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ABSTRACT

Single-cell multi-omics technologies (e.g., scRNA-seq and scATAC-seq data) have
provided more comprehensive insights for understanding cellular conditions and
activities in recent years. However, multimodal representation learning for tran-
scriptomics data remains a challenging problem due to heterogeneous relationships
and label scarcity in reality. In this work, we propose a novel approach named
Geometric Relation Exploration with Cross-modal Supervision (GRACE) for re-
alistic multimodal single-cell matching. In particular, we map both multimodal
data into a shared embedding space by maximizing the log-likelihood of ZINB
distributions. To reduce the semantic gap between multimodal data, we construct a
geometric graph using mutual nearest neighbors to indicate cross-modal relations
between samples for distribution alignment. Furthermore, to extract most pairwise
information, we explore high-order relations in the geometric graph, which would
be incorporated into a meta-learning paradigm for robust optimization. In addition,
to further mitigate label scarcity, we introduce a nonparametric way to generate
label vectors for unlabeled data for cross-modal supervision across different modal-
ities. Extensive experiments on several benchmark datasets validate the superiority
of the proposed GRACE compared to various baselines. In general, compared to
the second-best method, GRACE exhibits an average performance improvement of
6.71% and 14.17% for the R2A task and A2R task, respectively. Code is available
at https://anonymous.4open.science/r/GRACE.

1 INTRODUCTION

Modern single-cell multi-omics technologies (Chappell et al., 2018; Wen et al., 2022b) have made
extensive achievements, which enable the measurement of cells from various modalities for under-
standing cell biology in health and disease. Among them, single-cell RNA-sequencing (scRNA-seq)
(Kolodziejczyk et al., 2015), single-cell ATAC-sequencing (scATAC-seq) (Pott & Lieb, 2015), and
single-cell DNA methylome sequencing (Karemaker & Vermeulen, 2018) quantify the gene expres-
sion, chromatin accessibility and DNA methylation of individual cells, respectively. There have
also been sequencing technologies for the joint measurement of multi-omics information from the
same cell such as CITE-seq (Stoeckius et al., 2017) and ASAP-seq (Mimitou et al., 2021). To
understand and integrate data from various modalities, it is highly anticipated to develop a unified
cell representation learning framework, which maps multimodal data to a common embedding space
while preserving the original semantic relationships.

In literature, several multimodal single-cell data integration approaches are proposed (Lin et al.,
2022; Li et al., 2023). Despite their tremendous progress, these single-cell multimodal integration
approaches require a large number of labeled single-cell data (Wang et al., 2021; Huang et al.,
2021) to boost the performance. Nevertheless, multimodal single-cell data frequently originate
from different sources (Kiselev et al., 2019), where cell type information is not provided for all
the data. In reality, there always exists a large number of economic unlabeled multimodal data (Qi
et al., 2020). Moreover, the existing multimodal single-cell data integration approaches focus on
transferring knowledge about cell types, while ignoring the more challenging problem of matching
single-cell multimodal representations. This motivates us to study an underexplored problem of
realistic multimodal single-cell data matching, which learns unified cell representations with cellular
semantics incorporated by jointly using both labeled and unlabeled multimodal data.
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In practice, formalizing a framework for realistic multimodal single-cell data matching remains
challenging since two questions are required to tackle : (1) How to obtain modality-invariant
representations for multimodal single-cell data? Note that scRNA-seq and scATAC-seq data offer
different perspectives on cell-level descriptions (Green et al., 2022). Therefore, the distribution
discrepancy in the hidden space (Andonian et al., 2022; Liu et al., 2021; Patel et al., 2023) usually leads
to the semantic gap between the two modalities. (2) How to learn discriminative cell representations
under label scarcity? Due to the absence of annotation information, cell representations of unlabeled
data could be of poor quality without proper semantics incorporated (Li et al., 2020). This leads
to insufficient supervision during the learning process. In addition, the heterogeneous relationship
across multimodal data makes the problem more complicated.

To address these issues, we propose a new approach named Geometric Relation Exploration with
Cross-modal Supervision (GRACE). Our GRACE utilizes separate auto-encoders to transform
multimodal high-dimensional single-cell data into a unified embedding space. To preserve the most
information, we reconstruct the original count data with likelihood maximization by incorporating
underlying zero-inflated negative binomial (ZINB) (Clivio et al., 2019) distributions. The core of
our GRACE is to explore hierarchical geometric relations between unlabeled multimodal samples.
In particular, we construct a geometric graph among unlabeled samples by employing mutual
nearest neighbors in the hidden space to illustrate the distribution discrepancy across modalities,
which is minimized with the help of a memory bank. Furthermore, we investigate high-order
relations in the geometric graph for extra supervision, which is integrated into a meta-learning
framework (Vanschoren, 2018) for robust optimization. To mitigate label scarcity, we present a
nonparametric strategy for generating label distributions by comparing unlabeled cell representations
with support representations. These label distributions would be refined for informative signals for
effective discriminative learning across modalities. Extensive experiments on a range of benchmark
datasets validate the superiority of the proposed GRACE in comparison to competing baselines. The
contribution of this work can be summarized as follows:

• Problem Formulation. We study an underexplored problem of realistic multimodal single-cell data
matching, which extends multimodal learning into biological data understanding.

• Novel Methodology. On the one hand, GRACE explores hierarchical geometric relations among
cross-modal unlabeled samples, which are incorporated into a meta-learning paradigm to ensure
robust distribution alignment. On the other hand, GRACE introduces a nonparametric manner to
generate label vector distributions for discriminative learning across different modalities.

• Multifaceted Experiments. Extensive experiments on a range of benchmark datasets validate the
superiority of the proposed GRACE compared with diverse baseline methods in different settings.

2 BACKGROUND

Prior Works. Early efforts often focus on matrix factorization (Duren et al., 2018; Jin et al., 2020;
Stein-O’Brien et al., 2018) and statistical models (Shen et al., 2009; Stuart et al., 2019; Welch et al.,
2017). Matrix factorization (Wang & Zhang, 2012; Xu et al., 2020) is a powerful tool for dimension
reduction, producing low-dimensional representations that facilitate cellular inference. In contrast,
statistical models (Xiao et al., 2022) frequently employ intricate data distributions to characterize
gene expression, followed by statistical inference with uncertainty. In recent years, deep learning has
made significant strides in single-cell data integration (Tang et al., 2023). Some existing approaches
utilize auto-encoders (Gong et al., 2021; Wu et al., 2021; Tu et al., 2022; Gala et al., 2019) to produce
compact cell representations. Other approaches (Wen et al., 2022a; Wang et al., 2021) employ graph
neural networks to model the relationships between genes and cells, and then utilize the message
passing mechanism to generate discriminative representations. However, it’s imperative to underscore
that none of the existing works are suitable for our problem setting. They fall short in effectively
leveraging both labeled and unlabeled multimodal data for efficient representation matching.

