracy on MMLU 533

and MedXpert-U, respectively. Incorporating re- 534

trieval augmentation (RAG) improves the scores 535

to 20.5% and 10.0%, highlighting the utility of ex- 536

ternal knowledge retrieval. Adding the generalist 537

(G) and specialist (S) agents with a majority vot- 538

ing mechanism raises MMLU accuracy to 30.1%, 539

while MedXpert-U remains at 10.0%, indicating 540

limited impact on domain-specific tasks. Integrat- 541

ing hierarchical retrieval augmentation (HRA) re- 542

sults in notable gains, with 34.2% for the generalist 543

and 32.9% for the specialist, indicating the value of 544

reasoning-guided retrieval. The complete TAGS 545

framework, including uncertainty-aware aggrega- 546

tion (UAAA), achieves the best performance of 547
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RAG G S HRA UAAA MMLU MedXpert-U
13.7 8.0

✓ 20.5 10.0
✓ ✓ ✓ 30.1 10.0
✓ ✓ ✓ ✓ 34.2 16.0
✓ ✓ ✓ ✓ 32.9 18.0
✓ ✓ ✓ ✓ 31.5 22.0
✓ ✓ ✓ ✓ ✓ 35.6 29.0

w/o-top10 ✓ ✓ ✓ ✓ 37.0 24.0
✓ ✓ w-3rd ✓ ✓ 34.2 23.0

Table 4: Ablation Study on TAGS using Qwen2.5-7B.
RAG: Retrieval-Augmented Generation; G: Generalist
Agent; S: Specialist Agent; HRA: Hierarchical Re-
trieval Augmentation; UAAA: Uncertainty-Aware An-
swer Aggregation.

35.6% and 29.0%, confirming the synergistic im-548

pact of structured retrieval, dual-agent reasoning,549

and verification.550

To assess whether our framework relies on re-551

trieving semantically closest examples, we intro-552

duce RAG-w/o-topk, which explicitly excludes the553

top-10 most similar questions during retrieval. De-554

spite this restriction, performance only marginally555

decreases, demonstrating that our model benefits556

primarily from exposure to valid reasoning patterns557

rather than from copying specific answers. We558

further introduce S-w-3rd, a variant that assigns559

the 3rd most relevant specialist instead of the top-560

ranked one. This setting simulates scenarios where561

the domain classifier misidentifies the optimal ex-562

pert, which may occur in real-world deployments.563

The performance drops only slightly under this per-564

turbation, suggesting that TAGS does not strongly565

depend on perfect specialist selection. Even sub-566

optimal specialists can provide useful guidance,567

highlighting the robustness of our framework.568

4.5 Hyperparameter Analysis569

Figure 2 shows TAGS’ sensitivity to two key hyper-570

parameters: the number of specialist agents and the571

retrieval size K. In Figure 2(a), adding one special-572

ist to the generalist improves accuracy from 34.2%573

to 45.2% on MMLU and from 16.0% to 22.0%574

on MedXpert-U. However, adding more special-575

ists brings limited or no further gains, likely due576

to redundancy or conflicts in reasoning paths. Fig-577

ure 2(b) shows that accuracy peaks at K = 2 and578

declines with larger K, as additional exemplars579

may introduce noise or irrelevant content that mis-580

leads the model. These results support our choice581

of using one specialist and K = 2 as the default582

configuration, balancing diversity and robustness.583
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Figure 2: Hyper-parameter sensitivity analysis of spe-
cialist count and retrieval size in relation to accuracy.

