Under review as a conference paper at ICLR 2024

OPERATOR-THEORETIC IMPLICIT NEURAL REPRE-
SENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The idea of representing a signal as the weights of a neural network, called Implicit
Neural Representations (INRs), has led to exciting implications for compression,
view synthesis and 3D volumetric data understanding. An emergent problem set-
ting here pertains to the use of INRs for downstream processing tasks. Despite
a few conceptual results, this remains challenging because the INR for a given
image/signal often exists in isolation. What does the local region in the neigh-
borhood around a given INR even correspond to? Based on this inspiration, we
offer an operator theoretic reformulation of the INR model, which we call Opera-
tor INR (or O-INR). At a high level, instead of mapping positional encodings to a
signal, O-INR maps a function space to another function space. A practical form
of this general casting of the problem is obtained by appealing to Integral Trans-
forms. The resultant model can mostly do away with Multi-layer Perceptrons
(MLPs) that dominate nearly all existing INR models — we show that convolu-
tions are sufficient and offer numerous benefits in training including numerically
stable behavior. We show that O-INR can easily handle most problem settings
in the literature, where it meets or exceeds the performance profile of baselines.
These benefits come with minimal, if any, compromise.

1 INTRODUCTION

If we view a given signal as a mapping between the domain of measurement to the range space, we
can ask if DNNs can help estimate this mapping. One instantiation of this idea is popularly known
as Implicit Neural Representations (INRs) (Sitzmann et al.| |2020; [Tancik et al.| [2020; Mildenhall
et al.| [2021}; [Fathony et al.l 2021)) which can parameterize spatial/spatio-temporal data (Gropp et al.,
2020; Niemeyer et al., 2019; [Jiang et al.| 2020) for applications in image super-resolution (Chen
et al., 2021)), texture synthesis (Oechsle et al., [2019)), inverse problems (Sun et al., 2021} [Yu et al.,
2021b; Niemeyer et al.| 2020), and novel view synthesis (Mildenhall et al.,[2021}; Sun et al.| 2022]).

From one signal to a set of signals. INRs typically
consist of a neural network that is trained to map each
coordinate of a given signal’s domain to its measure-
ments/values, and so also known as coordinate-value net-
works. The mapping is learned via a neural network and
gives a compact representation of the signal (Sitzmann
et al., 2020; [Fathony et al.,|2021). The discussion above
was in the context of one signal (or image). When given
a set of signals, one approach is to derive an INR for
each signal in the set —[Dupont et al.| (2022a) then uses
these functions (called functa) as data for downstream Foare i . . .
. . . are input functions acting on the domain
deep learning tasks. Alternatively, one can estimate a) (_[NR maps these functions to their cor-
meta-learned “base” (INR) network, and associate each responding signals (functions) hy, ho, hs €
data sample (or signal) in the dataset as a modulation of .
the base network (Dupont et al.| 2022b), akin to random
effects modulating fixed effects in mixed effects models (Lindstrom & Bates| |{1990). The modula-
tion can also be accomplished in other ways as we will see later (Feng et al.}[2022)), via introducing
a surrogate vector which is tied to a specific INR through conditioning. Now, for a simplified case,
where the data samples were ordered with respect to a surrogate variable, we get a set of INRs where

Figure 1: Overview of O-INR: f1, fo, f3 €

Under review as a conference paper at ICLR 2024

each sample (or signal) specific INR is a level set with discrete values denoting the levels. Here, we
take this interpretation to the extreme to check its advantages, see Fig.

This paper. A prevailing view is to consider the INR as a coordinate-value transform. We study a
generalization — one where we still wish to parameterize a signal (i.e., an identical goal as INR) but
as a transformation between two function spaces. Casting INRs in this manner yields an operator-
theoretic view: our object of interest is the operator that takes us across function spaces. We model
these transforms via integral operators (or integral transforms) which, by definition, transform be-
tween function spaces via the process of integration. If we further constrain the integral operator to
be local and translation-equivariant, we arrive at an efficient parameterization in terms of convolu-
tional layers. Apart from its succinctness and simplicity, our goal is to show how this formulation
gives rise to many benefits compared to coordinate-based INRs.

Contributions. (a) We introduce a new type of INR called Operator INR (O-INR) which yields
comparable or superior empirical performance relative to common methods in terms of representa-
tion capability on 2D images and 3D scenes; (b) While most INR parameterizations rely on large
MLPs, we show that convolution operations with sinusoidal non-linearities are more efficient to
train and faster to evaluate. (c¢) Higher order derivatives of O-INRs can be efficiently computed in
closed form, allowing efficient processing in downstream tasks such as denoising. (d) O-INR offers
greater convenience (control over both the input function space and the weight space), including
explicit control of the spatial interpolation behavior, mitigating the influence of initialization, and
more interpretable behavior in weight space.

2 RELATED WORK

Implicit Neural Representations: INRs are useful in a wide range of tasks. By virtue of learn-
ing a continuous mapping, INRs can be sampled at any resolution thereby making them applicable
in super-resolution and denoising (Saragadam et al.| [2022; 2023} |Peng et al., 2020). Other tasks
including 3D rendering, boundary value problems, PDEs and generative modeling (Skorokhodov
et al.; 2021; [Esmaeilzadeh et al.l 2020; |Schwarz et al., [2020) have also been studied using INRs.
In (Shaham et al. [2021), the authors leveraged INRs for high resolution image to image transla-
tion. While the original development of INRs was intended for Euclidean data, more general non-
Euclidean domains have been studied recently as in (Grattarola & Vandergheynst). Many works
have also adapted INRs for scene representation (Niemeyer & Geiger}, 2021} (Guo et al., [2020; |Yu
et al.) and scene editing (Yuan et al., 2022 |[Feng et al.| [2022; [Fan et al., 2022 |Gong et al., 2023).

Recall that the original formulation of an INR is as a multilayer perceptron (MLP). Various repa-
rameterizations have been developed that seek to offload computation to other components to enable
faster training and inference, especially in the context of their use in NeRFs. For example, plenoxels
(Fridovich-Keil et al., 2022) and plenoctrees (Yu et al., 2021a) represent a radiance field with ex-
plicit voxel or octree structures and DirectVoxGO (Sun et al.| [2022) stores features on a voxel grid
which is decoded into radiance values with a tiny MLP.

