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SimCLIP: Refining Image-Text Alignment with Simple Prompts
for Zero-/Few-shot Anomaly Detection

Anonymous Authors

ABSTRACT
Recently, large pre-trained vision-language models, such as CLIP,
have demonstrated significant potential in zero-/few-shot anom-
aly detection tasks. However, existing methods not only rely on
expert knowledge to manually craft extensive text prompts but
also suffer from a misalignment of high-level language features
with fine-level vision features in anomaly segmentation tasks. In
this paper, we propose a method, named SimCLIP, which focuses
on refining the aforementioned misalignment problem through
bidirectional adaptation of both Multi-Hierarchy Vision Adapter
(MHVA) and Implicit Prompt Tuning (IPT). In this way, our ap-
proach requires only a simple binary prompt to accomplish anom-
aly classification and segmentation tasks in zero-shot scenarios
efficiently. Furthermore, we introduce its few-shot extension, Sim-
CLIP+, integrating the relational information among vision embed-
ding and skillfully merging the cross-modal synergy information
between vision and language to address AD tasks. Extensive ex-
periments on two challenging datasets prove the more remarkable
generalization capacity of our method compared to the current
state-of-the-art. Our code and pre-trained models are available at
https://anonymous.4open.science/ r/SimCLIP-CAEC.

CCS CONCEPTS
• Computing methodologies→ Scene anomaly detection.

KEYWORDS
Vision-Language Model, Vision Adapter, Prompt Learning

1 INTRODUCTION
One significant disparity between artificial intelligence and humans
lies in their abilities to generalize novel tasks with limited data.
Addressing anomaly detection (AD) tasks with limited data is a
highly challenging and non-trivial problem, primarily due to the
diversity of anomaly types and the scarcity of abnormal samples.
Recent advancements in Vision-Language (V-L) models (e.g., CLIP
[30] ) have shown promising capabilities in zero-shot AD tasks
by effectively aligning natural language with visual information
during pretraining. However, the major gap between the initial
CLIP task setting and the typical anomaly detection results in poor
semantic alignment across vision and language modalities on the
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Figure 1: (a) Prior works rely on the extensive hand-crafted
text prompt and locate anomalies through the similarity be-
tween fine-level image patches and high-level prompt ensem-
ble. (b) Our proposed SimCLIP enables realignment through
bidirectional coordination between Implicit Prompt Tuning
(IPT) and Multi-Hierarchy Vision Adapter (MHVA).

AD task. Therefore, applying CLIP directly to zero-/few-shot AD
tasks inevitably encounters two challenges.

On the one hand, the strong generalization of CLIP relies on
text prompts aligned to images. In real-world scenarios, the diverse
types of anomalies make it challenging for general text prompts
to encompass them comprehensively. Existing approaches [6, 17]
mitigate this problem by integrating expert knowledge and manu-
ally crafting extensive prompts (Figure1(a)). However, its effective-
ness is the necessity for verification with a certain degree of prior
knowledge. Besides, creating substantial hand-crafted task-specific
prompts for each scenario is time-consuming. Recent prompt learn-
ing works (e.g., CoOp [49]) can address this by directly learning
prompts from training data of downstream tasks. Such methods
can obtain better prompts in contrast to hand-crafted ones, but
the learned prompts are bounded by the distribution associated
with training data and have limited generalization [35]. In addition,
the learned prompts through this approach lack interpretability
and semantic coherence, which contradicts the original intention
of CLIP aligning image-text pairs. This inspires us to explore an
approach that can effectively guide the CLIP in accomplishing AD
tasks using only simple prompts.

On the other hand, CLIP is an image-text aligning Pre-trained
model well-suited for classification tasks. Nonetheless, AD encom-
passes the task of Anomaly Segmentation (AS), demanding pixel-
level localization of anomalies. To accomplish AS task, current

https://anonymous.4open.science/r/SimCLIP-CAEC
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Qualitative results of SimCLIP in zero-shot anomaly
segmentation.

methods[6] use linear mapping to transform patch-level features
into a multi-modal feature space. Subsequently, AS is achieved
by calculating the similarity of features between image patches
and text prompts in this embedding space (Figure 1(a)). Due to
the absence of changes in the prompt features, this process entails
adapting fine-level patch features to high-level semantic prompt
features. However, this unidirectional adaptation is insufficient to
fully exploit the potential of CLIP in AS tasks. This insight moti-
vates an exploration into the question: How to effectively align patch
features with text features in the multi-modal feature space?

In this paper, we propose a novel approach, named SimCLIP, de-
signed to bridge the gap between CLIP and downstream AD tasks in
zero-/few-shot scenarios. As shown in Figure 1(b), SimCLIP accom-
plishes realignment of vision and language through bidirectional
interaction adjustments of both two branches. For the vision branch,
SimCLIP employs a multi-hierarchy vision adapter (MHVA) at dif-
ferent hierarchies to capture richer spatial information and enable
effective cross-modal interactions with language. In the language
branch, we leverage task-specific prompt embedding to learn rele-
vant knowledge for AD tasks, alongside employing implicit prompt
learning (IPT) to refine and optimize the original prompt. SimCLIP
presents the following advantages: 1) Cross-modal realignment
significantly enhances the performance of the pre-trained CLIP
model in downstream AD tasks, demonstrating superior zero-shot
generalization compared to the initial CLIP, as shown in Figure 2. 2)
By employing prompt learning within a latent embedding space to
refine initial prompts, we overcome the limitations imposed by text
information capacity and broaden the solution space. 3) Implicit
prompt learning significantly reduces the dependency on numerous
hand-crafted prompts typically required for V-L models, enhancing
the flexibility and efficiency of the model. 4) SimCLIP maintains the
interpretability and semantic coherence of the text by fusion simple
prompts with task-specific prompts in embedding space. Further-
more, we introduce SimCLIP+, an extended version of SimCLIP,
integrating the relational information among vision features and
merging the cross-modal synergy information between vision and
language to address few-shot AD tasks.

