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ABSTRACT

CLIP has achieved great success in visual representation learning and is becoming
an important plug-in component for many large multi-modal models like LLaVA
and DALL-E. However, the lack of interpretability caused by the intricate im-
age encoder architecture and training process restricts its wider use in high-stake
decision making applications. In this work, we propose an unsupervised adver-
sarial fine-tuning (AFT) with norm-regularization to enhance the visual inter-
pretability of CLIP. We provide theoretical analysis showing that AFT has im-
plicit regularization that enforces the image encoder to encode the input features
sparsely, directing the network’s focus towards meaningful features. Evaluations
by both feature attribution techniques and network dissection offer convincing
evidence that the visual interpretability of CLIP has significant improvements.
With AFT, the image encoder prioritizes pertinent input features, and the neu-
ron within the encoder exhibits better alignment with human-understandable con-
cepts. Moreover, these effects are generalizable to out-of-distribution datasets
and can be transferred to downstream tasks. Additionally, AFT enhances the vi-
sual interpretability of derived large vision-language models that incorporate the
pre-trained CLIP an integral component. The code of this paper is available at
https://github.com/peterant330/CLIP_AFT.

1 INTRODUCTION

Recent advancements in vision-language foundation models have successfully facilitated multi-
modal representation learning that aligns heterogeneous inputs into a unified embedding space.
A prominent example is CLIP (Radford et al., 2021), which employs contrastive learning on a
large dataset of paired text and images to associate images with their textual descriptions. This
method effectively positions similar concepts close together and demonstrates high efficacy in down-
stream tasks such as zero-shot classifications (Saha et al., 2024) and open-vocabulary object detec-
tion (Minderer et al., 2024). Additionally, CLIP serves as a built-in component in several large
vision-language models including DALL-E (Ramesh et al., 2021) and LLaVA (Liu et al., 2024).

The flexibility and generalizability of CLIP render it highly attractive for high-stake decision-making
processes such as medical diagnosis (Kim et al., 2024) and autonomous driving (Xu et al., 2023b).
In these safety-critical applications, neural network interpretation becomes paramount. However,
several studies (Chefer et al., 2021a; Li et al., 2022; 2023) have demonstrated that CLIP has unsat-
isfying interpretability. This deficiency can be partly attributed to the inherent nature of ViT (Fel
et al., 2022) and partly to the non-smoothness induced by false negatives during the contrastive
training (Gao et al., 2021; Wu et al., 2021). To elucidate this, we present the results of two pop-
ular explainable AI techniques in Fig. 1, namely saliency maps (Simonyan et al., 2013; Selvaraju
et al., 2017) and network dissection (Bau et al., 2017). Both the simple gradient map and Grad-Cam
saliency map from the CLIP’s image encoder look noisy and random. Additionally, the number of
concept detectors within the encoder, a common measure of the model interpretability, is limited.
Given that CLIP’s image encoder is frequently employed as a plug-in component of various tasks,
enhancing its interpretability could significantly improve the reliability of downstream applications.
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Figure 1: After adversarial fine-tuning (AFT), the image encoder of CLIP can generate more sensible
saliency maps and contain more concept detectors, becoming more interpretable.

Adversarial training (AT, Madry et al., 2017), initially designed to bolster the adversarial robustness
of models, has been empirically and theoretically demonstrated across numerous studies to also
enhance the interpretability of neural networks (Ross & Doshi-Velez, 2018; Xu et al., 2023a). It
has been shown to suppress irrelevant features and accentuate the discriminative features in saliency
maps (Ross & Doshi-Velez, 2018; Kim et al., 2019; Etmann et al., 2019; Chalasani et al., 2020; Shah
et al., 2021; Wang et al., 2021; Gong et al., 2024a), and enable networks with different architectures
to encode common causal patterns (Ren et al., 2023). Furthermore, by enforcing smoothness in net-
work predictions within the local neighborhood of data points, AT improves the local linearity of the
network, a widely-used metric for model interpretability (Li et al., 2020; Khan et al., 2024). Regard-
ing the application of AT to multi-modal models such as CLIP, the recent FARE method (Schlarmann
et al., 2024) utilizes AT to improve the robustness of the CLIP model against norm-bounded per-
turbations. However, extending the application of AT to boost the interpretability of multi-modal
vision-language models remains underexplored and is still limited to uni-modal classification set-
tings in the literature. Additionally, it is unclear whether the AT’s effect on interpretabiliy exhibits
zero-shot generalizability or can be transferred to downstream tasks.

In this paper, we systematically study the relationship between AT and the visual interpretability
of CLIP. We focus on adversarial fine-tuning (AFT) to mitigate the computational demands and
optimally utilize the extensive pre-trained models available. We begin with an objective function
minimizing the L2-distance between visual-language similarity scores w/wo perturbations. We
demonstrate that AFT with properly-designed norm regularization can be reformulated as standard
training with dual-norm regularization on the input gradients. Therefore, to promote the sparsity of
gradient-based saliency maps, we specifically consider a Huber loss function as the dual norm in
the optimization, which leads to a piecewise quadratic penalty function in the proposed AFT min-
max optimization. The designed AFT optimization problem concentrates on the interpretability of
the fine-tuned model, which differentiates our proposed method from the existing FARE method
leveraging AT to improve the robustness of the CLIP model against ℓ∞ norm-bounded adversar-
ial perturbations. Subsequently, we derive an upper bound for the minimization objective function,
which is independent of the text embedding. By minimizing this upper bound, we can isolate the text
encoder and fine-tune only the image encoder. The fine-tuned image encoder remains compatible
with the original text encoder and downstream large language models tuned with CLIP embeddings.

We empirically compare the visual interpretability w/wo AFT. The results demonstrate that AFT sig-
nificantly enhances the quality of the saliency maps (see Fig. 1). The improvement is independent of
the specific saliency map techniques employed, encompassing fundamental feature attribution meth-
ods (e.g., Simple Gradient, Grad-Cam) as well as more advanced approaches (e.g., M2IB (Wang
et al., 2023), Grad-ECLIP (Zhao et al., 2024)). It is also transferable to out-of-distribution data and
applicable to various downstream tasks, even when tuned on relatively small datasets. We also eval-
uate the interpretability of the image encoder through clip-dissect (Oikarinen & Weng, 2022) and
network dissect (Bau et al., 2017). Our findings reveal that AFT enhances the alignment of neu-
ral activations with human-understandable concepts and promotes more object-centric activations.
Additionally, we demonstrate that AFT improves the visual interpretability of large vision-language
models when integrated with CLIP as a plug-in component. Our main contributions are as follows:
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• We propose an unsupervised AFT with norm-regularization that can enforce the pre-trained
CLIP to encode visual features sparsely and thus improve its visual interpretability.

• We theoretically prove the duality relation between the regularized norms of adversarial
perturbations and the input gradients to explain how AFT improves visual interpretability.

• We provide various quantitative and qualitative experimental results to support that AFT
improves the visual interpretability of CLIP and its derived large vision-language models.

2 RELATED WORK

Adversarial Robustness of CLIP Model. While imperceptible perturbations may significantly
change the network prediction (Szegedy et al., 2013; Athalye et al., 2018), existing literature have
proposed many methods (Madry et al., 2017; Sinha et al., 2017; Zhang et al., 2019; Cohen et al.,
2019) to improve the robustness of neural networks towards such adversarial attacks. Studies (Mao
et al., 2022; Gu et al., 2024) also find the CLIP model vulnerable to adversarial attacks. To improve
the adversarial robustness of the CLIP model, Wang et al. (2024b) applies an efficient adversarial
training strategy during the training phase of the CLIP; Mao et al. (2022) puts forward a supervised
fine-tuning strategy to improve the robustness of specific downstream tasks; Wang et al. (2024a)
retrains a more robust image encoder guided by the original image encoder; Schlarmann et al. (2024)
proposes an unsupervised fine-tuning method that achieves robustness with only the image branch
being fine-tuned. Deviated from their motivation, our work explores the possibility of building a
more interpretable CLIP model via a tailored adversarial fine-tuning strategy.