Several approaches have been proposed for learning in the context of downstream tasks using INRs
(Wang & Golland, [2022; Xu et al., [2022; Dupont et al.,[2022azb). The use of differential operators
on INRs has been demonstrated in (Xu et al., 2022) by treating INRs as functions which enables
modification without explicit decoding. Further, in|Wang & Golland| (2022), the authors treat neu-
ral fields as integrable maps and propose discretization invariant layers that map elements of this
function space to be readily used in DNN models.

Continuous convolutions: Since discrete convolutions learn weights which are tied to the relative
positions, continuous convolutions were initially designed to handle irregularly sampled data (Schiitt
et al.l 2017; |[Simonovsky & Komodakis, [2017; Wu et al.l 2019). Continuous time convolutions
are well studied, but their recent use in deep learning applications includes modeling point clouds
(Wang et al.| |2021; Boulch| 2019)), graphs (Fey et al.| 2017), fluids (Ummenhofer et al.| 2019)), and
even sequential data (Romero et al.,|2021bza). We note that the use of convolutions within INRs is
rare (Peng et al) |2020). In most settings above, irregular sampling intervals can be handled while
maintaining locality and translation invariance. CNNs for modeling long range dependencies in
arbitrary number of dimensions have also been studied (Romero et al.,[2022).

Under review as a conference paper at ICLR 2024

3 SETTING UP O-INRS

We denote the standard coordinate-valued network as my : RP? — RE where § € RY denotes the
parameters of the neural network, usually based on multi-layer perceptrons (MLPs). Here, D (and
R resp.) denote the dimensionality of the domain (and the range space resp.) of the continuous
function being learned. For example, when fitting an INR to a 2D RGB image, D = 2 and R = 3.

The Space of Discretized Positional Encodings: It is well documented that coordinate-value
networks fail when coordinate locations are directly provided as input (Tancik et al., |2020; |Sitz-
mann et al., 2020), and various strategies have been developed to lift the coordinates to a higher-
dimensional representation more conducive to MLP fitting. These positional encodings on the coor-
dinate space typically involve sinusoids across a range of frequencies (Mildenhall et al., 2021). For
example, consider the encoding:

f([z,y]) = [sin(x), cos(z), sin(y), cos(y), . . . ,sin(2Fx), cos(2Xx), sin(2Ly), cos(QLy)] (1)

We have many choices for this input, of the form f([x,y]) = [sin(6z), cos(0z), sin(fy), cos(6y)],
where 6 can even be a tunable parameter as in Zhou et al. (2021). In fact, it even makes sense to
consider the entire family of such functions, say by varying 8, which share a common domain and
co-domain. The corresponding space we will obtain is commonly referred to as a function space.

More importantly, for a sequence of signals defined on the same domain, €2, the corresponding
positional encodings f1, - - - , f,, also act on 2. These are different functions but belong to the same
family w.r.t. their domain of definition, regularity properties, and so on. We must interpret this set
to correspond to a well defined space of functions.

Even in the simplest case of two functions fq, fo € F, the mapping via standard INRs will be
independent. We will obtain two separate models. However, both are members within the family of
functions discussed above. And due to how these functions are defined, there is extensive structure
in the function space that can be utilized. Based on these observations, we define our input function
space in terms of sinusoidal positional encodings (Sitzmann et al.||2020). Specifically,

F={flf: 0>} @

where € is the domain of definition, e.g., 2D plane for images, and a 3D cube for volumes whereas
1) defines the space of sinusoidal positional encodings.

Signal spaces: In the above discussion, the elements of the function space F were considered to
belong to the family of sinusoidal embedding functions. But INRs learn a map from the positional
encoding space to the signal space. So, what do fi, fo, -, f, yield after going through such a
map? The answer is clear when we think of the associated co-domain of this map simply as another
function space. We denote this function space of signals by H, also defined on the domain).
Elements of / namely, h1, ho, .. ., h,, are essentially the different signals (for example, frames in a
video) whose corresponding embedding in F is f1, fo, ..., fn-

From INRs to O-INRs: Many tasks can be posed as learning a map between two function spaces
F and ‘H. We parameterize the transformation between these function spaces via a neural network
(Rosasco et al.} [2010;|Que et al.| 2014):

Go:f—h 3)

where ¢ represents the parameters of a DNN, and f € F and h € H are functions. We refer to this
operator based formulation of an implicit representation as O-INR. While (3 gives a very general
transform, we need a little more structure on the operator to allow efficient learning.

Integral operators: Let us assume a simplified setup. We want to learn a map from f; — hq,
where f; € F and hy € H. Consider the common domain to be €2 = R, the 1D real number line.
The simplest map would be an identity mapping, resulting in k1 (z) = fi(x),Vz € Q. At the other
extreme, we can write hy(x) = C(z,{fi1(y)ly € Q}), where the value of h;(x) depends on all
evaluations of f; via a functional C. This can be written as an integral along the domain (2,

ha(x) = Clz, f1(y))dy C)
yeN

Under review as a conference paper at ICLR 2024

fi if

Ground truth O-INR (26.05) SIREN (28.56) WIRE (26.44) MEFN (29.36)
Figure 2: Performance comparisons of O-INR in multi-resolution training setting. The ground-truth together
with images from O-INR and other baselines (L to R), with the PSNR value in dB. O-INR achieves comparable
performance

This means that an integral operator achieves the transformation between the function spaces via
integrating over the domain of definition. This is beneficial: since integral operators are defined
using their associated kernels, the only parameterization we need within O-INR will be this kernel!

Consider f € F and h € H as functions over the domain 2, we learn an integral operator Gy
with the associated kernel g, where ¢ denotes the parameterization involved. Then, the integral
transform can be represented as:

h(w) = G[f](w) = / Ko(w, ') fw)dw', weQ)
w’'eN

where G [f} denotes the application of the transform on the function f. Note that we recover the be-

havior of a standard coordinate-valued network if the kernel is modulated by a Dirac delta function:

Kg(w,w') = K4(w)d.(w). In which case, we have h(w) = Ky(w)f(w) = Ks(f(w)).

How to parameterize O-INR? From (3)), the only parameterization in our formulation is through
K. In its maximum capacity, the bi-variate function Ky can take distinct parameters for each pair
of distinct (w,w’). While nearly all INR formulations perform pointwise evaluations with an MLP
decoder, we can take advantage of our model and use convolution layers to parameterize O-INR.
Considering the associated kernel to be a convolutional kernel, we have: Ky (w,w’) = ggo(w — w’).
Therefore, with g4 being the standard convolutional kernel (EI) becomes:

h(w) = g[f] (w) = /,EQ gp(w —) f(W)do', weQ (6)

Notice that in standard INRs, the mapping is a point-wise map, hence in the latent space (of INRs),
adjacency does not have a semantic correspondence with the spatial dimension. But in O-INRs,
the transform is obtained over the entire domain of definition and hence the use of location bias is
permissible.

