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Abstract001

Low-rank adaptation (LoRA) has become the002
default approach to fine-tune large language003
models (LLMs) due to its significant reduction004
in trainable parameters. However, trainable005
parameter demand for LoRA increases with in-006
creasing model embedding dimensions, leading007
to high compute costs. Additionally, its back-008
ward updates require storing high-dimensional009
intermediate activations and optimizer states,010
demanding high peak GPU memory. In this011
paper, we introduce large model fine-tuning012
via spectrally decomposed low-dimensional013
adaptation (LaMDA), a novel approach to fine-014
tuning large language models, which leverages015
low-dimensional adaptation to achieve signif-016
icant reductions in trainable parameters and017
peak GPU memory footprint. LaMDA freezes a018
first projection matrix (PMA) in the adaptation019
path while introducing a low-dimensional train-020
able square matrix, resulting in substantial re-021
ductions in trainable parameters and peak GPU022
memory usage. LaMDA gradually freezes a023
second projection matrix (PMB) during the024
early fine-tuning stages, reducing the com-025
pute cost associated with weight updates to026
enhance parameter efficiency further. We also027
present an enhancement, LaMDA++, incorpo-028
rating a “lite-weight" adaptive rank allocation029
for the LoRA path via normalized spectrum030
analysis of pre-trained model weights. We031
evaluate LaMDA/LaMDA++ across various032
tasks, including natural language understand-033
ing with the GLUE benchmark, text summariza-034
tion, natural language generation, and complex035
reasoning on different LLMs. Results show036
that LaMDA matches or surpasses the perfor-037
mance of existing alternatives while requiring038
up to 17.7× fewer parameter updates and up to039
1.32× lower peak GPU memory usage during040
fine-tuning. Code will be publicly available.041

1 Introduction042

Large language models (LLMs) have demonstrated043

remarkable performance in addressing a variety of044

Figure 1: (a) LoRA (Hu et al., 2022). (b) VERA
(Kopiczko et al., 2024). (c) LaMDA. At the beginning,
PMB is trainable and gradually freezes based on the
singular values. After ti iterations, PMB is completely
frozen, and only the LDA is fine-tuned.

natural language processing (NLP) tasks due to 045

their generalization ability upon training on large 046

corpus of data (Brown et al., 2020; Touvron et al., 047

2023a). To fully harness the capabilities of LLMs, 048

fine-tuning has become the standard approach to 049

serve various downstream tasks. However, full fine- 050

tuning of LLMs can be prohibitively costly, making 051

fine-tuning at the edge hardly possible. For exam- 052

ple, even the smaller variants of LLMs with 7B pa- 053

rameters may ask for ∼ 60 GB memory to perform 054

full fine-tuning (Pan et al., 2024a). Additionally, 055

such approach is prone to causing overfitting and 056

catastrophic forgetting in the over-parameterized 057

regime (Luo et al., 2023; Doering et al., 2024). 058

As a solution to these challenges, parameter- 059

efficient fine-tuning (PEFT) techniques were pro- 060

posed in which either a small portion of model pa- 061

rameters are updated, including the weight adapters 062

(Houlsby et al., 2019; Hu et al., 2023), or task- 063

specific soft prompts are trained (Lester et al., 064

2021). Among these, low-rank adaptation (LoRA) 065

(Hu et al., 2022) has gained significant popular- 066

ity. It assumes that the changes in the pre-trained 067

weight reside in a low-rank space and thus adds 068

two trainable low-rank adapters, named the pro- 069
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jection matrix AAA (PMA) and the projection matrix070