Interpretations in Computer Vision. Interpretability is defined as the capability to provide expla-
nations understandable to humans (Doshi-Velez & Kim, 2017). To understand the decision process
of the black-box neural networks, a series of work focuses on feature attribution, where saliency
maps are used to highlight the important features (Simonyan et al., 2013; Ribeiro et al., 2016; Lund-
berg & Lee, 2017; Sundararajan et al., 2017; Selvaraju et al., 2017; Shrikumar et al., 2017; Zhang
& Farnia, 2023; Muzellec et al., 2024; Gong et al., 2024b; Ye & Farnia, 2024). Another stream of
work give mechanistic interpretation to the neural network by understanding which concept each
neuron is associated with (Bau et al., 2017; Oikarinen & Weng, 2022; Kalibhat et al., 2023; Ahn
et al., 2024; Bai et al., 2024; Gandelsman et al., 2024). Networks with higher interpretability would
have more concept detectors and each neural should align better with a specific concept. We apply
both feature attribution and network dissection to evaluate the visual interpretability of CLIP.

CLIP Interpretability. There are a few existing works focus on the interpretation of CLIP, with
most of them focusing on concept-based explanations which ties to decompose the visual embed-
dings into multiple concepts represented by text embeddings (Yun et al., 2022; Moayeri et al., 2023;
Chen et al., 2023; Gandelsman et al., 2023; Oikarinen et al., 2023; Yang et al., 2023; Chattopadhyay
et al., 2024; Bhalla et al., 2024). In terms of visual feature attribution, Li et al. (2022; 2023) modify
the architecture of the CLIP to improve the quality of saliency maps; Wang et al. (2023) proposes
a CLIP attribution method based on the information bottleneck principle; Gandelsman et al. (2023)
decomposes the image representation across image tokens to generate heatmaps; Zhao et al. (2024)
presents a gradient-based method for visual explanation. While most of these work applies black-
box or gray-box attributions, i.e., using no or only the gradient information of the last layers, they
excel at explaining the interaction between visual and text branches with less attention paid to inter-
preting the entire visual encoder. Our work, instead of proposing a new feature-attribution technique
for interpreting the prediction of CLIP, would focus on understanding and improving the inherent
interpretability of the visual encoder, which is generalizable and transferable to downstream tasks.

3 ADVERSARIAL FINE-TUNING FOR MORE INTERPRETABLE CLIP

In this section, we introduce the AFT algorithm and give a theoretical explanation of why it can
improve the interpretability of the image encoder. The method overview is illustrated in Fig.1. We
take a pre-trained CLIP model with any backbone and adversarially fine-tune its visual encoder using
a relatively small, image-only dataset, guided by the objectives in Eq.7. The framework allows for
flexible regularization choices based on the desired properties of the saliency maps. Our findings
indicate that this adversarial fine-tuning enhances the quality of the saliency maps produced by CLIP
and improves the alignment of its neurons with human-understandable concepts.

3



Published as a conference paper at ICLR 2025

3.1 NORM-REGULARIZED ADVERSARIAL TRAINING FOR CONCISE INTERPRETATIONS

We first define the form of adversarial fine-tuning objective in the context of language-image con-
trastive learning. The CLIP is composed of an image encoder and a text encoder, which encodes the
language-image pair into their representations. We use x, Ix, and Tx to represent the input image,
its image embedding, and the paired text embedding, respectively. Assume Ix and Tx have been
normalized into unit length, the language-image similarity is the cosine similarity between Ix and
Tx, i.e., TT

x Ix. AFT aims to improve the robustness of the fine-tuned image encoder fθ(·) towards
minor perturbations so that the language-image similarity remains the same w/wo perturbations. To
this end, we define the objective function as follows:

min
θ

Ex∼Dtrain max
δx

1

2
(TT

x Ez∼N (0,σ2I)[fθ(x+ z+ δx)]− TT
x Ix)

2 − h(δx), (1)

where h(·) is a regularization term for the perturbations. The square loss promotes the robustness
towards perturbation and the regularization ensures the perturbation is imperceptible. To avoid being
stuck in the non-trivial stationary point, i.e. the original pre-trained parameters, we propose to add
Gaussian Smoothing to the original function. This can also improve the smoothness of the loss term.

We observe the first-order Taylor approximation of Eq. 1 can be formulated as follows:

min
θ

Ex∼Dtrainmx(0) + max
δx

δTx ωx∇xEz∼N (0,σ2I)[T
T
x fθ(x+ z)]− h(δx), (2)

where mx(δx) =
1
2 (T

T
x Ez∼N (0,σ2I)[fθ(x+ z+ δx)]− TT

x Ix)
2 and ωx = |TT

x Ez∼N (0,σ2I)[fθ(x+

z)] − TT
x Ix|. The following theorem shows the optimized δ∗x in Eq. 1 and Eq. 2 are close to each

other and their relative error is bounded for any µ-strongly-convex h(·).
Definition 1. We call φ : Rd → R µ-strongly-convex if for every x, z and t ∈ [0, 1] : φ(tx+ (1−
t)z) ≤ tφ(x) + (1− t)φ(z)− 1

2µt(1− t)∥z− x∥2. (Remarks: φ is not necessarily differentiable.)
Theorem 1. Assume h(·) is µ-strongly-convex. For every θ and x, define δ∗1θ(x) to be the optimal
solution in Eq. 1 and δ∗2θ(x) to be the optimal solution in Eq. 2. Then, their relative difference
satisfies the following:

∥δ∗1θ(x)− δ∗2θ(x)∥/∥δ∗1θ(x)∥ ≤ 5/(2µσ2). (3)

We defer the proof to the Appendix A.1. The bound shows that with reasonable µσ2, δ∗1θ(x)
and δ∗2θ(x) would be close, and therefore Eq. 2 is a good approximation of Eq. 1. Moreover,
with h⋆(·) to be the Fenchel conjugate of h(·), we can rewrite Eq. 2 as: minθ Ex∼Dtrainmx(0) +
h⋆(ωx∇xEz∼N (0,σ2I)[T

T
x fθ(x+z)]). We notice the term ∇xEz∼N (0,σ2I)[T

T
x fθ(x+z)] is actually

the SmoothGrad (Smilkov et al., 2017) of similarity score w.r.t input. Therefore, we conclude the
proposed AFT has an implicit regularization on the input gradients, enforced by the function h⋆(·).
Following this general guideline, we can identify an appropriate h⋆(·) to enforce sparse concept
encoding of the image encoder while simultaneously regulating the approximation error. We propose
to regularize the SmoothGrad with the smoothed version of L1-norm regularization:

h⋆(u) = ϵ
∑
i

Hη(u(i)),where Hη(u(i)) =

{
1
2ηu

2
(i), if |u(i)| ≤ η

|u(i)| − η
2 , otherwise,

(4)

and the corresponding h(·) is strongly-convex and can be written as:

h(v) =

{ η
2ϵ∥v∥

2, if ∥v∥∞ ≤ ϵ

+∞, otherwise,
(5)

where ϵ, η > 0. ϵ is a hyper-parameter controlling the strength of the regularization and η determines
the smoothness of h⋆(·) and therefore the convexity of h(·). This sparsity-inducing regularization
forces the visual encoder to focus on only a few key features from the input samples. For one thing,
it can mitigate the noisy issue of the saliency maps, making them of higher visual quality. For the
other, it can boost the conciseness during the concept encoding phase of the network and potentially
make the generated concept architecture-agnostic (Ren et al., 2023). Overall, it makes the reasoning
process of the visual encoder more interpretable.

We would highlight that although we enforce sparsity in this particular application, our framework is
highly flexible. We can switch h⋆(·) to other smooth regularization (e.g. smoothed version of group-
norm or elastic net regularization) to enforce different properties of the encoder (see Appendix A.4).

4



Published as a conference paper at ICLR 2025

Figure 2: (a,b) Comparison of Simple Gradients/Grad-Cam between CLIP w/wo AFT. AFT greatly
improves the visual quality. (c) Evaluation of Simple Gradients on out-of-distribution dataset. (d)
Evaluation of Simple Gradients with linear probing. The improvements of visual interpretability
stem from AFT can transfer across datasets and to different tasks.