Multi-resolution training & Continuous convolutions: How fo sample at arbitrary resolution?
When using convolution kernels to parameterize O-INR, one drawback emerges when we want to
sample the signal at any arbitrary resolution. This is because discrete convolutions cannot adapt
their weights to different spacings, resulting in poor performance when changing resolution. A rem-
edy is available via continuous convolutional kernels (Romero et al.| 2021b). We also parameterize
each INR as a continuous convolutional network, which is trained to map multiple resolutions of
positional encodings of the domain of definition of the signal (e.g., the 2D plane) to corresponding
resolutions of the desired signal (e.g., images).

Remark 1 For spatio-temporal data the dimension of time is treated differently in the context of the
positional encoding as we will discuss in §B]

Remark 2 While the rationale of positional encoding is to provide high frequency signals as inputs
to the model, our use of convolutional layers also makes it possible to simply use noise as a proxy
for the high frequency positional encoding term. But this is a poor choice within INRs with MLP
layers due to the lack of location bias.

Miscellaneous implementation details: While we use the aforementioned positional encoding in
our experiments, we also train O-INR with noise as an additional channel to provide high frequency

Under review as a conference paper at ICLR 2024

components and it works well. For ease of implementation, and in cases where the sole purpose is
to fit to one resolution of the data point, we can use discrete convolutions. We now discuss of our
experimental results using continuous convolutions next.

4 REPRESENTATION CAPABILITY OF O-INR

We first check the representation capability of O-INRs relative to standard INRs. We evaluate per-
formance on 2D images as well as 3D volumes. Additionally we show that our proposed model
can handle inverse problems such as image denoising. For 2D images, we use images from sev-
eral sources including |Agustsson & Timofte (2017) Kodak Image Suite, scikit-image, etc. For 3D
volumes, we use data from the Stanford 3D Scanning Repository and [Saragadam et al.| (2022} 2023).

4.1 MULTI-RESOLUTION TRAINING IS POSSIBLE

Task. We will assess the effectiveness of the multi-resolution training approach for O-INR. Given
an image at a particular resolution, we train our model using its lower resolution versions (obtained
by down sampling). Can our model effectively reconstruct images at an arbitrary resolution?
Setup. We compare our method to baselines including SIREN (Sitzmann et al.,[2020), WIRE
gadam et al [2023)) and MFN (Fathony et al.| [2021)). Following (Saragadam et al., [2023)), we train
the baselines on the best resolution image seen by the O-INR during training. We then compare
performance of all methods for reconstructions at the original (higher) resolution. Note that O-INRs
with continuous convolutions can be trained at multiple resolutions.

Results summary. As seen in Fig. |2 O-INR achieves comparable/better performance than base-
lines in terms of the Peak Signal to Noise Ratio (PSNR). Due to the use of continuous convolutions
here, the number of parameters required for O-INR are much smaller (100K) compared to baseline
models (~ 130K) to achieve parity in performance.

4.2 2D IMAGE REPRESENTATION EFFECTIVENESS

Task. A prominent use case of INRs is in representing spatio-temporal signals. So, is O-INR
effective at representing 2D images of varying resolutions?

Setup. We compare O-INR with SIREN (Sitzmann et al.}[2020), WIRE (Saragadam et al., 2023)) and
MFN (Fathony et al.} 202T)) based on (i) PSNR and (ii) training time to reach the best possible PSNR

for that specific model. While other INR models use MLP layers, our model is solely parameterized
by convolution layers. For fair comparisons, the number of parameters in our models are comparable
with the baselines.

Results summary. Table [TJFig. 3] shows that O-INR achieves comparable/better performance than
baseline methods in terms of PSNR. In terms of training time, O-INR is comparable/better than
MFN/WIRE but slower than SIREN (but in all cases, SIREN representations seem to underperforms
the other baselines).

Ground truth O-INR (34.04) SIREN (24.88) WIRE (34.13) MFN (26.82)
Figure 3: Performance comparison of O-INR for 2D image representation. Each row displays the ground-truth
together with images from O-INR and other baselines (L to R), with the PSNR value in dB. O-INR achieves
comparable/better performance.

Under review as a conference paper at ICLR 2024

Original Noisy O-INR (24.28) SIREN (20.94) WIRE (24.48) MFN (25.22)

Original Noisy O-INR (26.11) SIREN (25.27) WIRE (26.27) MFN (25.78)

Figure 4: Performance comparisons of O-INR for representing noisy images. For each method, we show the
PSNR for the image in dB. Among all methods, SIREN achieves the lowest PSNR, O-INR and other baselines
perform similarly.

4.3 APPLICATION TO IMAGE DENOISING

Task. Our task is to assess the robustness of O-INR: is it effective at representing noisy images?

Setup. Given an image, following (Saragadam et al.} [2023), we add photon noise for each pixel via
independently distributed Poisson r.v. (maximum mean photon count 30, readout count 2). These
noisy images are then used to learn O-INR models. We compare performance with SIREN, WIRE
and MFN. Consistent with previous experiments, all models have comparable number of parameters.

Results summary. From Tab2fFig.] we see Train Fern Coffee Walnut Rocket
that O-INR is able to nicely recover the true sig- Size 510 x 339510 x 339400 X 600510 x 339427 x 640

nal comparable with other methods. This exper- SIREN 24.88 28.27 2991 26.09 30.39

iment (also see appendix) indicate its effective- £ WIRE 3413 3716 3151 3321 3146

i solvi . bl @ MFN 2682 31.26 32.27 28.36 30.93

ness 1 solving some 1nverse problems. OINR 34.04 36.4 32.04 32.12 3291

SIREN 3843 53.8 68.67 513 89.39

4.4 3D VOLUME REPRESENTATION 2WIRE 10036 10941 15127 10224 19849

£ MFN 897 8805 11776 8206 151.99

OINR 880 68.2 101.3 6483 109.63

Task. INRs are commonly used as a continuous
representation of 3D volumes or surfaces. So, Table 1: O-INR and baselines for 2D image represen-
can O-INR encode 3D volumetric data well? tation. PSNR (in dB) and time in seconds show O-INR
Setup. We consider occupancy volume sampled is comparable/better than baselines.

overa 512 x 512 x 512 voxel grid, where each voxel within the volume is assigned a value of 1 inside
an object and 0 otherwise. We compare O-INR with SIREN, WIRE and MFN based on intersection
over union (IoU). We ensure a similar number of parameters when comparing with baselines.
Results summary. Fig. [f|shows that O-INR performs well in IoU in all cases. For SIREN and WIRE,
we report the best performance (achieved with a model with slightly fewer number of parameters).
Increasing the parameters of SIREN and WIRE involves an interplay with other hyper-parameters.