BBB (PMB) as BABABA in parallel to the frozen main071

path of the model weight WWW (refer to Fig. 1(a)).072

LoRA fine-tuning can reduce GPU memory de-073

mand and trainable parameter-count since it only074

fine-tunes the BABABA which is much smaller in param-075

eter count compared to WWW . However, the number076

of trainable-parameters in LoRA may still be po-077

tentially larger than the low intrinsic dimension078

of a pre-trained LLM (Aghajanyan et al., 2021).079

Moreover, as evident in Fig 1(a), the input activa-080

tions XXX that must be stored for backpropagation081

reside in a d-dimensional space, where d denotes082

the embedding dimension of the model. Subse-083

quently, the activation’s GPU memory increases084

linearly with the embedding size, and LoRA does085

not provide any merit in activation memory saving.086

Notably, few contemporary works (Liu et al., 2024;087

Kopiczko et al., 2024) have presented solutions of088

BABABA freezing. However, they still suffer from in-089

creased activation storage and often demand high090

rank to compensate for the accuracy drop due to091

freezing (Kopiczko et al., 2024).092

To address these issues, in this work we093

present, Large Model Fine-tuning via Spec-094

trally Decomposed Low-Dimensional Adaptation095

(LaMDA). LaMDA as demonstrated in Fig. 1(c)096

employs a trainable low-dimensional adapter097

(LDA), which is a square matrix in the r-098

dimensional space. We keep the PMA frozen099

throughout the fine-tuning, while allow PMB to100

freeze gradually only after few epochs based on101

relative magnitude of the singular values. We only102

keep the LDA trainable throughout. This allows103

the trainable parameters to be independent of d and104

the activations that are saved for backward pass105

remain in the r-dimensional space (r ≪ d). Thus106

LaMDA can significantly reduce the trainable pa-107

rameter, activation, and optimizer state memory.108

We summarize our contributions as follows:109

• We introduce LaMDA, a novel framework to110

fine-tune LLMs that significantly reduces both111

parameter count and activation memory, re-112

sulting in lower computational costs and GPU113

memory usage.114

• We then present LaMDA++, a novel enhance-115

ment of LaMDA that uses adaptive rank116

across different layers to fine-tune the model.117

Precisely, we use the pre-trained weight ten-118

sors to present a “lite-weight" normalized119

Table 1: Comparison of different important metrics
associated to different fine-tuning techniques.

Method Memory Adaptive
Optimizer Gradient Activation rank

Full FT ✗ ✗ ✗ ✗

LoRA ✓ ✓ ✗ ✗

AdaLoRA ✓ ✓ ✗ ✓

LoRA-FA ✓ ✓ ✓ ✗

LISA ✓ ✓ ✗ ✗

VERA ✓ ✓✓ ✗ ✗

AFLoRA ✓ ✓✓ ✗ ✗

LaMDA (Ours) ✓ ✓✓ ✓ ✗

LaMDA++ (Ours) ✓ ✓✓ ✓ ✓✓

energy-score1 based layer ranking to adap- 120

tively assign rank to the LDA of each layer 121

allowing more optimal distribution of train- 122

able parameters. Table 1 compares the dif- 123

ferent PEFT methods and their benefits and 124

limitations in the context of different memory 125

footprint and adaptive rank allocation policy. 126

• We evaluate the performance of LaMDA 127

and LaMDA++ fine-tuning on encoder-only 128

(DeBERTa-V3 (He et al., 2021)), encoder- 129

decoder (BART-Large (Lewis et al., 2020)), 130

and decoder-only (LLaMA2-7B (Touvron 131

et al., 2023b)) models across various tasks in- 132

cluding the GLUE benchmark for natural lan- 133

guage understanding, text summarization, and 134

complex reasoning. Our experiments show 135

that LaMDA fine-tuned models consistently 136

yield similar or improved performance with 137

up to 17.7× fewer trainable parameters, at re- 138

duced activation storage while providing peak 139

GPU memory saving of up to 1.32×. 140

2 Background 141

Transformer-based models. Each module of an L 142

layer transformer model (Vaswani et al., 2017) usu- 143

ally consists of two sub-blocks: the multi-head self- 144

attention (MHSA) sub-block and the feed-forward 145

network (FFN). Each MHSA takes input token em- 146

bedding XXX ∈ Rn×d and applies the following: 147

QQQ(i) =XXXWWW
(i)
Q ,KKK(i) =XXXWWW

(i)
K ,VVV (i) =XXXWWW

(i)
V

(1) 148149

HHH(i) = [Softmax(QQQ(i)KKK(i)T /
√
dh)VVV

(i)] (2) 150
151

MHSA(XXX) = Concat[HHH(1), ..,HHH(i), ..,HHH(h)]WWW o

(3) 152

where WWWO ∈ Rd×d, WWWQ,K,V (all ∈ Rd×dh) are 153

output projection, query, key, and value matrices 154

1Energy-score of a matrix is defined as the summation of
the square of its singular values.
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Figure 2: GPU memory usage of LLaMA2-7B on dif-
ferent fine-tuning methods including ours (LaMDA).