4.6 Inference Efficiency 584

On the MedQA dataset with GPT-4o, TAGS takes 585

72 seconds per question on average, which is longer 586

than CoT-SC (27.7s) but shorter than Multi-Persona 587

(109.6s). Although slower than simple prompt- 588

ing, TAGS achieves substantially higher accuracy. 589

Both reasoning and verification are parallelizable, 590

enabling efficient deployment in real-world clinical 591

settings. This moderate inference cost represents 592

a favorable trade-off for improved robustness and 593

reliability. Additionally, these stages can be paral- 594

lelized across GPU streams or executed via asyn- 595

chronous API calls to further speed up inference. 596

5 Conclusion 597

We presented TAGS, a parameter-efficient and test- 598

time-only framework designed to enhance reliabil- 599

ity in medical question answering without model 600

fine-tuning. TAGS introduces a structured reason- 601

ing paradigm through generalist–specialist reason- 602

ing collaboration, which combines the breadth of a 603

generalist with the depth of a specialist to generate 604

complementary inference paths. This collaboration 605

is guided by hierarchical retrieval augmentation, 606

which retrieves exemplars at both semantic and 607

rationale levels to enrich reasoning diversity, and 608

finalized by uncertainty-aware answer aggregation 609

to select robust answers. Extensive experiments 610

on nine challenging MedQA benchmarks, span- 611

ning general-purpose and fine-tuned LLMs, demon- 612

strate TAGS’ consistent superiority over prompting- 613

based, retrieval-augmented, and multi-agent base- 614

lines. Notably, our method delivers substantial 615

improvements even for compact 7B models, high- 616

lighting its adaptability across model scales. TAGS 617

offers a practical, inference-only alternative for 618

trustworthy medical AI and opens promising di- 619

rections for adaptive retrieval, dynamic agent col- 620

laboration, and scaling to multimodal or real-world 621

clinical QA workflows. 622
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Limitations623

While TAGS offers a robust, inference-only ap-624

proach to medical QA, it carries several limitations.625

First, it depends heavily on the coverage and qual-626

ity of the external retrieval corpus: gaps or biases627

in the QA database may lead to missing or mis-628

leading exemplars, particularly for rare diseases629

or newly emerging clinical scenarios. Second, the630

Reasoning Consistency Evaluator (RCE) is itself a631

zero-shot LLM prompt and may inherit the same632

hallucination tendencies or biases as the genera-633

tor agents, potentially mis-scoring perfectly valid634

but unconventional reasoning chains. Third, the635

two-round retrieval and dual-agent design, while636

effective, substantially increases inference latency637

and API cost compared to single-pass prompting;638

this may limit real-time deployment in resource-639

constrained clinical settings.640

Additionally, our current evaluation focuses641

solely on answer accuracy (Pass@1), without as-642

sessing the interpretability or faithfulness of rea-643

soning paths. Future work may benefit from human644

evaluation or rationale consistency metrics to fur-645

ther assess clinical applicability.646

Moreover, our specialty inference component647

can occasionally misclassify the most relevant do-648

main, which, although gracefully handled, may still649

introduce suboptimal reasoning contexts. Finally,650

our evaluation is confined to English-language,651

multiple-choice benchmarks and does not cover652

open-ended clinical dialogs, multimodal data (e.g.,653

images, lab reports), or non-English patient popu-654

lations. Addressing these limitations will require655

enriching and updating the retrieval corpus, devel-656

oping more calibrated or human-in-the-loop veri-657

fier mechanisms, optimizing retrieval budgets and658

round counts, and extending evaluation to diverse,659

real-world clinical workflows.660
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the MEDAGENTSBENCH framework (Tang et al., 897