3.2 UNSUPERVISED TRAINING BY UPPER BOUND MINIMIZATION

One limitation of the objective function in Eq. 1 is that it necessitates the calculation of Tx. This
makes the fine-tuning process computationally expensive, as we still need the text embedding en-
coded by the text encoder, despite the text encoder being frozen. Furthermore, this constraint ne-
cessitates that the fine-tuning process be conducted on datasets containing language-image pairs,
thereby limiting the potential to fine-tune the encoder on image-only datasets, which are more read-
ily available in many applications, such as the medical imaging domain. Additionally, the perfor-
mance is sensitive to the quality of the text descriptions. Fine-tuning on small scale image-text pairs
can degenerate the zero-shot ability (Mao et al., 2022). However, we have observed that the inner
maximization objective of Eq. 1 has a uniform upper bound independent of the text embedding:

max
δx

mx(δx)− h(δx) ≤ max
δx

1

2
∥Ez∼N (0,σ2I)[fθ(x+ z+ δx)]− Ix∥2 − h(δx). (6)

Therefore, we can minimize this upper bound instead to bypass the demand for text embeddings:

min
θ

Ex∼Dtrain max
δx

1

2
∥Ez∼N (0,σ2I)[fθ(x+ z+ δx)]− Ix∥2 − h(δx). (7)

The optimization objective is now the L2-distance between the perturbed image embedding and the
original image embedding. In the Appendix A.4, we empirically study the effects of this approxi-
mation. Moreover, we have the following observation showing after this unsupervised fine-tuning,
the smoothed image embedding exhibits alignment with the original text embedding.

Observation 1. For every image x, its original image embedding Ix, embedding of text prompt
Tx, and fine-tuned network parameters θ, if ∥Ez∼N (0,σ2I)[fθ(x + z)] − Ix∥ ≤ λ, then
|TT

x Ez∼N (0,σ2I)[fθ(x+ z)]− TT
x Ix| ≤ λ.
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Figure 3: Analysis of Remove and Retrain (ROAR) on zero-shot classification (top) and linear
probing (bottom). A more rapid drop in accuracy shows the highlighted features are more important.
AFT enables CLIP’s vision encoder to better capture task-related features.

Therefore, the smoothed image embedding is adaptable to the CLIP’s text encoder. Empirically, We
discover fθ(x) is close to Ez∼N (0,σ2I)[fθ(x+z)], since σ will not be too large. Therefore fθ(x) can
also be compatible with the text encoder, and potentially downstream large vision-language models
tuned using the CLIP’s embeddings. Note the framework can be generalized to any foundation
model that entails an intermediate embedding layer linking modalities. We will show numerical
results on applying this framework to multi-modal models other than CLIP in the Appendix A.4

4 EXPERIMENTS

We fine-tuned the CLIP using the ImageNet (Deng et al., 2009) training set for 2 epochs. We
experimented with both ViT (Dosovitskiy et al., 2020) and ResNet (He et al., 2016) architecture.
Without special illustration, the results are based on ViT-B/16 with σ = η = 1/255 and ϵ = 4/255.
More comprehensive results can be found in the Appendix A.4. For AFT, we applied PGD (Madry
et al., 2017) for 10 steps. All experiments were conducted on NVIDIA GeForce RTX 4090 GPUs.

4.1 IMPROVEMENTS OF SALIENCY MAPS THROUGH AFT

We first examine how AFT can improve the quality of the saliency maps. Our experiments primarily
focus on two most fundamental saliency maps: Simple Gradients (SG) and Grad-Cam (GC). Both
methods rely on unaltered gradient information for local explanation, eschewing complex design
and post-processing aimed at quality enhancement. We believe this can better reflect the inherent
interpretability of the network. Superior saliency maps should be indicative of an improved inter-
pretability of the network, rather than the result of intricate manipulations of the saliency maps.

Visual Quality. We visualize several saliency maps for images selected from the validation set of
ImageNet in Fig. 2 (a). The SG of the original CLIP looks largely stochastic without highlighting any
meaningful patterns. It also exhibits minimal variation when different prompts are used. Conversely,
after AFT, the SG demonstrates substantial improvements, accurately capturing the objects within
the image related to the prompt. It also displays increased sensitivity to the prompt variations. This
trend is similarly observed for GC (Fig. 2 (b)). Although the quality of GC for the original CLIP
is superior to SG, it still suffers from background noise interference. AFT enables the GC to align
better with the objects in the foreground. The results show that the original CLIP would rely on
patterns that are obscure to human perception for decision-making. After AFT, the model leverages
more human-interpretable concepts for prediction, thereby enhancing its interpretability.

Transferability. We then investigate the transferability of the improvements in interpretability to
diverse datasets and downstream tasks. We visualize the SG for several images sourced from fine-
grained classification and medical image datasets (Fig. 2 (c)), which are not included in the AFT
phase and exhibit domain gaps with the training data. Moreover, their corresponding labels are
absent from the ImageNet dataset. Nevertheless, the SG continues to exhibit meaningful patterns on
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Figure 4: Left: Visualization of attention maps of ViT. AFT helps produce more fine-grained fea-
tures. Right: Visualization of saliency maps produced by Rollout, M2IB, and Grad-ECLIP. AFT
can consistently improve the quality of saliency maps.

Table 1: Evaluation of localization ability using the Point Game (PG and PG-energy) and Segmen-
tation test (Pix. Acc., AP and MaskIoU) on the ImageNet-Segmentation validation dataset.

Tasks Zero-shot Classification Linear Probing

Saliency
maps CLIP PG↑ PG-

energy↑
Pixel
Acc.↑ AP↑ mask-

IoU↑ PG↑ PG-
energy↑

Pixel
Acc.↑ AP↑ mask-

IoU↑

SG w/o AFT 25.77 31.32 65.51 34.45 2.16 27.75 32.62 65.45 35.22 2.51
w/ AFT 71.15 53.98 66.67 59.85 4.31 65.79 51.20 66.53 56.52 4.06

GC w/o AFT 51.00 43.71 61.79 49.18 16.19 33.29 36.28 60.55 38.85 9.89
w/ AFT 73.98 63.76 67.44 62.34 19.39 33.59 37.02 59.20 40.33 10.62

Grad-ECLIP w/o AFT 86.61 60.54 71.19 76.82 25.70 NA NA NA NA NA
w/ AFT 87.40 62.77 72.23 78.34 27.97 NA NA NA NA NA

these out-of-distribution images. We further conduct linear probing as a common downstream task
of CLIP and visualize the SG for the resulting models. In Fig. 2 (d), the SG maintains high quality.
This shows that the improved visual interpretability can be transferred to downstream applications.

Feature Importance. To quantitatively analyze whether the saliency maps highlight the task-related
regions of the input image, we conduct Remove and Retrain (ROAR) analysis (Hooker et al., 2019)
on the saliency maps. ROAR reflects the drop in the predictive power of the dataset when increasing
the proportion of pixels removed according to their importance score in the saliency maps. A steeper
decline in performance indicates that the model effectively captures task-related features from the
inputs. We retrain networks with the top k% of the pixels removed from each image and record the
accuracy on the test set. Each measurement is based on three trials with random initialization. We
perform the analysis on both in-distribution datasets (Imagenette, a ten-class subset of ImageNet)
and out-of-distribution datasets (CUB-200 (Wah et al., 2011) and Caltech-256 (Griffin et al., 2007)).
We apply ROAR on saliency maps generated from both zero-shot prediction and liner probing. The
results in Fig. 3 show an obvious pattern that the drop is more rapid when the CLIP is adversarially
fine-tuned. It holds for both SG and GC, showing AFT enables CLIP to focus on important features.

Improvements on Raw Attention Maps and Advanced Saliency Maps. We visualize the last
attention maps of the ViT in Fig. 4, which illustrate the attention score between the [cls] token and
other image tokens. It is evident that after AFT, the attention maps show more fine-grained features,
indicating that the model can better capture the details from the input image. We further showcase
several saliency maps generated by more recent feature attribution methods, including techniques
designed for transformer-based models such as Rollout (Abnar & Zuidema, 2020), and state-of-
the-art CLIP interpretation techniques like M2IB (Wang et al., 2023) and Grad-ECLIP (Zhao et al.,
2024). With modern explanation techniques, we observe improved saliency maps even when using
the original CLIP visual encoder. However, AFT consistently enhances the visual quality of the
saliency maps, making the saliency maps sparser and better aligned with the object described in the
text prompts. Therefore, the improvements of AFT are explanation-agnostic.

7



Published as a conference paper at ICLR 2025

(a) (b) (c) (d) (e)

(↑
)

(↑) (↑)

Figure 5: (a-c) Comparison of neuron-concept alignment w/wo AFT via CLIP-dissect. (d,e) Effects
of perturbation strength/tuning iterations on neuron-concept alignment.