In summary, we make the following main contributions:
• We propose a novel zero-shot AD approach named SimCLIP,
which achieves realignment on pre-trained CLIP through

bidirectional adjustment of both the multi-hierarchy vision
adapter (MHVA) and implicit prompt learning (IPT). This
method simplifies prompt design and seamlessly adapts to
anomaly detection tasks involving unseen classes.
• To tackle AD tasks under limited samples, we introduce an
extended version of SimCLIP, called SimCLIP+. This method
not only utilizes intrinsic correlation information among
vision embeddings but also integrates the cross-modal syn-
ergy information generated by SimCLIP. To further enhance
anomaly detection efficiency, we also propose a prior-aware
optimization algorithm designed to optimize the cross-modal
synergy information mentioned above.
• We conduct extensive experiments on MVTec-AD [2] and
VisA [52] benchmarks. SimCLIP/SimCLIP+ achieves superior
performance for zero-/few-shot anomaly classification and
segmentation compared to the state-of-the-art.

2 RELATEDWORK
2.1 Vision-Language Models
The Vision-Language models have attracted significant interest in
the field of computer vision through the integration of language
supervision with images. Recent V-L models [18, 30] employ joint
learning of two branches to connect these two modalities. They fur-
ther align both the vision and language in the multi-modal feature
space. Compared to models solely trained through vision supervi-
sion, these V-L models encode richer multi-modal representations.
During the training process, these models can more effectively
comprehend the natural world by leveraging information from
both modalities, contributing to their outstanding performance
across a wide range of tasks, including those involving zero-shot
or few-shot visual recognition tasks. While these pre-trained V-L
models learn generalized representations, effectively fine-tuning
them to adapt to specific downstream tasks remains a challenging
issue. Many studies have achieved state-of-the-art performance
in downstream tasks, including image recognition[1, 26], object
detection[12, 29, 36, 41], and segmentation[4, 9, 27, 32, 42, 48], by
employing customized approaches to adapt V-L models for these
specific tasks.

2.2 Prompt Learning
Prompt learning originated in the field of Natural Language Process-
ing (NLP). Large LanguageModels (LLMs) [3, 7, 8, 22, 38, 46] acquire
extensive knowledge during the pre-training phase by employing
self-supervised learning methods onmassive corpora. Prompt learn-
ing [10, 15, 21, 23, 34, 39] was developed to bridge the gap between
Pre-trained Language Models (PLMs) and specified downstream
tasks. For example, when recognizing the emotion of a social media
post, "I got fired today," we may continue with a prompt "I felt so
[blank]" and ask the PLMs to fill the blank with an emotion-bearing
word. In this way, prompt learningmay close the gap between PLMs
and downstream tasks by converting downstream tasks into fill-
in-blank tasks. Inspired by prompt learning in NLP, the paradigm
of prompt learning has recently gradually expanded to encompass
other domains, including V-L models [11, 19, 20, 45, 50]. In this
paper, we explore a crucial issue: how to mitigate the gap between
the CLIP [30] and AD tasks with prompt learning.
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2.3 Zero-/Few-shot Anomaly Detection
Recent anomaly detection research has primarily concentrated on
addressing anomaly classification and localization tasks with an
extremely limited number of normal images. RegAD [16] employs
image alignment tasks to train a category-agnostic anomaly detec-
tion model. WinCLIP [17] needs the hand-crafted design of textual
prompts for both normal and anomalous conditions, and anom-
alies are identified by calculating the cosine similarity between
textual prompts and images. While WinCLIP exhibits excellent per-
formance, its effectiveness is heavily influenced by the carefully
hand-crafted textual prompts. In a practical industrial setting, the
meticulous design of textual prompts for each category is a tedious
and time-consuming task. AnomalyGPT [13] takes image features
as input for the LLM, leveraging the knowledge of the LLM to
capture anomalous patterns within the images. Due to the core
reliance on LLM, AnomalyGPT introduces a considerable computa-
tional overhead during the inference stage, which is unfavorable
for real-time applications.

3 METHOD
In this section, we begin with a brief overview of CLIP [30], which
serves as the foundational model employed in our method. Subse-
quently, we elaborate on SimCLIP, employing a multi-hierarchy
vision adapter (MHVA) and implicit prompt tuning (IPT) to achieve
realignment between vision and language. Finally, we propose an
extended version of SImCLIP, named SimCLIP+, to address few-shot
AD tasks by integrating a feature-driven method and a prior-aware
optimization algorithm.

