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Abstract

Observational studies often seek to infer the causal effect of a treatment even
though both the assigned treatment and the outcome depend on other confounding
variables. An effective strategy for dealing with confounders is to estimate a
propensity model that corrects for the relationship between covariates and assigned
treatment. Unfortunately, the confounding variables themselves are not always
observed, in which case we can only bound the propensity, and therefore bound the
magnitude of causal effects. In many important cases, like administering a dose of
some medicine, the possible treatments belong to a continuum. Sensitivity models,
which are required to tie the true propensity to something that can be estimated, have
been explored for binary treatments. We propose one for continuous treatments.
We develop a framework to compute ignorance intervals on the partially identified
dose-response curves, enabling us to quantify the susceptibility of an inference
to hidden confounders. We show with real-world observational studies that our
approach can give non-trivial bounds on causal effects from continuous treatments
in the presence of hidden confounders.

1 Introduction

The goal of causal inference is to separate the effect of one treatment variable from the influence of
many related but irrelevant “confounding” variables. Physical interventions accomplish this most
effectively, but practical barriers often force researchers to rely on observational studies and clever
statistics. A plethora of methods operate on the basis of a learned propensity model for the assigned
treatment conditioned on covariates, for instance to reweigh the sample and remove any visible biases.
Usually, the covariates are inadequate to account for all the hidden paths between the treatment and
the outcome, and propensity-based approaches may struggle to discern the real effect. The scientific
community at large continues to vascillate on the health implications and ideal consumption levels of
coffee [Atroszko, 2019], alcohol [Ystrom et al., 2022], and cheese [Godos et al., 2020], to name a
few substances.

Most sensitivity analyses to hidden confounding require the treatment categories to be binary or at
least discrete. This weakens the empirical studies that would have been better specified by dose-
response curves [Calabrese and Baldwin, 2001] from a continuous treatment variable, for example.
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Estimated dose responses are indeed vulnerable in the presence of hidden confounders. A simulated
example in Figure 1 demonstrates how a J-shaped treatment effect can appear flipped in observational
data due to confounding. The phenomenon is an example of Simpson’s paradox [Simpson, 1951,
Yule, 1903].

1.1 Related works
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Figure 1. When a confounder is distorting
the assigned treatments in sub-populations,
the overall population-level trend may ap-
pear flipped in comparison to each sub-
population’s dose response.

There is growing interest in causal methodology for
treatments (or exposures, interventions) that take on
specific values within a continuum, especially in the
fields of econometrics [e.g. Huang et al., 2021, Tüb-
bicke, 2022], health sciences [Vegetabile et al., 2021],
and machine learning [Ghassami et al., 2021, Colan-
gelo and Lee, 2021, Kallus and Santacatterina, 2019].
So far, much scrutiny on partially identified potential
outcomes has focused on the case of binary treatments,
the simplest setting [e.g. Rosenbaum and Rubin, 1983,
Louizos et al., 2017, Lim et al., 2021]. A number of cre-
ative approaches were exhibited in the past few years to
make strides in this binary setting. Most of them relied
on a sensitivity model for bounding the extent of pos-
sible unobserved confounding, to which downstream
tasks may be adapted by noting which treatment effects
degrade the quickest.

A number of quite recent attempts have been made to
handle unobserved confounding with continuous treat-
ments. Some optimize the treatment-effect bounds through generative models [Padh et al., 2022,
Hu et al., 2021], rather than a sensitivity model. Another employs instrumental variables [Kilbertus
et al., 2020]. One with a sensitivity model was developed in parallel to the present work [Jesson et al.,
2022].

Regarding binary treatments, the so-called Marginal Sensitivity Model (MSM) due to Tan [2006]
continues to be studied extensively [Zhao et al., 2019, Veitch and Zaveri, 2020, Yin et al., 2021].
Variations thereof include Rosenbaum’s earlier sensitivity model [2002] that enjoys ties to regression
coefficients [Yadlowsky et al., 2020]. Other groups have borrowed strategies from deep learning [Wu
and Fukumizu, 2022] rather than opting for the MSM. Another active line of work constructs bounds
not due to ignorance on confounding but instead viewed from the lens of robustness [Guo et al., 2022,
Makar et al., 2020, Johansson et al., 2020]. The MSM is highly interpretable with its single free
parameter, and applicable to a wide swath of models.