Problem Definition. To begin, we provide the problem definition of realistic multimodal single-cell
data matching. Let D(1),w = D(1) ∪ D(1),l denote the scRNA-seq dataset with unlabeled data
D(1) = {(x(1)

i )}Ni=1 and labeled data D(1),l = {(x(1),l
i , y

(1),l
i )}N l

i=1. Let D(2),w = D(2) ∪ D(2),l

denote the scATAC-seq dataset with unlabeled data D(2) = {(x(2)
i )}Ni=1} and labeled data D(2),l =

{(x(2),l
i , y

(2),l
i )}N l

i=1. N l and N denote the number of labeled pairs and unlabeled pairs, respectively.
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Figure 1: An overview of our GRACE. GRACE adopts separate auto-encoders to compress multi-
modal single-cell data into a common space. To reduce the semantic gap, we construct a geometric
graph and explore first-order and second-order neighbors for pairwise distance minimization. We
also reconstruct label vectors in a nonparametric way for cross-modal supervision.

We aim to develop a representation learning model, which maps multimodal data into a common
embedding space. Here, it is anticipated that these samples with the same semantics would be close
compared with those with different semantics. During evaluation, given a query from one modality,
samples from the other modality are ranked according to similarity scores in the embedding space.

3 METHODLOGY

3.1 FRAMEWORK OVERVIEW

This work investigates the realistic problem of realistic multimodal single-cell data matching, which
is challenging due to heterogeneous relationships between modalities and label scarcity in practice.
In brief, we propose a new approach named GRACE for this problem, which mainly consists of
three modules as follows: (1) Joint Representation Learning, which leverages separate auto-encoders
to compass high-dimensional and sparse single-cell data from different modalities with likelihood
maximization; (2) Geometric Relation Exploration, which builds a geometric graph using mutual
nearest neighbors at different orders and then explore relations among the hierarchical neighbors
for robust semantics alignment with a bi-level meta learning paradigm; (3) Nonparametric Semi-
supervised Learning, which reconstructs label vector distributions by comparing unlabeled data with
labeled data, providing supervision for cross-modal consistency. The overview of our GRACE can be
found in Figure 1. Next, we elaborate on the details of each module in the proposed approach.

3.2 JOINT REPRESENTATION LEARNING WITH LIKELIHOOD MAXIMIZATION

To map both multimodal data into a common embedding space, we utilize two separate auto-encoders
for samples from different modalities. We characterize these samples using an underlying zero-
inflated negative binomial (ZINB) distribution (Clivio et al., 2019) and maximize the log-likelihood
for reconstruction to keep the most information of representations. Moreover, the distance between
labeled samples and their corresponding anchors is reduced for semantics injection.

In particular, two feed-forward networks (FFNs) ϕ(1)
e (·) and ϕ

(2)
e (·) are introduced to generate cell

representations:

z
(1)
i = ϕ(1)

e (x
(1)
i ), z

(2)
i = ϕ(2)

e (x
(2)
i ). (1)

To characterize the distribution of count data, we adopt ZINB distribution with three parameters, i.e.,
the mean (µ), the dispersion (θ) and the probability of dropout π. The ZINB distribution for any

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

given sample from both modalities x can be written as:

ZINB (x | π, µ, θ) = πδ0 (x) + (1− π)NB (x | µ, θ) , (2)

NB(x | µ, θ) = Γ (x+ θ)

x!Γ(θ)

(
θ

θ + µ

)θ (
µ

θ + µ

)x

, (3)

where Γ(·) denotes the Gamma distribution and NB(·) denotes the negative binomial distribution.
δ0(·) denotes a Dirac delta function. Different from the classic auto-encoders, we involve three heads
in each decoder to generate the above three parameters, i.e., µ, θ and π for likelihood maximization.
In other words, the loss objective can be formalized into:

LZINB = −
∑

x∈D(1),w∪D(2),w

log (ZINB (x | π, µ, θ)) . (4)

Compared with the standard regression loss accompanied by Gaussian distribution (Ng et al., 2011),
our loss objective is more suitable for non-negative count single-cell data. To inject semantics infor-
mation, we project labels into embedding space, resulting in C learnable anchors, i.e., h1, · · · ,hC .
Then, we enforce the representations of labeled samples to approach their corresponding anchors. In
formulation,

LS =
∑

x
(1)
i ∈D(1),l

||z(1)
i − h

y
(1)
i

||22 +
∑

x
(2)
i ∈D(2),l

||z(2)
i − h

y
(2)
i

||22. (5)

By minimizing the distance between deep representations between shared anchors, we can align
representations from both modalities with semantics incorporated. However, in realistic scenarios,
labeled samples are usually scarce (Li et al., 2020). Therefore, high-quality data matching cannot be
guaranteed by reconstruction and supervised learning. To achieve this goal, we are required to design
effective modules to make use of a large number of unlabeled data.

3.3 GEOMETRIC RELATION EXPLORATION FOR SEMANTICS ALIGNMENT

One major challenge is the semantic gap between different modalities. To reduce this gap, we propose
to explore the hierarchical geometric relations for extensive unlabeled samples. Due to our joint
representation learning, samples with similar semantics tend to gather and the distance between
cross-modal pairs indicates the potential distribution discrepancy. Therefore, we build a geometric
graph using cross-modal mutual nearest neighbors and minimize the distance between connected
pairs for distribution alignment. High-order relations in the graph are explored with less emphasis,
which offers extra robust supervision. Additionally, we optimize the relationships of neighbors at
different orders through meta learning (Vanschoren, 2018) to ensure robustness.

In detail, for each unlabeled sample x
(1)
i , we identify its k nearest neighbors in D(2), denoted as

N (x
(1)
i ). Similarly, we record the cross-modal neighbors of x(2)

j as N (x
(2)
j ). To ensure accurate

relations, we construct a geometric graph to connect these unlabeled samples using mutual nearest
neighbors. In other words, the adjacency matrix can be written as:

Ai,j =

{
1 if x(1)

j ∈ N (x
(2)
i ) ∧ x

(2)
j ∈ N (x

(1)
i )},

0 otherwise.
(6)

With the geometric graph, we can optimize the network by maximizing the similarity of connected
samples. To reduce the potential representation collapse (Chi et al., 2022), we introduce a memory
bank to restore every deep representation pair as r(1)i and r

(2)
i , which are updated using samples in

the mini-batch. The optimization objective can be written as:

LGEO = −
∑

x
(1)
i ∈B(1)

∑
x

(2)
j ∈B(2)

