
Diffusion Directed Acyclic Transformer for Non-Autoregressive Machine
Translation

Anonymous ACL submission

Abstract001

Non-autoregressive transformers (NATs) pre-002
dict entire sequences in parallel to reduce de-003
coding latency, but they often encounter per-004
formance challenges due to the multi-modality005
problem. A recent advancement, the Directed006
Acyclic Transformer (DAT), addresses this is-007
sue by capturing multiple translation modalities008
to paths in a Directed Acyclic Graph (DAG).009
However, the collaboration with the latent vari-010
able introduced through the Glancing training011
(GLAT) is crucial for DAT to attain state-of-012
the-art performance. In this paper, we intro-013
duce Diffusion Directed Acyclic Transformer014
(Diff-DAT), which serves as an alternative to015
GLAT as a latent variable introduction for DAT.016
Diff-DAT offers two significant benefits over017
the previous approach. Firstly, it establishes018
a stronger alignment between training and in-019
ference. Secondly, it facilitates a more flexible020
tradeoff between quality and latency.021

1 Introduction022

The Transformer architecture (Vaswani et al.,023

2017a) has gained immense popularity, particu-024

larly in sequence-to-sequence learning problems025

like machine translation. Conventional Transform-026

ers employ an autoregressive approach to genera-027

tion, yielding robust results but proving inefficient028

at inference due to its sequential decoding. To ad-029

dress this issue, Non-autoregressive Transformers030

(NATs) (Gu et al., 2018) was introduced, signifi-031

cantly boosting the decoding speed by generating032

all output tokens simultaneously. This advantage033

often comes with a trade-off in translation quality034

due to the challenging multi-modality problem (Gu035

et al., 2018), wherein a single source sentence may036

have multiple translations in the target language.037

Numerous approaches have been proposed to038

address this challenge, primarily by introducing039

additional latent variables to reduce the number040

of translation modalities given the latent variables.041

Among them, the Directed Acyclic Transformer 042

(DAT) (Huang et al., 2022b) emerges as the most 043

promising approach. In DAT, translation modal- 044

ities are assigned to paths in a Directed Acyclic 045

Graph (DAG), enabling the model to capture multi- 046

ple translation modalities. Although DAT enhances 047

translation quality and diversity, it still requires 048

additional context from the target as a latent vari- 049

able to perform effectively. Huang et al. (2022b) 050

demonstrated that the latent variable from Glancing 051

training (GLAT) (Qian et al., 2021a) significantly 052

improves DAT’s performance. 053

In this work, we aimed to enhance the capabili- 054

ties of DAT by introducing latent variables through 055

a diffusion process. We integrated diffusion models 056

into DAT, resulting in a novel model called Diffu- 057

sion Directed Acyclic Transformer (Diff-DAT). We 058

discovered that the diffusion model can effectively 059

replace GLAT as a latent variable introduction 060

mechanism, enabling DAT to function optimally. 061

This integration offers two significant advantages. 062

Firstly, diffusion models establish a stronger align- 063

ment between training and inference. Secondly, 064

they facilitate a more flexible tradeoff between 065

quality and speed by allowing decoding through 066

multiple iterations. Results on multiple machine 067

translation benchmarks demonstrate that our ap- 068

proach not only improves the performance of DAT 069

on fully non-autoregressive decoding but also im- 070

proves its iterative decoding performance without 071

a significant increase in decoding latency. 072

2 Preliminaries 073

DA-Transformer replaces the traditional Trans- 074

former’s decoder with a directed acyclic decoder. 075

This decoder organizes its outputs as a directed 076

acyclic graph (DAG), where each path corresponds 077

to a specific translation modality. Given a bilingual 078

pair, X = {x1, . . . , xN} and Y = {y1, . . . , yM}, 079

DAT sets the decoder length to L = λ · N and 080
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models the translation probability by marginalizing081