2025). These datasets are de-identified and col- 898

lected from open educational or biomedical sources 899

such as medical board exams and peer-reviewed 900

literature. No private health records or patient- 901

identifiable information were used. 902

Our proposed framework operates entirely at test 903

time and does not require any model fine-tuning or 904

user data collection. All evaluations are conducted 905

offline on benchmark datasets, and no deployment 906

in real clinical settings has been performed. 907

While our method is designed to improve the ro- 908

bustness and reliability of medical LLMs, it is not 909

intended for use in high-stakes clinical decision- 910

making without appropriate human oversight. We 911

emphasize that the generated answers should not 912

be interpreted as medical advice. Future work may 913

involve incorporating human-in-the-loop mecha- 914

nisms and broader impact assessments before real- 915

world deployment. 916

B Generalist–Specialist System Roles and 917

Prompt Templates 918

B.1 System Prompt for Specialist and 919

Generalist 920

To ensure consistency and clarity across different 921

model roles, we define structured system prompts 922

tailored to each classifier in our multi-agent frame- 923

work. These prompts specify role-specific reason- 924

ing strategies and output formats, enabling the mod- 925

els to adopt appropriate clinical reasoning behav- 926

iors under zero-shot test-time conditions. 927

The system prompt for the specialist categoriza- 928

tion agent is presented in Table 5, while the diag- 929

nostic prompt for the specialist agent is shown in 930

Table 6. The prompt for the generalist agent is 931

provided in Table 7. 932

B.2 Prompt Organization and Structure 933

To ensure faithful and consistent model behavior 934

across different roles and stages of inference, we 935

design modular and task-specific prompt templates. 936

These templates guide the models in both few-shot 937

reasoning and auxiliary classification tasks. 938

Specifically, the specialist classification prompt 939

(Table 8) is used to determine the relevant subfields 940
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Specialist Categorization — System Prompt
You are a senior medical expert tasked with classifying
clinical multiple-choice problems into the most relevant areas
of medical science.

Your role is strictly to determine and output the classification.

Important: Do not provide any explanation, reasoning, or
commentary. Only output the final classification strictly
following the format.

Table 5: System prompt for the specialist categorization.

Specialist Agent — System Prompt
You are an experienced specialist in {domain}. Your role
is to carefully analyze clinical multiple-choice questions
from the standpoint of a {domain.lower()} expert. You
should reason by focusing on the interpretation of symptoms,
underlying pathophysiology, and domain-specific diagnostic
principles.

First, review the provided reference examples and understand
their reasoning patterns.
Then, based on your specialist knowledge, perform structured,
step-by-step reasoning for the new question.

Required output format
Thought: [your detailed step-by-step reasoning]
Answer: [one of A, B, C, . . . ]

Table 6: System prompt for the specialist agent.

Generalist Agent — System Prompt
You are a general practitioner trained to manage a wide
range of clinical conditions. Your task is to evaluate clinical
multiple-choice questions using broad, cross-disciplinary
medical knowledge. Focus on extracting key clinical findings,
ruling out unlikely diagnoses, and applying general reasoning
principles.

First, analyze the reference examples to understand their
diagnostic thought process.
Then, produce a step-by-step analysis for the new question.

Required output format
Thought: [your detailed step-by-step reasoning]
Answer: [one of A, B, C, . . . ]

Table 7: System prompt for the generalist agent.

of medicine needed to solve a given question, serv- 941

ing as a basis for downstream role assignment and 942

retrieval. Meanwhile, the few-shot prompt tem- 943

plate (Table 9) provides structured instructions and 944

reference examples to facilitate reasoning transfer 945

for clinical question answering. 946

Specialist Classifier — Prompt
Task Instructions

• Carefully analyze the following medical question:

'''{question}'''

• The corresponding options are:

'''{options}'''

• Based on both the question and the options, determine the
top 3 most relevant subfields of medicine that are required
to solve this question.

• You must only output in the exact format:

Medical Field: Field1 | Field2 | Field3

Table 8: Prompt used for classifying medical questions
into relevant specialist subfields.

C The Reasoning Consistency Evaluator 947

Rubric and Prompt 948

To robustly aggregate multi-agent responses, we 949

introduce a reliability scoring mechanism that eval- 950

uates the consistency between an agent’s reasoning 951

and its final answer. In scenarios where a question 952

has many answer options (e.g., N ), simple majority 953

voting becomes inefficient — achieving a reliable 954

consensus typically requires at least N+1 agreeing 955

agents. 956

To address this, we employ a scoring-based ver- 957

ification strategy: each agent’s reasoning is eval- 958

uated by a separate verifier agent that assigns a 959

reliability score ranging from 1 to 5. This enables 960

us to treat scores as soft confidence signals and 961

aggregate responses more efficiently, even when 962

only a few answers are available. The resulting 963

per-sample reliability sum lies in the range of 4–20 964

(with 4 verifiers), providing fine-grained guidance 965

for final answer selection. The full scoring prompt 966

is shown in Table 10. 967

D Reference CoT Dataset Examples 968

We adopt the MedReason dataset (Wu et al., 969

2025) as our external reference corpus to support 970
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Few-shot Prompt Template
Header

“Your task is to solve the following clinical multiple-choice
question.”