Aij(z
(1)
i ⋆ r

(2)
j + z

(2)
i ⋆ r

(1)
j ), (7)

where B(1) ⊂ D(1) and B(2) ⊂ D(2) are from a mini-batch. ⋆ calculates the cosine similarity between
samples. After minimizing Eqn. 7, we utilize deep features in B(1) and B(2) to update the memory
bank. However, our geometric relations are measured a little strictly, which could filter out a range
of positive pairs. To remedy this, we explore high-order geometric relations to enhance the density
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of the graph. In particular, we define a second-order geometric graph with the adjacent matrix as
follows:

AS
i,j =

{
1 if

∑
k AikAkj > 0,

0 otherwise, (8)

where two samples are connected if they are both related to at least one intermediate sample. Similarly,
the loss objective for learning from the second-order graph is written as:

LSGEO = −
∑

x
(1)
i ∈B(1)

∑
x

(2)
j ∈B(2)

AS
ij(z

(1)
i ⋆ r

(2)
j + z

(2)
i ⋆ r

(1)
j ). (9)

However, due to the graph expansion, there could be a few false positives introduced. To promise
a robust optimization process, we expect the gradient alignment of two objectives, i.e., ∇LGEO

and ∇LSGEO. In particular, if we have ∇LGEO(ϕ) · ∇LSGEO(ϕ) > 0 with network parameters ϕ,
the loss of two objective can be minimized simultaneously while ∇LGEO(ϕ) · ∇LSGEO(ϕ) ≤ 0
would fail it. Therefore, we propose a meta-learning (Finn et al., 2017; Franceschi et al., 2018)
paradigm with bi-level optimization (Sinha et al., 2017). Here, minimizing Eqn. 7 and Eqn. 9 would
be considered as meta-train and meta-test tasks, respectively. In the inner task, we conduct one-step
gradient descent as:

ϕ′ = ϕ− α∇LGEO (ϕ) , (10)

where α denotes the learning rate. In the outer task, we make a final update using the following
equation:

min
ϕ

LGRM = LGEO (ϕ) + λLSGEO (ϕ′) , (11)

where λ < 1 is a parameter to give the priority of LGEO. With our meta-learning paradigm, we
can achieve a robust interface of two different objectives, which results in a reduced semantic gap
between the two modalities.

Theoetical Analysis: A SGD Perspective. Next, we provide the theoretical analysis of the proposed
geometric relation exploration. The proof of Theorem 3.1 can be found in Appendix A.

Theorem 3.1. Let F1(x) and F2(x) be two real-valued function on Rd. Suppose g1,k(x)
and g2,k(x) are two estimates of gradients at the k-th iteration and define Fk =
σ({xk, g1,k−1, g2,k−1, xk−1, ..., g1,1, g2,1, x0}). Assume there exists constants L,M, a, σ2, ζ2 ≥ 0
and 0 ≤ m < 1 such that

(1) F (x) = F1(x)+F2(x) is L-smooth and F1(x), F2(x) are both twice continuously differentiable;

(2) E {g1,k(x)|Fk} = ∇F1(x); E {g2,k(x)|Fk} = ∇F2(x) + b(x), where b(x) : Rd → Rd is a
bias function;

(3) E
{
∥g1,k(x) + g2,k(x)∥2|Fk

}
≤ M ∥∇F (x) + b(x)∥2 + σ2 for all x ∈ Rd for all x ∈ Rd;

(4) ∥b(x)∥2 ≤ m ∥∇F1(x) +∇F2(x)∥2 + ζ2 for all x ∈ Rd;

(5)
∥∥∇2F1(x)

∥∥ ≤ a and ∥∇g2,k(x)∥2 ≤ a a.s. for all x ∈ Rd.

(6)
〈
∇F (x), (∇2F2(y) +∇b(y)) · F1(x)

〉
≤ 0 for all x ∈ Rd and y lies between x and x −

α∇F1(xk).

Consider SGD updates

xk+1 = xk − γ [g1,k(xk) + g2,k(xk − α∇F1(xk))] . (12)

Then, we have

1−m

2
· 1

K + 1

K∑
k=0

∥∇F (xk)∥2 ≤ 2

√
∆0L (σ2 + α2a4)

K + 1
+

2∆0LM

K + 1
+

ζ2

2
. (13)
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Remarks. Condition (1)-(4) are standard conditions for stochastic gradient descent (Ajalloeian &
Stich, 2020). Condition (6) implies that the gradient of F1 helps find the largely correct descent
direction. For example, when d = 1, F2(x) is convex and b(x) is decreasing, condition (6) becomes
F ′(x)F ′

1(x) (F
′′
2 (y) + b′(y)) ≤ 0, which is equivalent to F ′(x)F ′

1(x) ≥ 0. In our setting, this
condition means that ∇LGEO defines the largely correct descent direction, which is consistent with
our design intuition. Based on Theorem 3.1, we can have the following corollaries.
Corollary 3.2. Consider our optimization problem in Eqn. 11 with ϕ′ = ϕ− α∇ELGEO(ϕ) and
assume the same conditions as Theorem 3.1 with F1(ϕ) = ELGEO(ϕ) and F2(ϕ) = λELSGEO(ϕ).
Then, in our algorithm, SGD converges with

1

K + 1

K∑
k=0

∥∇F (ϕk)∥2 ≤ O

(√
1

K

)
+O

(
1

K

)
+

ζ2

2
, (14)

where F (ϕ) = ELGEO(ϕ) + λELSGEO(ϕ).

Corollary 3.3. Suppose in Theorem 3.1, g1,k(x) and g2,k(x) have the form

g1,k(x) =
1

B1

B1∑
b=1

g̃1,k(x; ξ
(b)
1,k), g2,k(x) =

1

B2

B2∑
b=1

g̃2,k(x; ξ
(b)
2,k), (15)

where ξ
(b)
1,k and ξ

(b)
2,k are independent samples and g̃i,k(x) satisfies condition (2) with

Var {g̃i,k(x)|Fk} ≤ σ̃2
i (i = 1, 2). Then,

1−m

2
· 1

K + 1

K∑
k=0

∥∇F (xk)∥2 ≤ 2

√
∆0L (σ̃2

1/B1 + σ̃2
2/B2 + α2a4)

K + 1
+

2∆0LM

K + 1
+

ζ2

2
. (16)

Note that B2 = O(n2), where n is the number of nodes in each mini-batch, so the inclusion of the
second-order neighbors helps efficiently find the solution of optimization problem in Eqn. 11.

3.4 NONPARAMETRIC SEMI-SUPERVISED LEARNING WITH CROSS-MODAL SUPERVISION

Another challenge is label scarcity, which hinders discriminative cell representations. Previous semi-
supervised approaches usually generate label distributions using classifiers for pseudo-labeling (Berth-
elot et al., 2019a;b; Hu et al., 2021b). However, these approaches are not applicable to our repre-
sentation learning framework. To tackle this, we introduce a nonparametric way to generate label
distributions by comparing unlabeled cell representations with support representations, which guide
the supervision across different modalities.