out the paths in the DAG.082

Pθ(Y |X) =
∑
A

Pθ(Y |A,X)Pθ(A|X), (1)083

where A = {a1, ..., aM} represents a path with084

vertex indexes satisfying 1 = a1 < ... < aM = L.085

Pθ(A|X) and Pθ(Y |A,X) denote the probability086

of path A and the probability of target sentence087

Y conditioned on path A, respectively. The DAG088

factorizes the path probability Pθ(A|X) based on089

the Markov assumption:090

Pθ(A|X) =
M−1∏
i=1

Pθ(a
i+1|ai, X) =

M−1∏
i=1

Eai,ai+1 ,

(2)091

where E ∈ RL×L is a row-normalized transition092

matrix. The DAG’s unidirectional nature masks the093

lower triangular part of E to zeros. Once the path094

A is determined, token yi is generated conditioned095

on the decoder hidden state with index ai:096

Pθ(Y |A,X) =

M∏
i=1

Pθ(y
i|ai, X), (3)097

where Pθ(y
i|ai, X) represents the translation prob-098

ability of word yi on the position ai of decoder. To099

enhance the performance of DAT, GLAT was incor-100

porated as an additional latent variable, denoted as101

Z. This variable is a randomly masked target and102

serves as an extra input for the decoder. The final103

training objective is to maximize the log-likelihood104

with the additional latent variable:105

logPθ(Y |X) = EQ(Z|Y,Â) logPθ(Y |X,Z), (4)106

since the decoder input is longer than the target107

sentence, (Huang et al., 2022b) first finds the most108

probable path Â = argmaxA Pθ(Y,A|X) and109

uses it to assign the masked target to vertices in110

the DAG.111

3 Methodology112

Training objective: The latent variable Z in GLAT113

is only used during training when a target is pro-114

vided and is omitted during inference, forcing the115

model to rely solely on X to predict the target. This116

mismatch between training and inference can dam-117

age the model’s generalizability. This motivates us118

to incorporate diffusion models into DAT.119

Diffusion models (Sohl-Dickstein et al., 2015)120

aim to predict the target Y0 through a sequence of121

latent variables Y1:T = Y1, Y2, . . . , YT . The for- 122

ward process gradually adds noise to the target Y0 123

over T steps to get YT , the final latent variable that 124

follows a prior noise distribution. The backward 125

process optimizes a neural network to denoise the 126

noisy latent variables, reversing the forward pro- 127

cess to recover Y0. When the step size is infinitesi- 128

mally small, the forward and backward processes 129

have the same functional form. 130

While diffusion models provide a strong theoret- 131

ical justification for aligning training and inference, 132

the large number of time steps (T ) hinders their 133

practical application in NATs, where decoding la- 134

tency is a critical concern. Therefore, we utilize 135

absorbing discrete diffusion (Austin et al., 2021) 136

that uses the absorbing state ([M ]) as noise to add 137

to the target sentence at each step, until all tokens 138

are masked (noise distribution YT ). This approach 139

reduces the number of forward steps T required to 140

reach the noise distribution. 141

We compute the translation probability by 142

marginalizing out the paths in the DAG and latent 143

variables from the diffusion backward process. 144

Pθ(Y0|X) =
∑
Y1:T

∑
A

Pθ(Y0:T , A|X) 145

=
∑
Y1:T

∑
A

P (YT )

T∏
t=1

Pθ(Yt−1, A|Yt, X) (5) 146

Diff-DAT maximizes the variational lower bound 147

(VLB) of the log-likelihood: 148

logPθ(Y0|X) = log
∑
Y1:T

∑
A

Pθ(Y0:T , A|X) 149

≥
∑
A

EQ(Y1:T |Y0,A) log
Pθ(Y0:T , A|X)

Q(Y1:T |Y0, A)
150

≈ EQ(Y1:T |Y0,Â)

∑
A

log
Pθ(Y0:T , A|X)

Q(Y1:T |Y0, Â)
151

=
T∑
t=1

Lt + const, (6) 152

Where Q(Y1:T |Y0, Â) represents the forward pro- 153

cess transition probabilities. Following Huang et al. 154

(2022b), we use the most probable path Â to sample 155

the latent variable Yt to avoid performing multiple 156

forward passes through the neural network for all 157

paths in the DAG in order to compute the objective. 158
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The objective at time step t is159

Lt = EQ(Yt|Y0,Â)

∑
A

[
logPθ(A|Yt, X)

− KL[Q(Yt−1|Yt, Y0, A)∥Pθ(Yt−1|Yt, A,X)]
]
.