3.1 Preliminaries
CLIP consists of two branches: the vision branch I is dedicated to
capturing the visual features of images, and the language branch
T converts text prompts into semantic embeddings. During the
pre-training phase, CLIP employs contrastive learning [5, 14] to
maximize the cosine similarity between vision and language fea-
tures that correspond to the same semantics within the multi-modal
feature space. This is intended to promote the alignment between
visual and textual features. Thus, CLIP can effectively leverage the
distance between two modalities to accomplish zero-shot recogni-
tion tasks. Let 𝑥 and {𝑃 𝑗 }𝐾𝑗=1 denote the inputs to the vision branch
I and the language branch T respectively. Each prompt 𝑃 𝑗 corre-
sponds to a category, with 𝐾 being the total number of categories
assumed. Specifically, each 𝑃 𝑗 is obtained through a specific prompt
template, such as "a photo of a {class}," where the "{class}" token is
replaced with the name of the 𝑗-th class. The prediction probability
is then calculated as:

𝑝 (𝑦 = 𝑗 |𝑥) =
exp(sim(I(𝑥),T (𝑃 𝑗 ))/𝜏)∑𝐾
𝑖=1 exp(sim(I(𝑥),T (𝑃𝑖 ))/𝜏)

, (1)

where sim(·, ·) denotes cosine similarity and 𝜏 is a temperature
coefficient.

3.2 SimCLIP for zero-shot AD
In this section, we introduce SimCLIP, a method designed to effi-
ciently drive CLIP to perform zero-shot AD tasks by leveraging

a combination of the multi-hierarchy vision adapter and implicit
prompt tuning. This approach aims to realign the vision and lan-
guage modality within the multi-modal feature space.

CLIP focuses exclusively on achieving precise alignment between
high-level global semantic information extracted from images and
text during the pretraining phase. However, the extraction of high-
level global semantic information often results in the loss of spatial
details, thereby impeding the accurate localization of anomalies
within images.

To overcome this limitation, as shown in Figure 3, we extract
patch-level feature maps at various hierarchies. Formally, let 𝐿
represent the subset containing the indexes of the hierarchies to
be utilized. The feature maps of the 𝑙 ∈ 𝐿 are represented as F𝑙,𝑖 ∼
I𝑙 (𝑥𝑖 ) ∈ R𝐻𝑙×𝑊𝑙×𝐶𝑙 , where 𝑥𝑖 ∈ D𝑡𝑟𝑎𝑖𝑛 ∪ D𝑡𝑒𝑠𝑡 denotes the input
image. Here 𝐻𝑙 ,𝑊𝑙 , and 𝐶𝑙 refer to the height, width, and depth
of the feature map, respectively. We then select a feature slice at
the spatial position ℎ ∈ {1, 2, . . . , 𝐻𝑙 } and 𝑤 ∈ {1, 2, . . . ,𝑊𝑙 } from
the 𝑙-th layer’s feature map, denoted by F𝑙,𝑖 (ℎ,𝑤) ∼ I𝑙 (𝑥𝑖 , ℎ,𝑤) ∈
R𝐶𝑙 , which is a 𝐶𝑙 -dimensional real vector. To enable cross-modal
interaction with text prompts and retain spatial information within
the patch-level feature maps from different levels, we introduce
a multi-hierarchy vision adapter (MHVA) A𝑙,𝜃 . The adaptation
process is represented as follows:

F
′

𝑙,𝑖
= A𝑙,𝜃 (F𝑙,𝑖 (ℎ,𝑤) |F𝑙,𝑖 (ℎ,𝑤) ∈ I𝑙 (𝑥𝑖 )),where 𝑙 ∈ 𝐿. (2)

We aim to maintain a design for the adapter that is both simple
and efficient. Therefore, a linear probe is employed to construct the
multi-hierarchy vision adapter. One choice for locating anomalies
in an image is to calculate the feature similarity between the local
regions of the input image (according to Eq.(2)) and text prompts.
This is done in both [17] and [6] undoubtedly introduces the fol-
lowing two problems. Firstly, the abstract features extracted by the
CLIP language branch are more tailored toward natural image clas-
sification tasks and hold limited relevance to segmentation tasks
in industrial anomaly detection, with minimal overlap. Secondly,
there is an inherent lack of alignment between the fine-level vi-
sion features and high-level language features. Directly utilizing
these features would significantly degrade the model’s generaliza-
tion capability. In summary, this unidirectional vision adaptation
method fails to exploit the potential of CLIP in AS tasks. Inspired by
these insights, in addition to adapting the vision modality using the
multi-hierarchy vision adapter, we also introduce implicit prompt
tuning (IPT) to refine the language modality.

Firstly, we design simple binary prompts representing ‘normal
images’ and ‘anomalous images’, respectively. In the remainder
of this paper, unless explicitly indicated otherwise, the following
binary prompts are the default:

𝑃0 = 𝑎 𝑝ℎ𝑜𝑡𝑜 𝑜 𝑓 𝑎 [𝑐𝑙𝑠] 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑒 𝑓 𝑒𝑐𝑡 .
𝑃1 = 𝑎 𝑝ℎ𝑜𝑡𝑜 𝑜 𝑓 𝑎 [𝑐𝑙𝑠] 𝑤𝑖𝑡ℎ 𝑑𝑒 𝑓 𝑒𝑐𝑡 .