In particular, we sample a subset from the labeled dataset S(1) ⊂ D(1),l as support samples and
reconstruct the label distributions using the following nonparametric classifier:

χ(x
(1)
i ) =

∑
(x,y)∈S(1)


(
z
(1)
i ⋆ ϕ

(1)
e (x)/τ

)
∑

(x′,y′)∈S(1) z
(1)
i ⋆ ϕ

(1)
e (x′)/τ

y, (17)

where τ is a temperature parameter set to 0.5 empirically as (Chen et al., 2020). Similarly, we can
reconstruct the label vector for each unlabeled sample x

(2)
j using:

χ(x
(2)
i ) =

∑
(x,y)∈S(2)


(
z
(2)
i ⋆ ϕ

(2)
e (x)/τ

)
∑

(x′,y′)∈S(2) z
(2)
i ⋆ ϕ

(2)
e (x′)/τ

y, (18)

where S(2) denotes the a batch of labeled samples from D(2),l. These reconstructed label vectors are
likely to have high entropy when involving extensive samples with different semantics. To tackle this,
we introduce a sharpening operator Ψ(·) for refinement. Given a label distribution p ∈ [0, 1]C , we
have

[Ψ (p)]c :=
[p]

2
c∑K

k=1 [p]
2
c

, c = 1, . . . , C, (19)
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where [p]c return the c-th element of the vector. Our sharpening operator can increase the purification
of label distributions to generate informative signals for effective supervision (Li et al., 2020). Finally,
we utilize the sharpened label predictions from one modality to supervise the optimization of the
other modality. In formulation, we have:

LNSL =

N∑
i=1

[H
(
Ψ
(
p
(1)
i

)
,p

(2)
j

)
+H

(
Ψ
(
p
(2)
i

)
,p

(1)
j

)
], (20)

where H(·, ·) calculates the cross-entropy between two distributions. In our module, the sharpened
label vectors of one modality serve as the supervision to produce semantics information for the other
modality. In this manner, the label scarcity problem is overcome to some extent. Moreover, the
proposed nonparametric cross-modal supervision can make use of extra information from different
modalities, thus reducing potential overfitting with regularization (Chen et al., 2021).

3.5 SUMMERIZATION

Consistency Learning. Finally, we adopt cross-modal consistency learning (Feng et al., 2023;
Radford et al., 2021) to enhance the discriminability of cell representations. In particular, we enforce
the consistency of representation for each unlabeled pair compared with the other samples in a
mini-batch. Given a mini-batch with B(1) and B(2), the consistency learning objective can be written
as:

LCL = −
B∑
i=1

− log
exp(z

(1)
i ⋆ z

(2)
i /τ)∑B

j=1 exp(z
(1)
j ⋆ z

(2)
i /τ)

, (21)

where B denotes the size of B(1). Our consistency learning objective can maximize the mutual
information between representations from two modalities (Chen et al., 2020; Zhang et al., 2021; Qin
et al., 2022; Feng et al., 2023).

In summary, the final objective can be written as:

L = LS + LGRM + LNSL + LCL. (22)

During optimization, we first warm up the auto-encoder using the reconstruction loss and then conduct
geometric relation exploration and nonparametric semi-supervised learning gradually. The whole
algorithm of the proposed GRACE is summarized in Appendix C.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

We evaluate the performance of GRACE with many state-of-the-art (SOTA) multimodal matching
methods from diverse domains, including vision, text, and biology. We employ the widely recognized
mean average precision (MAP) as the evaluation metric. The experiments are conducted on three
public multi-omics datasets, including CITE-ASAP (Mimitou et al., 2021), snRNA-snATAC (Yao
et al., 2020), and snRNA-snmC (Yao et al., 2020). More details about the implementation, datasets,
and baselines can be found in Appendix D, E, and F.

4.2 MAIN RESULTS

Quantitative Comparison. Table 1 presents the results of quantitative experiments with varying
numbers of labeled samples. From these results, several observations can be drawn: Firstly, the
approaches based on image-text and 2D-3D matching outperform the previous scRNA-scATAC
matching methods significantly. This is because these scRNA-scATAC matching methods solely rely
on transfer learning for multimodal integration, overlooking the shared representations of different
modalities in the embedding space. Using a shared encoder in scJoint and scBridge for two modalities
instead of separate encoders is not conducive to learning discriminative representations. Secondly, all
previous methods merely focus on the issue of modality matching while neglecting a more realistic
problem of label scarcity. They fail to consider how to leverage unlabeled data efficiently to enhance
matching performance. In contrast, we address this issue and design effective modules to solve this
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Table 1: Performance evaluation (%) on three datasets with different numbers of labeled samples.

Task
Datasets CITE-ASAP snRNA-snATAC snRNA-snmC

Avg
Labels 50 100 150 200 50 100 150 200 50 100 150 200

R2A

MRL (Hu et al., 2021a) 54.03 63.41 69.02 70.78 55.88 70.76 77.34 80.74 55.35 65.62 80.15 84.56 68.97
DSCMR (Zhen et al., 2019) 32.19 49.96 60.29 63.73 46.95 69.17 76.93 80.80 60.97 77.54 88.52 89.54 66.38
ALGCN (Qian et al., 2021) 48.87 58.92 67.14 69.58 50.45 72.20 78.14 81.40 68.74 80.59 89.45 90.59 71.34
DA-P-GNN (Qian et al., 2022) 39.13 54.40 65.38 67.69 50.49 73.51 80.28 83.48 67.71 83.89 90.05 92.54 70.71
DA-I-GNN (Qian et al., 2022) 36.84 54.48 66.06 69.52 50.25 73.32 78.95 81.66 66.30 83.48 90.01 92.12 70.25
CLF (Jing et al., 2021) 51.20 59.35 66.58 69.01 70.56 81.66 83.92 86.09 79.45 90.07 92.65 93.78 77.03
RONO (Feng et al., 2023) 49.32 57.46 64.76 68.39 66.54 77.60 82.40 84.37 55.44 61.13 79.37 83.54 69.19
scJoint (Lin et al., 2022) 25.00 26.68 29.50 33.60 22.71 28.90 46.17 53.05 17.32 32.13 43.40 42.87 33.44
scBridge (Li et al., 2023) 45.99 48.73 49.17 51.66 42.88 46.91 55.86 64.60 33.85 39.79 47.63 61.99 49.09
GRACE 65.91 69.10 74.03 75.12 78.51 83.16 85.01 89.10 84.17 92.10 94.21 96.02 82.20