with dh as model embedding dimension per head.155

The FFN includes two linear transformation lay-156

ers (WFFN1WFFN1WFFN1 and WFFN2WFFN2WFFN2) with a non-linear ac-157

tivation function σ in the middle: FFN(XXX) =158

σ(XWFFN1XWFFN1XWFFN1)WFFN2WFFN2WFFN2. With MHSA and FFN as159

the two sub-blocks, the output of the transformer160

block is computed as:161

XXX ′ = LayerNorm(XXX +MHSA(XXX)) (4)162
163

YYY = LayerNorm(XXX ′ + FFN(XXX ′)) (5)164

LayerNorm is the layer normalization module, and165

Y is the output of the transformer block.166

Low-rank adaptation. LoRA adds a trainable167

adaptation path (through theAAA andBBB matrix) paral-168

lel to the frozen main path of the respective module169

(i.e., WWW ). This results in a significant reduction in170

the number of trainable parameters, the optimizer’s171

state memory, and the required gradient memory:172

YYY =XWXWXW + αXABXABXAB. (6)173

α serves as a fine-tuning hyper-parameter.174

Further numerous variants of LoRA have been175

introduced to enhance its performance. Earlier176

works (Zhang et al., 2023b; Pan et al., 2024a) ex-177

plored different per-layer rank allocation and layer-178

importance sampling strategies to better utilize the179

fine-tuning budget across the model layers. The180

approach learns the adapters’ ranks dynamically by181

analyzing the singular values of the adapters, allow-182

ing for more effective utilization of the fine-tuning183

budget. More recently, (Zhang et al., 2023a) ad-184

dresses GPU memory savings by freezing the PMA185

matrix in the adaptation path, thereby reducing186

the size of the stored activations during fine-tuning.187

However, this method still requires fine-tuning d×r188

parameters per linear layer and compromises accu-189

racy. VERA (Kopiczko et al., 2024) takes a differ-190

ent approach by randomly initializing and freezing191

PMA and PMB with a large r dimension, focusing 192

on fine-tuning two feature transformation vectors 193

instead (Fig. 1). While this method reduces param- 194

eter count, add significant compute and activation 195

memory overhead. To address VERA’s computa- 196

tional inefficiencies, AFLoRA (Liu et al., 2024) 197

was proposed. However, it still suffers from high 198

activation storage overhead. 199

LaMDA, on the contrary, offers two key benefits: 200

1) it significantly reduces trainable parameter, acti- 201

vation, and optimizer storage to enhances memory 202

savings compared to LoRA; 2) it greatly reduces 203

computational cost in the forward pass during fine- 204

tuning. Table 1 compares various state-of-the-art 205

(SOTA) fine-tuning methods regarding their mem- 206

ory requirement and rank adaptation. Notice that 207

LaMDA(++) is the only method that can simulta- 208

neously reduce gradient, optimizer, and activa- 209

tion memory while also yielding adaptive ranks 210

based on a notion of layers’ energy-score. 211

3 Methodology 212

This section provides a detailed explanation of 213

LaMDA and LaMDA++ as novel parameter- 214

efficient fine-tuning methods. 215

3.1 Low-Dimensional Adapter (LDA) 216

One of the essential components of the LaMDA 217

method is a square r-dimensional matrix SSS, as de- 218

picted in Figure 1(c). Integrating this module into 219

the adapter path yields the following formulation: 220

YYY =XWXWXW + αXASBXASBXASB, (7) 221

where AAA ∈ Rd×r, SSS ∈ Rr×r, and BBB ∈ Rr×d 222

represent PMA, LDA, and PMB, respectively. By 223

freezing AAA and BBB and keeping SSS trainable, we sig- 224

nificantly reduce the number of trainable parame- 225

ters, which is reduced to r2 ≪ 2× d× r of LoRA, 226

and is independent of the increasing model d. This 227

reduction in the number of trainable parameters 228

offers a two-fold advantage. Firstly, it effectively 229

constrains the parameter count, thereby reducing 230

the risk of overfitting and enhancing the model’s 231

generalization capabilities. This is particularly ad- 232

vantageous considering that 2×d×r×L potentially 233

exceeds the intrinsic dimension of large language 234

models (Aghajanyan et al., 2021). Secondly, fine- 235

tuning fewer parameters requires less computation 236

in the backward pass as fewer gradient-based up- 237

dates and optimizer states computations happen ac- 238

cordingly. This alleviates the overall computational 239
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and optimizer storage overhead of fine-tuning. Ad-240