(3)

Here, the symbol [𝑐𝑙𝑠] denotes the category’s name. Due to the
limited capacity of text information, for instance, natural language
is insufficient to encompass the entirety of anomaly types. Further-
more, to diminish reliance on hand-crafted prompts, we employ
prompt learning to refine language features in latent embedding
space. Let 𝑇𝑙𝑎𝑠𝑡, 𝑗 = T (𝑃 𝑗 ) ∈ R𝑁×𝐶𝑙𝑎𝑠𝑡 denotes the output of the
last transformer layer of the language branch, where 𝑗 ∈ {0, 1}
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Figure 3: The architecture of SimCLIP/SimCLIP+. For zero-shot AD, SimCLIP achieves realignment between vision and language
through a cross-modal bidirectional adaptation approach. Otherwise, SimCLIP+ integrates a feature-driven method with
prior-aware optimization algorithms to tackle few-shot AD tasks under limited normal samples.

and 𝑁 denotes the number of tokens. As shown in Figure 3, we
employ an implicit prompt tuning L𝜃 integrated with learnable
task-specific prompt embeddings P tailored for AD tasks to refine
the original binary prompt. According to [24], it is evident that
directly updating the P can result in unstable optimization pro-
cesses and a slight performance decline. Therefore, we randomly
initialize a relatively small matrix P𝑠 , then pass it through a single
multi-layer perceptron (MLP) layer to address this limitation. The
final task-specific prompt embedding can be obtained as follows:

P = MLP(P𝑠 ),where P ∈ R𝐶𝑙𝑎𝑠𝑡 . (4)

As shown in Figure 3, the IPT L𝜃 accepts prompt feature𝑇𝑙𝑎𝑠𝑡, 𝑗 and
task-specific prompt embedding P as inputs, consisting of two core
components. Firstly, theweight transformationmatrix𝑊 = {𝑤𝑖 }𝑁

𝑖=1
accurately preserves key features from the original prompt while
eliminating redundant information, where each weight𝑤𝑖 ∈ [0, 1].
Subsequently, the feedforward network (FFN) skillfully integrates
the key features with task-specific prompt embeddings to attain
refined prompts. The process of refining the text prompt through
IPT is denoted as:

L𝜃 (𝑇𝑙𝑎𝑠𝑡, 𝑗 ,P) = FFN( [𝑇⊤
𝑙𝑎𝑠𝑡, 𝑗

𝑊,P]),where 𝑗 ∈ {0, 1}, (5)

where P represents a new learnable task-specific prompt embed-
ding in the latent feature space, and [·, ·] signifies the concatenation
operation. Compared to other prompt learning methods[49, 50], IPT
directly refines text prompts within the embedding space, expand-
ing the solution space and markedly enhancing the flexibility of the
learning process. Through the bidirectional adaptation facilitated
by both MHVA and IPT for realigning both vision and language,
the resulting anomaly segmentation outcome for language-driven
at the 𝑙-th hierarchy can be generated as follows:

M𝑙,𝑧𝑒𝑟𝑜 (F
′

𝑙,𝑖
) =

exp(sim(L𝜃 (𝑇𝑙𝑎𝑠𝑡,𝑘=1,P), F
′

𝑙,𝑖
))∑

𝑗∈{0,1} exp(sim(L𝜃 (𝑇𝑙𝑎𝑠𝑡, 𝑗 ,P), F
′
𝑙,𝑖
))
, (6)

where 𝑖 denotes the 𝑖-th input image and F ′
𝑙,𝑖

represents the vision
adaptation feature after themulti-hierarchy vision adapter. The final
zero-shot AS result for SimCLIP is obtained by aggregating anomaly
segmentation maps from different hierarchical levels, denoted as∑
𝑙∈𝐿M𝑙,𝑧𝑒𝑟𝑜 (F

′

𝑙,𝑖
). The zero-shot AC task can be accomplished by

calculating the similarity between the vision features generated by
the class token and the refined binary prompt.
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Notes. In this paper, we finetune the pre-trained CLIP using the
test set from a publicly available dataset (e.g., MVTec-AD) and then
evaluate the performance using another dataset. All parameters of
CLIP are frozen except for the projection head of both two branches.
Additionally, parameter updates are performed on the newly in-
troduced multi-hierarchy vision adapter, the task-specific prompt
embedding, and the IPT module during the finetune process. We
employ cross-entropy loss for AC, while focal loss [25] and dice
loss [28] are utilized for AS tasks.

3.3 SimCLIP+ for few-shot AD
In this section, SimCLIP+ is proposed to tackle anomaly detection
under limited samples, which leverages correlation information
among vision embeddings and integrates the cross-modal synergy
information generated by SimCLIP. Otherwise, SimCLIP+ also uses
a prior-aware optimization algorithm to optimize the cross-modal
synergy information mentioned above to further enhance the per-
formance.