A2R

MRL (Hu et al., 2021a) 51.26 61.63 68.99 70.51 57.75 69.42 73.47 76.08 50.51 60.79 76.06 81.91 66.53
DSCMR (Zhen et al., 2019) 32.54 46.54 55.29 57.84 41.88 56.31 64.26 63.83 48.71 69.02 76.57 86.69 58.29
ALGCN (Qian et al., 2021) 42.10 57.37 65.16 69.71 47.36 62.10 70.31 73.34 61.03 75.80 84.30 92.04 66.72
DA-P-GNN (Qian et al., 2022) 44.58 55.19 65.83 68.53 50.02 72.76 78.75 82.61 67.70 83.15 90.42 92.00 70.96
DA-I-GNN (Qian et al., 2022) 43.81 56.19 66.49 67.28 49.55 72.41 78.75 81.86 67.13 81.82 89.74 91.57 70.55
CLF (Jing et al., 2021) 45.21 57.66 65.21 68.32 56.02 69.23 76.38 75.01 69.55 80.90 87.14 90.38 70.08
RONO (Feng et al., 2023) 39.92 53.82 63.46 66.95 45.59 55.09 65.75 70.46 26.17 51.55 67.06 72.78 56.55
scJoint (Lin et al., 2022) 28.80 33.57 40.30 45.01 15.06 17.80 46.92 49.42 25.85 30.70 47.25 50.20 35.91
scBridge (Li et al., 2023) 51.22 53.14 56.73 59.50 37.55 45.74 52.95 60.18 34.53 38.71 49.94 63.78 50.33
GRACE 65.46 68.13 71.99 75.05 77.46 82.39 84.03 86.64 80.67 87.67 92.29 94.80 80.55

problem. This is why we consistently and significantly surpass the compared approaches across
different settings on the three datasets, especially when the labels are extremely scarce. Moreover, it
is worth mentioning that some methods (e.g., ALGCN, DA-P-GNN, DA-I-GNN) introduce additional
parameters such as Graph Neural Networks (GNNs) to boost performance, while we easily outperform
them by a large margin with no extra parameters. This is attributed to the efficacy of nonparametric
cross-modal supervision, demonstrating that our GRACE is concise yet impactful.

Figure 2: Further comparison with domain-specific approaches using 50 labeled samples.

(a) Precision-Recall (b) Precision-Top N (c) Recall-Top N

Figure 3: Three types of curves on snRNA-snmC with 200 labeled samples.

Qualitative Comparison. To benchmark our approach against more methods in the biological
domain, we include more approaches (scGLUE (Cao & Gao, 2022), MaxFuse (Chen et al., 2024),
SCOT (Demetci et al., 2022b), SCOT V2 (Demetci et al., 2022a), GENOT (Klein et al., 2023),
MOFA+ (Argelaguet et al., 2020), scAI (Jin et al., 2020), Seurat (Stuart et al., 2019), Conos (Barkas
et al., 2019), LIGER (Welch et al., 2019), BindSC (Dou et al., 2022)) for comparison. From the
results in Figure 2, GRACE consistently outperforms the compared methods. In addition, we conduct
a qualitative analysis of different approaches by plotting three types of curves in Figure 3. More
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Figure 4: MAP scores with respect to the number of labeled samples on three datasets.

comprehensive qualitative results can be seen in Appendix M. The Precision-Recall curve represents
the relationship between the conflicting metrics of precision and recall. The Precision-Top N and
Recall-Top N curves depict the trend of precision and recall values as the top N results vary from
1 to 500 with a step size of 10. In brief, for these three types of curves, the higher-performing
method’s curve is positioned above the curves of other methods. It is evident that both for scRNA →
scATAC and scATAC → scRNA tasks, the curve of GRACE consistently remains a significant lead
over the curves of the compared baselines. Furthermore, in Figure 4, we showcase the relationship
between MAP scores and the number of labeled samples. It can be observed that as the number of
labeled samples increases, the performance of most of the approaches improves. Still, our GRACE
outperforms all other methods significantly. Particularly in scenarios with an extremely limited
number of labeled samples, such as 25, GRACE distinctly surpasses all the compared baselines.

4.3 DISCUSSION

Table 2: Ablation study (%) with 50 labeled samples.

Model Variants scRNA → scATAC scATAC → scRNA

CI-AS SR-SA SR-SM AS-CI SA-SR SM-SR

GRACE 65.91 78.51 84.17 65.46 77.46 80.67
GRACE w/o ZN 64.13 77.05 81.88 63.52 75.20 78.74
GRACE w/o GR 61.69 74.53 79.96 60.12 72.54 76.44
GRACE w/o SN 62.03 74.88 80.10 62.02 73.98 77.50
GRACE w/o NS 62.10 74.99 80.05 61.67 74.65 77.71

Ablation Study. In this sec-
tion, we validate the functional-
ities of each proposed module
in Table 2. Firstly, GRACE
w/o ZN indicates the removal
of ZINB distribution to recon-
struct single-cell data for warm-
ing up the auto-encoders. The
results exhibit a performance de-
cline compared to the full model.
This is because the network cannot extract semantic information from the pretext task of reconstruct-
ing the original sequences. The model can only obtain parameters through random initialization, but
the intrinsic distribution from random initialization often does not meet the underlying distribution of
single-cell data. Furthermore, GRACE w/o GR removes the exploration of the geometric relation.
While training with labeled data, the model has already developed some initial capacity to explore
latent representations. By constructing graph-based structural relationships of high-order neighbors
in the embedding space, the model further aligns the intra-class and inter-modality representations.
From the results, it can be observed that this module has a significant impact on the final performance.
In addition, GRACE w/o SN merely removes the second-order neighbors, thus the performance of
this model is slightly better than the performance of the GRACE w/o GR. Lastly, GRACE w/o NS
eliminates the nonparametric cross-modal supervision. By reconstructing the label vector distribution
of one modality to supervise the other modality, the model can enforce consistent pseudo-labeling on
the unlabeled data of both modalities, thereby enhancing cross-modal consistency. The performance
decline observed after removing this module confirms its effectiveness.

Figure 5: Sensitivity of k and λ with 50 and
100 labeled samples on CITE-ASAP.

Sensitivity Analysis. In Figure 5, we provide the
sensitivity analysis of two crucial hyper-parameters
k and λ. Firstly, we explore the number of nearest
neighbors k. A larger value of k may include incor-
rect neighbors, while a smaller value of k may neglect
potential correct neighbors. We gradually increase
k from 1 to 6 and observe that the performance is
worse when k = 1. As k increases, the performance
improves and eventually saturates. Based on this anal-
ysis, we determine the optimal value of k = 5. Next,
with k fixed at 5, we investigate the sensitivity of λ. λ is less than 1, indicating that we consider the
second-order neighbors less accurate than the first-order neighbors. Assigning a smaller coefficient to
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the second-order neighbors prioritizes the first-order neighbors. We increase λ from 0.1 to 0.9 and
observe that the performance fluctuates within a small range. This indicates that the model is not
highly sensitive to the value of λ. Therefore, we set the default value of λ as 0.9.