Other approaches require additional structure to the data-generating (observed outcome, treatment,
covariates) process. Proximal causal learning [Tchetgen et al., 2020, Mastouri et al., 2021] requires
additional proxy structures. Chen et al. [2022] rely on multiple large dataset partitions.

1.2 Contributions

Our first contribution is to propose a unique sensitivity model (§2.1) that extends the MSM to a
treatment continuum. Next, we derive general (§3) and specialized (§3.2) formulas. We devise an
efficient algorithm (§C) to compute ignorance bounds over dose-response curves, following up with
experiments on real (§4) datasets.

2 Potential outcomes

Causal inference is often cast in the nomenclature of potential outcomes, due to Rubin [1974]. The
broad goal is to measure a treatment’s effect on an individual, marked by a set of covariates, while
accounting for all the confounding between the covariates and the treatment variable. Effects could
manifest heterogenously across individuals. In non-interventional settings, observed covariates may
not entirely overlap across treatment regimens. It is typical to estimate two models, (1) the outcome
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predictor and (2) a model for the propensity of treatment conditioned on the covariates. The latter
may help account for biases.
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Figure 2. Illustration of true confounder Z deter-
mining potential outcomes Yt∈[0,1] with observ-
able covariate X and treatment T . The density
p(yt|τ, x), found in the integrand of Equation 1,
diverges from p(yt|x) when the covariates are in-
adequate to block all the links between assigned
treatment and potential outcomes.

The first two assumptions involved in Ru-
bin’s framework are that observations of
outcome, assigned treatment, and covariates
{Y (i), T (i), X(i)} are i.i.d draws from the same
population and that all treatments have a chance
to occur for each covariate vector: pT |X(t | x) >
0 (overlap/positivity) for all t, x ∈ [0, 1] × X ,
specifically in our context of continuous treat-
ments. The third and most challenging of these
fundamental assumptions is that of ignorabil-
ity, or sufficiency. Our study is concerned with
the scenarios where that assumption is violated:
when there exists a dependency, not blocked by
the covariates, between the assigned treatment
and true potential outcomes. Let p(yt|x) denote
the probability density function of potential out-
come Yt = yt from a treatment t ∈ [0, 1], given
covariates X = x. Formally, we have a violation
of ignorability:

{(Yt)t∈T 6⊥⊥ T} | X.

It is only realistic to observe samples of Y |T = t,X = x with density p(yt|t, x). However, to
account for possible hidden confounding, we also require a p(yt|τ 6= t, x) for quantifying treatment
effects of the general form E[f(Yt)|X], involving the density

p(yt|x) =

∫ 1

0

p(yt|τ, x)p(τ |x) dτ, (1)

where p(yt|τ, x) is the distribution of potential outcomes conditioned on actual treatment T = τ ∈
[0, 1] that may differ from the potential outcome’s index t. Throughout this study, yt will indicate the
value of the potential outcome at treatment t, and to disambiguate with assigned treatment τ will
be used for events where T = τ . For instance, we may care about the counterfactual of a smoker’s
(τ = 1) health outcome had they not smoked (yt=0), where T = 0 signifies no smoking and T = 1
is “full” smoking. We aim to develop some intuition before introducing the novelties.

On notation. We will use the shorthand p(· · · ) with lowercase variables whenever working with
probability densities of the corresponding stochastic variables in uppercase. In other words,

p(τ |x) means
d

dτ
P[T ≤ τ |X = x], and p(yt|τ, x) means

d

du
P[Yt ≤ u|T = τ, X = x]

∣∣∣
u=yt.

Interpretation. How would one interpret p(yt|τ, x)? The potential-outcomes vector (Yt)t∈[0,1]
of infinite dimensionality is intrinsic to each individual with true confounder Z, for which X is a
noisy proxy. By “true” confounder we refer to any set of variables that suffice to block all backdoor
paths between Yt and T . The potential-outcomes vector would only change from knowledge of
assigned treatment T = τ if it betrayed additional information about Z, absent in X , that further
informed any Yt. We may express p(yt|τ, x) explicitly in terms of hypothetical true confounders
as
∫
p(yt|z)p(z|τ, x) dz because z subsumes both x and τ . This way, p(yt|z) is the true potential

outcome and p(z|τ, x) acts as a filter for how parts of the true confounder mix together into the proxy
x and the assigned treatment τ .