ditionally, employing the low-dimensional adapter241

while freezing AAA reduces activation memory usage242

during fine-tuning. Assuming a fine-tuning batch243

size of b and an input sequence length of n, in244

LoRA, the input X in Equation 6 is represented as245

a BBB × n× d tensor. This tensor must be stored in246

GPU memory, as it is essential for computing the247

gradient for the trainable matrix AAA. Consequently,248

the required GPU memory for storing the activa-249

tions is a function of the embedding dimension250

d. However, when utilizing the low-dimensional251

adapter SSS in Equation 7, and since AAA is not be-252

ing trained, the required activation in the backward253

pass is of dimension BBB×n× r. This leads to a sig-254

nificant reduction in the number of stored elements255

and GPU memory usage.256

Figure 2 reports the peak GPU memory usage of257

different fine-tuning methods for the LLaMA2-7B258

model with a batch size one. As the figure shows,259

compared to LoRA, most GPU memory saving is260

achieved by the required activation memory reduc-261

tion. Furthermore, LaMDA surpasses the current262

SOTA fine-tuning approach of LISA (Pan et al.,263

2024b). Having established the benefits of our low-264

dimensional adapter, we delve into the details of265

the LaMDA fine-tuning process in the next section.266

3.2 LaMDA267

Building upon the idea of the low-dimensional268

adapter, we now disclose the LaMDA in detail.269

Considering Figure 1(c), a natural implementation270

of the idea of the low-dimensional adapter would271

be to keep the AAA and BBB frozen and train the ma-272

trix S until convergence. This achieves the benefits273

discussed in section 3.1. One critical issue will be274

the initialization of the fixed adapters PMA and275

PMB. VERA (Kopiczko et al., 2024) kept them276

frozen by initializing via Kaiming normal distribu-277

tion. Despite frozen BABABA, the downside was that it278

required the rank r to potentially converge to good279

accuracy, thus costing substantial compute for the280

forward and the backward pass. We on the con-281

trary, propose to initialize PMA and PMB with the282

singular vectors (SVs) corresponding to the most283

significant singular values of the pre-trained weight.284

This is accomplished by applying singular value285

decomposition (SVD) to the pre-trained weight and286

extracting its spectrum, then initializing AAA and BBB287

with the SVs:288

UUU,ΣΣΣ,VVV = SV D(WWW ) (8)289

290

AAA = UUU [:, : r]ΣΣΣ[: r, : r], BBB = VVV [:, : r]T. (9) 291

Since BBB forms a basis for Rr, learning matrix SSS in 292

Equation 7 can be interpreted as learning a basis 293

change matrix. Previous studies (Hu et al., 2022; 294

Li et al., 2023) have emphasized the importance 295

of ensuring that the combined effect of the main 296

path and the adapters approximates the pre-trained 297

weights at the onset of fine-tuning. Accordingly, 298

based on Equations 8 and 9, we initialize SSS (LDA) 299

with the identity matrix Ir and set the main path 300

with the last d− r components of spectrum of WWW . 301

We note, a contemporary work (Meng et al., 2024) 302

has suggested similar initialization of the adapters. 303

However, our approach largely differ in primary 304

objective, as we intend to find suitable initialization 305

to freeze by allowing the LDA to learn. (Meng 306

et al., 2024), on the contrary, focuses primarily on 307

the impact of adapter initialization and does not 308

yield any memory or compute saving compared to 309

that with LoRA. 310

Having initialized all the parameters in equation 311

7, we perform fine-tuning by keeping the PMA al- 312

ways frozen and LDA always learnable. For the 313

PMB, we present a gradual freezing strategy, to 314

be discussed next. We hypothesize that having 315

only a trainable LDA for simpler tasks (e.g. GLUE 316

benchmark) would be sufficient potentially due to 317

much lower intrinsic dimensions of the pre-trained 318

weights, thus not necessitating any need of high 319

trainable parameters. However, for relatively com- 320

plex tasks, like summarizing, complex reasoning, 321

we believe intrinsic dimensionality of the weight 322

may not be very low. To tackle this challenge, 323

we adapt a gradual freezing strategy of the PMB 324

allowing the fine-tuned model to perform better 325

while keeping all the benefits of LaMDA. Further 326

analysis on the relation of task difficulty to model 327

intrinsic low-dimensionality may be an interesting 328

future research. 329

To enhance LaMDA’s expressiveness while 330

maintaining the benefits of having low parameter 331

count and minimal activation memory, we intro- 332

duce the mechanism of gradual freezing for PMB, 333

as illustrated in Figure 1(c). The concept involves 334

keeping PMB trainable during the initial iterations 335

of fine-tuning and then progressively freeze PMB 336

row by row. Previous work by (Liu et al., 2024) 337

has suggested gradual freezing based on fixing the 338

scores computed during fine-tuning. In contrast, 339

we employ a simpler heuristic to circumvent the ad- 340
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Figure 3: Layer-wise energy-score of the first 32 ranks
of each linear module, normalized over the total energy-
score of the same module, evaluated on a pre-trained
LLaMA2-7B.