We address the challenge posed by limited normal samples
D+
𝑁

= {𝑥𝑖 }𝑁𝑖=1, where 𝑁 represents the number of normal im-
ages. Prior works [31, 37, 43, 44, 47] have extensively demonstrated
the exceptional capability of CLIP in extracting features by vision
branch. Motivated by these findings, we have decided to identify
potential anomalies by measuring the distance at the embedding be-
tween the query and normal comparison images 𝑥 ∈ D+

𝑁
. Building

upon Section 3.2, where spatial information from various hierar-
chies is utilized, we introduce a Memory Gallery moduleM𝑙 across
different levels. TheM𝑙 aims to store patch-level features of all
comparison images extracted from the 𝑙-th hierarchy on the vision
branch, where 𝑙 ∈ 𝐿 same to Section 3.2. As shown in Figure 3, lever-
aging the embedding distance between the query and comparison
images at patch-level on various hierarchies, the anomaly segmen-
tation result M𝑣 generated using vision embedding information is
represented as follows:

M𝑣 :=
∑︁
𝑙∈𝐿

argmin
𝑓 ∈M𝑙

1
2
(1 − sim(F𝑙,𝑖 (ℎ,𝑤), 𝑓 )) . (7)

Here, F𝑙,𝑖 (ℎ,𝑤) denotes the feature slice of the 𝑖-th query image
at 𝑙-th hierarchy. The feature-driven method leverages correlation
information among vision embeddings and integrates the cross-
modal synergy the information generated by SimCLIP. However, it
overlooks the prior information between the refined text prompt
and the normal comparison images. Inspired by these, we propose
a prior-aware optimization algorithm, which is designed to further
optimize the cross-modal synergy information mentioned above.
Firstly, for each pixel-level feature F𝑙,𝑖 (ℎ,𝑤) ∈ 𝐼𝑙 (𝑥𝑖 ) retrieve the
nearest neighbor from theM𝑙 , denoting as 𝑓𝑙,𝑖 (ℎ,𝑤). The distance
matrix 𝐷𝑙 is generated based on the similarity between F𝑙,𝑖 and
𝑓𝑙,𝑖 , where 𝐷𝑙 ∈ R𝐻𝑙×𝑊𝑙 . Because of the substantial gap between
anomaly features and their nearest neighbor, the value at this posi-
tion in the distance matrix 𝐷𝑙 is smaller compared to other normal
regions. Based on the analysis above, a pseudo-normal score map
is generated by multiplying the language-guided normal score map
M𝑙,𝑧𝑒𝑟𝑜 (𝑓𝑙,𝑖 ) with the distance matrix 𝐷𝑙 . Finally, we utilize this

pseudo-normal score map M𝑝𝑠𝑒𝑢𝑑𝑜 to optimize cross-modal syn-
ergy information generated by SimCLIP, resulting in a new score
mapM𝑝𝑟𝑖𝑜𝑟

𝑧𝑒𝑟𝑜 that highlights anomalous regions more prominently.
The few-shot anomaly segmentation result is obtained by com-

bining the M𝑣 and M𝑝𝑟𝑖𝑜𝑟
𝑧𝑒𝑟𝑜 . Lastly, we achieve few-shot anomaly

classification by integrating the maximum value from the few-shot
anomaly segmentation map with the language-guide zero-shot
anomaly classification score.

Algorithm 1 Prior-aware optimization algorithm

Input:∀𝑥𝑖 ∈ D𝑞𝑢𝑒𝑟𝑦 , structure of I,T ,M
for 𝑙 ∈ 𝐿 do

for F𝑙,𝑖 (ℎ,𝑤) ∈ I𝑙 (𝑥𝑖 ) do
# find nearest neighbor feature
𝑓𝑙,𝑖 (ℎ,𝑤) ← NearesetNeighborAlgorithm(F𝑙,𝑖 (ℎ,𝑤),M𝑙 )

end for
# calculate similarity to generate a distance matrix
D𝑙 ← sim(F𝑙,𝑖 , 𝑓𝑙,𝑖 )
M𝑝𝑠𝑒𝑢𝑑𝑜 ← D𝑙 ·M𝑙,𝑧𝑒𝑟𝑜 (𝑓𝑙,𝑖 )
# optimize cross-modal synergy information
M
′

𝑙,𝑧𝑒𝑟𝑜
(F𝑙,𝑖 ) ← M𝑙,𝑧𝑒𝑟𝑜 (F𝑙,𝑖 ) −𝑀𝑝𝑠𝑒𝑢𝑑𝑜

end for
# aggregate anomaly score from various hierarchies
Output:M𝑝𝑟𝑖𝑜𝑟

𝑧𝑒𝑟𝑜 ←
∑𝐿
𝑙
M
′

𝑙,𝑧𝑒𝑟𝑜
(F𝑙,𝑖 )

4 EXPERIMENTS
We conducted a series of experiments to evaluate the effective-
ness of SimCLIP/SimCLIP+ in industrial anomaly classification and
anomaly segmentation tasks. In addition, a comprehensive abla-
tion study is performed to verify the efficacy of each component
proposed in our framework.

Datasets.Our experiments are conducted using the MVTec-AD
[2] and VisA [52] datasets. MVTec-AD is composed of 15 sub-
sets and encompasses a diverse range of defect types, such as
scratches, dents, and contaminations, providing comprehensive
coverage across various industrial sectors. VisA comprises 12 sub-
sets, covering a range of structural anomalies such as misalignment
or missing components, along with other defect types including
cracks, corrosion, and more.