Propensities. The probability density p(τ |x) is termed the nominal propensity. A quantity often
examined is the complete propensity, specifically referring to p(τ | yt, x) in our realm. The complete
propensity can differ from p(τ |x) because of hidden confounders. In that instance, conditioning
on potential outcome yt modulates the distribution. Similarly, by connection through Bayes’ rule,
conditioning the potential outcomes p(yt|x) on assigned treatment τ modulates those distributions.
Absent any unobserved confounding, p(yt|τ, x) = p(yt|x) and Equation 1 trivializes. See Figure 2
for a graphical illustration on the runaway influence of τ on the potential outcomes.
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Sensitivity. Explored by Kallus et al. [2019] and Jesson et al. [2021] among many others, the
Marginal Sensitivity Model (MSM) serves to bound the extent of (putative) hidden confounding in
the regime of binary treatments T ′ ∈ {0, 1}. Specifically, it couples the odds of treatment under the
nominal propensity to the odds of treatment under complete propensity, limiting the discrepancy:
Definition 1 (The Marginal Sensitivity Model). For binary treatment t′ ∈ {0, 1} and Γ ≥ 1, the

following restriction is placed on complete propensities: Γ−1 ≤
[

p(t′|x)
1−p(t′|x)

]−1 [
p(t′| yt′ ,x)

1−p(t′| yt′ ,x)

]
≤ Γ.

Restricting ourselves to binary treatments affords us a number of conveniences. For instance, one
probability value is sufficient to describe the whole propensity landscape on a set of conditions,
p(1− t′| · · · ) = 1− p(t′| · · · ). As we transfer to the separate context of t ∈ [0, 1], we must contend
with infinite treatments and infinite potential outcomes.

2.1 Towards continuous sensitivity

We require a constraint on the quantity p(τ | yt, x) that is fundamentally unknowable across all the
combinations of assigned treatments T = τ ∈ [0, 1] and potential outcomes yt∈[0,1]. As with the
MSM, our target is to associate p(τ | yt, x) to the knowable p(τ |x). In other words, we seek to
constrain the knowledge conferred on propensity by a single potential outcome yt. It is not necessary
for the functions pertaining to (yt)t∈[0,1] to exhibit any degree of smoothness in t. The potential-
outcome variables are treated as entries in an infinitely long vector. However, we do impose that the
propensity probability densities p(τ | . . . ) are at least once differentiable in τ . What sort of analogue
exists for the notion of “odds” in the MSM?

Contrast treatment τ versus τ + δ locally, for some infinitesimal δ, at any part of the curve. A

translation of the MSM might appear as
[
p(τ+δ|x)
p(τ |x)

]−1 [
p(τ+δ| yt,x)
p(τ | yt,x)

]
. Let us peer into one of those

ratios. In logarithms,

δ−1 log
p(τ + δ|x)

p(τ |x)
=

log p(τ + δ|x)− log p(τ |x)

δ
−−−→
δ→0

∂ log p(τ |x)

∂τ
, ∂τ log p(τ |x).

Hence, we introduce the infinitesimal MSM (δMSM), tying ∂τ log p(τ | yt, x) to ∂τ log p(τ |x).
Definition 2 (The Infinitesimal Marginal Sensitivity Model). For treatments in the closed unit interval,
t ∈ [0, 1], and violation factor Γ ≥ 1, the complete propensities must obey the following inequality:∣∣∣∣∂τ log

p(τ | yt, x)

p(τ |x)

∣∣∣∣ ≤ log Γ.

We crafted the δMSM with the intention of functionally mirroring the MSM—locally, on a treatment
continuum. Whereas Definition 2 is stated in logarithms, Definition 1 is not; the difference is merely
cosmetic and hyperparameter Γ plays an equivalent role in both structures. Nevertheless, the emergent
properties are vastly different.

3 The framework

We list the core assumptions surrounding our problem.
Assumption 1 (Bounded Hidden Confounding). Invoking Definition 2, the violation of ignorability
is constrained by a δMSM with some Γ ≥ 1.
Assumption 2 (Fully Observed Confounding at No Treatment). The utter lack of treatment is not
informed by potential outcomes: p(τ = 0| yt, x) = p(τ = 0| x) for all t and yt.