ditional computational and memory overhead asso-341

ciated with calculating and storing these scores. As342

argued in (Meng et al., 2024), learning the SVs cor-343

responding to the most significant singular values is344

the most effective approach for parameter-efficient345

fine-tuning. Consequently, a reasonable criterion is346

to freeze the rows of BBB sequentially from the last347

row to the first, given that the first row represents348

the highest-energy component of the spectrum of349

PMB. So, we propose a linear schedule for the350

number of trainable rows in PMB as below:351

r(t) =

{
int(r − t

ti
), t ≤ ti

0 t ≥ ti
352

where ti is set to be 30% of the total iterations in353

our experiments. Since BBB is an r × d matrix, the354

input activation that needs to be stored for back-355

propagation is again in the r−dimensional space,356

so the memory-saving arguments still hold. In sec-357

tion 4.5, we do an ablation study on the correct358

order of freezing the rows of PMB.359

3.3 LaMDA++360

This section presents LaMDA++, an enhanced ver-361

sion of LaMDA that incorporates the option of362

varying ranks across different network layers. Pre-363

vious works on adaptive rank for LLMs (Zhang364

et al., 2023b) have introduced multiple hyperpa-365

rameters, that can lead to increased training time.366

Furthermore, changing the rank of the matrices dy-367

namically could result in more complex training.368

Conversely, We rely on a “lite-weight" static analy-369

sis for fine-tuning with adaptive rank. In specific,370

we analyze the normalized energy-score of the pre-371

trained model weights to simplify implementation372

and adoption.373

To motivate this approach, Figure 3 reports the374

normalized energy-score of the first 32 singular375

vectors (El
r with r = 32) for each trainable lin- 376

ear module l of a LLaMA2-7B across all layers. 377

The normalization factor is the total energy-score 378

computed over all the singular vectors (El
T ) of the 379

corresponding module l. As the figure indicates, 380

some modules capture significantly higher normal- 381

ized energy-score than others when applying SVD 382

to the weights. This observation suggests that, to 383

achieve a similar normalized energy-score across 384

all layers, the WQWQWQ and WKWKWK modules may require 385

a lower rank. In contrast, the WFFN1WFFN1WFFN1, WFFN2WFFN2WFFN2, 386

and WVWVWV modules might necessitate a higher rank 387

to reach an equivalent level of normalized energy- 388

score. This can be of great importance, as previous 389

works (Hu et al., 2023) have shown that all lin- 390

ear layers of the LLMs (including the attention 391

weights) are essential to be fine-tuned. 392

To implement this heuristic while maintain- 393

ing the same number of trainable parameters, 394

LaMDA++ employs a pre-processing step to se- 395

lect the ranks of each LoRA path. Intuitively, ranks 396

should be reduced from the budget of layers less 397

affected by rank reduction and reallocated to lay- 398

ers that capture the least normalized energy-scores. 399

Firstly, we define a rank budget set RS , contain- 400

ing S potential candidate ranks, RS = {r1, ..., rS}, 401

with r1 < r2 < rS , to be selected for a LoRA path. 402

We ensure that the summation of all the different 403

ranks selected for the layers gets averaged to the 404

target rank rT . Additionally, for a module at layer 405

l, LaMDA++ assigns a candidacy score νl defined 406

as, 407

νl =
El

rS
− El

r1

El
rT

(10) 408

LaMDA++ then sorts the linear modules based on 409

the ascending order of νl. The initial elements of 410

this sorted array are the layers that potentially re- 411

quire higher ranks to yield better energy-scores. In 412

contrast, the later elements can potentially sacrifice 413

rank reduction without losing significant energy. 414

Based on this ranking, and to maintain simplicity, 415

LaMDA++ assigns rS to the first 1
S th quantile of 416

the sorted array, rS−1 to the second 1
S th quantile, 417

and so on. This heuristic approach favors allocat- 418

ing higher rank to modules that would benefit most 419

and lower rank to modules that would suffer the 420

least from rank reduction. 421

4 Experiments 422

This section evaluates LaMDA and LaMDA++ on 423

NLU, NLG, and reasoning tasks. 424
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4.1 Experimental Setup425

Our experiments encompass a broad range of mod-426

els and datasets. For NLU, we utilize DeBERTa-V3427

(He et al., 2023) and conduct evaluations on the428

GLUE benchmark (Wang et al., 2019). For NLG,429

we employ BART-large (Lewis et al., 2020) and430

assess performance on the XSUM (Narayan et al.,431

2018) and CNN/DailyMail (Hermann et al., 2015)432

datasets. Additionally, we evaluate the LLaMA2433

series (Touvron et al., 2023b) on GSM8K (Cobbe434

et al., 2021), Wikitext-2 (Merity et al., 2017), and435

a collection of commonsense reasoning datasets.436

Following prior works on LoRA variants (Hu et al.,437

2022; Zhang et al., 2023b; Meng et al., 2024), we438

freeze the main path of the model while treating the439

LoRA path according to the LaMDA methodology.440

LaMDA is applied to the MHSA and FFN blocks441

of all models, encompassing the WQWQWQ, WKWKWK , WVWVWV ,442

WFFN1WFFN1WFFN1, and WFFN2WFFN2WFFN2 linear modules. As base-443

lines, we compare LaMDA with full fine-tuning,444

LoRA, LoRA-FA (Zhang et al., 2023a), AFLoRA445

(Liu et al., 2024), and VERA (Kopiczko et al.,446

2024). Our implementation of LaMDA is based on447

HuggingFace’s Transformers library (Wolf et al.,448

2019), and all experiments are conducted on a sin-449

gle NVIDIA A6000 GPU.450

4.2 Encoder-only Model: DeBERTa-V3451

We fine-tuned DeBERTa-V3 (He et al., 2023) using452

LaMDA and LaMDA++ on the GLUE NLU bench-453

mark. For LaMDA, the rank of the adapter path is454

set to 32, and in LaMDA++, the target rank rT is455

set to 32 as well. For LaMDA++, the set of poten-456

tial candidate ranks is RS = {16, 24, 32, 40, 48}.457

For further details on experimental hyperparame-458

ters please refer to Appendix A. Table 2 presents459

the performance and the number of trainable pa-460

rameters for LaMDA, LaMDA++, and SOTA PEFT461

methods. As shown in the Table, LaMDA achieves462

performance close to LoRA with a 17.7× reduc-463

tion in the number of trainable parameters. Simi-464

larly, LaMDA achieves reductions of 17×, 2.1×,465

and 1.8× compared to AdaLoRA, VERA, and466

AFLoRA, respectively. Furthermore, LaMDA++467

achieves SOTA performance with only a negligible468

increase in the parameter count. Please note, here469

we trained the LDA only while keeping the PMA,470

PMB frozen throughout the fine-tuning period.471

4.3 Encoder-Decoder Model: BART-large472

For the text summarization tasks, we utilize the473

BART-large model (Lewis et al., 2020) and fine-474
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Figure 4: Peak GPU memory usage during fine-tuning
BART-large on XSUM dataset.

