
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

The Concept Percolation Hypothesis: Analyzing the Emergence of Capabilities
in Neural Networks Trained on Formal Grammars

Anonymous Authors1

Abstract
We analyze emergence of capabilities as a func-
tion of learning time, i.e., learning curve analy-
sis. Training models on a well-defined, synthetic
context-sensitive formal language, we find the ex-
istence of precise phases that separate the learning
dynamics. Motivated by our results, we propose
a qualitative theory grounded in the process of
graph percolation that describes a mechanistic ba-
sis for how capabilities may be emerging in neural
networks as they are trained on increasingly larger
datasets.

1. Introduction
Modern neural networks, e.g., large language models (Gem-
ini Team, 2023; OpenAI, 2023; Anthropic, 2023; Touvron
et al., 2023) and large vision models (Yu et al., 2022; Betker
et al., 2023), exhibit a broad spectrum of capabilities, allow-
ing them to serve as the “foundation” for building several
downstream, application-specific systems (Xu et al., 2023).
As these models scale, either via addition of more data or
via more compute, an intriguing behavior is at times ob-
served: until a certain critical scale is reached, the model
may not exhibit some specific capability; however, beyond
this point, the capability suddenly “emerges” (Wei et al.,
2022; Srivastava et al., 2022; Brown et al., 2020; Yu et al.,
2022; Steinhardt, 2023; Pan et al., 2022; Rae et al., 2021).
More specifically, the performance of the model on a task
meant to evaluate a capability of interest (e.g., a bench-
mark) witnesses substantial and rapid performance growth
as a function of scale, even though the broader training loss
(e.g., the next token prediction objective in the case of lan-
guage models) witnesses minimal, if any, differences (Arora
and Goyal, 2023). Empirical evidence in fact suggests that
several capabilities can emerge simultaneously (Wei et al.,
2022; Wei, 2022).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

θi

Ψ6 = 1
Nb

6
∑
i=1

ei6θi ρ = N
V

: B
on

d-
or

ie
nt

at
io

n
Ψ 6

: D
en

sit
y

ρ

Temperature

Solid phase
(1,1)

Liquid phase
(1,0)

Gas phase
(0,0)

Phase:
(ρ, Ψ6) =

Phase:
(c1, c2) =

Initialization
(0,0)

: C
ap

ab
ili

ty
 2

c 2
: C

ap
ab

ili
ty

 1
c 1

Data, Model, Optimization Scale

Grammar learned
(1,0)

Grammar & type learned
(1,1)

Figure 1: Characterizing phases of a model by capability
parameters. In physics, defining a phase and detecting
the associated transition often involves identifying an order
parameter, which is typically zero in the absence of a par-
ticular structure and becomes finite abruptly during a phase
transition. Similarly, in machine learning, it is crucial to
design evaluation metrics specifically targeted at detecting
the emergence of capabilities. This approach is essential for
defining the phases of a model by the set of capabilities it
possesses.

Beyond mere scientific curiosity for what causes such emer-
gent capabilities to occur, understanding and “taming” emer-
gent capabilities is an extremely important problem from
a risk management perspective (Kaminski, 2023; Ganguli
et al., 2022; Anwar et al., 2024). predicting what capabilities
a model might possess at a certain scale can be difficult to as-
sess until the model is developed, undermining risk-centric
regulation frameworks for AI. Accordingly, a few recent
works have made attempts at devising models to explain
the factors in neural network training pipelines that yield
emergent capabilities. For example, Okawa et al. (Okawa
et al., 2023) and Arora et al. (Arora and Goyal, 2023) impli-
cate the underlying compositional structure of the task and
data as a cause of emergent curves for learning a capability,
providing evidence for similar arguments made by Srivas-
tava et al. (Srivastava et al., 2022) and Wei et al. (Wei et al.,
2022). In the meantime, Schaeffer et al. (Schaeffer et al.,
2023) argue emergent abilities are in fact a “mirage” and
an artifact of poorly defined evaluations, claiming that the
model is undergoing continuous, persistent improvements.
Mechanistic interpretability analyses of seemingly emergent
phenomena such as grokking (Nanda et al., 2022; Liu et al.,
2023) provide credence to this claim by identifying “hidden