Assumption 2 states that we look for sensitivity to hidden confounders outside the control group
at T = 0. The restriction is reasonable in situations like the following: we seek to estimate the
effect of a prescription drug, and some clinics prescribe different dosages. Our T = 0 group would
be individuals who have not received any such prescription, and T > 0 would place patients on a
scale depending on prescription dosage. We expect a dramatically lessened vulnerability to hidden
confounders for the well-represented—in observed and unobserved attributes—control group. From
a technical perspective, Assumption 2 is necessary for our derivations, and should be interpreted as a
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blind spot in the sensitivity model rather than a requirement for the underlying process. There is no
additional constraint, besides the δMSM itself, on how much the complete propensity function may
fluctuate around any T > 0. We motivate and validate this assumption in the real world with §4.

Next, we proceed with derivations. The key to cracking open Equation 1 is to carve out a region
inside the domain of integration where an approximation can be trusted. This will extrapolate from
the singular point τ = t where estimation is feasible.

3.1 Dealing with an unreliable approximation

We approximate p(yt|τ, x) around τ = t, where p(yt|t, x) = p(y|t, x) is learnable from data.
Suppose that p(yt|τ, x) is twice differentiable in τ . Construct a Taylor expansion

p(yt|τ, x) = p(yt|t, x) + (τ − t)∂τp(yt|τ, x)|τ=t +
(τ − t)2

2
∂2τp(yt|τ, x)|τ=t +O(τ − t)3. (2)

Denote with p̃(yt|τ, x) an approximation of first or second order as laid out above. We will encounter
that even ∂τp(yt|τ, x)|τ=t is intractable. Thankfully, it can be bounded using the δMSM machinery.
Let us quantify the reliability of this approximation by a set of weights 0 ≤ wt(τ) ≤ 1, where
typically (but need not necessarily) wt(t) = 1. Decompose the integral of Equation 1—

p(yt|x) =

∫ 1

0

wt(τ)p(yt|τ, x)p(τ |x) dτ +

∫ 1

0

[1− wt(τ)]p(yt|τ, x)p(τ |x) dτ

≈
∫ 1

0

wt(τ)p̃(yt|τ, x)p(τ |x) dτ︸ ︷︷ ︸
(A) the approximated quantity

+

∫ 1

0

[1− wt(τ)]p(τ |yt, x)p(yt|x) dτ︸ ︷︷ ︸
(B) by Bayes’ rule

.
(3)

This separation into recoverable (A) and entirely unknown (B), demarcated by the weights, ensures
that the inaccurate regimes of the approximation vanish (as wt(τ) → 0 away from t) and are
replaced with the ignorant quantity. We simplify part B of Equation 3 first, into p(yt|x)[1 −∫ 1

0
wt(τ)p(τ |yt, x) dτ ]. We witness already that p(yt|x) shall take the form of

p(yt|x) ≈
∫ 1

0
wt(τ)p̃(yt|τ, x)p(τ |x) dτ∫ 1

0
wt(τ)p(τ |yt, x) dτ

. (4)

How the approximation error of Equation 2 carries into Equation 4 depends on the peakedness of the
weight function. To proceed further demands reflecting on Assumptions 1 & 2, as we do in §A.

A note on ensemble uncertainty. One should quantify empirical uncertainties [Jesson et al., 2020]
alongside sensitivity to hidden confounding. In our experiments we learn both the predictor and the
propensity model as ensembles from bootstrapped resampled [Lo, 1987] data. Then p̃(yt|x) can also
be resampled for confidence intervals via its component ensembles.

3.2 Tractable weight combinations

In addition to developing the general framework above, we derive analytical forms for a specific
paramametrization to the weighting function and propensity distribution. Here, we look to the Beta
function and its associated probability density for a natural solution. Suppose that

(T | X = x) ∼ Beta(α(x), β(x)), for arbitrary α(x), β(x), (5)

wt(τ) =
τat−1(1− τ)bt−1

ct
=
τ rt(1− τ)r(1−t)

ct
, at + bt = r + 2, r > 0. (6)

We designed the reliability weights to mirror the propensity’s form by rescaling a Beta density. We
assert that wt(τ) peaks at τ = t, and that wt(τ) = 1. We find that ct , trt(1− t)r(1−t), even though
the solution is irrelevant for our purposes. The mode is fixed: (at − 1)/(at + bt − 2) = t. See §B for
details on the solution.