5 REPRESENTING A SEQUENCE OF SIGNALS/FUNCTIONS

Task. Given a sequence of signals captured over a predefined ﬁxed domain, it is natural to consider
the data as a sequence of functions defined over
the domain yielding a sequence of functions
(or signals). For example, frames in a short-
burst video are a sequence of images (captured
by different functions over the same domain).
In standard INR formulations, such signals are >
represented by considering an additional pa- Figure 5: Top/Bottom: Rows show frames from a bike
rameter (usually time) in the domain of defini- video: original and the ones from O-INR trained on
tion and parameterized using mg : (z,y,t) — sparsely sampled frames of a long video sequence. O-
(r,g,b). While this is reasonable, a more nat- INR represents the scenes in the sequence well.

ural approach from a operator (functional) perspective is to consider the sequence of frames as
different (but related) functions acting on the same domain rather than a function (with a rather large

Under review as a conference paper at ICLR 2024

G PN 3 U & S

‘/‘; "/f\\w‘:/ A - 7//‘5/:/%\:“: - ?"’/r’,:/f\\u " n -~ .’” 9\\ A

77 g ™ T g G~
Thai statue O-INR (0.9999) MEN (0.9946) SIREN (0.9665) WIRE (0.9658)

Figure 6: We report IoU achieved for each method after training converged. O-INR achieves best performance
among all baselines. Zoomed in parts in each case show the that minute details are captured better by O-INR.

redundancy) acting on the spatio-temporal volume. Our experiment checks if O-INR is effective
here.

Setup. We consider learning a transform between spaces consisting of sequence of functions. More
precisely, in this case O-INR takes the following form:

Gy Fn = Hy; Fn={fn(Q)n e N} Hy ={h,(Q)|n e N} @)

where ¢ denotes the to-be-learned parameters and €2 is the domain of definition. We use sinusoidal
positional encodings as the input function space. A key question here is how to define a sequence of
functions over the domain under consideration, while still ensuring that all such functions provide
both low and high frequency signals as an input to our O-INR. Here, we consider the domain {2 as
the 2D plane over which frames are defined, with (z,y) € Qand vy = a + ((6 —2)/N)n

fa([z,y]) = [sin(2'7z) + 7, cos(2'mx) + 7, sin(2'7y) + 7, cos(2'my) + 7, ...,] (8)

where [€ [0, L — 1] for some L € N, levels of frequencies chosen to be part of the input signal.
Here, «, 8 are empirically determined constants and NN is the total number of functions that the O-
INR is trained to encode.

Results summary. In the first experiment, we learn O-INR for consecutive frames of a video of a
cat from SIREN (Sitzmann et al., |2020). In the second case, we train O-INR effectively on a much
longer sequence from skvideo-dataset, albeit only using sparsely sampled frames, thereby exploiting
the regularity property of the function space associated with a related sequence of signals. From Fig.
[3land Fig. [7} we see that O-INR can faithfully represent the different frames via a single model. We
find that these results are comparable with SIREN (appendix includes more examples).

6 APPLICATIONS TO BRAIN IMAGING FOR SLICE IMPUTATION

Task. Available software tools (like FreeSurfer (Fischl, [2012)) for the analysis of
brain imaging data target high resolution scans, acquired within research studies.
However, as noted in (Dalca et al. 2018)), typ-

ical clinical (non-research) scans have much Astronaut Cat Kodak05 ~Kodakl9 Rocket
lower out of plane resolution (often for slice-by- " gj,c 512 x 512300 x 451512 x 768256 x 171427 x 640
slice reading by radiologists). Processing such

. o . . SIREN 20.94 248 18.27 22.13 2527
scans with existing tools poses difficulties, and wirRg 24.48 274 20.47 24.6 26.27
the results often need to be manually checked. MFN 2522 24.8 23.6 20.96 2578

O-INR 2428 25.1 21.9 227 26.11

Even partially mitigating this issue can radi-
cally increase sample sizes available for scien-
tific analysis. We demonstrate the use of O-INR
in representing such low resolution brain imag-
ing data in (a) obtaining a faithful representation and (b) preserving statistical group differences.

Table 2: Comparison of PSNR values (in dB) for O-
INR and baselines for 2D image denoising.

Setup. We consider MRI data from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Mueller et all [2005; Jack Jr et al, [2008) and model 2D slices in a 3D brain
scan via a sequence of functions as described in §3] Our data includes approxi-
mately 140 subjects each from cognitively normal (CN) and diseased (AD) individuals.

Under review as a conference paper at ICLR 2024

O-INRs are trained for each image. For each 3D
image, we progressively dropped more slices in
one out of plane direction to simulate poor res-
olution, and use it for training.

Results summary. We observe that O-INR re-
mains robust up to a high percentage of miss-
ing slices. The MSE of the reconstructed brain
volumes reported in Tab. [3] show that O-INR
is capable of learning the representation well
enough even when more than 80% of the slices
are dropped. Finally, we use SnPM (Statistical
NonParametric Mapping) toolbox (Ashburner,
2010) to perform a statistical group difference
analysis (voxel-wise t-test) on the real data (CN Fjgure 7: Top to Bottom: Rows represent frames from
versus AD). Then, the same analysis was per- cat video (Sitzmann et al| [2020) original and ones ob-
formed on O-INR derived data (CN versus AD). tained from O-INR representation. In this case the
We find that voxels reported to be significant model was trained on consecutive frames of the video.