Evaluation metrics. For classification, we utilize the Area Un-
der the Receiver Operating Characteristic curve (AUROC) and Av-
erage Precision (AP) as evaluation metrics. AUROC measures the
trade-off between sensitivity and specificity, while AP considers
the precision-recall trade-off. For segmentation, in addition to pix-
level AUROC, we also use Per-Region Overlap (PRO) as an essential
metric in evaluating segmentation performance. In this paper, we
use P-AUR and P-PRO to denote AUROC and PRO at the pixel level
metric, respectively. Similarly, I-AUR and I-AP represent AUROC
and PRO metrics at the image level.

Implementation details. We employ the pre-trained CLIP
model developed by OpenAI, where the vision branch is based
on the ViT (Vision Transformer) architecture. The utilized hierar-
chy 𝐿 = {6, 12, 18, 24}. Training is conducted to one NVIDIA-3080Ti
GPU over 5 epochs, using the Adam optimizer with a learning rate
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Table 1: Quantitative comparison of anomaly segmentation (AS) and anomaly classification (AC) performance on VisA and
MVTec-AD datasets. We report the mean and standard deviation over 5 random seeds for each measurement. Bold indicates the
best performance, while underline denotes the second-best result

Setup Method
VisA MVTec-AD

P-AUR P-PRO I-AUR I-AP P-AUR P-PRO I-AUR I-AP

0-shot

CLIP-AC 47.8±0.0 17.3±0.0 65.0±0.0 70.1±0.0 38.2±0.0 11.6±0.0 71.5±0.0 86.4±0.0
APRIL-GAN 94.2±0.0 86.8±0.0 78.0±0.0 81.4±0.0 87.6±0.0 44.0±0.0 86.1±0.0 93.5±0.0
AnomalyCLIP 95.5±0.0 87.0±0.0 82.1±0.0 85.4±0.0 91.1±0.0 81.4±0.0 91.5±0.0 96.2±0.0

SimCLIP(ours) 95.6±0.0 89.7±0.0 83.1±0.0 86.0±0.0 91.8±0.0 86.8±0.0 90.0±0.0 95.3±0.0

1-shot

PatchCore 95.4±0.6 64.3±2.4 79.9±2.9 82.8±2.3 93.3±0.6 82.3±1.3 86.3±3.3 92.2±1.5
RegAD 93.6±0.2 72.0±0.5 68.4±1.0 71.2±0.5 92.8±0.5 77.9±1.2 76.5±2.0 88.2±0.9
APRIL-GAN 96.0±0.0 90.0±0.1 91.2±0.8 93.3±0.8 95.1±0.1 90.6±0.2 92.0±0.3 95.8±0.2
AnomalyGPT 96.2±0.1 - 87.4±0.8 - 95.3±0.1 - 94.1±1.1 -

SimCLIP+(ours) 97.4±0.1 92.7±0.2 93.0±1.1 94.5±0.9 95.6±0.2 92.4±0.2 95.3±0.3 97.7±0.3

2-shot

PatchCore 96.1±0.5 82.6±2.3 81.6±4.0 84.8±3.2 92.0±1.0 79.7±2.0 83.4±3.0 93.8±1.7
RegAD 94.4±0.3 73.4±0.8 73.3±1.4 75.0±0.7 94.6±0.3 86.3±0.9 85.7±1.3 92.7±0.7
APRIL-GAN 96.2±0.0 90.1±0.1 92.2±0.3 94.2±0.3 95.5±0.0 91.3±0.1 92.4±0.3 96.0±0.2
AnomalyGPT 96.4±0.1 - 88.6±0.7 - 95.6±0.2 - 95.5±0.8 -

SimCLIP+(ours) 97.7±0.1 93.4±0.0 93.7±0.2 94.9±0.2 96.0±0.2 92.9±0.1 96.0±0.2 98.1±0.1

4-shot

PatchCore 96.8±0.3 84.9±1.4 85.3±2.1 87.5±2.1 94.3±0.5 84.3±1.6 88.8±2.6 94.5±1.5
RegAD 95.9±0.2 76.5±0.9 73.8±0.8 75.8±1.8 95.8±0.3 88.1±0.8 88.2±1.3 94.8±0.6
APRIL-GAN 96.2±0.0 90.2±0.1 92.6±0.4 94.5±0.3 95.9±0.0 91.8±0.1 92.8±0.2 96.3±0.1
AnomalyGPT 97.2±0.2 - 90.6±0.7 - 96.2±0.1 - 96.3±0.3 -

SimCLIP+(ours) 98.0±0.2 94.1±0.1 94.4±0.1 95.6±0.1 96.2±0.1 93.1±0.1 96.4±0.2 98.0±0.2

of 1e − 3 to update model parameters. We finetune SimCLIP on
the MVTec-AD dataset and evaluate its generalization performance
on Visa. Similarly, we finetune SimCLIP on the VisA dataset and
evaluate its generalization performance on MVTec-AD.

4.1 Zero-shot anomaly detection
We assess the performance of SimCLIP for zero-shot anomaly detec-
tion tasks using two benchmark datasets and conduct a comparative
analysis with CLIP-AC[30], APRIL-GAN[6] and AnomalyCLIP[51].
The result of CLIP-AC in anomaly segmentation is poor because the
original CLIP only focuses on high-level global semantic informa-
tion extracted from images and text during the pretraining phase.
APRIL-GAN has achieved promising performance by integrating
prompt ensemble and features in its approach. AnomalyCLIP ac-
complishes better performance by learning object-agnostic prompts.
On the VisA, SimCLIP demonstrates superior efficacy, surpassing
the second-ranked AnomalyCLIP by 1%/0.6% in AUROC/AP for
anomaly classification. On the MVTec-AD, while SimCLIP exhibits
inferior anomaly classification compared to AnomalyCLIP, there is
an improvement of 0.7% in AUROC and 5.4% in PRO for anomaly
segmentation. SimCLIP focuses on realignment between vision and
language, enabling the capture of subtle differences in images, and
contributing to its better performance in anomaly segmentation
tasks.