160

We compute the objective at time step t as follows:161

Lt =
∑
A

M∑
i=1

γtb
i
t logPai,yi0

M∑
i=2

Eai−1,ai162

where bit =

{
1 if yit = [M ]
0 otherwise

, and γt is163

the hyper-parameters defined by the forward pro-164

cess transition probability. Please refer to Ap-165

pendix C for detailed derivation. This objective166

can be optimized using a dynamic programming167

algorithm similar to the approach in (Huang et al.,168

2022b). The key differences between Diff-DAT169

and DAT lie in the sampling of latent variables and170

the computation of the objective function based on171

the sampled latent variables at each step.172

Inference: Diff-DAT can reuse various decod-173

ing strategies from DAT, such as greedy, lookahead,174

and joint-Viterbi, to perform decoding in a single175

iteration. However, unlike DAT, we can perform176

flexible iterative decoding based on the diffusion177

backward process. Given the model prediction178

from the previous step, we can continuously sam-179

ple the latent variable for the next time step and180

perform denoising. Unlike the fixed T value dur-181

ing training, the diffusion can predict multiple steps182

at a time, resulting in a more flexible number of183

decoding steps during inference.184

4 Experiments185

4.1 Experimental Setup186

Experimental Setup. We conduct experiments187

on multiple public NMT datasets: IWSLT14 En-188

De/De-En (Cettolo et al., 2014), WMT14 En-De189

(Bojar et al., 2014), and WMT16 Ro-En/En-Ro190

(Bojar et al., 2016). To ensure a fair compari-191

son, we used the same settings as previous works192

(Ghazvininejad et al., 2019; Huang et al., 2022c)193

and reported the test performance in BLEU score194

(Papineni et al., 2002a) (Appnedix A).195

Main results: Table 1 demonstrates that Diff-196

DAT significantly outperforms the baselines while197

maintaining low decoding latency. Compared to198

DAT, Diff-DAT shows improvements even in the199

first iteration, implying that diffusion improves200
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Figure 1: Effects of λ on IWSLT14 De-En. The graph
size of DAT is λ times the of source length. We use
Join-Viterbi decoding to evaluate BLEU.

DAT’s ability to find the optimal path for each 201

reference, effectively addressing multi-modality. 202

We observed a more pronounced improvement be- 203

tween the first and second steps in the WMT16 204

En-Ro and IWSLT14 De-En datasets, where we 205

used a smaller graph size (λ = 4). Given that 206

these datasets exhibit lower multi-modality due to 207

the smaller training data and the search space in 208

the graph is limited, the second step of Diff-DAT 209

remarkably boosts translation quality by captur- 210

ing more dependencies between tokens. We also 211

observed that the improvement between the two 212

steps is more pronounced when using the “Looka- 213

head” decoding strategy. We argue that this occurs 214

because the path found by “Lookahead” is less 215

optimal than “Joint-Viterbi”. As a result, the im- 216

provement relies more on the better dependencies 217

captured between tokens. Diff-DAT’s second de- 218

coding step outperforms FA-DAT, demonstrating 219

the capability of iterative decoding in addressing 220

the monotonic assumption in DAT. Diff-DAT out- 221

performs all other single-step decoding methods 222

and achieves comparable or better performance 223

than other multistep decoding methods while main- 224

taining a minimal trade-off in decoding latency. 225

Although FA-DAT seems more effective in terms 226

of BLEU score and decoding latency, its objective 227

is based on the n-gram count, which is specifically 228

designed to align with the BLEU score metric. Ma 229

et al. (2023) showed that FA-DAT reduces the di- 230

versity of translations, making the model unable to 231

capture the various translation modalities present 232

in the data. We conduct further experiments to 233

compare our proposed method with FA-DAT on 234

other metrics, such as COMET in Appendix B, to 235

demonstrate that FA-DAT only biases toward high 236

BLEU scores but not other evaluation metrics. 237

Ablation study on the graph size: Figure 1 illus- 238
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Table 1: Results on WMT14 En-De, WMT16 En-Ro, WMT17 Zh-En and IWSLT14 En-De/De-En datasets. The
best performance of the NAT methods is bolded. * denotes our implementation.

Model Iter. Speedup IWSLT14 WMT14 WMT16 WMT17
De-En En-De En-Ro Zh-En

Transformer (Vaswani et al., 2017b) M 1.0× 34.66 27.60 34.16 23.70

CMLM (Ghazvininejad et al., 2019) 10 2.2× 31.80 24.61 32.86 -
CMLM+SMART (Ghazvininejad et al., 2020b) 10 2.2× 30.74 25.10 32.71 -
DiSCo (Kasai et al., 2020) ≈ 4 3.5× - 25.64 - -
Imputer (Saharia et al., 2020) 8 2.7× - - 25.00 -
CMLMC (Huang et al., 2022c) 10 1.7× 34.28 26.40 34.14 -

DAT *(Huang et al., 2022b)
+ Lookahead 1 14.0× 33.79 26.52 33.46 22.42
+ Joint-Viterbi 1 13.2× 34.02 26.67 33.65 23.00