Pointing Game. Finally, we assess the localization capabilities of the saliency maps using the
ImageNet-Segmentation (Gao et al., 2022) validation set, which includes segmentation annotations
for 12,419 images across 919 categories from ImageNet. We use the Point Game (PG) as a standard
metric to measure the accuracy of visual explanation localization. The PG metric assigns a hit score
if the point with the highest value on the text-specific heat map falls within the object region, defined
by the class segmentation mask. The PG accuracy is then calculated by averaging all sample scores.
Additionally, we employ the energy-PG (Wang et al., 2020), which measures the ratio of heat map
energy within the ground truth mask to the entire map, providing a better reflection of the heat map’s
spread. Following Chefer et al. (2021a;b), we treat the heat maps as soft-segmentation results and
calculate pixel accuracy (Pixel Acc.), average precision (AP), and averaged mask intersection over
union (maskIoU) for evaluation. The results are shown in Table 6, which cover evaluation for both
SG, GC and one advanced saliency map technique, i.e., Grad-ECLIP. The evaluation is based on
saliency maps generated by both zero-shot classification and linear probing. For most of the metrics,
AFT brings improvement over the original model. For example, the PG of zero-shot classification
improves by 45.38% and 22.98% for SG and GC respectively. The results show that AFT makes the
saliency maps better localize at the object with the correct category as the text.

4.2 INTERPRETABILITY QUANTIFICATION VIA NETWORK DISSECTION

To evaluate the interpretability of the visual encoder, we further conduct network dissection and eval-
uate the quantity and quality of the concept detector within the visual encoder. The concept detector
refers to the neuron that exclusively responds to specific concepts understandable to human beings.
We apply CLIP-dissect (Oikarinen & Weng, 2022) to discover the concept detectors. Specifically,
we use the the broadly and densely labeled (Broden) dataset (Bau et al., 2017) as a probing dataset,
which covers comprehensive human-understandable concepts including objects, scenes, parts, tex-
tures, materials, and colors. Then we have a concept set comprised of 20,000 most common English
words. For each concept c, we calculate its similarity score with all the images within the probing
dataset using a pre-trained CLIP model, which results in a similarity array Sc. For a specific neuron
k, we calculate its activation value with each image in the probing dataset as input, which also gen-
erates an array Ak. The alignment between neuron k and concept c is measured by comparing the
similarity between Ak and Sc. The neuron k is called a concept detector of concept ck if ck has the
largest alignment with neuron k among all the concepts within the concept set. Moreover, the larger
the similarity is, the better alignment is achieved between the neuron and the concept.

Improvements over Original CLIP. We first show that AFT can improve the interpretability of the
CLIP visual encoder. To achieve this, we evaluate the alignment score of each neuron in the [cls]
token of the last layer with its corresponding concept and visualize the scores via histogram. For
comparison, we draw the plots for CLIP w/wo AFT, as well as for a network trained using super-
vised learning on the ImageNet dataset. Additionally, we conduct experiments on three different
CLIP architectures: ResNet-50 (He et al., 2016), ViT-B, and ViT-L (Dosovitskiy et al., 2020). The
results are shown in Fig. 5. The data reveals a clear trend indicating that CLIP exhibits superior align-
ment with concepts compared to supervised learning, corroborating previous findings by (Goh et al.,
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2021), which demonstrated that neurons in CLIP align more effectively with specific words due to
the model’s objective of aligning image representations with text representations. Moreover, our
proposed AFT can further improve the alignments. AFT mitigates the non-smoothness introduced
by the false negative samples during contrastive learning, thereby promoting the alignment between
image representations and their corresponding concepts. This trend can be more pronounced as the
complexity of the network architecture increases.
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Figure 6: Comparison between activation maps of the same
cat detector. The detector corresponds to the neuron with the
highest IoU score with samples belonging to the cat concept.

We then conduct Network Dissec-
tion (Bau et al., 2017) on the penul-
timate layer of ViT-B and visualize
the activation map of a certain ‘cat’
detector neuron towards several top
activated probing images in Fig. 6.
The results also illustrate that the ac-
tivation map of the model after AFT
could be more object-centric.

Effects of Hyper-Parameters. We
further study the relationship be-
tween training hyper-parameters and
the model interpretability. Specifi-
cally, we study the influence of ad-
versarial perturbation strength and
fine-tuning iterations. According
to the results in Fig. 5 (d), the
alignment with the concept improves
with stronger adversarial perturba-
tions. However, it stops further improving when ϵ becomes greater than 4/255. In Fig. 5 (e), we
find that the concept alignment can be improved with only a small amount of tuning iterations,
showing the efficiency of the proposed AFT scheme.

4.3 EXTENDED EXPERIMENTS

Interpretability Improvements for Large Vision-Language Models. As the pre-trained CLIP
is an integral component for many large vision-language models (e.g., LLaVa (Liu et al., 2024)),
we postulate the improvements of the CLIP visual interpretability can be propagated to downstream
vision-language models. To substantiate this, we visualize the attention maps of LLaVa, correspond-
ing to various tokens from the generated sentences. Specifically, we integrate the attention weights
of the LLM with those of the ViT, which produces a composite attention map over the input image.
We compare the attention maps of the LLaVa equipped with the original CLIP visual encoder and the
one after AFT. We show several results from the COCO dataset (Lin et al., 2014) in Fig. 7. The at-
tention maps with AFT show much cleaner saliency maps, prominently and sparsely highlighting the
objects corresponding to the specific tokens. This indicates that interpretability improvements can
indeed be transferred to vision-language models without compromising the quality of the generated
sentences. The interpretation can also help explain some of the hallucinations. For example, in the
third image of Fig. 7, the interpretation map implies the model mistakes the black bag as a cat. In the
Appendix A.4, we show quantitatively how AFT benefits the downstream VLMs’ interpretability.

Trade-Off with Zero-Shot Accuracy. Finally, we analyze the trade-off between interpretability and
zero-shot accuracy. Following the same benchmark with Mao et al. (2022), we assess classification
accuracy on the ImageNet test set and 15 zero-shot recognition tasks, ensuring no overlapping with
the fine-tuning dataset. We report both clean accuracy and robust accuracy under the first two attacks
of AutoAttack (Croce & Hein, 2020), i.e., APGD with cross-entropy and DLR loss. We use the ViT-
L/14 version of the CLIP to be compatible with previous work (Schlarmann et al., 2024). The results
are shown in Table 2 (and the complete results are in Appendix A.4). The results show a certain drop
in clean accuracy. However, a minimal ϵ like 1/255 can result in slight accuracy decrement while still
substantially enhancing interpretability (see Appendix A.4). Beyond interpretability, AFT can also
markedly improve the robustness of the CLIP model, which is another crucial factor to consider in
high-stake applications. Furthermore, our experiments involving AFT on CLIP with the ImageNet
training set reveal a smaller accuracy drop for ImageNet compared to other datasets. This suggests
that the trade-off can be further mitigated by AFT the CLIP with more diverse data.
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The people in the image are sitting around a dining table, enjoying a 

meal together. They are gathered for a family dinner, and there are 

multiple plates of food, cups, and utensils on the table. The 

atmosphere appears to be warm and friendly, as the group of 

people is smiling and posing for a picture. The presence of a couch 

in the background suggests that the dining area is part of a larger 

living space.

The people in the image are sitting around a dining table, enjoying a 

meal together. They are posing for a picture, which suggests that 

they are celebrating a special occasion or simply enjoying each 

other's company. The table is filled with plates of food, indicating 

that they are sharing a meal.

What are the

people doing

LLaVa output using original CLIP LLaVa output using CLIP w/ AFTPrompt

The place could be a city or urban area, as there are multiple

people walking around, a food truck, and a bus in the image. The 

presence of a bus and a food truck suggests that the area is likely a 

bustling, commercial or public space where people gather, eat, and 

travel. The fact that there are many people in the area also indicates 

that it is a popular and lively location.

The place could be a city or town center, as there are multiple

people walking around, cars driving by, and a bus passing by. The 

presence of a large building, such as a castle or a monument, 

suggests that the location might be a significant landmark or a 

popular tourist destination. The overall atmosphere indicates that it 

is a bustling urban area where people gather, socialize, and engage 

in various activities.

Where could 

the place be

The room contains a bed, a television, a dresser, and a chair. The 

bed is unmade, and there are various items scattered around, 

including a remote control, a cup, and a bottle. The presence of 

these items suggests that the room is a bedroom, and the occupant 

may be in the process of organizing or tidying up the space.

In the room, there is a bed with a television on top of it, a dresser, 

and a window. The bed is covered with a striped blanket, and there 

is a cat sitting on the bed.

What are 

inside the 

room

Figure 7: Comparison of interpretation maps for LLaVa with the visual encoder replaced by CLIP
visual encoder w/wo AFT. The attention maps correspond to the tokens highlighted with the same
color as the border of the attention maps.

Table 2: Accuracy evaluation on image classification datasets of CLIP model. The superscripts on
the upper right side show the value of ϵ (/255) during the adversarial fine-tuning.