5



4 Results from an observational study

The most pertinent application for the framework laid out above is an observational study with
incomplete or noisy covariates and a continuous treatment variable. More concretely, the treatment
variable should be transformed and scaled into the unit interval such that T = 0 signifies a control
with a complete lack of treatment. Every kind of individual should be about equally likely to fall in
the (T = 0) cohort (Assumption 2.) As for shaping the (T > 0) regime, the domain should inform
whether a linear scale is employed, versus an empirical or parametric cumulative density function.
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Figure 3. Ignorance (horizontal) versus recall (vertical) in four replications of a counterfactual model
estimated on real Biobank covariates with a synthetic binary outcome, and known dose response.

We obtained real observational data from the UK Biobank and performed one semi-synthetic and one
fully empirical experiment. In the latter, we relied on discarding covariates to induce greater hidden
confounding. See §D for details.

The objective. We chose to investigate the coverage [McCandless et al., 2007] of E[Yt] from
ignorance intervals on counterfactual models trained with inadequate covariates. In the semi-synthetic
case (Figure 3), the covariates were real but the outcome was simulated, and the treatment effect was
known to be linear after a logit transformation. Coverage in the empirical case (Figure 4) was more
difficult in the absence of a ground truth. There, we trained an uncensored model on an expanded
set of covariates to act as an approximate target for the smaller model’s ignorance intervals. In both
cases, the recall was expressed as the portion of the dose-response curve that satisfied the relevant
objective; ignorance was, (a) the average width of the intervals in logits for the semi-synthetic, and
(b) normalized to the 95%-confidence intervals of the uncensored model for the empirical study.

The comparisons. We compared our δMSM with r = 32 throughout (solid in the figures on this
page) to other sensitivity models: namely, (dotted) an analogue developed independently and in
parallel to the present work, with just one free parameter [Jesson et al., 2022]; (dashed) the product
of shoehorning a continuous model into the binary MSM by triggering a binary treatment at T > 0.5
and discretizing the propensity at the threshold; and (dot/dash) a baseline sensitivity model that
emerges from Γ-scaling the Algorithm 1 weights without any propensity.
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Figure 4. Ignorance (up to 2.25) versus recall for the model estimated on the real censored dataset.
Four disjoint sections of the covariates were censored for the different panels. Curves begin at Γ := 1.
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5 Discussion

The utility of our framework is evident in the above showcased results. We demonstrated that, in
the presence of a semi-synthetic ground truth, the δMSM covers the full dose-response curve most
efficiently. In the empirical study, we showed that discrepancies in the potential-outcomes continuum
between a censored model and a full model are most efficiently bridged under the δMSM assumption.

Moving forward, we plan on generalizing the permissible anchoring points that were restricted by
Assumption 2 at T = 0. Even further, the same δMSM can be applied to treatment variables in
(−∞,+∞) or [0,+∞), inviting new propensity/weight parametrizations. We shall also investigate
the superficial similarity of the δMSM to the Riesz representers for the average causal derivative
under the general framework of Chernozhukov et al. [2021].

Ethical implications. Sensitivity models for hidden confounders can help to guard against erro-
neous conclusions from observational studies. We generalized this line of analysis to the regime of
continuous treatments, thereby increasing its practical applicability. The method also bears utility
in the context of fairness in machine learning. It can help decision makers identify subpopulations
for whom the sample is too biased to reliably draw conclusions. Nevertheless, researchers must be
careful to maintain a healthy degree of skepticism towards observational results even after properly
calibrating the partially identified effects.
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A Additional derivations

We will expand the denominator of Equation 4 first, and then repurpose the results for the derivatives
of Equation 2 that appear in the numerator. This part shows how the assumed model serves to
characterize the unknown quantities, but the impatient reader may skip to §3.2. Without loss of
generality, consider

∂τ log p(τ |yt, x) = ∂τ log p(τ |x) + γ(τ |yt, x), |γ(τ |yt, x)| ≤ log Γ. (7)

We may attempt to integrate both sides;∫ t′

0

∂τ log p(τ |yt, x) dτ =

∫ t′

0

∂τ log p(τ |x) dτ +

∫ t′

0

γ(τ |yt, x) dτ︸ ︷︷ ︸
,λ(t′|yt,x)

⇐⇒ log p(τ = t′|yt, x)− log p(τ = 0 |yt, x) = log p(τ = t′|x)− log p(τ = 0 |x) + λ(t′|yt, x),

log p(τ |yt, x) = log p(τ |x) + λ(τ |yt, x) (by Assumption 2).