4.2 Few-shot anomaly detection
We conducted comprehensive comparisons and analyses with meth-
ods including PatchCore[33], AnomalyGPT[13], RegAD[16], APRIL-
GAN on two benchmark datasets for both few-shot anomaly seg-
mentation and anomaly classification. PatchCore and RegAD,which
concentrate exclusively on vision detection without incorporating
multi-modal information, demonstrate performance constraints
that impact their competitiveness in few-shot anomaly detection.
APRIL-GAN achieves better performance by manually crafting a
large set of text prompts and ensemble them to guide V-L models.
AnomalyGPT achieves solid outcomes in anomaly segmentation
by effectively leveraging a prompt learner to fine-tune large vision-
language models. SimCLIP+ integrates the relational information
among vision features and merges the cross-modal synergy infor-
mation between vision and language, achieving the best result. In
1-/2-/4-shot anomaly classification, SimCLIP+ exhibits stronger per-
formance when compared to AnomalyGPT, showing enhancements
of 5.6%/5.1%/3.8% in AUROC respectively on the Visa benchmark.

4.3 IPT vs. SOTA prompt learning methods
Table 4 reports a comparison of the implicit prompt tuning in Sim-
CLIP with current state-of-the-art prompt learning methods in
zero-shot anomaly segmentation and anomaly classification. We
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Figure 4: Qualitative results of 0-/1-shot anomaly segmentation from SimCLIP/SimCLIP+.

Table 2: Comparison with existing prompt learning methods
on both computation and memory overhead.

Method FLOPs(G) Params(M)

Coop 520.46 428.79
Co-CoOp 520.46 428.92
IPT(ours) 513.75 428.77

conduct experiments within the SimCLIP framework, replacing the
implicit prompt tuning with other SOTA prompt learning methods
to ensure a fair comparison. The implicit prompt tuning achieves
the best performance in both anomaly segmentation and anomaly
classification on MVTec-AD, with improvements exceeding 10.7%
in pixel-level AUROC and 5.6% in image-level AUROC compared
to Co-CoOp. Similarly, this trend extends to the VisA. In compari-
son with CoOp and Co-CoOp, which obtain text prompts through
learnable context optimization and conditional context optimiza-
tion based on an image, implicit prompt tuning offers the following
two advantages. Firstly, unlike methods that optimize at the input
side of the language branch, implicit prompt tuning optimizes the
text prompt at the output side. Not only does IPT avoid the bi-
ases introduced by the language branch, which might overly focus
on foreground objects in the image rather than anomalies, but it
also improves optimization speed by not requiring the gradient
to backpropagate through the entire language branch. Secondly,
implicit prompt tuning effectively complements domain knowledge
by introducing task-specific prompt embeddings for anomaly de-
tection tasks, enhancing the model’s context understanding and
discriminative capability.

In addition to comparing the performance between IPT and
SOTA prompt learning methods, we also assessed their differences
in computational and memory overhead. As shown in Table 2, With
a similar number of parameters to other methods, IPT requires
fewer Flops, resulting in higher computational efficiency.

4.4 Ablation study
Multi-Hierarchy Vision Adapter and Implicit Prompt Tun-

ing.We focus on investigating the effectiveness of two critical mod-
ules on the generalization performance of pre-trained CLIP. From

Table 3: Ablation on two key modules of SimCLIP on the
VisA dataset. Bold indicates the best performance.

MHVA IPT (P-AUR, P-PRO) (I-AUR, I-AP)

(22.9, 11.7) (67.4,72.2)
✓ (94.3,84.0) (67.4,72.2)

✓ (22.3,11.3) (83.0,85.7)
✓ ✓ (95.6,89.7) (83.1,86.0)

Table 4: Generalization comparison of IPT with existing
prompt learning methods on both anomaly segmentation
and anomaly classification tasks. Bold indicates the best per-
formance.

Dataset Method (P-AUR, P-PRO) (I-AUR, I-AP)

Visa
Coop (93.9,75.1) (74.7,79.0)
Co-CoOp (93.8,73.6) (79.5,82.5)
IPT(ours) (95.6,89.7) (83.1,86.0)

MVTec-AD
Coop (79.2,26.1) (87.4,94.4)
Co-CoOp (81.1,40.9) (84.4,91.7)
IPT(ours) (91.8,86.8) (90.0,95.3)

this perspective, we start by removing the MHVA and IPT modules,
optimizing only the projection of the vision and language branches
during fine-tuning, which serves as our baseline. Subsequently, the
MHVA and IPT modules are integrated by us separately into the
baseline to compare unidirectional with bidirectional adaptation.