FA-DAT * (Ma et al., 2023)
+ Lookahead 1 14.0× 34.65 27.29 33.72 22.73
+ Joint-Viterbi 1 13.2× 34.66 27.31 33.74 22.87

Diff-DAT

+ Lookahead
1 14.0× 34.21 26.34 33.65 22.60
2 11.8× 34.68 26.83 34.01 22.82

+ Joint-Viterbi
1 13.2× 34.37 26.94 33.72 23.60
2 9.2× 34.77 27.12 34.00 23.78

[0, 10) [10, 20) [20, 40) [40, 60) [60, 9999)
Reference Sequence Length

28

30

32

34

36

38

40
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Figure 2: The effect of sequence length.

trates the results of DAT and Diff-DAT with vary-239

ing graph sizes. As noted by Huang et al. (2022b),240

larger graph sizes complicate transition predictions,241

leading to a performance decline for both DAT and242

Diff-DAT. Nonetheless, Diff-DAT consistently out-243

performs DAT across all graph sizes. The graph244

size also influences the iterative decoding perfor-245

mance of Diff-DAT. Both transition predictions and246

iterative refinement contribute to capturing token247

dependencies in the generated sentence. When the248

graph size is small, iterative decoding significantly249

aids due to the limitations in transition predictions.250

Ablation study on the number of decoding steps:251

We examine the impact of graph size on iterative252

decoding. Figure 2 displays BLEU scores cate-253

gorized by reference length on IWSLT14 DE-EN254

dataset, results on other datasets are shown in the255

Appendix. Contrasting trends were observed in dif-256

ferent length intervals: in the first interval (length257

[0, 40)), the BLEU score increases as the number258

of decoding iterations increases; in the second inter- 259

val (length [40, ∞)), the BLEU score decreases as 260

the number of decoding iterations increases. Since 261

sequence length directly influences graph size, we 262

conclude that once the graph size reaches a certain 263

threshold, it negatively affects iterative decoding. 264

Larger graph sizes make transition probability pre- 265

diction more challenging. Additionally, each de- 266

coding iteration generates sub-paths in the graph 267

that the model must navigate, further complicating 268

the prediction of transition probabilities. These fac- 269

tors make it increasingly difficult for the model to 270

predict transitions with each iteration. Errors from 271

previous iterations affect subsequent ones, further 272

damaging the model’s ability to capture dependen- 273

cies through transition predictions. This intriguing 274

challenge is left for future work. 275

5 Conclusion 276

Our study introduces Diff-DAT, a novel approach 277

for enhanced non-autoregressive machine trans- 278

lation. Through a fusion of diffusion models 279

and DAT objectives and the integration of vari- 280

ous decoding schemes, Diff-DAT effectively ad- 281

dresses the multi-modality problem, achieving su- 282

perior translation quality while maintaining fast 283

decoding speed. Extensive experiments across di- 284

verse benchmarks demonstrate the effectiveness 285

of Diff-DAT, establishing a new state-of-the-art in 286

non-autoregressive translation. Our work bridges 287

the gap between decoding efficiency and transla- 288

tion quality, advancing the field of sequence-to- 289

sequence learning. 290
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6 Limitations291

Although the optimal trade-off between decoding292

latency and performance occurs with 2-step decod-293

ing, increasing the number of decoding iterations294

does not lead to consistent performance improve-295

ments. Instead, it degrades the performance, partic-296

ularly for long sentences, as demonstrated in our297

ablation study. This presents an ongoing challenge298

for iterative decoding in DAT, which remains an299

area for future research.300
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A Details Experimental Setup 462

Table 2: The number of sentence pairs of the training, validation, and test sets in each dataset

IWSLT14 De-En WMT14 En-De WMT16 En-Ro WMT17 Zh-En

Train 160k 4.5M 610k 20M
Validation 6.75k 3k 2k 2k
Test 6.75k 3k 2k 2k

Table 3: Hyper-parameters

Hyper-parameters IWSLT14 De-En WMT14 En-De WMT16 En-Ro WMT17 Zh-En

learning rate 0.0005 0.0005 0.0005 0.0005
warmup 30k 10k 15k 10k
dropout 0.3 0.1 0.3 0.1
updates 200k 300k 200k 300k
batch size 8k tokens 64k tokens 32k tokens 64k tokens
Size factor λ 4 8 4 8

Datasets. We conduct experiments on four popular machine translation dataset WMT14 English- 463

German (En-De, 4.5M sentence pairs), WMT17 Chinese-English (Zh-En, 20M sentence pairs) and 464