∴ p(τ |yt, x) = p(τ |x)Λ(τ |yt, x), Λ , exp{λ}. (8)
Clearly |λ(τ |yt, x)| ≤ τ log Γ because it integrates γ, bounded by± log Γ, over a support with length
τ . Subsequently Λ(τ |y, t) is bounded by Γ±τ . We are now equipped with the requisite tools to
properly bound p(yt|x)—or an approximation thereof, erring on ignorance via reliability weights
wt(τ).

Consider Equation 3.A:∫ 1

0

wt(τ)p̃(yt|τ, x)p(τ |x) dτ = p(yt|t, x)

∫ 1

0

wt(τ)p(τ |x) dτ︸ ︷︷ ︸
(A.0)

+ g1(yt|t, x)

∫ 1

0

wt(τ)(τ − t)p(τ |x) dτ︸ ︷︷ ︸
(A.1)

+ g2(yt|t, x)

∫ 1

0

wt(τ)
(τ − t)2

2
p(τ |x) dτ︸ ︷︷ ︸

(A.2)

,

where gk(yt|t, x) , ∂kτ p(yt|τ, x)|τ=t. (9)

Lightening the notation with a shorthand for the weighted expectations, 〈·〉τ ,
∫ 1

0
wt(τ)(·)p(τ |x) dτ,

it becomes apparent that we must grapple with the pseudo-moments 〈1〉τ , 〈τ − t〉τ , and 〈(τ − t)2〉τ .
Note that t should not be mistaken for a “mean” value.

Furthermore, we have yet to fully characterize gk(yt|t, x). Observe that

p(yt|τ, x) =
p(τ |yt, x)p(yt|x)

p(τ |x)
⇐⇒ ∂τp(yt|τ, x) = p(yt|x) · ∂

∂τ

p(τ |yt, x)

p(τ |x)
.

The p(yt|x) will be moved to the other side of the equation as needed; by Equation 8,

∂

∂τ

p(τ |yt, x)

p(τ |x)
=

∂

∂τ
Λ(τ |yt, x).

Expanding,

=
∂

∂τ
exp

{∫ τ

0

γ(τ |yt, x) dτ

}
= γ(τ |yt, x) exp

{∫ τ

0

γ(τ |yt, x) dτ

}
= (γΛ)(τ |yt, x).

Appropriate bounds will be calculated for g2(yt|t, x) next, utilizing the finding above as their main
ingredient. Let

g̃k(yt|t, x) , p(yt|x)−1gk(yt|t, x) =

(
∂

∂τ

)k
p(τ |yt, x)

p(τ |x)

∣∣∣∣∣
τ=t.
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The second derivative may be calculated in terms of the ignorance quantities γ,Λ:

g̃2(yt|t, x) =∂τγ(τ |yt, x)Λ(τ |yt, x)

=γ(τ |yt, x)2Λ(τ |yt, x) + γ̇(τ |yt, x)Λ(τ |yt, x)

=(γ2 + γ̇)Λ(τ |yt, x).

And finally we address p̃(yt|x). Carrying over the components of Equation 9 into Equation 3,

p̃(yt|x) =
p(yt|t, x)〈1〉τ

〈Λ(τ |yt, x)〉τ − g̃1(yt|t, x)〈τ − t〉τ − g̃2(yt|t, x)〈(τ − t)2〉τ

=
p(yt|t, x)

Eτ [Λ(τ |yt, x)]− (γΛ)(t|yt, x)Eτ [τ − t]− 1
2 ((γ̇ + γ2)Λ)(t|yt, x)Eτ [(τ − t)2]

,

(10)

where these expectations Eτ [·] are with respect to the implicit distribution q(τ |t, x) ∝ wt(τ)p(τ |x).
The notation γ̇ denotes a derivative in the first argument of γ(t|yt, x). To make use of this formula, one
first procures the set of admissible d(t|yt, x) ∈ [d(t|yt, x), d(t|yt, x)] that violate ignorability up to a
factor Γ according to the δMSM. Then, considering their reciprocals as importance weights [Tokdar
and Kass, 2010], tight bounds on the partially identified expectations over p̃(yt|x) may be optimized.