Based on the baseline results as shown in Table 3, it is evident that
the original CLIP is more adept at handling AC tasks. However, the
performance in downstream AS tasks is somewhat underwhelming,
further highlighting the gap between CLIP and downstream AD
tasks. Although unimodal adaptation of either MHVA or IPT to
some extent alleviates this issue, the potential of CLIP has not
been fully realized. By employing cross-modal realignment through
bidirectional adjustment of both the MHVA and IPT modules, there
was an improvement of 72.7% and 15.7% in AUROC for AS and AC
tasks compared to the baseline, respectively.
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Table 5: Ablation on multi-hierarchies vision adapter on the VisA dataset. Bold indicates the best performance.

Hierarchy Hierarchy1 Hierarchy2 Hierarchy3 Hierarchy4 All

(P-AUR, P-PRO) (89.7, 74.1) (93.8, 83.5) (94.7, 85.8) (94.6, 85.8) (95.6,89.7)

Table 6: Ablation on two key modules of SimCLIP+ on the
VisA dataset and (P-AUC, I-AUC) is used as evaluation met-
rics. FD and PAO denote the feature-drivenmethod and prior-
aware optimization algorithm, respectively. Bold indicates
the best performance.

FD PAO 1-shot 2-shot 4-shot

✓ (97.2,83.6) (97.5,87.8) (97.6, 92.1)
✓ (96.5, 84.0) (96.6,84.0) (96.6, 84.2)

✓ ✓ (97.4,93.0) (97.7,93.7) (98.0,94.4)

Adapter Ensemble for Multi-Hierarchy.In this study, we
investigate the effectiveness of ensemble visual adapters across
various hierarchies. We conduct a set of control experiments com-
prising two different conditions: 1)Using a multi-hierarchy vision
adapter same as SimCLIP. 2)Using only a single-hierarchy vision
adapter where the hierarchy is a subset of the multi-hierarchy
level. Additionally, pixel-level AUROC and PRO are used as per-
formance evaluation metrics in our study. As shown in Table 5,
the multi-hierarchy vision adapter outperforms the other four
single-hierarchy vision adapters, demonstrating its effectiveness.
Compared to the second-best performing single-hierarchy vision
adapter, the multi-hierarchy vision adapter shows improvements
of 0.9% and 3.9% in pixel-level AUROC/PRO, respectively.

Feature-driven method and prior-aware optimization al-
gorithm.Furthermore, we explore the effectiveness of the feature-
driven method and the prior-aware optimization algorithms within
SimCLIP+ in the few-shot settings. In this study, We consider three
scenarios: 1)Using single feature-driven methods. 2)Using single
prior-aware optimization algorithms. 3)Integrating feature-driven
methods with prior-aware optimization algorithms at the same time.
Table 6 reports the ablation result, using either a feature-driven
method or a prior-aware optimization algorithm alone showing
promising results in anomaly segmentation tasks. However, for
anomaly classification tasks, these single methods often struggle to
achieve accurate classifications. Combining feature-driven meth-
ods with prior-aware optimization algorithms leverages both vision
embedding and cross-modal information, significantly enhancing
anomaly segmentation and anomaly classification performance
compared to using either method alone in the 1-/2-/4-shot settings.

4.5 Visualization Analysis
Figure 4 reports the visualization results of SimCLIP/SimCLIP+
on two benchmark datasets. Through realignment of vision and
language, SimCLIP can accurately locate anomalies in images, in-
cluding the ability to detect multiple anomalies within a single

image(e.g., the ‘Wood’ in Figure 4). The qualitative analysis demon-
strates that SimCLIP+ outperforms SimCLIP in anomaly segmen-
tation. This indirectly highlights the effectiveness of SimCLIP+ in
integrating both vision embedding information and cross-modal
synergy information concurrently.

As shown in Figure 5, We employ t-SNE [40] to visualize the dis-
tances between normal prompt and anomalous prompt embedding
in the feature space. Figure 5(a) shows that there are no distinct
boundaries separating the different types of text prompts in the fea-
ture space. This severely hinders CLIP’s application in downstream
anomaly detection tasks. The effectiveness of IPT is visually demon-
strated by the clear boundaries observed between different types
of text prompts in the feature space after refining, as illustrated in
Figure 5(b).

(a)Without IPT (b)With IPT

Figure 5: Visualization of normal/anomalous prompt features
using t-SNE. (a) Original text prompt in feature space. (b)
Refined text prompt (using IPT) in feature space.

5 CONCLUSION
In this paper, we propose a novel method, named SimCLIP that
employs bidirectional adaptation to accomplish realignment of
vision and language, enhancing CLIP’s zero-shot generalization
performance on downstream AD tasks. In the vision branch, we
incorporate a multi-hierarchy vision adapter situated at various
levels to capture more intricate spatial details and facilitate efficient
cross-modal interactions with language. In the language branch,
we employ a learnable task-specific prompt embedding and the
implicit prompt tuning module to refine the original prompts. Sim-
CLIP bridges the gap between CLIP and downstream zero-shot
AD tasks by bidirectionally adjusting both two branches. Addition-
ally, we further propose SimCLIP+, which integrates correlation
information among vision embeddings with cross-modal synergy
information, coupled with a prior-aware optimization algorithm
to address AD tasks under limited normal samples. Our proposed
method provides a new perspective on bridging the gap between
pre-trained vision-language models and downstream zero/few-shot
AD tasks.
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