WMT16 English-Romanian (En-Ro, 610k sentence pairs) and IWSLT14 German-English (De-En 160k 465

sentence pairs). The details size of each dataset is given in table 2. We apply BPE (Sennrich et al., 2015) 466

to learn a joint subword vocabulary for En-De, En-Ro, and De-En and separate vocabularies for Zh-En on 467

the tokenized data. 468

Baselines. We compare our Diff-DAT against leading NAR baselines, including CMLM (Ghazvininejad 469

et al., 2019) and its variants, CMLM+SMART (Ghazvininejad et al., 2020b), CMLM+AXE (Ghazvinine- 470

jad et al., 2020a) and CMLM+OaXE (Du et al., 2021), DisCo (Kasai et al., 2020), Imputer (Saharia 471

et al., 2020), GLAT (Qian et al., 2021b), DSLP (Huang et al., 2022a), CMLMC (Huang et al., 2022c), 472

PCFG-NAT (Gui et al., 2024), DAT (Huang et al., 2022b), and FA-DAT (Ma et al., 2023). 473

Metrics. For fair comparisons with previous work, we use tokenized BLEU (Papineni et al., 2002b) for 474

all benchmarks. The decoding speedup is measured with a batch size of 1. 475

Implementation details. All baselines and our proposed method are implemented using the open- 476

source toolkit Fairseq (Ott et al., 2019). BLEU scores are evaluated on the validation set, and the final 477

model is obtained by averaging the best 5 checkpoints. To ensure fair comparisons with previous work, 478

we adhere to the training hyper-parameters set by (Huang et al., 2022b,c), as detailed in Table 3. On the 479

IWSLT14 dataset, we employ the Transformer-small configuration 512-1024-4, whereas on the WMT 480

datasets, we utilize the Transformer-base configuration 512-2048-8 for both the encoder and decoder in 481

our autoregressive baseline. These numerical values correspond to the embedding dimension, FFN layer 482

size, and number of attention heads, respectively. Our model architecture strictly adheres to the settings 483

of DAT, where we set the decoder length to 8 times the source length (λ = 8) and incorporate graph 484

positional embeddings as decoder inputs unless otherwise specified. Additionally, we set the number of 485

time steps adaptively equal to the length of the source sentence. We assess BLEU scores on the validation 486

set and average the best 5 checkpoints to obtain the final model. In cases where DAT performance is not 487

reported for the WMT16 dataset, we independently train the model using the original code and maintain 488

the same settings in our Diff-DAT approach. Throughout all experiments, we utilize the Adam optimizer 489

(Kingma and Ba, 2014) with default settings and conduct training on 4 Nvidia A100-80G GPUs. 490
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method IWSLT14 De-En IWSLT14 De-En WMT16 En-Ro WMT16 En-Ro
BLEU COMET BLEU COMET

DAT 34.02 0.7617 33.65 0.7608
FA-DAT 34.66 0.7637 33.74 0.7618

Diff-DAT - 1 iter 34.37 0.7642 33.72 0.7619
Diff-DAT - 2 iters 34.77 0.7720 34.00 0.7717

FA-Diff-DAT - 1 iter 34.73 0.7655 34.13 0.7645
FA-Diff-DAT - 2 iters 35.06 0.7727 34.27 0.7751

Table 4: Comparison between Diff-DAT, DAT, and FA-DAT on COMET metric

B Experiments with COMET metric491

We further provide evaluations using COMET. As shown in the table 4, our improvements are even more492

remarkable when evaluated with COMET, particularly in the context of iterative decoding. While FA-DAT493

demonstrates significant improvements in BLEU scores, its enhancements under COMET evaluation are494

relatively marginal.495

C Derivations of the Variational Lower Bound for Diff-DAT496

The following provides the derivation for the loss objective of Diff-DAT:497

logPθ(Y0|X) = log
∑
Y1:T

∑
A

Pθ(Y0:T , A|X)498

= log
∑
A

EQ(Y1:T |Y0,A)
Pθ(Y0:T , A1:T |X)

Q(Y1:T |Y0, A)
499

≥
∑
A

EQ(Y1:T |Y0,A) log
Pθ(Y0:T , A1:T |X)

Q(Y1:T |Y0, A)
500

=
∑
A

EQ(Y1:T |Y0,A) log
Pθ(YT |X)

∏T
t=1 Pθ(A|Yt, X)Pθ(Yt−1|Yt, A,X)

Q(YT |Y0)
∏T

t=2Q(Yt−1|Yt, Y0, A)
501

=

T∑
t=2

EQ(Yt|Y0,A)