Figure 6: The t-SNE visualization with 50
labeled samples on CITE-ASAP.

Visualization. In Figure 6, we visualize the em-
beddings using t-SNE (Van der Maaten & Hinton,
2008). The scRNA-seq and scATAC-seq embeddings
are colored yellow and blue, respectively. The over-
lap degree reflects the extent to which multimodal
representations are aligned. It can be observed that
the embeddings of both modalities in ALGCN are un-
evenly distributed and have limited overlaps, whereas
GRACE achieves better alignment in the embeddings.
This further validates the success of our proposed
geometric relation exploration in multimodal data matching under label scarcity conditions.

4.4 FURTHER EXPLORATION ON BIOLOGICAL APPLICATIONS

The proposed GRACE is a versatile representation learning framework as it learns high-quality
representations across multi-omics data. Therefore, it is scalable to diverse multi-omics single-cell
data analysis tasks. In this section, we investigate the potential biological applications of GRACE.

Table 3: Results (%) on multi-omics data integration.

Labels 50 100 150 200

Metric PC ↑ FM ↓ PC ↑ FM ↓ PC ↑ FM ↓ PC ↑ FM ↓
scJoint 58.88 24.40 63.41 23.21 65.15 21.00 69.79 20.04
MRL 65.61 21.39 68.77 20.05 71.49 19.94 74.55 18.26
Ours 71.53 18.06 74.08 17.22 75.66 16.91 77.83 15.99

Multi-omics data integration. In Ta-
ble 3, we conduct an experiment on multi-
omics data integration using CITE-ASAP
data. PC and FM are short for Pearson Cor-
relation and FOSCTMM, respectively. The
results show that our method outperforms
the compared baselines in terms of both
evaluation metrics, indicating that GRACE successfully integrates CITE-seq and ASAP-seq data.

Table 4: MAP (%) on batch effect correction.

Batch V1-V2 V2-V1 V3-V4 V4-V3 V5-V6 V6-V5

scJoint 84.68 83.95 82.82 81.54 87.01 86.45
MRL 92.46 91.07 91.87 90.65 94.85 93.53
Ours 98.63 98.88 95.77 93.11 96.52 96.51

Batch effect correction. In Table 4, we ex-
plore the scalability of GRACE to batch ef-
fect correction task on multi-batch Mouse At-
las data. V1-V6 denote the index of different
batches. The results demonstrate besides multi-
modal single-cell data, GRACE can also align
scRNA-seq data from different batches to reduce batch effects. From the results, it can be found that
GRACE significantly corrects batch effects, thereby achieving better performance.

Table 5: Acc (%) on label transfer.

Label Ratio 1% 5% 10%

scJoint 62.36 67.75 70.02
scBridge 64.99 69.86 71.44
scNCL 61.50 69.04 71.17
Ours 66.34 70.78 72.01

Label transfer. In Table 5, we showcase the label transfer re-
sults from CITE-seq to ASAP-seq data. It can be observed that
the proposed representation learning framework GRACE ex-
ceeds the previous SOTA domain-specific methods (scJoint Lin
et al. (2022), scBridge (Li et al., 2023), scNCL (Yan et al.,
2023)) with different numbers of labeled scRNA-seq samples.
The results indicate that even without labeled scATAC-seq sam-
ples for semantics injection, GRACE still can successfully transfer cell type knowledge information.

5 CONCLUSION

This paper investigates an underexplored problem of realistic multimodal single-cell data matching
and proposes a novel approach named GRACE, which maps high-dimensional multimodal biological
data into a common embedding space under label scarcity conditions. Extensive experiments
conducted on several benchmark datasets verify the superiority of the proposed method over numerous
baselines and prove that GRACE is scalable to diverse multi-omics single-cell data analysis tasks.
In future works, we plan to extend our framework to a broader range of applications such as spatial
transcriptomics single-cell data analysis and multimodal single-cell foundation models.
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A PROOF OF THEOREM

Proof of Theorem 3.1. Define yk = xk − α∇F1(xk). Note that F1(x) + F2(x) is L-smooth, so

E {F (xk+1)|Fk}

≤ F (xk) + E {⟨∇F (xk), xk+1 − xk⟩ |Fk}+
L

2
E
{
∥xk+1 − xk∥2 |Fk

}
≤ F (xk)− γ ⟨∇F (xk),∇F1(xk) +∇F2(yk) + b(yk)⟩+

Lγ2

2
E
{
∥g1,k(xk) + g2,k(yk)∥2 |Fk

}
≤ F (xk)− γ

〈
∇F (xk),∇F (xk) + b(xk)− α∇2F2(ηk) · ∇F1(xk)− α∇b(ηk) · ∇F1(xk)

〉
+ Lγ2

{
M ∥∇F1(x) +∇F2(x) + b(x)∥2 + σ2 + α2a4

}
, (23)

where ηk lies between xk and yk.

Therefore, using condition (6) when γ < 1
2LM , we have

E {F (xk+1)|Fk}

≤ F (xk) +
γ

2

{
−2 ⟨∇F (xk),∇F (xk) + b(xk)⟩+ 2LMγ ∥∇F (xk) + b(xk)∥2

}
+ Lγ2

(
σ2 + α2a4

)
≤ F (xk) +

γ

2

{
−2 ⟨∇F (xk),∇F (xk) + b(xk)⟩+ ∥∇F (xk) + b(xk)∥2

}
+ Lγ2

(
σ2 + α2a4

)
= F (xk) +

γ

2

{
−∥∇F (xk)∥2 + ∥b(xk)∥2

}
+ Lγ2

(
σ2 + α2a4

)
≤ F (xk) +

γ

2
(m− 1) ∥∇F (xk)∥2 +

γζ2

2
+ Lγ2

(
σ2 + α2a4

)
(condition (4)) (24)

Hence, taking expectation on both sides, we get

γ

2
(1−m) ∥∇F (xk)∥2 ≤ {F (xk)− F (xk+1)}+

γζ2

2
+ Lγ2

(
σ2 + α2a4

)
. (25)

Taking averaging over k = 0, 1, . . . ,K, we have

1

K + 1

K∑
k=0

∥∇F (xk)∥2 ≤ 2 {F (x0)− F ∗}
γ(1−m)(K + 1)

+
ζ2 + 2Lγ

(
σ2 + α2a4

)
1−m

, (26)

where F ∗ = minx F (x). Set ∆0 = F (x0)− F ∗ and γ =

{(
∆0

L(K+1)(σ2+α2a4)