(uncorrected p-values) on the real data analysis

overlap with the analysis on data based on O-INR slice imputation. Sizable clusters agree although
the spatial extent is reduced (higher Type 2 error). Statistical analysis results with a brain image
underlay and additional results from the group difference analysis are given in Appendix §Il

7 LEARNING DOWNSTREAM TASKS ON O-INRS

Task. Using INRs for downstream tasks is an exciting emergent problem setting.
Recently (Navon et al., 2023) proposed an equivariant architec- ¢, missing Train MSE Test MSE

ture for learning in the so-called “deep weight spaces” of INRs.
However, in general, with standard INRs, signal processing op-

50 2.17e-5 8.33e-5
66 3.10e-5 2.38e-4

erations on the latent space of MLPs remain difficult (Xu et al.,

. L.) 75 1.39e-6 4.70e-4
2022). Most methods must resort to discretization leading to loss 80 1.58¢-5 7.660-4
in properties like continuity. The result in (Xu et al.,|2022)) ex- D) 269-6 1.08¢-3

plores the use of differential operators on INR: it is interesting
but is not memory efficient (see pp 10 (Xu et al.} [2022)). Since
the O-INR operates on function spaces, many operations in sig-
nal processing (e.g., evaluating derivatives) are incredibly easy in
principle. So, can these benefits be verified in practice?

Setup. When using O-INR to encode a signal e.g., an image, the signal is represented as the convolu-
tion of a known simple signal (e.g., a deterministic positional encoding) with a sequence of learned
kernels. For ease of presentation, consider the domain to be one dimensional. Then our model is:

hx) = f(x)* g(z) €)

where h(z) is the true signal we want to represent, f(z) is the positional encoding and g(x) is
the learned transform (convolution filters) between f(x) and h(z). When taking into account our
multi-layer convolutional model with sine non-linearities, (9) can be written as (e.g., for 3 layers):

Table 3: Train/test MSE for 3D
brain images with % of missing
slices during training O-INR.

h(z) = (sin(sin(f(x) * g1(x))) * g2(x)) * gs() (10)
We make use of the property of computing derivatives over the convolution operation, namely:
h(z) = f(x) x g(z) = () = f'(2) * g(z) (11)
Then, the derivative of our original signal is:
h'(z) = (sin(sin(f (z) * g1(x))) * g2(2))" * gs(x) (12)

which on repeated application of equation [11|and the chain rule leads to cos(sin(f(z) * g1(x))) *
g2(x))Ocos(f(z)*g1(x)) O f'(x)* g1 (x) *g2(x) *g3(x), where © denotes point-wise multiplication
and * denotes convolution operation. The extension to higher order derivatives follows similarly.

Results summary. We show the effectiveness of this approach in computing derivatives in Fig. [§]
We see that once an O-INR is learned, it can map different functions to their desired signals. Here,

Under review as a conference paper at ICLR 2024

the input functions are the positional encodings of the grid and its derivative, which are then mapped
via O-INR to their corresponding outputs: signal (image) and its first-order gradient. This shows
that O-INR allows seamless calculus operations in the function space, a functionality not currently
available otherwise.

8 O-INR WEIGHT INTERPOLATION

Task. We verified above that operations like derivatives are possible, suggesting that structure in G
can be queried. So, does this ability allow other operations (interpolation)?

Setup. We investigate whether the convolutional weight space of O-INRs produces a more struc-
tured latent space than coordinate-based networks. One way to do this is by visualizing inter-
polations between O-INRs fit on different images from the CelebA dataset (Liu et all [2015).
We should note that no generative model was trained
on CelebA — the only two images that O-INR sees
are the ones being interpolated.

Results summary. Ainsworth et al.| (2022) recently

demonstrated the use of special weight-matching al-
gorithms to align two models in the weight space.
Using this idea, we permute the channel order-
ing of one O-INR’s layers to minimize the to-
tal cosine distance between the activation statis-
tics of the two O-INRs. Interpolation results pre-
sented in Fig. [J] use this strategy. Interestingly,
even without an explicit weight matching, we find
that all trends hold. We find that performing lin-
ear interpolation between the convolutional weights
(in O-INR) corresponding to different images leads = SZ=] \
to reason.able‘ ar}d. interpretabl@: outputs, whereas Fiure 8: (L to R) Original image, true grai-
interpolating individual layers in coordinate-based ¢ of the image via Sobel filter and gradient ob-
MLPs like SIREN does not yield coherent outputs tained via O-INR (see §7). We see that the O-INR
Fig.] More examples of such interpolations derivative closely matches the true derivative in all
and results obtained by manipulating individual cases. Small discrepancies are due to the residual

convolutional layers are provided in Appendix §J] between the true image and its O-INR representa-
tion.

9 CONCLUSION

O-INR constitutes the
first approach for fitting
INRs that treats coordinate
encodings as a function
space, giving rise to effi-
cient and compact training
on complex signals and
particularly sequences
of signals. O-INR also
leverages the properties Figure 9: Interpolations between two CelebA images fit with SIREN versus
of convolutional neural O-INR. All layer weights are linearly interpolated.

networks and sinusoidal activations to produce fast closed form derivatives useful in downstream
tasks as well as an interpretable latent weight space. We observe that O-INR is effective on a
wide range of signals and tasks, and requires little to no hyperparameter tuning. Future work
will expand on the possibilities opened by this framework, such as fitting a radiance field with a
single interpolation-free CNN whose input captures all the information about camera rays and their
query points. We also hope to address limitations of this approach, particularly maintaining high
performance and speed on arbitrary non-grid inputs, quite important in many 3D applications.

SIREN

Under review as a conference paper at ICLR 2024

REFERENCES

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition workshops, pp. 126-135, 2017.

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models mod-
ulo permutation symmetries. In The Eleventh International Conference on Learning Representa-
tions, 2022.

John Ashburner. Vbm tutorial. Tech. repWellcome Trust Centre for Neuroimaging, London, UK,
2010.

Alexandre Boulch. Generalizing discrete convolutions for unstructured point clouds. CoRR,
abs/1904.02375, 2019.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8628-8638, 2021.

Adrian V Dalca, Katherine L Bouman, William T Freeman, Natalia S Rost, Mert R Sabuncu, and
Polina Golland. Medical image imputation from image collections. IEEE transactions on medical
imaging, 38(2):504-514, 2018.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data
to functa: Your data point is a function and you should treat it like one. arXiv preprint
arXiv:2201.12204, 2022a.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Y Whye Teh, and Arnaud
Doucet. Coin++: Neural compression across modalities. Transactions on Machine Learning
Research, 2022(11), 2022b.

Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A
Tchelepi, Philip Marcus, Mr Prabhat, Anima Anandkumar, et al. Meshfreeflownet: A physics-
constrained deep continuous space-time super-resolution framework. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-15. IEEE,
2020.