L∞

Vision
Encoder

Im
ag

eN
et

Zero-shot Datasets

Average
Zero-shot

C
IF

A
R

10

ST
L

-1
0

C
IF

A
R

10
0

C
ar

s

C
al

Te
ch

O
xf

or
dP

et
s

Fl
ow

er
s

D
T

D

E
ur

oS
A

T

FG
V

C

PC
A

M

Im
ag

eN
et

-R

Im
ag

eN
et

-S

cl
ea

n

CLIP 74.90 95.20 99.31 71.08 77.94 83.30 93.21 79.17 55.21 62.65 31.77 52.00 87.86 59.59 72.95
AFT1 75.92 94.14 99.11 75.34 74.23 84.47 92.91 75.74 54.47 31.61 28.71 52.70 87.56 60.42 70.11
AFT2 74.60 89.71 98.50 69.66 70.15 85.03 91.09 70.34 50.00 24.74 27.57 50.02 85.45 59.58 67.06
AFT4 70.88 78.47 96.28 57.31 63.36 84.73 86.97 57.64 42.93 18.56 22.35 50.02 80.39 56.91 60.99

2
/
2
5
5 CLIP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00

AFT2 47.36 61.70 90.80 37.40 25.50 73.80 68.60 31.70 26.50 8.60 5.90 46.90 57.40 38.70 44.12
AFT4 53.68 57.90 90.20 38.00 30.70 77.60 72.50 30.20 28.80 12.60 8.00 50.20 62.10 43.10 46.30

4
/
2
5
5 CLIP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AFT2 18.34 26.90 63.40 14.30 5.40 47.30 30.50 6.90 12.50 1.50 0.50 19.70 27.00 23.10 21.46
AFT4 35.28 36.40 75.70 21.20 12.80 65.90 51.50 13.00 17.60 11.30 2.60 50.20 41.00 31.60 33.14

5 LIMITATIONS AND CONCLUSION

In this work, we propose an unsupervised adversarial fine-tuning scheme for improving the visual
interpretability of the CLIP. We provide theoretical analysis to explain the underlying mechanisms
driving these improvements. Through comprehensive quantitative and qualitative evaluations, we
demonstrate the proposed method enables the CLIP visual encoder to focus more effectively on
salient input features, and the neurons exhibit improved alignment with human-understandable con-
cepts. Moreover, the effects are both generalizable and transferable.

Our work is subject to certain limitations. We focus on fine-tuning with a single datasets, without
investigating the impact of data quantity and data diversity on performance. Additionally, we have
not explored the effects of different minimax optimization algorithms. Our future work entails more
comprehensive studies regarding these aspects.
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A APPENDIX

In this Appendix, we provide proof for the theorems, implementation details, additional experimen-
tal results, and a discussion on the potential application of a more interpretable CLIP.

A.1 PROOFS

Proof of Theorem 1. To prove this theorem, we apply the multivariate version of Stein’s lemma
by Landsman et al. (2013), which shows that for a bounded function g : Rd → R, |g∥ ≤
M and Gaussian noise z ∼ N (0, σ2I), Ez∼N (0,σ2I)[g(x + z)] is M

σ2 -smooth. Therefore,
Ez∼N (0,σ2I)[T

T
x fθ(x+z)] is 1

σ2 -smooth, and 1
2 (T

T
x Ez∼N (0,σ2I)[fθ(x+z)]−TT

x Ix)
2 is 5

2σ2 -smooth.

According to the properties of smooth function, we have:

mx(0) + max
δ

δTωx∇xEz∼N (0,σ2I)[T
T
x fθ(x+ z)]− (h(δ) +

5

4σ2
∥δ∥2) ≤ max

δ
mx(δ)− h(δ)

≤ mx(0) + max
δ

δTωx∇xEz∼N (0,σ2I)[T
T
x fθ(x+ z)]− (h(δ)− 5

4σ2
∥δ∥2).

(8)

We reparameterize the obj. 1 as:

max
δ

δTωx∇xEz∼N (0,σ2I)[T
T
x fθ(x+ z)]− (h(δ) + ξ∥δ∥2), (9)

where − 5
4σ2 ≤ ξ ≤ 5

4σ2 . By definition, we have:

δ∗1θ(x) := argmax
δ

δTωx∇xEz∼N (0,σ2I)[T
T
x fθ(x+ z)]− (h(δ) + ξ∥δ∥2), (10)

δ∗2θ(x) := argmax
δ

δTωx∇xEz∼N (0,σ2I)[T
T
x fθ(x+ z)]− h(δ). (11)

As δ∗1θ(x) and δ∗2θ(x) are stationary points of the corresponding objectives, we have:

Ez∼N (0,σ2I)[T
T
x fθ(x+ z)]−∇δh(δ

∗
1θ(x))− 2ξ(x) = 0, (12)

Ez∼N (0,σ2I)[T
T
x fθ(x+ z)]−∇δh(δ

∗
2θ(x)) = 0. (13)

Therefore, we have:
∇δh(δ

∗
1θ(x))−∇δh(δ

∗
2θ(x)) = 2ξδ∗1θ(x). (14)

Moreover, since h(·) is µ-strongly-convex, we further have:

(∇δh(δ
∗
1θ(x))−∇δh(δ

∗
2θ(x)))

T (δ∗1θ(x)− δ∗2θ(x)) ≥ µ∥δ∗1θ(x)− δ∗2θ(x)∥2. (15)

Meanwhile, according to the Cauchy–Schwarz inequality, we have:

(∇δh(δ
∗
1θ(x))−∇δh(δ

∗
2θ(x)))

T (δ∗1θ(x)− δ∗2θ(x))

≤ ∥∇δh(δ
∗
1θ(x))−∇δh(δ

∗
2θ(x))∥∥δ∗1θ(x)− δ∗2θ(x)∥.

(16)

Combining 16 and 15: We have:

µ∥δ∗1θ(x)− δ∗2θ(x)∥ ≤ ∥∇δh(δ
∗
1θ(x))−∇δh(δ

∗
2θ(x))∥ = 2|ξ|∥δ∗1θ(x)∥ (17)

So we finally have:

∥δ∗1θ(x)− δ∗2θ(x)∥/∥δ∗1θ(x)∥ ≤ 2|ξ|
µ

≤ 5

2µσ2
. (18)

This completes the proof.

Proof of Observation 1. By Cauchy–Schwarz inequality, we have:

|TT
x Ez∼N (0,σ2I)[fθ(x+ z)]− TT

x Ix| ≤ ∥Tx∥∥Ez∼N (0,σ2I)[fθ(x+ z)]− Ix∥ (19)

Since Tx is a unit-length representation, we have:

|TT
x Ez∼N (0,σ2I)[fθ(x+ z)]− TT

x Ix| ≤ ∥Ez∼N (0,σ2I)[fθ(x+ z)]− Ix∥ ≤ λ. (20)

This completes the proof.
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A.2 CLARIFICATION ON THE GAUSSIAN SMOOTHING

The theoretical derivation involves Gaussian Smoothed term. The Gaussian smoothing ensures that
the sum of the Gaussian smoothed loss and the negative of strongly-convex regularization penalty
(dual norm to Huber loss) will be a concave function with a unique maximizer and therefore guar-
antees the convergence of gradient updates in solving the inner maximization. Although the outer
minimization task over CLIP weights still remains a challenging non-convex optimization, through
using the Gaussian smoothed loss function and the dual function to Huber loss, we are able to solve
the inner optimization problem and converge to a solution of the primal optimization problem with
the Huber loss penalty. In the experiments, We draw the Gaussian noise vectors independently for
each training sample at every PGD iteration.

A.3 IMPLEMENTATION DETAILS

Adversarial Training setup. All the models in the paper are trained on ImageNet (at reso-
lution 224×224) for two epochs using 10 steps of PGD, with step size set to 1/255.We use
AdamW (Loshchilov et al., 2017) optimizer with momenta coefficients β1 and β2 to be 0.9 and
0.95 respectively. The training was done with a cosine decaying learning rate schedule with a linear
warm-up and a peak learning rate to be 1e-5. The weight decay is set to 1e-4 and the batch size is
128 for RN50 and ViT-B and 64 for ViT-L respectively. We sample only 1 image per interaction
from the Gaussian distribution as a simplified implementation of Gaussian smoothing.