)−1/2

+ 2LM

}−1

,

then we have

1−m

2
· 1

K + 1

K∑
k=0

∥∇F (xk)∥2 ≤ 2

√
∆0L (σ2 + α2a4)

K + 1
+

2∆0LM

K + 1
+

ζ2

2
. (27)

B RELATED WORK

Multimodal Single-cell Data Integration. Integrating multimodal single-cell data from various
sources is an essential problem for understanding biological processes. Early attempts usually
focus on matrix factorization (Duren et al., 2018; Jin et al., 2020; Stein-O’Brien et al., 2018) and
statistical models (Shen et al., 2009; Stuart et al., 2019; Welch et al., 2017). Matrix factorization
provides an effective tool for generating low-dimensional features from high-dimensional omics data
while statistical models usually introduce a range of assumptions about underlying distributions for
probabilistic inference. For example, scMoMaT (Zhang et al., 2023b) adopts matrix tri-factorization
to identify multimodal biomarkers associated with cell types. Recently, deep learning-based methods
have achieved extensive progress including auto-encoder-based methods and graph neural network-
based methods. scMoGNN (Wen et al., 2022a) constructs a graph model to depict the correlation
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between genes and cells and then employs cell-feature graph convolution to learn discriminative cell
and gene representations. Nevertheless, these approaches are data-hungry with the requirement of
extensive labeled data, which is hard to get in realistic scenarios. Towards this end, this work for the
first time, centers on a practical issue of semi-supervised multimodal single-cell data matching and
proposes an effective approach dubbed GRACE to solve the problem.

Semi-supervised Learning. Due to its ability to address label scarcity, semi-supervised learning (Wu
et al., 2023; Assran et al., 2021) has gained significant attention with wide applications including
semantic segmentation (Qiao et al., 2023; Chen et al., 2023) and object detection (Hua et al., 2023;
Zhang et al., 2023a). Research semi-supervised learning approaches can be broadly categorized
as consistency regularization approaches (Miyato et al., 2018; Sohn et al., 2020; Xie et al., 2020)
and pseudo-labeling approaches (Berthelot et al., 2019a;b; Hu et al., 2021b). Pseudo-labeling
approaches annotate unlabeled samples using a weak model and incorporate confident pseudo-labels
and their corresponding sample into the training set. Moreover, dual learning, dynamical thresholding,
and curriculum learning are utilized to ensure accurate and unbiased pseudo-labels for reliable
optimization. In contrast, consistency regularization approaches usually incorporate perturbation of
various sources including input (Xie et al., 2020), network parameters (Ouali et al., 2020) and deep
features (Ke et al., 2019), and then encourage model invariance under perturbation. Nevertheless,
these approaches primarily focus on single-modality classification problems, which are not applicable
to multimodal data matching. In this work, we propose a new nonparametric strategy to reconstruct
informative and reliable label vectors for discriminative learning across modalities.

C ALGORITHM

The step-by-step training algorithm of our GRACE is summarized in Algorithm 1.

Algorithm 1 Training Algorithm of GRACE

Require: The training dataset D(1) and D(2); Balance coefficient λ; Number of neighbors k.
Ensure: Two projectors f (1)

e (·) and f
(2)
e (·);

1: Warm up the network using Eqn. 4;
2: Construct the memory bank using current cell representations;
3: repeat
4: Update the geometric graphs using Eqn. 7 and Eqn. 9;
5: for t = 1, 2, · · · , T do
6: Sample a mini-batch from D(1) and D(2);
7: Generate cell representations by propagating the networks;
8: Conduct one-step gradient descent using Eqn. 10;
9: Calculate the final loss using Eqn. 22;

10: Update the network parameters using backpropagation;
11: Update the memory using the current mini-batch;
12: end for
13: until convergence

D IMPLEMENTATION DETAILS

For fair comparisons, we re-implement all the baselines according to the settings in the corresponding
papers. To extend these approaches to our task, we replace the encoders with two-layer MLPs. All the
experiments are conducted in Pytorch with NVIDIA Tesla A100 GPUs. We utilize the SGD optimizer
with a learning rate of 1e− 3 and a batch size of 64. The baselines are trained for 50 epochs, while
our GRACE is trained for 20 epochs. The embedding dimensions of both modalities are fixed at 256.
The number of the returned samples to a query is set to the size of the test set.
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Figure 7: An illustration of various multimodal single-cell data.

E INTRODUCTION TO THE DATASETS

We validate the performance of GRACE on three public multi-omics datasets (Figure 7), including
CITE-ASAP (Mimitou et al., 2021), snRNA-snATAC (Yao et al., 2020), and snRNA-snmC (Yao
et al., 2020). We integrate the datasets into multi-omics pairs and randomly split the datasets into two
parts: 80% for training and 20% for testing. Here we provide a detailed introduction to the dataset
information used in this paper:

• CITE-ASAP (Mimitou et al., 2021) is generated from control condition. CITE-seq is a technology
that enables simultaneous profiling of gene expression and protein abundance. Similarly, ASAP-seq
allows for concurrent profiling of accessible chromatin and protein levels in thousands of single
cells. The whole dataset contains 4,644 cells from CITE-seq and 4502 cells from ASAP-seq.
The lengths of both CITE-seq and ASAP-seq are 17,441. After preprocessing, we get 3,662
CITE-ASAP pairs from 7 cell types.

• snRNA-snATAC (Yao et al., 2020) and snRNA-snmC (Yao et al., 2020) are generated from mouse
primary motor cortex. The lengths of snRNA-seq, snATAC-seq, and snmC-seq data are 18,603.
The entire dataset consists of 16,624 snRNA-seq, 7,962 snATAC-seq, and 9,633 snmC-seq. After
manually excluding samples with different cell types, we assemble a dataset consisting of 7,904
pairs of snRNA-snATAC samples from 18 different cell types, as well as 8,270 snRNA-snmC
samples from 17 cell types.

F INTRODUCTION TO THE BASELINES

Our GRACE is compared with many SOTA multimodal matching methods, including seven methods
from visual and textual domain (MRL (Hu et al., 2021a), DSCMR (Zhen et al., 2019), ALGCN (Qian
et al., 2021), DA-P-GNN (Qian et al., 2022), DA-I-GNN (Qian et al., 2022), CLF (Jing et al., 2021),
and RONO (Feng et al., 2023)), and two methods from biological domain (scJoint (Lin et al., 2022),
scBridge (Li et al., 2023)). The introduction to the baselines is as below:

• MRL (Hu et al., 2021a) utilizes multimodal robust learning to map diverse modalities into a shared
latent space, which is effective against label noise.

• DSCMR (Zhen et al., 2019) aims to jointly minimize both the discrimination loss and the modality
invariance loss, enabling the learning of shared representations for diverse modalities.