B Analytical solutions for the Beta parametrization

The remaining degree of freedom disappears by a precision constraint at + bt − 2 = r for some
r > 0. Constraining a more complex dispersion statistic like variance is much more difficult.
The expectations found in Equation 10 are now available in closed form, and can be bounded in
terms of just two extra free parameters, Γ and r. Guidance on setting the violation factor Γ is
discussed elsewhere, e.g. §4; as for the class of weights, high r conveys poor trust in the Equation 2
approximation, as studied in §B.

r = 4 r = 16 r = 64

Figure 5. Beta weight schemes wt(τ) in the unit square, plotted for centers t = 0.125, 0.25, 0.5.
Shapes are symmetrical about t = 0.5. Trust declines with r.

The findings. We pose a third and final assumption, which enables us to state Proposition 1. The
main insight to unlocking those expectations is that each one of them involves an integral with the
product wt(τ)p(τ |x) over its normalization constant, yielding the moments of a Beta distribution.
Assumption 3 (Second-order Simplification). The quantity γ̇(τ |yt, x) cannot be characterized as-is.
We grant that γ2 dominates, and consequently

∣∣(γ̇ + γ2)Λ
∣∣ ≤ ∣∣γ2Λ

∣∣+ ε for small ε ≥ 0.
Proposition 1 (Beta Parametrizations). The formulations in Equations 5 & 6 admit analytical
solutions to the ignorance denominator in Equation 10. With α, β implicitly referring to α(x), β(x),

Eτ [Λ(τ |yt, x)] ∈ 1F1

(
α+ at − 1; α+ β + r; ± log Γ

)
,

where again the operator Eτ is employed as in Equation 10, and 1F1 denotes Kummer’s confluent
hypergeometric function [Mathews Jr. et al., 2021]. In addition, Eτ [τ − t] and Eτ [(τ − t)2] can be
readily computed by means of the first two moments of the Beta distribution.

C Computing the ignorance intervals

After deriving p̃(yt|x) in Equation 10 and a specific solution with Proposition 1, we must find a way
to bound the partially identified expectations with respect to this distribution. Concretely, we seek
to characterize the Individual Treatment Effect (ITE) E[f(Yt)|X = x] or Average Treatment Effect
(ATE) E[F (Yt)] for any task-specific f(y). This is accomplished with a Monte Carlo importance
sampler of n outcome realizations yi drawn from proposal q(y):

Ẽ[f(Yt)|X = x] =

∑n
i=1 f(yi)p̃(yt = yi|x)/q(yi)∑n

i=1 p̃(yt = yi|x)/q(yi)
. (11)
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For the ATE, one additionally averages over covariates with sample size m:

Ẽ[f(Yt)] =

∑n
i=1

∑m
j=1 f(yi)p̃(yt = yi|xj)/q(yi)∑n

i=1

∑m
j=1 p̃(yt = yi|xj)/q(yi)

. (12)

Even though p̃(yt|x) is a normalized probability density, it contains partially identified quantities.
It is untenable to constrain a search along the candidate values for each d(t|yt = yi, x) to even
approximately ensure

∫
Y p̃(yt = y|x) dy = 1. For this reason the bias of an estimator without the

corrective denominator of Equation 11 would be uncontrollable [Tokdar and Kass, 2010]. A greedy
algorithm may be deployed to maximize Ẽ[f(Yt)|X = x] in the form above by optimizing weights
wi attached to each f(yi), within the range

wi :=
p(yi|t, x)

d(t|yi, x)q(yi)
, wi :=

p(yi|t, x)

d(t|yi, x)q(yi)
.

The minimum may be achieved by a trivial adaptation. Maximizing and minimizing Ẽ[f(Yt)|X = x]
with respect to the bounding quantities (γ,Λ) enables the resolution of ignorance bounds on the basis
of Γ from Definition 2. Our Algorithm 1 adapts the method of Jesson et al. [2021] to heterogeneous
weight bounds [wi, wi] per draw i.

input :{(wi, wi, fi)}ni=1 ordered by ascending fi.
output :maxw E[f(X)] estimated by importance sampling with n draws.
Initialize wi ← wi for all i = 1, 2, . . . n;
for j = 1, 2, . . . n do

Compute ∆j ,
∑n
i=1 wi(fj − fi);

if ∆j < 0 then
wj ← wj ;

else
break;

end
end
Return

∑
i wifi/

∑
i wi;

Algorithm 1: The expectation maximizer, with O(n) runtime if intermediate ∆j are memoized.