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Concept Percolation Hypothesis

progress measures”, albeit finding such progress measures
in the first place can be exceedingly difficult (Barak et al.,
2022; Anwar et al., 2024). Meanwhile, recent work by Chen
et al. (Chen et al., 2024) demonstrates that even continuous
metrics can demonstrate sudden changes in value, with such
drops being correlated with the model learning a new capa-
bility. This undermines the claim that emergent capabilities
are merely an artifact of our evaluation protocols. Taken
together, these disparate results render the (in)existence of
emergence as an extremely unclear phenomenon in machine
learning. However, we argue that, at its core, the concept
of emergence has never been defined in the context of ma-
chine learning. This has led to distinct mechanisms causing
sudden shifts in the model performance to be all labeled
as “emergence”. What is the phenomenology that the term
“emergence" is meant to capture? Is it merely a sudden in-
crease in performance, or broader than that: e.g., are there
truly systematic changes akin to phase transitions in physics
occurring in a model’s behavior? If so, is there an order
parameter that captures these transitions, which potentially
explains the seemingly distinct property changes?

We aim to take a first step towards addressing the questions
above by taking a model-experimental system approach.
Specifically, following the practice in natural sciences study-
ing complex systems, we design a simple but rich synthetic
system that captures and demonstrates the characteristics of-
ten ascribed to the phenomenon of interest—emergence—in
contemporary literature. Our goal is to show that even this
simplistic pipeline can yield sufficient insight and viable hy-
potheses for explaining, at a mechanistic level, what factors
cause emergence. In particular, our model experimental sys-
tem is grounded in a probabilistic context-sensitive grammar
(PCSG) with type constraints that allow only specific pairs
of subjects or entities in a sentence to be seen in the context
of certain concepts (e.g., a verb like “walking”). We define
tasks to be performed upon the samples of this grammar,
finding that a model trained to learn the grammar shows
emergent learning curves across several metrics (including
the continuous next token prediction loss) for individual
tasks. Further, we show that we can ascribe vivid interpre-
tations to each point of emergence as an explicit phase of
learning. Herein, we find how a minimal change in loss
(e.g., <0.005 nats) can have noticeable downstream effects,
where the underlying causal factor for these effects is the
model learning a new capability. Based on our findings,
we finally formalize a theoretical model that qualitatively
captures the phenomenology of emergence discovered in
this work.

2. Related work
While emergence is not formally defined in machine learn-
ing, the term, at least in its recent use, is grounded in

physics and complex systems (Anderson, 1972; Newman
et al., 2001; Newman, 2003), where it describes a rapid
change in a system’s structural properties as a control pa-
rameter varies. For instance, as shown in Fig.1(a), a system
of particles transitions through phases (solid, liquid, gas)
as temperature increases. A crucial step in studying these
transitions is defining an order parameter, a key indicator
of structural change. The liquid-to-gas transition can be
detected by a jump in particle density, and the formation of
a crystalline structure can be identified by computing the
bond-orientational order parameter. Similarly, we propose
that one goal of modern deep learning research is to develop
evaluation metrics that detect the emergence of fundamental
capabilities, which together define the model’s state from a
capability-centric perspective. Emergence in machine learn-
ing has broadly come to imply a rapid change in a system’s
properties (specifically, its capabilities) as some relevant
axis is scaled (e.g., amount of data or compute). We em-
phasize that for the purview of this paper, we focus on the
effect of increasing data on a model’s capabilities by train-
ing models from scratch in an online learning setting; often,
such analyses are called “learning curves analysis” (Vier-
ing and Loog, 2022; Blumer et al., 1989; Bousquet et al.,
2021; Seung et al., 1992; Watkin et al., 1993; Amari, 1993;
Haussler et al., 1994).

Similar terms as emergence, e.g., breakthroughs (Srivastava
et al., 2022; Cascella et al., 2024) and sudden drops (Chen
et al., 2024), also commonly find use in literature. Emer-
gence has especially seen a recent surge in its use in the
machine learning community (Wei et al., 2022; Wei, 2022),
where it is broadly used to mean rapid progress in model
performance as a function of some scaling parameter (e.g.,
compute or data). A few recent works have also made at-
tempts at explaining the factors underlying the emergence of
capabilities in neural networks via empirical and theoretical
approaches. Specifically, compositionality has been impli-
cated for having a “multiplicative” effect on a performance
measure, such that a model cannot perform well on a com-
positional task until the individual tasks in that composition
are not well learned—this leads to a sudden growth in per-
formance when all tasks improve (Okawa et al., 2023; Arora
and Goyal, 2023; Yu et al., 2023; Srivastava et al., 2022; Wei
et al., 2022). Schaeffer et al. (Schaeffer et al., 2023) argue
emergent capabilities are in fact a consequence of poorly
defined evaluation measures and go away once partial credit
is given to the model. However, a continuous parameter is
insufficient to measure valid progress in some cases. For
example, one can check in the context of additions of two
numbers (e.g., 61 + 62) whether the resulting output (say
321) contains the ground truth’s digits (123). Hence, unless
a measure captures the structure of the data, outputs of all
orders will be deemed equally good, e.g., 123 and 321 will
be given equal partial credit, which does not make sense.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Concept Percolation Hypothesis