Zero-Shot Evaluations. We use the CLIP Benchmark1 and OpenCLIP2 (Cherti et al., 2023) pro-
tocol to evaluate the zero-shot performance. The evaluation datasets include: CalTech101 (Fei-Fei
et al., 2004), StanfordCars (Krause et al., 2013), CIFAR10, CIFAR100 (Krizhevsky et al., 2009),
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019) FGVC Aircrafts (Maji et al., 2013), Flow-
ers (Nilsback & Zisserman, 2008), ImageNet-R (Hendrycks et al., 2021), ImageNet-Sketch (Wang
et al., 2019), PCAM (Veeling et al., 2018), OxfordPets (Parkhi et al., 2012), and STL-10 (Coates
et al., 2011).We also test performance on the validation set of ImageNet (Deng et al., 2009).

We evaluate robustness on 1000 samples each and report clean accuracy for all samples of the respec-
tive dataset. The attacks applied are the first two attacks of AutoAttack (Croce & Hein, 2020), i.e.,
APGD with cross-entropy loss and APGD with targeted DLR loss (100 iterations each). We consider
L∞-bounded threat models with radii 2/255 and 4/55 and evaluate robustness on all datasets.

VLM interpretation. The visualization in Fig. 7 is implemented by VLM-Visualizer3.

A.4 ADDITIONAL RESULTS

Quantitative Evaluation on VLMs Interpretations. In this section, we provide a quantitative
assessment of how AFT of CLIP enhances the visual interpretability of downstream VLMs. Since
there are currently no established metrics for evaluating VLM interpretations, we propose a straight-
forward evaluation scheme, as illustrated in Fig. 8. We selected test images from the Imagenette
dataset, which consists of 10 easily classified categories from ImageNet. We then prompted LLaVa
with the following request:

Please select one class from tench, English springer, cassette player, chain saw, church, French horn,
garbage truck, gas pump, golf ball, parachute to describe the image. Only output the class name.

Typically, LLaVa responds with just the class name, such as ”Church,” which is generally made
up of 1 to 3 tokens. Including the initial colon and the end-of-sentence tokens, we obtain a few
tokens that correlate with several attention maps. We compute various metrics for each attention
map using the pointing game metric, which encompasses PG, PG-energy, pixel accuracy (Pixel
Acc.), average precision (AP), and average mask intersection over union (maskIoU). Additionally,
we calculate the Gini Index (Hurley & Rickard, 2009) to measure the sparsity of the attention map.
For each case, we take the highest metric value across different tokens. Since the pointing game

1https://github.com/LAION-AI/CLIP_benchmark
2https://github.com/mlfoundations/open_clip
3https://github.com/zjysteven/VLM-Visualizer
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Please select one class from tench, English springer, cassette player, 

chain saw, church, French horn, garbage truck, gas pump, golf ball, 

parachute to describe the image. Only output the class name.

Church

Input image “:” “Church” “</s>”

Figure 8: Illustration on how we utilize LLaVa to perform image classification task and generate
corresponding attention map for each response token.

Table 3: Quantitative evaluation of attention maps generated by LLaVa. We measure the Gini Index
(Gini), Point Game (PG and PG-energy) and Segmentation test (AP and MaskIoU) on the interaction
between Imagenette and ImageNet-Segmentation validation dataset.

Encoder Gini↑ PG↑ PG-energy↑ Pixel Acc.↑ AP↑ mask-IoU↑

CLIP 25.29 5.56 19.71 69.62 28.77 4.13
CLIP w/ AFT 29.16 7.64 21.82 72.14 33.30 4.78

requires a segmentation mask, we limited our analysis to images that overlap between Imagenette
and ImageNet-Segmentation, resulting in a total of 144 images.

We compare the outcomes of LLaVa using the CLIP encoder against those using the CLIP encoder
with AFT. The results, presented in Table 8, show that employing the CLIP encoder with AFT leads
to sparser and more interpretable attention maps generated by LLaVa. However, it is important to
note that the current metrics have limitations. For instance, ViT attention maps frequently contain
numerous high-norm tokens in low-informative background areas, a well-documented issue (Darcet
et al., 2023) that AFT does not fully mitigate. These high-norm tokens significantly impact the
proposed metrics. We view this work as a preliminary exploration and aim to identify better metrics
for a more rigorous quantitative evaluation.

Comparison between Supervised AFT and Unsupervised AFT. To empirically examine the
differences between optimizing Eq.1 and Eq.7, we conducted experiments comparing supervised
and unsupervised fine-tuning. We applied AFT to train the models using data from the COCO
2017 dataset. For supervised AFT, we utilized image captions as the Txin Eq. 1. In contrast, for
unsupervised AFT, we maintained the same configuration outlined in the main text, using CLIP
ViT-L-14 as the backbone. For both models, we assessed: 1) The visual quality of the saliency
maps (Fig. 9), 2) Quantitative evaluations via pointing games (Table. 4), and 3) Zero-shot accuracy
(Table. 5). The results indicate that supervised AFT provides superior interpretability, particularly
for Simple Gradients. This is expected, as training is steered by text descriptions, allowing the
network to effectively create sparse saliency maps that align with the image content. However, the
generalizability of models after supervised AFT is heavily dependent on the diversity and quality
of the text descriptions. With limited training data, supervised AFT can significantly impair the
model’s zero-shot capabilities. Conversely, unsupervised AFT tends to achieve a better balance
between interpretability and generalizability, even when trained on smaller datasets.

Extension to Image Encoders Other than CLIP. As noted in the main text, the proposed AFT
method is versatile and can be applied to any multi-modal models that utilize embeddings to connect
different modalities. It can also be extended to representation learning within single modalities. To
demonstrate this flexibility, we conducted experiments with three models other than CLIP: 1) ViT-B
trained by supervised learning on Imagenet, 2) MONET (Kim et al., 2024), which is an image-text
foundation model trained on 105,550 dermatological images paired with natural language descrip-
tions from a large collection of medical literature. It utilizes ViT-L-14 as its backbone and is trained
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Figure 9: Comparison between supervised AFT and unsupervised AFT. The models use ViT-L-14
as the backbone and are trained on MS COCO 2017 dataset (Lin et al., 2014). We visualize saliency
maps generated by both simple gradient (left) and GradCam (right).

Table 4: Evaluation of localization ability between supervised AFT and unsupervised AFT using the
Point Game (PG and PG-energy) and Segmentation test (AP and MaskIoU). Evaluation performed
on Simple Gradients, Grad-Cam, and Grad-ECLIP.

Saliency maps CLIP PG↑ PG-energy↑ AP↑ mask-IoU↑

Simple Gradients unsupervised 28.88 31.90 38.14 2.20
supervised 49.10 41.09 47.54 5.32

Grad-Cam unsupervised 60.41 59.02 59.66 16.49
supervised 58.02 57.86 59.02 15.79

Grad-ECLIP unsupervised 86.44 61.75 75.67 22.90
supervised 87.55 60.40 77.24 25.46

with contrastive learning, 3) GLoRIA (Huang et al., 2021), an attention-based model designed to
learn both global and local representations by contrasting sub-regions of chest X-ray images with
corresponding words in paired reports. It utilizes ResNet-50 as its backbone. For simplicity, we
focused on applying AFT to the global representation of GLoRIA. We perform AFT these models
with the training data from 1) Imagenet, 2) The ISIC 2024 Challenge Dataset (Kurtansky et al.,
2024), and 3) MIMIC-CXR (Johnson et al., 2019) respectively. All other settings remained consis-
tent with those outlined in the main text. The explanation results, including both simple gradients
and Grad-CAM, are presented in Fig. 10. The findings indicate that AFT significantly enhances
the quality of saliency maps across all three models, resulting in much sparser highlighted regions
compared to the original models. This improvement leads to a more focused attention on lesions
or abnormal areas. Notably, the benefits of AFT are more pronounced for vision transformers than
for CNNs. Additionally, since MONET and GLoRIA are tailored for healthcare applications, these
results underscore the potential of our method to support decision-making in high-stakes scenarios.

Comparison with FARE (Schlarmann et al., 2024). FARE is a recent work that also study adver-
sarial training on the context of multi-modal models. While FARE aims at improving the robustness
of the CLIP model to adversarial perturbations, our proposed method’s primary goal is to struc-
ture the saliency maps and thus improve the CLIP’s interpretability. Therefore, while both these
methods result in AT-based min-max optimization problems, their different goals lead to different
loss functions, where in FARE there exist ℓ∞-norm hard constraints on perturbations to address
norm-bounded adversarial attacks, and in our proposed AFT method, the loss function is piecewise
quadratic which is the Fenchel dual to the Huber loss in our original problem formulation.