• ALGCN (Qian et al., 2021) retains the cross-modal semantic correlations and uncovers the latent
semantic structure of labels through the joint training of two branches.

• DA-I-GNN (Qian et al., 2022) utilizes an Iterative Graph Neural Network (GNN) and incorporates
multi-label contrastive learning to acquire a shared representation for cross-modal retrieval.

• DA-P-GNN (Qian et al., 2022) is similar to DA-I-GNN and employs a Probabilistic GNN.
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• CLF (Jing et al., 2021) facilitates the learning of discriminative and modality-invariant features
through a cross-modal center loss.

• RONO (Feng et al., 2023) incorporates a robust discriminative center learning and a shared space
consistency learning mechanism for mapping different modalities into a common space against
label noise.

• scJoint (Lin et al., 2022) integrates scRNA-seq and scATAC-seq data through transfer learning and
pseudo-labeling.

• scBridge (Li et al., 2023) mines cross-omic samples for dataset expansion and heterogeneously
integrates scRNA-seq and scATAC-seq data.

G ASSESS THE VARIABILITY OF THE PROPOSED APPROACH

We conduct multiple trial experiments with different random seeds to assess the variability of our
method and the sensitivity of our method to different random initializations. The results in Table 6
validate the superiority and robustness of our approach.

Table 6: Multiple trial comparisons on different tasks with 200 labeled samples.

Task C2A A2C R2A A2R R2S S2R

scJoint 32.94±1.21 44.67±0.56 53.68±0.45 49.50±0.39 42.66±0.38 50.88±0.51
MRL 70.42±0.94 70.10±0.87 80.56±1.16 76.81±0.73 84.18±0.77 82.11±0.31
Ours 75.06±0.05 74.95±0.35 88.79±0.24 86.21±0.30 95.97±0.06 94.58±0.40

H INSTANCE-LEVEL MATCHING RESULTS

The proposed approach is a generalized multimodal single-cell data integration framework, which
is not limited to coarse matching based on cell types, but also effective in instance-level matching.
From the results in Table 7, it can be observed that GRACE performs well on paired scRNA-seq and
scATAC-seq data of A549 cells

Table 7: The performance comparison of instance-level matching.

Task R2A R2A R2A A2R A2R A2R

Metric Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

scAI 90.12 92.23 95.87 89.01 92.53 95.49
MRL 90.48 92.14 96.05 90.85 92.77 95.10
Ours 93.66 94.40 98.79 93.08 95.69 97.31

I PERFORMANCE COMPARISON ON FULL LABELED DATA

Our method is not only effective under label scarcity but also demonstrates excellent performance
when labels are abundant. As shown in Table 8, even when using fully labeled data, our method still
outperforms the compared baseline methods.

Table 8: The performance comparison of instance-level matching.

Task R2A R2A R2A A2R A2R A2R

scJoint 71.97 70.46 82.40 81.08 86.11 85.60
MRL 80.68 80.01 93.55 91.99 97.54 95.06
Ours 81.90 80.87 94.33 93.48 98.70 96.59
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J SENSITIVITY ANALYSIS OF LOSS WEIGHT

Here, we include the sensitivity analysis of the weights for each proposed loss function. The results in
Figure 8 indicate that the weights of the four losses have a relatively minor impact on the performance.
Therefore, for the sake of simplicity, we set the weights for all losses to 1.

Figure 8: The sensitivity analysis of the weights for different loss functions.

K IMPACT OF CONSISTENCY LEARNING

Consistency learning would reduce the distance between these paired cell representations and increase
the distance between unpaired cell representations, encouraging discriminative and modality-invariant
representations. We have included a model variant GRACE w/o CL with 50 labeled samples to
support our point. The results in Figure 9 validate the effectiveness of consistency learning.

Figure 9: Ablation on the consistency learning module.

L COMPREHENSIVE VISUALIZATION RESULTS

Moreover, we make the comprehensive t-SNE (Van der Maaten & Hinton, 2008) visualization
(Figure 10). It can be seen that compared with the other three approaches, the multimodal embeddings
generated by our GRACE strike a balance between being discriminative and modality-invariant.

In addition, we also make visualizations of the feature space before and after applying the ZINB
distribution reconstruction in Figure 11. From the results, we can observe the feature distribution is
more discriminative after the ZINB distribution reconstruction.

Next, we provide the training curves regarding the incorporation of high-order geometric relations
in Figure 12. The results show that the model achieved a MAP score of 90.17 after incorporating
high-order geometric relations, surpassing the non-incorporated model which scores 88.39. This
phenomenon validates that high-order geometric relations could enhance optimization robustness.

M COMPREHENSIVE QUALITATIVE RESULTS

We conduct comprehensive qualitative experiments, including Precision-Recall curves with different
numbers of labeled samples with results shown in Figure 13, Figure 14, Figure 15, Figure 16,
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Figure 10: The t-SNE visualization of four methods. The scRNA-seq embeddings are colored yellow
and the scATAC-seq embeddings are colored blue.

Figure 11: The t-SNE visualization of the feature space before and after the ZINB distribution
reconstruction.

Figure 12: The training curve with respect to the high-order geometric relations.

Precision-Top N curves with different numbers of labeled samples with results shown in Figure 17,
Figure 18, Figure 19, Figure 20, and Recall-Top N curves with different numbers of labeled samples
with results shown in Figure 21, Figure 22, Figure 23, Figure 24. All of these qualitative experimental
results consistently demonstrate that our approach is superior to the compared baselines.

N BROADER IMPACTS AND LIMITATIONS

In this paper, we propose a semi-supervised framework for realistic multimodal single-cell data
matching, which effectively integrates multimodal biological representations. It provides inspiration
for many downstream tasks in multi-omics single-cell data analysis, such as multi-omics data
integration, batch effect correction, and cell type transfer. To our knowledge, no potential negative
impacts or limitations have been identified.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 13: The Precision-Recall curves with 50 labeled samples.

Figure 14: The Precision-Recall curves with 100 labeled samples.
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Figure 15: The Precision-Recall curves with 150 labeled samples.

Figure 16: The Precision-Recall curves with 200 labeled samples.
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Figure 17: The Precision-Top N curves with 50 labeled samples.

Figure 18: The Precision-Top N curves with 100 labeled samples.
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Figure 19: The Precision-Top N curves with 150 labeled samples.

Figure 20: The Precision-Top N curves with 200 labeled samples.
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Figure 21: The Recall-Top N curves with 50 labeled samples.

Figure 22: The Recall-Top N curves with 100 labeled samples.
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Figure 23: The Recall-Top N curves with 150 labeled samples.

Figure 24: The Recall-Top N curves with 200 labeled samples.
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