∑
A

[
logPθ(A|Yt, X)− KL[Q(Yt−1|Yt, Y0, A)∥Pθ(Yt−1|Yt, A,X)]

]
502

+ EQ(Y1|Y0)

∑
A

[
logPθ(A|Y1, X) + logPθ(Y0|Y1, A,X)

]
+ const503

Forward process: At time step t, for each path At in the DAG, we sample Yt ∼ Q(Yt|Yt−1, At) by504

applying the following forward transition probabilities independently for each token yit−1 in the sequence505

Yt−1:506 

Q(yit = [M ]|yit−1 = [M ], ai ∈ A) = 1
Q(yit = yi0|yit−1 = yi0, ai ∈ A) = βt
Q(yit = [M ]|yit−1 = yi0, ai ∈ A) = 1− βt
Q(yit = yi0|yit−1 = [M ], ai ∈ A) = 0

Q(yit = [M ]|yit−1, ai /∈ A) = 1
Q(yit ̸= [M ]|yit−1, ai /∈ A) = 0

(7)507

For each token, if it is part of the current path At, it has a probability of transitioning to the absorbing508

state [M ], or it may remain unchanged. Tokens that are not part of the path, or were already masked509

in previous steps, will always remain in the absorbing state. We can also perform a t-step marginal,510

Q(Yt|At, Y0), to directly sample Yt from Y0:511
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
Q(yit = yi0|yi0, ai ∈ A) = αt

Q(yit = [M ]|yi0, ai ∈ A) = 1− αt

Q(yit = [M ]|yi0, ai /∈ A) = 1
Q(yit = yi0|yi0, ai /∈ A) = 0

(8) 512

where αt :=
∏t

i=1 βt is specified to decrease from 1 to 0 513

Backward process: We then compute the posterior at time t − 1 as Q(Yt−1|Yt, Y0, A) = 514
Q(Yt|Yt−1,A)Q(Yt−1|Y0,A)

Q(Yt|Y0,A) . The backward transition probabilities for each token are then calculated as 515

follows: 516
Q(yit−1 = yi0|yit = [M ], yi0, ai ∈ A) = γt
Q(yit−1 = [M ]|yit = [M ], yi0, ai ∈ A) = 1− γt
Q(yit−1 = [M ]|yit = yi0, y

i
0, ai ∈ A) = 0

Q(yit−1 = [M ]|ai /∈ A) = 1

(9) 517

where γt =
αt−1−αt

1−αt
. Instead of training a neural network fθ(Yt, X) to directly predict the logits of the 518

distribution Pθ(Yt−1|Yt, A,X), we follow the approach in (Ho et al., 2020) and focus on learning a neural 519

network fθ(Yt, X) to predict the logits of the distribution P̃θ(Ỹ0|Yt, A,X). We then combine this with 520

Q(Yt−1|Yt, Y0, A) and sum over the one-hot representations of Y0 to obtain the following parameterization: 521

Pθ(Yt−1|Yt, A,X) =
∑

Ỹ0
P̃θ(Ỹ0|Yt, A,X)Q(Yt−1|Yt, Ỹ0, A) The parameterized backward transition 522

probabilities for each token are then derived as follows: 523
Pθ(y

i
t−1 = yi0|yit = [M ], ai ∈ A,X) = γtPai,yi0

Pθ(y
i
t−1 = [M ]|yit = [M ], ai ∈ A,X) = 1− γt

Pθ(y
i
t−1 = [M ]|yit = yi0, ai ∈ A,X) = 0
Pθ(y

i
t−1 = [M ]|ai /∈ A,X) = 1

(10) 524

where P = P̃θ(ỹ
i
0|Yt, X) = fθ(Yt, X) ∈ RL×|V | is the matrix containing the token distributions on 525

the L vertices, and P̃θ(ỹ
i
0 = yi0|ai, Yt, X) = Pai,yi0

. Since the forward and backward processes are 526

factorized as conditionally independent over the image or sequence elements, the KL divergence between 527

Q and Pθ can be computed by simply summing over all possible values of each random variable, which is 528

given by the following: 529

KL(Q(yit−1|yit, yi0, At)∥Pθ(y
i
t−1|yit, A,X)) = 530{

−γt logPai,yi0
if yit = [M ] and ai ∈ A

0 otherwise
(11) 531

Put it into Lt in (6), we have the objective: 532

Lt =
∑
A

EQ(Yt|Y0,A)