Zhiwen Fan, Yifan Jiang, Peihao Wang, Xinyu Gong, Dejia Xu, and Zhangyang Wang. Unified
implicit neural stylization. In Computer Vision—-ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23-27, 2022, Proceedings, Part XV, pp. 636—-654. Springer, 2022.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
In International Conference on Learning Representations, 2021.

Brandon Yushan Feng, Susmija Jabbireddy, and Amitabh Varshney. Viinter: View interpolation with
implicit neural representations of images. In SIGGRAPH Asia 2022 Conference Papers, pp. 1-9,
2022.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Miiller. Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. CoRR, abs/1711.08920, 2017.

Bruce Fischl. Freesurfer. Neuroimage, 62(2):774-781, 2012.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501-5510, 2022.

Bingchen Gong, Yuehao Wang, Xiaoguang Han, and Qi Dou. Recolornerf: Layer decomposed
radiance field for efficient color editing of 3d scenes. arXiv preprint arXiv:2301.07958, 2023.

Daniele Grattarola and Pierre Vandergheynst. Generalised implicit neural representations. In Ad-
vances in Neural Information Processing Systems.

10

Under review as a conference paper at ICLR 2024

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
ization for learning shapes. In International Conference on Machine Learning, pp. 3789-3799.
PMLR, 2020.

Michelle Guo, Alireza Fathi, Jiajun Wu, and Thomas Funkhouser. Object-centric neural scene
rendering. arXiv preprint arXiv:2012.08503, 2020.

Clifford R Jack Jr, Matt A Bernstein, Nick C Fox, Paul Thompson, Gene Alexander, Danielle Har-
vey, Bret Borowski, Paula J Britson, Jennifer L. Whitwell, Chadwick Ward, et al. The alzheimer’s
disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance Imaging:
An Official Journal of the International Society for Magnetic Resonance in Medicine, 27(4):685—
691, 2008.

Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias NieBner, Thomas
Funkhouser, et al. Local implicit grid representations for 3d scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6001-6010, 2020.

Mary J Lindstrom and Douglas M Bates. Nonlinear mixed effects models for repeated measures
data. Biometrics, pp. 673—687, 1990.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

Susanne G Mueller, Michael W Weiner, Leon J Thal, Ronald C Petersen, Clifford R Jack, William
Jagust, John Q Trojanowski, Arthur W Toga, and Laurel Beckett. Ways toward an early diagnosis
in alzheimer’s disease: the alzheimer’s disease neuroimaging initiative (adni). Alzheimer’s &
Dementia, 1(1):55-66, 2005.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp- 25790-25816. PMLR, 23-29 Jul 2023.

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional genera-
tive neural feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11453-11464, 2021.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow: 4d
reconstruction by learning particle dynamics. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 5379-5389, 2019.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumet-
ric rendering: Learning implicit 3d representations without 3d supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504-3515, 2020.

Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture
fields: Learning texture representations in function space. In Proceedings IEEE International
Conf. on Computer Vision (ICCV), 2019.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Con-
volutional occupancy networks. In Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part 11l 16, pp. 523-540. Springer, 2020.

Qichao Que, Mikhail Belkin, and Yusu Wang. Learning with fredholm kernels. Advances in neural
information processing systems, 27, 2014.

David W. Romero, Robert-Jan Bruintjes, Jakub M. Tomczak, Erik J. Bekkers, Mark Hoogendoorn,
and Jan C. van Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel
sizes. CoRR, abs/2110.08059, 2021a.

11

Under review as a conference paper at ICLR 2024

David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M. Tomczak, and Mark Hoogendoorn.
Ckconv: Continuous kernel convolution for sequential data. CoRR, abs/2102.02611, 2021b.

David W Romero, David M Knigge, Albert Gu, Erik J Bekkers, Efstratios Gavves, Jakub M Tom-
czak, and Mark Hoogendoorn. Towards a general purpose cnn for long range dependencies in nd.
arXiv preprint arXiv:2206.03398, 2022.

Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. On learning with integral operators. Journal
of Machine Learning Research, 11(2), 2010.

Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G Baraniuk, and Ashok Veer-
araghavan. Miner: Multiscale implicit neural representation. In Computer Vision—-ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXIII, pp.
318-333. Springer, 2022.

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraragha-
van, and Richard G Baraniuk. Wire: Wavelet implicit neural representations. arXiv preprint
arXiv:2301.05187, 2023.

Kristof Schiitt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Miiller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. Advances in neural information processing systems, 30, 2017.

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields
for 3d-aware image synthesis. Advances in Neural Information Processing Systems, 33:20154—
20166, 2020.

Tamar Rott Shaham, Michaé&l Gharbi, Richard Zhang, Eli Shechtman, and Tomer Michaeli.
Spatially-adaptive pixelwise networks for fast image translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14882—-14891, 2021.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neu-
ral networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3693-3702, 2017.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462-7473, 2020.

Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous
images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 10753-10764, 2021.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
vergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5459-5469, 2022.

Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg, and Ulugbek S Kamilov. Coil: Coordinate-
based internal learning for imaging inverse problems. arXiv preprint arXiv:2102.05181, 2021.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn

high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537-7547, 2020.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simu-
lation with continuous convolutions. In International Conference on Learning Representations,
2019.

Clinton J Wang and Polina Golland. Deep learning on implicit neural datasets. arXiv preprint
arXiv:2206.01178, 2022.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep paramet-
ric continuous convolutional neural networks. CoRR, abs/2101.06742, 2021.

12

Under review as a conference paper at ICLR 2024

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition,
pp. 9621-9630, 2019.

Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. Signal processing for
implicit neural representations. In Advances in Neural Information Processing Systems, 2022.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752-5761, 2021a.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
one or few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4578-4587, 2021b.

Hong-Xing Yu, Leonidas Guibas, and Jiajun Wu. Unsupervised discovery of object radiance fields.
In International Conference on Learning Representations.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. Nerf-editing:
geometry editing of neural radiance fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 18353-18364, 2022.

Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. Cips-3d: A 3d-aware generator of gans based on
conditionally-independent pixel synthesis. arXiv preprint arXiv:2110.09788, 2021.

A APPENDIX

We present additional experimental details and empirical results for the different experiments pre-
sented in the main paper and some ablation studies, pertaining to the use of noise as a channel for
positional encoding.