tune it on the XSUM (Narayan et al., 2018) and 475

CNN/DailyMail (Hermann et al., 2015) datasets us- 476

ing LaMDA. The selected rank and the set RS are 477

the same as those used for DeBERTa-V3. The low- 478

rank path is added parallel to the math path of the 479

MHSA and FFN blocks of the encoder and decoder 480

across all model layers. As mentioned in section 481

3.2, here we freeze PMA, keep LDA trainable, and 482

gradually freeze PMB. The hyperparameter ti is 483

set to be 30% of the total training iterations. For 484

evaluation, we report the ROUGE-1, ROUGE-2, 485

and ROUGE-L scores (R1/2/L) (Lin, 2004). Table 486

3 showcases the number of trainable parameters 487

and the performance of LaMDA and LaMDA++. 488

Compared to LoRA, LaMDA achieves compara- 489

ble performance while requiring 10× fewer pa- 490

rameter updates. LaMDA++ surpasses LoRA on 491

the XSUM dataset and performs similarly to it on 492

CNN/DailyMail. The hyperparameters used for 493

fine-tuning are provided in appendix A. 494

To better understand the memory saving of 495

LaMDA, we profile the total memory usage of fine- 496

tuning BART-large on the XSUM dataset for full 497

fine-tuning, LoRA, and LaMDA across different 498

batch sizes. Figure 4 shows the peak GPU memory 499

usage for various methods. In specific, LaMDA 500

provides a peak memory saving of up to 1.32× 501

to fine-tune the BART-large, profiled for differ- 502

ent batch-sizes. This saving is primarily due to 503

reduced memory required for activations. Such 504

system-level benefit allows us to fine-tune larger 505

models with larger batch sizes. 506

4.4 Decoder-only Model: LLaMA2 507

We fine-tune and evaluate LLaMA2-7B (Touvron 508

et al., 2023b) on complex reasoning task GSM8K 509

(Cobbe et al., 2021) and token generative task 510

Wikitext-2 (Merity et al., 2017) using LaMDA and 511

LaMDA++. The low-rank path is incorporated into 512

the WQWQWQ, WKWKWK , WVWVWV , WFFN1WFFN1WFFN1, and WFFN2WFFN2WFFN2 matrices 513

in all layers of the model. The hyperparameter ti is 514

6



Table 2: Comparison of different fine-tuning methods for DeBERTa-V3 on GLUE benchmark.

Method #Params. CoLA ↑ SST-2 ↑ MRPC ↑ QNLI ↑ STS-B ↑ RTE ↑ MNLI ↑ QQP ↑ Avg. ↑

FFT 184M 69.21 95.64 89.22 93.78 91.59 82.49 89.98 92.05/89.31 87.82
LoRA (r = 8) 1.33M 69.73 95.57 89.71 93.76 91.86 85.32 90.46 91.95/89.26 88.38
AdaLoRA 1.27M 70.86 95.95 90.22 94.28 91.39 87.36 90.30 92.13/88.41 88.83
VERA 0.16M 70.74 95.18 90.93 93.58 91.08 87.36 90.22 90.69/87.63 88.53
AFLoRA (r = 4) 0.14M 72.01 96.22 91.91 94.42 91.84 88.09 90.17 90.81/87.77 89.23
LaMDA (r = 32) 0.075M 71.60 95.70 90.44 93.72 91.30 87.50 90.05 90.70/87.70 88.87
LaMDA++ (rT = 32) 0.078M 72.12 96.25 91.65 94.30 91.55 88.01 90.56 90.80/87.75 89.28

Table 3: Comparison of fine-tuning methods for Bart-
large. NR denotes not reported. The three values in the
last column correspond to R1/R2/RL scores.

Method #Params(M) XSUM CNN/DailyMail

Full fine-tuning 415 45.14/22.27/37.25 44.16/21.28/40.90
LoRA 8.6 43.95/20.72/35.68 45.03/21.84/42.15
AdaLoRA 8.6 44.72/21.46/36.46 45.00/21.89/42.16
AFLoRA 5.1 NR 43.96/21.06/NR
LaMDA (LDA-only) 0.20 40.64/18.11/33.20 40.92/17.53/38.1
LaMDA (r=32) 0.85 43.92/20.68/35.21 44.12/21.16/40.45
LaMDA++ (rT=32) 0.92 44.32/21.08/36.10 45.01/21.85/42.15

set to 30% of the total fine-tuning iterations. For the515

LoRA and LaMDA experiments, the rank r is set516

to 16 and 32, respectively, while the set of potential517

ranks in LaMDA++ is RS = {16, 24, 32, 40, 48}.518

We report accuracy for GSM8K and perplexity for519

Wikitext-2. The results are reported in Table 4;520

LaMDA and LaMDA++ both surpass LoRA on521

GSM8K complex reasoning task. And for the522

Wikitext-2, LaMDA achieves a very close perplex-523

ity to that of LoRA, and LaMDA++ outperforms524

LoRA, while fine-tuning with 5.5× fewer train-525

able parameters. This clearly shows the efficacy of526

LaMDA in yielding improved performance even527

for complex generative tasks.528

Table 4: Comparison of fine-tuning results for LLaMA2-
7B on GSM8K and Wikitext-2.