D Experimental details

Data from the UK Biobank were accessed under application 11559. From the brain Magnetic
Resonance Imaging (MRI) data we extracted the 74 fields corresponding to parcelized cortical
volumes on the left and the right hemispheres each [Miller et al., 2016].

Semi-synthetic evaluation. In our first experiment, the synthetic binary outcome was generated
by linearly combining the covariates and treatment and then applying a logistic curve for a Bernoulli
probability. As the logit-transformed ATE was known to be linear, “recall” was evaluated as the
portion of the ignorance intervals that permitted the actual linear effect along each section of the dose
response.

Semi-synthetic dataset. The 148 MRI fields were normalized such that values floored at each
variable’s 25% quantile and ceiled at the 95% quantile were mapped to the range [0, 1]. In each of the
four replications, a random quarter of the covariates were assigned a nonzero, normally distributed
coefficient, and one of them was deemed the treatment variable with unit coefficient. After computing
the outcomes, we randomly resampled a third of the feature values, with replacement, in order to
introduce noise to the covariates while preserving the marginals.

Semi-synthetic estimators. Both the predictor and the propensity model, censored and uncensored,
were trained in ensembles of 32 artificial neural networks with one inner residual layers of 32 activa-
tion units each. A dropout of 0.05 was imposed on these layers. Additionally, an L2-regularization
on the inner layers with weight 10−3 was applied. All predictors were trained for 10,000 epochs and
propensities for 5,000 epochs.
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Empirical evaluation. Our test relies on approximating an unconfounded model by collecting a
large set of covariates, and then learning another model on a heavily censored version. Our reasoning
is that the censored model would suffer from a greater degree of hidden confounding. The censored
model could then be assessed along all potential-outcome predictions, by pretending that the full
model represented the real dose-response curves. A pertinent metric would be how much a sensitivity
model with Γ ≥ 1 swallows the “real” dose responses, as a trade-off against the sheer area of the
ignorance bounds. These competing quantities are a form of recall and (the opposite of) precision,
respectively.

Denote (yc, yc) the partially identified bounds of the censored model and (y, y) the full model’s
bounds for Ẽ[Yt], both at 95% confidence from percentile bootstrapping. For some Γ := s and a
t ∈ [0, 1] grid, of length 17 in our case, ignorance is

∑
t[yc(s, t)− yc(s, t)]/

∑
t[y(t)− y(t)], and

recall is the normalized intersection between the bounds:∑
t max{0,min{yc(s, t), y(t)} −max{yc(s, t), y(t)}}∑

t[y(t)− y(t)]
.

Empirical dataset. We summed each left/right pair to arrive at 74 positively valued outcomes. Six
groups of semantically related fields composed the long covariate vector:

• 6 basic details: age, weight, sex, standing height, seated height, and month of birth.
• 3 reported activity measurements: weekly minutes spent walking, engaged in moderate

activity, and vigorous activity.
• 27 environmental variables surveying the pollution and greenery surrounding the person’s

life.
• 42 blood measurements from cell counts to calcium concentration.
• 15 cardiac measurements including ECG and PWA modalities.
• 8 welfare indices for English citizens assessing the following: deprivation, income, employ-

ment, health, education, housing, crime, and living environment.

Listwise deletion was employed to handle any missing value. To censor the covariates, the four
largest sectors (italicized) encompassing various confounding variables were omitted, one at a time.
The treatment variable was the walking field taken from the triad of activity measurements, scaled to
the unit interval such that any recording of at least two hours per day was set to T = 0 and any lesser
amount had T increase up to 1 according to an empirical CDF.

Empirical estimators. Both the predictor and the propensity model, censored and uncensored, were
trained in ensembles of 32 artificial neural networks with four inner residual layers of 32 activation
units each. A dropout of 0.05 was imposed on these layers. Additionally, an L2-regularization on
the inner layers with weight 10−3 was applied. All predictors were trained for 10,000 epochs and
propensities for 5,000 epochs. The outcome predictor parametrized a Gamma distribution, and the
propensity model parametrized a Beta distribution. See Figure 6.
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Figure 6. Blue: censored-model likelihood in the train set; red: censored-model likelihood in the test
set; and green: full-model likelihood in the test set.
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