B MULTI-RESOLUTION TRAINING FOR 2D IMAGES

For each image we trained O-INR on a bunch of lower resolution images. For example: the cam-
eraman image was originally of size 256 x 256, and hence O-INR was trained using images in the
range 120 x 120 to 224 x 224. Similarly, for the image of human face O-INR was trained on images
with size in the range 256 x 256 to 360 x 360 and final performance was evaluated on the original

image of size 512 x 512. Since, baselines such as SIREN [Sitzmann et al.| (2020), WIRE [Saragadam|
(2023) and MFN [Fathony et al.| (2021)) can only be trained on image of one resolution, we first

trained them on the lowest, highest and average resolution of image used for training O-INR, how-
ever as expected the performance of baseline models was the best when they were trained using the
highest resolution of image used to train O-INR. Hence, we report PSNR for all baseline methods
trained on the highest resolution of image used to train O-INR. The performance is measured on the
original (higher) resolution image in all cases.

For training O-INR we used a learning rate of 0.0005 for 1000 epochs and the number of sinusoidal
frequencies used for each dimension was 20, 10 coming from sin and 10 from cos. The number

Ground truth O-INR (32.14) SIREN (31.84) WIRE (22.1) MFN (32.67)

Figure 10: Performance comparisons of O-INR in multi-resolution training setting. The ground-truth together
with images from O-INR and other baselines (L to R), with the PSNR value in dB. O-INR achieves compara-
ble/better performance

13

Under review as a conference paper at ICLR 2024

of parameters for O-INR model to achieve comparable performance was ~ 100k whereas baseline
methods required ~ 130k parameters. Additional results are presented in Fig. [10]

C 2D IMAGE REPRESENTATION

For 2D image representation, O-INR and all other baseline methods were trained on the image
of same resolution and representation capability was presented in terms of PSNR. All models had
~ 172k trainable parameters and trained until convergence with learning rate in the order of 0.001.
Here, the number of sinusoidal frequencies used for each dimension was 20, 10 coming from sin
and 10 from cos. In Fig. [TT} we present additional results for 2D image representation.

- e S AP y: N

Ground truth O-INR (32.12) SIREN (26.09) WIRE (33.21) MFN (28.36)

Figure 11: Performance comparison of O-INR for 2D image representation. Each row displays the ground-
truth together with images from O-INR and other baselines (L to R), with the PSNR value in dB.

D 3D VOLUME REPRESENTATION

For 3D volume representation both O-INR and baseline models were trained with ~ 1M parameters.
We used a learning rate of 0.001. In this case, the number of sinusoidal frequencies used for each
dimension was 16, 8 coming from sin and 8 from cos. Additional result in Fig. |'12| shows that in
terms of IoU, O-INR performs as good as the alternative.

/»‘; i‘, m ,” 1 m ‘,“' “(‘ m ‘i ,‘ : m 1)ﬁ (‘" m

A I3
N £\ £\ (N £\
Lucy O-INR (0.9995) MEN (0.9978) SIREN (0.9753) WIRE (0.9753)

Figure 12: We report IoU achieved for each method after training converged. O-INR achieves best perfor-
mance among all baselines. Zoomed in parts in each case show the that minute details are captured better by
O-INR.

14

Under review as a conference paper at ICLR 2024

E 2D IMAGE DENOISING

In recovering an image from a noisy version we trained O-INR and all baseline models on noisy
variants obtained by following the noise addition procedure in|Saragadam et al.|(2023). All models

had roughly 130k trainable parameters. We used a learning rate of 0.003 for O-INR. Here, the
number of sinusoidal frequencies used for each dimension was 20, 10 coming from sin and 10 from
cos. In Fig. [I3| we present additional results.

SIREN (18.27) WIRE (20.47)

Original Noisy O-INR (22.7) SIREN (22.13) WIRE (24.6) MFN (20.96)

Figure 13: Performance comparisons of O-INR for representing noisy images. For each method, we note the
PSNR it achieves on the image in dB. O-INR and other baselines perform similarly.

F EFFECTIVENESS OF CONTINUOUS CONVOLUTION IN O-INR

We present results for 2D image representation and 2D image denoising where continuous convolu-
tion was used in O-INR. As mentioned in the main paper, continuous convolutions are not strictly
necessary for these tasks. Here we demonstrate that performance of O-INR isn’t effected by this
choice as PSNR is comparable whether one uses continuous or discrete convolution. For example,
in Fig. [T4] the coffee-mug image attains a PSNR of 31.18 with continuous convolution O-INR
whereas with discrete convolution O-INR, PSNR on the same image is 32.04 as reported in Fig. 3]

Ground truth O-INR (31.18) Ground truth O-INR (32.46)

Figure 14: Performance of O-INR for 2D image representation using continuous convolution. The ground-
truth together with images from O-INR with the PSNR value in dB. Performance is comparable to O-INR using
discrete convolution

Similarly, in the case of representing noisy images, as can be seen in Fig. [T3] for the image of
an astronaut, continuous convolution based O-INR achieves PSNR of 23.5, on the other hand as
presented in the main paper (Fig. 4), with discrete convolution, we can achieve a PSNR of 24.48

15

Under review as a conference paper at ICLR 2024

Original Noisy O-INR (23.5) Original Noisy O-INR (24.14)

Figure 15: Performance of O-INR with continuous convolution for representing noisy images. We note the
PSNR it achieves on the image in dB. Performance is comparable to O-INR using discrete convolution

on the same image. Hence, it is evident that the performance of O-INR is fairly independent of the
choice of continuous or discrete convolution and one can choose based on the representation task at
hand.

G NOISE AS POSITIONAL ENCODING FOR O-INR

As mentioned in Remark 2 of the main paper, O-INR is capable of simply using noise as a proxy
for the high frequency positional encoding term due to the use of convolutional layers. But this is
a poor choice for standard INRs with MLP layers due to the lack of location bias. Here we present
empirical evidence for the effectiveness of using noise sampled from standard normal distribution
as providing high frequency component for the positional encoding as can be seen in Fig.

—~i; LER= e o

Ground truth O-INR (26.68) Ground truth O-INR (29.77)

Figure 16: Performance of O-INR for 2D image representation using standard normal noise for high frequency
positional encoding. The ground-truth together with images from O-INR with the PSNR value in dB.