Question Block
Present the target question text, then list answer options
(A/B/C/. . . ).

Instruction Block

• The prompt shows N solved reference examples.
• Each example contains:

– Finding Reasoning Paths: brainstorming approaches
– Reasoning Process: a structured, step-by-step solution

• Focus only on learning the reasoning patterns.
• For the new question, generate your own reasoning and

answer.
• Constraints:

– Always choose one of the provided options—never “un-
known”

– Follow the exact output format shown below

Output Format Hint
Thought: [your detailed step-by-step reasoning]
Answer: [one of A, B, C, . . . ]

Reference Examples
For each retrieved example i insert:
Reference Example i:
<question text>
<options>
Thought: <reference rationale>

Table 9: Prompt template used for few-shot reasoning
with retrieved reference examples.

retrieval-augmented reasoning. MedReason com-971

prises 32,682 high-quality question–answer pairs,972

each accompanied by detailed, clinically grounded973

chain-of-thought (CoT) explanations. The dataset974

is constructed through a knowledge graph–guided975

pipeline that ensures both logical consistency and976

medical factuality.977

Specifically, the authors first collect QA pairs978

from seven public medical benchmarks, includ-979

ing MedQA, MedMCQA, PubMedQA, MMLU,980

MedXpert, Huatuo, and HLE. For each QA pair,981

relevant medical entities are extracted from both the982

question and the answer using GPT-4o and are then983

mapped to a structured medical knowledge graph,984

PrimeKG. Next, the shortest reasoning paths con-985

necting the question and answer entities within the986

graph are retrieved and pruned using LLM-based987

selection to retain only clinically relevant paths.988

These paths serve as scaffolds for guiding step-by-989

step CoT generation.990

To guarantee data quality, each generated rea-991

Reliability Scoring — System Prompt
A clinical AI agent has answered the following multiple-
choice question:

Question:
“{question}”

Options:
“{$options_str$}”

The agent provided the following reasoning:
Thought:
“{thought}”

Final Answer:
“{answer}”

Your Role:
You are a critical-thinking medical reviewer. Your task is to
assign a reliability score from 1 to 5 based on how well the
reasoning supports the answer.

Scoring Scale:

• 5 — Reasoning is complete, medically accurate, and fully
supports the answer.

• 4 — Mostly correct with minor issues, but the answer is
still justified.

• 3 — Reasoning has some issues or omissions, but partially
supports the answer.

• 2 — Reasoning is flawed or incomplete; answer is weakly
supported.

• 1 — Reasoning is incorrect or misleading; answer is not
justified.

Output Format:
Score: [1-5]

Table 10: System prompt used by the reasoning consis-
tency evaluator to assign a soft reliability score.