To further illustrate, we conduct experiments to compare their effects on the visual interpretability of
CLIP. Specifically, we compare the ROAR on Imagenette and CUB-200-2011 (Fig. 11) and pointing
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Table 5: Zero-shot accuracy evaluation on image classification datasets of CLIP model trained with
supervised AFT (Sup.) and unupervised AFT (Un.).

AFT
Im

ag
eN

et

C
IF

A
R

10

ST
L

-1
0

C
IF

A
R

10
0

C
ar

s

C
al

Te
ch

O
xf

or
dP

et
s

Fl
ow

er
s

D
T

D

E
ur

oS
A

T

FG
V

C

PC
A

M

Im
ag

eN
et

-R

Im
ag

eN
et

-S

Average
Zero-shot

Un. 56.76 73.93 93.53 42.96 59.98 81.77 86.24 56.71 42.39 14.50 24.63 50.19 73.75 48.25 57.54
Sup. 45.58 52.85 81.81 26.58 54.21 63.01 82.69 54.17 33.67 23.04 18.96 51.85 57.72 38.30 48.89

o
ri
g

in
a

l 

Im
a

g
e

M
O

N
E

T
M

O
N

E
T

 w
/ 

A
F

T

melanocytic 

nevi

actinic 

keratoses
basal cell 

carcinoma

benign 

keratosis-like 

lesion

dermato-

fibroma
actinic 

keratoses

vascular 

lesions

basal cell 

carcinoma
dermato-

fibroma

melanocytic 

nevi

o
ri
g

in
a

l 

Im
a

g
e

G
L

o
R

IA
G

L
o

R
IA

 w
/ 

A
F

T

support

device

pleural 

effusion
edemapneumonia

lung 

opacity
fracture

enlarged 

cardio-

mediastinum

atelectasis cardiomegalypneumothorax

tench cassette

player
church French

horn

garbage

truck

English

springer
chain saw gas pump golf ball parachute

o
ri
g

in
a

l 

Im
a

g
e

V
iT

-B
V

iT
- 

w
/ 

A
F

T

Figure 10: Extension of AFT to other image encoders. We visualize both simple gradient and
GradCam. Top: Experimental results on supervised ViT-B. Middle: Experimental results on
MONET (Kim et al., 2024). Bottom: Experimental results on GLoRIA (Huang et al., 2021).

game on ImageNet-Segmentation validation set (Table 6) between two methods. The numerical
results suggest that both algorithms can improve the interpretability of the CLIP model by boosting
the sparsity of saliency maps. However, there is a relative improvement of the interpretability of our
proposed AFT over FARE.
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Figure 11: Comparison of Remove and Retrain (ROAR) on zero-shot classification between FARE
and our method. A more rapid drop in accuracy shows the highlighted features are more important.
Our algorithm design enables CLIP to catch more informative features compared with FARE.

Table 6: Comparison of localization ability between FARE and our proposed AFT. We experi-
ment with the Point Game (PG and PG-energy) and Segmentation test (AP and MaskIoU) on the
ImageNet-Segmentation validation dataset.

Saliencymaps CLIP PG↑ PG-energy↑ AP↑ mask-IoU↑

SG FARE 30.06 31.68 38.11 2.15
ours 33.19 33.94 39.78 2.21

GC FARE 70.05 64.75 66.11 21.50
ours 74.31 65.47 67.23 22.46

LLaVa attention FARE 5.56 21.47 32.11 4.39
ours 7.64 21.82 33.30 4.78

Results of Different Network Architectures. In Fig. 12, we showcase several simple gradient
maps corresponding to different network architectures, including ResNet-50, ViT-B, and ViT-L. We
can see the trend as the network becomes larger and more complex, the saliency maps also become
more difficult to understand. On the other hand, the proposed AFT can consistently improve the
quality of the saliency maps, making the simple gradient more human-understandable.

Results of Different Regularization. We visualize saliency maps trained on AFT with differ-
ent functions as regularization. We replace h∗(·) in Eq. 4 with different functions, including the
smoothed version of the elastic net:

h⋆(u) = ϵ1
∑
i

Hη(u(i)) + ϵ2∥u∥22, ϵ1 > 0, ϵ2 > 0, (21)

smoothed version of group-norm:

h⋆(u) := ϵ
∑
i

Hη(∥uSi
∥2), ϵ > 0, (22)

where S1, · · · , St ⊆ {1, · · · , d} are disjoint variable subsets. The visualization results are shown in
Fig. 13. L1-norm and elastic nets have similar effects on the Simple Gradient maps, while group-
norm regularization makes the saliency map more compact and connected.

Effects of Regularization Strength. We change the regularization strength and visualize the re-
sulting simple gradient maps in Fig. 14. Even with a very small ϵ such as 1/255, the visual quality
of the Simple Gradient maps has significant improvement, which will cause very small drops of
zero-shot accuracy as shown in Table 2 in the main text. As we increase the ϵ, we can see an obvious
pattern that the saliency maps become more and more concise.

Effects of Training iterations. We can show how the Simple Gradient maps evolve during the fine-
tuning process. We showcase the simple gradient with different fine-tuning iterations in Fig. 15. The
Simple Gradient becomes more concise and cleaner as the fine-tuning processing. However, with a
few fine-tuning steps, the resulting saliency map can already be of good visual quality. This shows
our method is computationally efficient.
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Figure 12: Comparison of Simple Gradient maps w/wo adversarial fine-tuning among different
network architectures.

Interpretation Robustness. We further study the robustness of the saliency maps before and after
AFT. As the SG of the original CLIP shows an extremely noisy pattern, we focus on GC in this
study. We inject small random Gaussian noise to the input, which is imperceptible to humans. Then

24



Published as a conference paper at ICLR 2025

O
ri

g
in

a
l 

im
a

g
e

c
li

p
L
𝟏
−

n
o

rm
e

la
s

ti
c

 n
e

t
g

ro
u

p
 n

o
rm

Figure 13: Comparison of Simple Gradient maps w/wo adversarial fine-tuning subject to different
regularizations.

Table 7: SSIM (%) between Grad-Cam maps before and after injecting Gaussian noise with SD of
σ to the input.

σ 1/255 3/255 5/255 7/255 9/255

CLIP 91.18 82.98 77.56 73.62 70.58
CLIP W/ AFT 99.99 99.96 99.79 99.37 98.55

we measure the similarity of the GC with the clean GC, represented by SSIM. The results in Table 7
reflect that the GC of the original CLIP is susceptible to random noise, with tiny noise causing
great changes. On the other hand, AFT makes the interpretation more robust to perturbations, with
significant improvement of SSIM over the non-AFT counterpart.

Inter-class Similarity. As posited by Han et al. (2023), there exists a correlation between the
model interpretability and class-similarity information. An interpretable model would possess a
greater understanding of inter-class similarity, thereby generating more similar predictions on im-
ages belonging to different but related classes. To assess whether this finding extends to AFT, we
divided the 1,000 classes of the ImageNet dataset into 66 categories based on the coarse classifi-
cation scheme proposed by Eshed (2020), excluding the ‘other’ category. We predict the category
logit with the visual encoder via linear probing and quantify the entropy of classes within the same
category, which represents the amount of information contained in the model for that category.
The results in Table 8 demonstrate an improvement of class-similarity information after AFT. The
smoothness imposed during the AFT can enhance the semantic-level smoothness of the prediction,
which increases similarity in the representations of samples from similar classes.

Zero-shot Accuracy and Robustness. Here we show the complete version of Table 2 in Table 9.
As a reference, we include the results of FARE (Schlarmann et al., 2024), which utilizes AFT to
enhance the adversarial robustness of CLIP. AFT can result in some drop in terms of clean accuracy.
But with a minor ϵ such as 1/255, the zero-shot accuracy only drops by 2.84%, while the performance
on ImageNet even increases by 1.02%, while such regularization can still help improve the visual
interpretability greatly, as shown in Fig. 14. Moreover, AFT can improve the robustness of the CLIP
model significantly, which is another desired property for application in safety-critical industries.
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Figure 14: Comparison of Simple Gradient maps w/wo adversarial fine-tuning with different regu-
larization strength.

Table 8: Comparison of the entropy measured based on the output of all class (Entire) and output of
classes in the same category to the correct class (Category).

Model Entire Category

supervised 1.32 0.15
CLIP 5.75 2.06

CLIP w/ AFT 5.44 2.09

We also discovered our regularized adversarial training achieves comparable robustness compared
with the state-of-the-art adversarial training method FARE.