H O-INR FOR SEQUENCE DATA

We used a learning rate of 0.001 along with 20 positional encodings for each spatial dimension, 10
for sin and 10 for cos for training an O-INR model. When trained on the first 16 frames of a cat
video [Sitzmann et al.| (2020), O-INR can achieve an average PSNR of 35.68 (or MSE of 0.00027.
Additionally we also train O-INR on frames obtained from sub-sampling a video, demonstrating
the capability of our method to recover the original sequence despite seeing only a sparse version.
Please refer to videos present in the “Result” folder for original and videos recovered from trained
O-INR, corresponding to both experimental settings: “consecutive” and “sparse”. The “consecutive”
sub-folder contains results for the scenario where O-INR was trained on consecutive frames. The
folder names therein indicate the video, either of a cat or a road scene and the number denotes the
value of ‘n’ for the first ‘n’ consecutive frames in the video. The “sparse” sub-folder has results for
the scenario, where O-INR was trained on a sparse subset of sub-sampled frames from the video.
Folder names therein indicate the dataset, the number of frames used to train the model and the final
number of frames present in the video recovered via O-INR.

I APPLICATIONS TO BRAIN IMAGING

For the 3D Brain image data, we chose approximately 140 subjects each from the cognitively normal
(CN) and diseased (AD) groups and trained O-INR on the T1 MRI scans as mentioned in §6] For
performing the group difference analysis using O-INR we use only 34% of available slices, by

16

Under review as a conference paper at ICLR 2024

sampling every third slice along the Coronal direction for training the O-INRs. We used 20 positional
encodings for each spatial dimension - 10 for sin and 10 for cos. An initial learning rate of 0.001 was
used alongside a Cosine Annealing scheduler with a minimum learning rate of 5e — 4 and maximum
steps of 10000. The whole brain image was generated at the original resolution using the trained
model. The models trained achieved an MSE of 2.67e — 4 at the original resolution, indicating that
O-INR is able to represent the 3D volume well.

Figure 17: Top and Bottom rows: Overlay of filtered statistic image from group difference analysis
of original (full resolution) and images generated via O-INR trained on sparsely sampled (30%
slices) AD and CN images respectively. The above images indicate that O-INR is successful in
preserving the group difference in 3D brain imaging data.

In order to perform statistical analysis, we used the Statistical non-Parametric Mapping (SnPM)
toolbox. We performed statistical group difference (voxel-wise t-test) on the real data (CN versus
AD) with 10000 permutations. Then, the same analysis process was repeated on O-INR derived data
(CN versus AD). Note that the O-INR’s were trained only a fraction of the original resolution. We
find that voxels reported to be significant (uncorrected p-values) on the real data analysis agree fully
with the analysis results on data based on O-INR slice imputation. Sizable clusters agree although
the spatial extent is reduced (higher Type 2 error). This is evident in both the over-lay diagram in
Fig. [I7)as well as the T'-statistic and uncorrected p-values in Fig. [T8]

J WEIGHT SPACE INTERPOLATIONS OF O-INR

In addition to performing interpolation between two different O-INRs, we also manipulated convo-
lutional layers in individual O-INRs. We find that manipulating individual convolutional layers by
interpolating its weights while holding others fixed yields structurally coherent changes to the image
as shown in Fig. [T9] In particular, early layers in the O-INR capture large-scale features of the image
(Convl perturbs the shape of the head, Conv3 perturbs the eyes and nose) while later layers reflect
local properties such as color and texture (Conv4 and Conv5). In Fig. 20| we present additional
results for weight interpolation between O-INRs trained on images from CelebA [Liu et al.| (2015)).

17

Under review as a conference paper at ICLR 2024

XY,Z mm XY.Z mm
T pu'nmrr T J:'l-rltﬂ'.l'r
6.00 0.0001 21 48 37 6.00 00001 21 48 37
2.97 0.0017 22 42 44 3.9 00002 22 41 44
1.53 00650 20 &1 28 .76 0.0027 20 57 31
4,13 0.001 57 59 32 4.06 00002 72 48 136
a9 0.0001 55 69 135 1.63 00542 71 5% 32
3.02 0.0016 &0 68 42 397 0.0001 55 69 35
4.06 0.0002 72 48 136 3.64 0.0002 7 3 A
3.92 0.0002 &5 45 19 3.9 0.0012 59 74 4
2.62 0.0055 55 45 15 3.92 0.0001 &5 45 19
1.96 0.0250 &3 37 17 2.78 0.0030 &5 37 17
3.88 0.0002 &1 52 42 2.55 0.0057 55 45 15
3.82 0.0002 33 &6 40 i.88 0.0001 33 &6 40
2.78 00033 35 71 34 1.80 00388 37 &7 33
1.68 0.0002 33 61 33 1.69 0.0002 29 91 49
3.48 0.0004 &7 70 S8 1.89 00026 33 85 45
2.1 0.0185 60 72 54 1.24 00126 35 97 46
3.48 0.0006 40 20 24 3.42 00003 &1 51 43
3.38 0.0006 71 &0 56 1.87 00315 &2 58 37

Figure 18: Statistical analysis results from SnPM showing T'-statistics, uncorrected p-values and
the cluster center location of sizable clusters. Table on the left summarizes the analysis results on
the real data whereas the table on the right summarizes the analysis on the data from O-INR slice
imputation. Nearly all sizable clusters (in bold) on the left have a corresponding cluster on the right
(the rank may be slightly up or down) indicating strong agreement between the results.

Conv4 Conv3 Convi

Convs

0 0.2 0.4 0.6 0.8 1
Interpolation Weight

Figure 19: Images produced by interpolating the weights of a single convolutional layer between two O-INRs
fit on different CelebA images. Other weights are held fixed.

18

Under review as a conference paper at ICLR 2024

Figure 20: Randomly selected examples of images produced by interpolating the weights of O-INRs fit on
different CelebA images.

19

	Introduction
	Related Work
	Setting up O-INRs
	Representation capability of O-INR
	Multi-resolution training is possible
	2D Image representation effectiveness
	Application to Image Denoising
	3D Volume representation

	Representing a sequence of signals/functions
	Applications to Brain Imaging for Slice Imputation
	Learning downstream tasks on O-INRs
	O-INR weight interpolation
	Conclusion
	Appendix
	Multi-resolution training for 2D images
	2D Image Representation
	3D Volume Representation
	2D Image denoising
	Effectiveness of Continuous Convolution in O-INR
	Noise as Positional Encoding for O-INR
	O-INR for sequence data
	Applications to Brain Imaging
	Weight space interpolations of O-INR