soning trace is verified by prompting the LLM to 992

reproduce the original answer solely based on the 993

CoT explanation. If the answer cannot be recov- 994

ered, the CoT is discarded. This quality filtering 995

process reduces 45K generated samples to a final 996

dataset of 32,682 verified CoTs, ensuring that each 997

retained example is both logically sound and clini- 998

cally accurate. 999

The 7,168th indexed sample from MedReason is 1000

shown below as an example: 1001

Question: 1002

A young male patient presents with complete rectal 1003

prolapse. The surgery of choice is? 1004

Answer Choices: 1005

A. Abdominal rectopexy 1006

B. Delerom’s procedure 1007
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C. Anterior resection1008

D. Goodsall’s procedure1009

Answer:1010

Abdominal rectopexy. Explanation: Surgery is re-1011

quired, and the operation can be performed the1012

perineal or the abdominal approaches. An abdom-1013

inal rectopexy has a lower rate of recurrence, as1014

an abdominal procedure risks damage to the pelvic1015

autonomic nerves, resulting in possible sexual dys-1016

function, a perineal approach is also usually pre-1017

ferred in young men. Ref: Bailey & Love’s Short1018

Practice of Surgery, 25 ed., p. 12251019

Reasoning:1020

Finding reasoning paths: 1. Rectal prolapse (dis-1021

ease) -> Surgical treatment options -> Perineal ap-1022

proach vs. Abdominal approach 2. Abdominal1023

approach -> Abdominal rectopexy -> Risk of re-1024

currence vs. risk of complications 3. Abdominal1025

rectopexy -> Potential complications -> Pelvic au-1026

tonomic nerve damage -> Male sexual dysfunction1027

Reasoning Process: 1.Understanding Rectal1028

Prolapse and Treatment Options: Rectal pro-1029

lapse is a condition where the rectum protrudes1030

through the anus. Surgical intervention is often1031

required, and the two main approaches are the per-1032

ineal and abdominal approaches.1033

2.Evaluating Surgical Approaches: -Perineal1034

Approach: This is generally less invasive and may1035

be preferred in older or frail patients due to lower1036

surgical risk. However, it is associated with a1037

higher rate of recurrence. -Abdominal Approach:1038

This includes procedures like abdominal rectopexy,1039

which tend to have a lower recurrence rate. How-1040

ever, it is more invasive and carries a risk of com-1041

plications.1042

3.Abdominal Rectopexy and Complications: -1043

Recurrence Rate: Abdominal rectopexy is favored1044

for its lower recurrence rate compared to perineal1045

procedures. -Complications: A significant risk1046

associated with the abdominal approach is poten-1047

tial damage to the pelvic autonomic nerves. This1048

can lead to complications such as male sexual dys-1049

function, which is an important consideration in a1050

young male patient.1051

Conclusion: Abdominal rectopexy is the1052

preferred surgical option for a young male patient1053

with complete rectal prolapse due to its lower rate1054

of recurrence. However, it is important to consider1055

the risk of pelvic autonomic nerve damage, which1056

could lead to male sexual dysfunction. This risk1057

should be weighed against the benefits of a lower1058

recurrence rate when deciding on the surgical1059

approach. 1060

1061

E Test Dataset Examples 1062

Test Datasets. We conduct experiments on a cu- 1063

rated benchmark comprising challenging subsets 1064

of nine medical QA datasets, selected from the 1065

MEDAGENTSBENCH framework (Tang et al., 1066

2025). This benchmark is specifically designed 1067

to evaluate complex medical reasoning and in- 1068

cludes questions that require multi-step clinical in- 1069

ference, diagnosis formulation, and treatment plan- 1070

ning. The original datasets include: MedQA (Jin 1071

et al., 2021), a multilingual dataset with English 1072

questions derived from professional medical board 1073

exams (e.g., USMLE), focusing on diagnosis and 1074

treatment knowledge. Each question includes four 1075

answer choices, with an average length of 167 to- 1076

kens. PubMedQA (Jin et al., 2019), constructed 1077

from biomedical research articles in PubMed, re- 1078

quires reasoning over scientific evidence to deter- 1079

mine yes/no/maybe answers. It contains long pas- 1080

sages with an average length of 316 tokens. MedM- 1081

CQA (Pal et al., 2022), sourced from Indian medi- 1082

cal entrance exams (AIIMS and NEET-PG), com- 1083

prises short multiple-choice questions across 21 1084

medical subjects, averaging 18.7 tokens per ques- 1085

tion. MedBullets (Chen et al., 2024a), a high-yield 1086

medical education platform, provides detailed clin- 1087

ical questions with up to five answer options and 1088

longer contexts (avg. 213 tokens). MedExQA 1089