Method #Params(M) GSM8K ↑ Wikitext-2 ↓

LoRA (r = 16) 28 36.9 5.43
LaMDA (r=32) 4.37 37.9 5.45
LaMDA++ (rT=32) 5.12 38.2 5.41

We also evaluate the performance of LaMDA on529

commonsense reasoning. We follow the settings in530

(Hu et al., 2023) and use the Commonsense170K531

dataset as a combination of training examples of532

various tasks. Then we evaluate the fine-tuned533

model on the validation set of each task separately.534

The collection includes samples of the following535

datasets: BoolQ (Clark et al., 2019), PIQA (Bisk536

et al., 2020), SIQA (Sap et al., 2019), the Hel-537

laSwag (Zellers et al., 2019), WinoGrande (Sak-538

aguchi et al., 2020), ARC-e and ARC-c (Clark 539

et al., 2018), and OBQA (Mihaylov et al., 2018). 540

For this experiment, the set RS of LaMDA++ is 541

{32, 48, 64, 80, 96}. The fine-tuning results are 542

shown in Table 8. LaMDA achieves a higher 543

average accuracy than LoRA, while fine-tuning 544

∼ 11.5× less parameters. 545

4.5 Ablations and Discussions 546

Impact of initialization choices. A primary step 547

in LaMDA involves initializing the PMA and PMB 548

with the singular vectors (SVs) of the pre-trained 549

weight WWW . LaMDA utilizes the SVs correspond- 550

ing to the most significant singular values because, 551

according to SVD theory, these vectors capture 552

the highest proportion of the matrix’s total energy- 553

score compared to any other set of r SVs. Con- 554

sequently, fine-tuning these vectors has the most 555

significant impact on adaptation. To verify this hy- 556

pothesis and validate the findings of (Meng et al., 557

2024), we also initialize PMA and PMB with the 558

set of SVs associated with the smallest singular 559

values. 560

Conversely, VERA (Kopiczko et al., 2024) ini- 561

tializes the adapters randomly and keeps them 562

frozen. An insightful ablation study would exam- 563

ine the performance of LaMDA when PMA and 564

PMB are initialized randomly, with PMA frozen at 565

the beginning and PMB gradually frozen over time. 566

In this scenario, LDA is initialized to a zero matrix 567

instead of Ir, ensuring that the combined effect of 568

the main path and the adapter path equals the main 569

path at the onset of fine-tuning. 570

We fine-tune LLaMA2-7B on GSM8K and 571

Wikitext-2 using the three discussed initialization 572

methods and report the results in Table 6. For ran- 573

dom initialization, we perform Kaiming normal 574

initialization for both PMA and PMB. The remain- 575

ing hyperparameters are consistent with those in 576

Section 4.4. The Table shows that LaMDA initial- 577

ized with the first r SVs outperforms the random 578

initialization when using the same r. Additionally, 579
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Table 5: Commonsense reasoning results for LLaMA2-7B

Method #Params.(M) BoolQ ↑ PIQA ↑ SIQA ↑ HellaSwag ↑ WinoGrande ↑ ARC-e ↑ ARC-c ↑ OBQA ↑ Avg. ↑

LoRA (r=32) 56 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
LaMDA (r=64) 4.85 71.6 80.3 79.1 84.0 82.4 81.5 65.8 79.6 78.0
LaMDA++ (rT=64) 5.65 71.8 80.6 79.5 84.0 82.7 81.5 66.0 80.6 78.3

random initialization surpasses the model initial-580

ized with the last r SVs. The r is set to 32 for this581

ablation study. The result underscores the critical582

impact of fine-tuning the high-energy components583

of the model.584

Table 6: Effect of the initialization in LaMDA. SV de-
notes a singular vector.

Initialization #Params(M) GSM8K ↑ Wikitext-2 ↓

First r SV 4.37 37.9 5.45
Last r SV 4.37 35.8 5.55
Kaiming normal 4.37 37.1 5.49

Number of iterations ti in gradual freezing.585

LaMDA freezes PMB in ti first iterations of fine-586

tuning based on linear schedule. Adjusting this587

hyperparameter (ti) significantly alters the effec-588

tive number of trainable parameters (#Params), as589

the size of PMB (r× d) is considerably larger than590

that of LDA (r × r). To investigate the impact591

of this hyperparameter, we conducted the GSM8K592

experiment using LLaMA2-7B with various val-593

ues of ti. We present the resulting #Params and594

accuracy in Table 7. By comparing these results595

with those in Table 4, we observe that allocating a596

sufficient number of iterations to training PMB is597

crucial for surpassing LoRA. Specifically, LaMDA598

with ti set to 10% of the total iterations fails to out-599

perform LoRA, whereas allocating 20% and 30%600

of the iterations to PMB training results in superior601

performance relative to LoRA. In the appendix B,602

we explain how to count the effective number of603

trainable parameters (#Params).604

Effect of the LaMDA++ ranking. As explained605

in Section 3.3, LaMDA++ generates a sorted list of606

all linear modules based on the candidacy score607

ν. We conduct an essential study to validate608

the effectiveness of such sorting. First, we al-609

locate ranks according to the list generated by610

LaMDA++, assigning more ranks to layers with611

smaller scores. Subsequently, we conduct another612

experiment where ranks are allocated in the reverse613

order of LaMDA++, assigning more ranks to lay-614

ers with higher scores. The training curves for615

this experiment are shown in Figure 5. The re-616
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Figure 5: Training Curve of LLaMA2-7B on Wikitext-2.