User Study. We conducted a small-scale user study following the methodology of Kim et al.
(2022) to quantify the impact of high-quality saliency maps on user decision-making. Our focus
was on the “distinct” task, as illustrated in Fig. 16. Specifically, we collected 10 validation cases
from ImageNet for both the original CLIP and CLIP with AFT, where each set included 5 cases with
correct zero-shot predictions and 5 with incorrect predictions. For each case, we displayed 4 Grad-
CAM maps generated by the network corresponding to the top predicted classes: for correct cases,
these included the correct class, and for incorrect cases, we showed the top three wrong classes
alongside the true class. Users were presented with the input image and the four explanations in
random order, and we asked them to select the class they believed was correct, without revealing
class names to simulate a lack of domain knowledge. The 20 cases were also shuffled randomly.

We gathered experimental results from 20 users, which are summarized in Table 10. Our findings
indicate that saliency maps can aid users in their decision-making process. Across all metrics,
results were significantly higher than random guesses (25%). For cases with correct predictions, we
observed that enhancing the quality of saliency maps had limited benefits for user performance. This
is likely because humans can automatically de-noise information in their minds, making a cleaner
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Figure 15: Evolution of the Simple Gradient maps during the fine-tuning process.

Table 9: Accuracy evaluation on image classification datasets of CLIP model. The superscripts on
the upper right side show the value of ϵ (/255) during the adversarial fine-tuning.
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FARE1 75.76 93.86 99.12 75.27 74.36 84.62 92.97 75.65 54.73 31.35 28.95 52.44 87.53 60.51 70.10
ours1 75.92 94.14 99.11 75.34 74.23 84.47 92.91 75.74 54.47 31.61 28.71 52.70 87.56 60.42 70.11
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CLIP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FARE1 29.82 51.80 83.40 28.10 13.90 61.80 52.60 19.20 19.00 2.00 2.20 11.30 41.90 31.00 32.17
ours1 28.84 51.30 82.80 27.20 12.80 61.10 50.40 18.80 18.40 1.40 2.00 9.00 41.20 30.50 31.30

FARE2 46.10 60.60 90.30 35.60 25.70 72.80 68.50 31.70 26.60 6.20 5.90 41.90 56.50 38.30 43.12
ours2 47.36 61.70 90.80 37.40 25.50 73.80 68.60 31.70 26.50 8.60 5.90 46.90 57.40 38.70 44.12

FARE4 52.44 57.10 89.50 36.70 29.80 76.80 72.50 31.50 28.30 12.80 8.20 50.20 61.60 41.60 45.89
ours4 53.68 57.90 90.20 38.00 30.70 77.60 72.50 30.20 28.80 12.60 8.00 50.20 62.10 43.10 46.30
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CLIP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FARE1 2.18 10.50 29.10 5.90 0.20 18.10 3.20 1.10 3.50 0.00 0.00 0.30 12.00 12.80 7.44
ours1 1.82 10.20 28.40 5.40 0.20 17.10 2.30 0.90 3.10 0.00 0.00 0.10 11.70 13.10 7.12

FARE2 16.64 25.90 61.70 14.10 4.80 45.90 27.90 7.00 11.80 0.70 0.60 17.30 25.60 22.40 20.44
ours2 18.34 26.90 63.40 14.30 5.40 47.30 30.50 6.90 12.50 1.50 0.50 19.70 27.00 23.10 21.46

FARE4 33.48 34.80 74.30 20.10 12.80 64.20 50.70 12.10 17.40 11.20 2.60 50.20 40.40 30.20 32.38
ours4 35.28 36.40 75.70 21.20 12.80 65.90 51.50 13.00 17.60 11.30 2.60 50.20 41.00 31.60 33.14

saliency map less impactful. However, for cases with incorrect predictions, we found that better
saliency maps significantly improved user decision-making. Despite the model’s wrong predictions,
when provided with the true class name, it still produced visually appealing and semantically aligned
saliency maps. Consequently, users were more inclined to select the true class. In contrast, when
faced with noisy saliency maps, users tended to de-noise them mentally, often retaining only the
largest connected component. This process could lead to the exclusion of saliency corresponding to
the actual object.
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For each photo, we show explanations for the model’s 4 predictions, 
Please select the class you think is correct.

Photo Class 1 Class 2 Class 4Class 3

Photo Class 1 Class 2 Class 4Class 3

Photo Class 1 Class 2 Class 4Class 3

Q. Which class do you think is correct?            1        2        3        4           

Q. Which class do you think is correct?            1        2        3        4           

Q. Which class do you think is correct?            1        2        3        4           

Figure 16: Illustration on our user study set ups.

Table 10: Results of user study. For each study, we report the mean accuracy and standard devia-
tion of the participants’ performance. The “correct” row refer to cases whose labels are corrected
predicted by the network while “incorrect” is the opposite. Overall, explanations of higher quality
somehow help the users to correct the mistakes made by the network.

Backbone CLIP CLIP w/ AFT

correct 73.00±18.19 74.00±18.00

incorrect 40.00±20.00 65.00±15.33

Another noteworthy finding was that users often selected the saliency maps with the highest sparsity
as corresponding to the true class. This observation supports our motivation to promote sparsity in
saliency maps.

Cost Analysis. Finally, we briefly address the cost associated with our algorithms. AFT is a form
of fine-tuning for the visual encoder of CLIP, and it does not introduce any new parameters. All
aspects of the model, apart from the specific parameter values of the visual encoder after AFT, re-
main unchanged from the original CLIP. Consequently, the inference cost for CLIP and downstream
VLMs remains identical. To minimize the cost of AFT, we applied unsupervised AFT without uti-
lizing the text encoder, allowing it to be implemented on relatively small-scale datasets. Specifically,
we report the training time for our method in Table 11, based on training with the ImageNet dataset
for 2 epochs. All experiments were conducted on NVIDIA GeForce RTX 4090 GPUs.

A.5 DISCUSSION

One of the primary objectives of this work is to enhance the quality of saliency maps. While saliency
maps are among the most widely used tools for explanations, they do have limitations. For instance,
they primarily indicate the presence of specific objects but struggle to elucidate more complex con-
textual features, such as orientation and spatial arrangement. Consequently, our numerical exper-
iments focused on using saliency maps to highlight non-contextual features of the (image, text)
pairs, in line with much of the existing literature. However, during our experiments, we discovered
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Table 11: Cost analysis. Training time is calculated as training on ImageNet training set for 2
epochs.

Backbone Batch size N. of GPUs used Training time

RN50 128 2 20.48h
ViT-B-16 128 2 34.20h
ViT-L-14 64 4 94.28h
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Figure 17: Combining multiple modalities in the interpretation framework enables the explanations
for more complicated concepts, such as interaction, size, and relative spatial arrangement. It is still
imperfect. For example, the CLIP explanation fails to distinguish between “left” and “right”.

that integrating both text and image modalities within our CLIP-based interpretation framework can
improve interpretative capabilities. As illustrated in Fig. 17, the combination of text prompts and
saliency maps allows the framework to explain more complex concepts, such as interactions be-
tween human and objects, relative sizes, and spatial relationships. There are, of course, instances
where the explanations fall short; for example, the model may struggle to differentiate between ”left”
and ”right.” Nevertheless, these findings underscore the significance of pursuing research directions
focused on multi-modal interpretations.

As for the application of a more interpretable CLIP, it is widely acknowledged CLIP can be a zero-
shot classifier for many tasks (Guo et al., 2023; Novack et al., 2023; Saha et al., 2024). When treating
CLIP as a zero-shot classifier, it can be important to also provide the sample-level explanation as
well as mechanistic interpretations to help humans make the final decision, especially in high-stake
scenarios such as computer-aided diagnosis (Liu et al., 2023). Additionally, the explanations can do
more. There is work utilizing the saliency maps generated by CLIP for visual grounding or open-
vocabulary segmentation (Hsia et al., 2022; Lin et al., 2023). For such applications, explanations
with better quality can improve the model performance. We also give preliminary evidence through
the pointing game experiments. More interestingly, there is a recent study (Yu et al., 2024) that
employs CLIP to generate attention prompts. The attention prompt can point out the correct region
to focus on for the downstream LLM, which has proven empirically to significantly improve the
performance of the large vision-language models. It is foreseeable that better localization enables
the large model to better focus on the correct objects. What is more, in our main text, we also
provide an example that the improved visual interpretability helps explain why the model makes
certain hallucinations. Overall, it is worth the efforts to build a more interpretable CLIP.
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