(Kim et al., 2024b), covers five medical special- 1090

ties and emphasizes both correctness and explain- 1091

ability. It includes 935 questions, each with four 1092

options. MedXpertQA (Zuo et al., 2025), con- 1093

sists of two subsets: Reasoning and Understanding, 1094

specifically annotated to distinguish complex clini- 1095

cal inference tasks from knowledge recall. MMLU 1096

(Hendrycks et al., 2020) and MMLU-Pro (Wang 1097

et al., 2024), general-purpose multitask bench- 1098

marks that include medical subsets testing both 1099

factual recall and abstract reasoning. 1100

To better reflect real-world difficulty, we fol- 1101

low the hard subset construction pipeline proposed 1102

by MEDAGENTSBENCH. Questions are selected 1103

based on model failure rates (<50% accuracy across 1104

a set of strong models), medical topic coverage, and 1105

reasoning depth. Specifically, we include 100 hard 1106

questions each from MedQA, PubMedQA, MedM- 1107

CQA, MedExQA, and MMLU-Pro; 100 from each 1108

MedXpertQA subset (Reasoning and Understand- 1109
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ing); 89 from MedBullets; and 73 from MMLU.1110

This results in a total of 862 expert-verified in-1111

stances designed to stress-test the reasoning capa-1112

bilities of large language models. Representative1113

examples from the nine datasets are provided in1114

Table 11.1115

F Fail case of existing method1116

To illustrate the limitations of existing methods,1117

we present a representative failure case from1118

DeepSeek-R1 on a clinically complex MedQA1119

question. Scenario: A junior orthopaedic surgery1120

resident is completing a carpal tunnel repair1121

with the department chairman as the attending1122

physician. During the procedure, the resident1123

inadvertently cuts a flexor tendon, which is then1124

repaired without complication. The attending1125

advises the resident to exclude this incident from1126

the operative report to avoid patient concern.1127

1128

Question: What is the correct next action for1129

the resident to take?1130

1131

Answer Options:1132

– (A) Disclose the error to the patient and put1133

it in the operative report1134

– (B) Tell the attending that he cannot fail to1135

disclose this mistake1136

– (C) Report the physician to the ethics com-1137

mittee1138

– (D) Refuse to dictate the operative report1139

Predicted Answer: (A) - Disclose the error and1140

document it.1141

1142

Model’s Reasoning: <think> Okay, let’s see.1143

The question is about a resident who accidentally1144

cuts a flexor tendon during carpal tunnel repair and1145

the attending tells them not to report it. The options1146

are A to D, and the generated solutions all say A.1147

First, the key points here are medical ethics,1148

specifically honesty and patient disclosure. The1149

resident made an error, even if it was repaired. The1150

attending is advising to omit this from the operative1151

report and not tell the patient to avoid worry.1152

In medical practice, complications should be1153

documented and disclosed to the patient. The prin-1154

ciple of informed consent requires patients to know1155

about any complications, even if resolved. Failing 1156

to document could lead to legal issues and violates 1157

professional standards. 1158

Option A says to disclose and document, which 1159

aligns with ethical guidelines. The other options 1160

either don’t directly address informing the patient 1161

(like B, which is telling the attending but not nec- 1162

essarily documenting) or escalate without first han- 1163

dling it properly (C, reporting; D, refusing to dic- 1164

tate). 1165

Since all solutions suggest A, the answer is likely 1166

A. They must inform the patient and include it in 1167

the report despite the attending’s advice. </think> 1168

A 1169

Issue: 1170

The model selected (A) as the answer, which is 1171

inconsistent with the reference solution (B). The 1172

error occurred because the model focused solely 1173

on disclosure and documentation, ignoring the spe- 1174

cific instruction to address the attending’s unethical 1175

guidance. 1176
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Dataset Question & Options & Answer
MedQA Question A 39-year-old woman presents with headaches, constipation, increased thirst, and increased

urinary frequency. Her blood pressure is 160/100 mm Hg and pulse is 67/min. Blood tests reveal high blood
glucose and low potassium level. Abdominal CT scan shows a well-circumscribed homogeneous mass
in the left adrenal gland. The hormone excess responsible for her symptoms uses which of the following
pathways to exert its action? Options (A): "Intracellular receptors", (B): "cAMP pathway", (C): "cGMP
pathway", (D): "JAK/STAT pathway". Answer (A)