M∑
i=1

γtb
i
t logPai,yi0

M∑
i=2

Eai−1,ai 533

where bit =

{
1 if yit = [M ]
0 otherwise

. Optimizing requires multiple forward passes of the neural 534

network each time we sample Yt ∼ Q(Yt|Y0, A) given a path A. To simplify this, we condition only 535

on the path with the highest probability Â = argmaxA Pθ(Y0, A|X), and sample Yt ∼ Q(Yt|Y0, Â). 536

Consequently, Lt becomes: 537

Lt = EQ(Yt|Y0,Â)

∑
A

M∑
i=1

γtb
i
t logPai,yi0

M∑
i=2

Eai−1,ai 538

We can efficiently compute Lt using dynamic programming, similar to the approach in DAT. During 539

training, we sample a time step t and update the model parameters to maximize the objective in (??). 540
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D Fuzzy Alignment in Diff-DAT541

FA-DAT (Ma et al., 2023) addresses the strict monotonic alignment in DAT by fine-tuning it using a fuzzy542

alignment objective as follows:543

pn(Ỹ0, Y0) =

∑
g∈Gn(Y0)

min(Cg(Ỹ0), Cg(Y0)∑
g∈Gn(Ỹ0)

Cg(Ỹ0)
(12)544

pn(θ, Y0) = EPθ(A|X)pn(Pθ(Ỹ0|A,X), Y0) (13)545

Due to the high complexity, they optimize a more tractable approximation of (13) as follows:546

p̃n(θ, Y0) =

∑
g∈Gn(Y0)

min(EPθ(A|X)Cg(Pθ(Ỹ0|A,X)), Cg(Y0)

EPθ(A|X)

∑
g∈Gn(Ỹ0)

Cg(Pθ(Ỹ0|A,X))
(14)547

(14) can be efficiently computed using Dynamic Programming as outlined in (Ma et al., 2023). We548

extend this objective for fine-tuning Diff-DAT as follows:549

p̃n(θ, Y0, t) =

∑
g∈Gn(Y0)

min(EQ(Yt|Y0,Â,X)EPθ(A|X)Cg(Pθ(Ỹ0|Yt, A,X)), Cg(Y0)

EQ(Yt|Y0,Â,X)EPθ(A|X)

∑
g∈Gn(Ỹ0)

Cg(Pθ(Ỹ0|Yt, A,X))
(15)550

Similar to Diff-DAT, at each gradient descent step, we sample t ∼ Uniform(T ) and Yt ∼551

Q(Yt|Y0, A0, X) to compute the objective (15).552

We conducted experiments to compare Diff-DAT with a Fuzzy Alignment objective (FA-Diff-DAT)553

against other baselines, as shown in Table 5. When combined with the Fuzzy Alignment objective,554

FA-Diff-DAT further improves performance, surpassing FA-DAT in both 1 and 2 iterations of decoding.555

Table 5: Comparison between Diff-DAT, FA-Diff-DAT, DAT, and FA-DAT. The highest-performing NAT methods
are highlighted in bold. * indicates our implementation.

Model Iter. Speedup IWSLT14 WMT16
De-En En-Ro

Transformer (Vaswani et al., 2017b) M 1.0× 34.66 34.16

DAT *(Huang et al., 2022b)
+ Lookahead 1 14.0× 33.79 33.46
+ Joint-Viterbi 1 13.2× 34.02 33.65
+ Greedy 1 14.2× 33.68 33.28

FA-DAT * (Ma et al., 2023)
+ Lookahead 1 14.0× 34.65 33.72
+ Joint-Viterbi 1 13.2× 34.66 33.74
+ Greedy 1 14.2× 34.64 33.69

Diff-DAT

+ Lookahead
1 14.0× 34.21 33.65
2 11.8× 34.68 34.01

+ Joint-Viterbi
1 13.2× 34.37 33.72
2 9.2× 34.77 34.00

+ Greedy
1 14.2× 33.96 33.47
2 12.2× 34.51 33.87

FA-Diff-DAT

+ Lookahead
1 14.0× 34.71 33.74
2 11.8× 35.04 33.97

+ Joint-Viterbi
1 13.2× 34.73 34.13
2 9.2× 35.06 34.27

+ Greedy
1 14.2× 34.69 33.72
2 12.2× 35.03 33.94
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Figure 3: Effects of λ on IWSLT14 De-En. The graph size of DAT is λ times the of source length. We use
Join-Viterbi decoding to evaluate BLEU.