sults indicate that LaMDA++ with reverse ordering 617

exhibits noisier training behavior and ends with a 618

higher loss value, translating into higher perplexity 619

on Wikitext-2. Among the three approaches pre- 620

sented in the figure, LaMDA++ demonstrates the 621

lowest training loss, attributable to its appropriate 622

allocation of the rank budget. 623

624
Table 7: Effect of the initialization in fine-tuning
LLaMA2-7B on GSM8K using LaMDA. SV denotes a
singular vector.

ti #Params(M) Accuracy ↑

10% of iterations 1.56 36.1
20% of iterations 2.97 37.0
30% of iterations 4.37 37.9

5 Conclusion 625

In this work, we proposed LaMDA, a novel 626

framework for fine-tuning large language mod- 627

els. LaMDA employs a low-dimensional adapter, 628

significantly reducing the number of trainable pa- 629

rameters and conserving activation memory. The 630

methodology involves freezing the projection ma- 631

trix AAA from the outset and gradually freezing the 632

projection matrix BBB. We further enhanced LaMDA 633

by incorporating the flexibility of varying ranks 634

across layers, allocating ranks to adapters based on 635

the energy components of the pre-trained weights. 636

Both LaMDA and LaMDA++ demonstrate the ca- 637

pability to facilitate the fine-tuning of larger mod- 638

els on commercial GPUs, offering an efficient and 639

scalable approach to model adaptation. 640
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6 Limitations641

This study has a few limitations. Firstly, the largest642

model we tested was LLaMA2-7B. Due to time643

constraints associated with the paper’s deadline,644

we could not extend our experiments to larger645

models, which could provide further insights into646

the scalability and effectiveness of LaMDA. Our647

methodology, LaMDA, has not yet been tested on648

instruction-following tasks. While the current re-649

sults are promising, evaluating the performance650

of LaMDA in these specific tasks is essential to651

fully understanding its potential and versatility. We652

plan to address these limitations in future work by653

conducting experiments on larger models and a654

broader range of tasks. We are also eager to test655

the applicability of our method to vision-language656

models, which was not explored in this paper.657
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A Training Details917

Table 8: Hyperparameters for fine-tuning DeBERTa-V3
on GLUE benchmark

Hyperparameter CoLA SST-2 MRPC QNLI STS-B RTE MNLI QQP

Learning rate 1e-2 4e-3 8e-2 4e-3 2e-2 4e-2 4e-3 4e-3
#Epochs 20 10 20 10 20 20 10 10
Max Seq. Len. 512 512 512 512 512 512 512 512

Table 9: Hyperparameters for fine-tuning LLaMA2-7B

Hyperparameters GSM8K Wikitext-2 Commonsense170k

Learning rate 3e-4 3e-4 3e-4
#Epochs 6 2 3
Batch size 16 16 16

Table 10: Hyperparameters for fine-tuning BART-large

Hyperparameters XSUM CNN/DailyMail

Learning rate 2e-4 2e-4
#Epochs 25 15
Batch size 32 64

Here we provide the implementation details and918

the hyperparameters used for training. In all ex-919

periments, we used the PyTorch framework and920

ADAM (Kingma and Ba, 2015) optimizer.921

A.1 DeBERTa-V3922

To fine-tune DeBERTa-V3 on the GLUE bench-923

mark, we use a batch size of 32 and use the fol-924

lowing setup for the learning rate and number of925

epochs, which are similar to what (Li et al., 2023)926

used.927

A.2 BART-large928

For fine-tuning BART-large on XSUM and929

CNN/DailyMail we set the maximum input se-930

quence to 1024 and the maximum target sequence931

to 128. Learning rate, number of epochs, and batch932

size are shown in the Table 10, which are similar933

to what (Li et al., 2023) used.934

A.3 LLaMA2-7B935

We follow the setting of (Li et al., 2023) to936

fine-tune LLaMA2-7B on GSM8K and Wikitext-937

2 datasets. Moreover, we adopt the Common-938

sense170K dataset from (Hu et al., 2023) and use939

the default setup to fine-tune LLaMA2-7B for com-940

monsense reasoning. For evaluation, we use lm-941

evaluation-harness library (Gao et al., 2023). The942

hyperparameters are provided in Table 9.943

B Effective number of trainable 944

parameters (#Params) in LaMDA 945

Assuming L trainable linear modules in the model, 946

ti initial iteration for gradual freezing, and T total 947

iterations, the effective number of trainable param- 948

eters can be computed as below: 949

#Params =

L∑
l=1

[
ti
T
×NP(PMBl)

2
+NP(LDAl)]

(11) 950

where NP(XXX) is a function that counts the number 951

of elements in the matrix XXX; PMBl and LDAl 952

are the projection matrix B and low-dimensional 953

adapter in the linear module l. 954
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