PubMedQA Question Sternal fractures in childhood are rare. The aim of the study was to investigate the accident mech-
anism, the detection of radiological and sonographical criteria and consideration of associated injuries.the
period from January 2010 to December 2012 all inpatients and outpatients with sternal fractures were
recorded according to the documentation.total of 4 children aged 5-140̆0a0years with a sternal fracture were
treated in 20̆0a0years, 20̆0a0children were hospitalized for pain management and 2 remained in outpatient
care.fracture in growing children : A rare and often overlooked fracture?Options (A): "yes", (B): "no", (C):
"maybe". Answer (C)

MedMCQA Question Minimum number of lobes require to form a tooth? Options (A): "1", (B): "2", (C): "3", (D): "4".
Answer (C)

MedBullets Question A 22-year-old woman presents to the emergency department with shortness of breath. She was
hiking when she suddenly felt unable to breathe and had to take slow deep breaths to improve her symptoms.
The patient is a Swedish foreign exchange student and does not speak any English. Her medical history and
current medications are unknown. Her temperature is 99.50̆0b0F (37.50̆0b0C), blood pressure is 127/68
mmHg, pulse is 120/min, respirations are 22/min, and oxygen saturation is 90% on room air. Physical exam
is notable for poor air movement bilaterally and tachycardia. The patient is started on treatment. Which
of the following parameters including forced expiratory volume in 1 second (FEV1), forced vital capacity
(FVC), and diffusing capacity of carbon monoxide (DLCO) most appropriately describes this patient’s
underlying pathology? Options (A): "Decreased airway tone", (B): "Increased FEV1", (C): "Increased
FEV1/FVC", (D): "Increased FVC", (E): "Normal DLCO". Answer (E)

MMLU Question How many different types of microorganisms may colonize the mouth? Options (A): "35", (B):
"100", (C): "350", (D): "500". Answer (C)

MMLU-Pro Question How are new polyomaviruses detailed? Options (A): "Shot gun sequencing", (B): "Cultivation in
human neural cells", (C): "Deep pyro sequencing (NGS)", (D): "Monoclonal antibody techniques". Answer
(A)

MedExQA Question Which biological tissue has the highest viscosity?Options (A): "Blood", (B): "Bone", (C): "Soft
tissue", (D): "Water". Answer (B)

MedXpert-R Question A 52-year-old paralegal comes to the clinic reporting chronic low back pain that has gradually
worsened over two years. She describes an achy pain rated at 7/10 and spends considerable time at her
computer desk. She experiences numbness, tingling, and radiating pain down her right leg during prolonged
sitting or standing. Her examination reveals:- No urinary/bowel incontinence or perineal numbness- Right
lower extremity strength of 4/5- Decreased sensation in right leg- Right patellar reflex grade 1/4- Positive
straight leg raise test on right sideWhich nerve root levels are most likely involved in this presentation?
Options (A) L1-L2 (B) L5-S1 (C) L2-L3 (D) S2-S3 (E) L4-L5 (F) L4-S1 (G) L3-L4 (H) S1-S2 (I) T12-L1
(J) L5-S2. Answer G

MedXpert-U Which hypoxic cell radiosensitizer, known for undergoing redox recycling or decomposing into a toxic
product, has demonstrated effectiveness in the treatment of head and neck cancer? Options (A): Doranida-
zole, (B): Tirapazamine, (C): Camptothecin, (D): Misonidazole, (E): Pimonidazole, (F): Nimorazole, (G):
Sanazole, (H): Cetuximab, (I): Etanidazole, (J): Methotrexate. Answer (F)

Table 11: Dataset examples with corresponding questions and answer options from the nine test datasets.
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