E Ablation Study on the Impact of Size Factor λ 556

Figure 3 illustrates the results of DAT and Diff-DAT with varying graph sizes. Previous work (DAT) 557

indicates that larger graph sizes complicate transition predictions, leading to a performance decline for 558

both DAT and Diff-DAT. Nonetheless, Diff-DAT consistently outperforms DAT across all graph sizes. 559

The graph size also influences the iterative decoding performance of Diff-DAT. Both transition predictions 560

and iterative refinement contribute to capturing token dependencies in the generated sentence. When the 561

graph size is small, iterative decoding significantly aids due to the limitations in transition predictions. 562

F Analysis of the impact of varying the number of decoding steps 563

We conducted another analysis to examine the impact of graph size on iterative decoding. Figures 4, 5, 6, 564

and 7 display the BLEU scores for each dataset, categorized by reference length. A consistent trend was 565

observed that in the results of each dataset there are two intervals: in the first interval, the BLEU score 566

increases as the number of decoding iterations increases; in the second interval, the BLEU score decreases 567

as the number of decoding iterations increases. Since sequence length directly influences graph size, it can 568

be concluded that once the graph size reaches a certain threshold, it negatively affects iterative decoding. 569

Larger graph sizes make it more challenging to predict transition probabilities. Additionally, each decoding 570

iteration generates sub-paths in the graph that the model must navigate, further complicating the prediction 571

of transition probabilities. These factors combined make it increasingly difficult for the model to predict 572

transitions with each iteration. Moreover, errors from previous iterations affect subsequent ones, leading 573

to a negative impact on the model’s ability to capture dependencies within the sentence through transition 574

predictions. This intriguing challenge inspires us to address it in future work. 575

G Inference 576

In inference, we adopt the translation of DAG with Greedy, Lookahead (Huang et al., 2022b), and 577

Joint-Viterbi (Shao et al., 2022) decoding. 578

Greedy The most straightforward approach involves selecting the most probable transitions and tokens. 579

In essence, we conduct simultaneous argmax operations to determine the most probable transition and 580

token for every vertex. Subsequently, we construct the translation by gathering the predicted tokens 581

along the selected path. This greedy decoding method is remarkably efficient, requiring only two parallel 582

operations, as illustrated in Algorithm 1. 583

Lookahead Lookahead decoding enhances the efficacy of the greedy approach by jointly considering 584

both transitions and tokens. Specifically, we rearrange Pθ(Y,A|X) into the following sequential decision 585

problem: 586
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Figure 4: The BLEU score on IWSLT14 De-En bucketed by the reference length.
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Figure 5: The BLEU score on WMT14 En-De bucketed by the reference length.
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Figure 6: The BLEU score on WMT16 En-Ro bucketed by the reference length.
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Figure 7: The BLEU score on WMT17 Zh-En bucketed by the reference length.
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Algorithm 1 Greedy / Lookahead Decoding in Pytorch-like
Parallel Pseudocode

Input: Graph Size L, Transition Matrix E ∈ RL×L,
if Using Lookahead then
E := E⊗ [P.MAX(dim=1).UNSQUEEZE(dim=0)]
# E now jointly considers P and E
# ⊗ is element-wise multiplication

end if
tokens := P.ARGMAX(dim=1) # shape: (L)
edges := E.ARGMAX(dim=1) # shape: (L)
i := 1, output := [ tokens[1] ]
repeat
i := edges[i] # jumping along the transition
output.APPEND(tokens[i])

until i = L

Pθ(y1|a1, X)

M∏
i=2

Pθ(ai|ai−1, X)Pθ(yi|ai, X), (16)587

This formulation transforms the task into choosing ai and yi sequentially. We concurrently derive:588

y∗i , a
∗
i = argmax

yi,ai
Pθ(yi|ai, X)Pθ(ai|ai−1, X), (17)589

This can still be executed in parallel with minimal overhead, as outlined in Algorithm 1.590

Joint-Viterbi We additionally utilize Joint-Viterbi decoding (Shao et al., 2022) to determine the global591

joint optimum of translation and path within a predefined length constraint. Subsequently, we reevaluate592

these candidates through length normalization to refine their ranking.593

It is notable that Joint-Viterbi decoding can be seen as enhancements to Greedy decoding and594

Lookahead decoding, respectively. While both Greedy and Lookahead decoding methods fo-595

cus on the immediate probability and select the next token using argmaxai Pθ(ai|X, ai−1) and596

argmaxyi,ai Pθ(yi|ai, X)Pθ(ai|ai−1, X), respectively, Joint-Viterbi algorithm consider the entire de-597

coding path. They ensure the discovery of the globally optimal solution argmaxA Pθ(A|X) and598

argmaxA,Y Pθ(A, Y |X), respectively.599
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