A phenomenon related to emergence is grokking (Power
et al., 2022; Liu et al., 2023; Žunkovič and Ilievski, 2022;
Murty et al., 2023; Barak et al., 2022; Edelman et al., 2023;
Nanda et al., 2022), or delayed generalization, wherein a
model’s test performance on a task rapidly improves long
after it has fit the train data. Since we are in a more realistic,
online learning setting wherein multiple passes through the
data are not allowed, we argue an emergent capability and
grokking, albeit behaviorally related, are different concepts.

3. Towards a Phenomenological
Understanding of Emergence

To investigate emergence, we must first establish what we
mean by the term in the first place. For this purpose, we
define emergence in a phenomenological manner, i.e., by as-
sembling the specific behaviors in the current literature gen-
erally associated with the term emergence. We emphasize
the definition above is merely a definition for emergence,
and does not necessarily represent all possible perspectives;
e.g., it does not sufficiently accommodate a notion of phase
transitions that is often deeply intertwined with emergence
in complex systems (Anderson, 1972). However, qualita-
tively, the definition does capture the spirit of phase tran-
sitions as well: discontinuous, rapid change in a system’s
properties as the relevant order parameter is changed. Our
goal will be to design an experimental system where such
order parameters can be precisely constructed.
Definition 3.1. (Emergence.) We say a capability is emer-
gent upon an increase in data if its learning curve shows the
following three characteristics:

1. nonlinear progression of generalization performance as
a function of scale;

2. simultaneous emergence of multiple capabilities; and
3. the nonlinear progression is evident when the network

undergoes a structural change in its computation, and the
evaluation metric faithfully captures this computational
structure.

3.1. Data Generating Process: Probabilistic
Context-Sensitive Grammars

To design a model experimental system that can enable
a rich investigation of emergence, we propose the use of
probabilistic context-sensitive grammars (PCSGs), a for-
mal model of language that is meant to capture a minimal
notion of semantics, hence making it more sophisticated
than context-free grammars, which can only capture syntac-
tic properties of language (Wikipedia, 2023; Sipser, 1996;
Chomsky, 1956). Specifically, the grammar (abstractly
shown in Fig 2) possesses a set of terminal and non-terminal
symbols that represent the syntactic rules (e.g., the rules for
constructing noun phrases and verb phrases). To embed a

minimal notion of semantics into this grammar, we impose
“type constraints”, specifically constraints that specify how
probable it is that a certain subject or object can be seen in
the context of a certain property. These type constraints can
be formalized as a bipartite graph, as shown next.

Definition 3.2. (Type Constraints Graph.) Let a property
p denote a discrete variable that takes values from a prede-
fined set Vp. Given the set of all properties P , a concept
class C is defined via the set PC ⊂ P that denotes which
properties are valid for that class. When the properties in
PC take specific values, we get an entity e and write e ∈ C
to denote that e is a member of the class C. Properties that
describe an entity are called descriptive properties (e.g.,
age) and ones that represent an action a subject can take or
an action that can be taken upon an object are called rela-
tive properties (e.g., walk). The type constraints graph
G := (N,N ′, E) is a bipartite graph with a set of nodes N
that represent all entities from all concept classes, a set of
nodes N ′ that represent all properties, and a set of edges E
connecting nodes from e ∈ N to p ∈ N ′ if the entity e has
the property p.

The type constraints graph is abstractly depicted in Fig. 2 (b).
As an example, consider a concept class of Humans, who
are connected to properties age, name, job, walk etc.
This means a human will take on some value for each of
these properties, e.g., they will have an age, a name, a
job, and the ability to walk on objects that can be walked
upon. Overall, the type constraints graph, when sampling
sentences from the grammar, will be used to restrict which
tokens can be seen in the same context / sentence.1 Thus, a
neural network trained via the usual next token prediction
objective on this grammar will not only be expected to learn
the syntactic rules of the grammar, but the broader structure
of individual concept classes, i.e., their type constraints, as
well. We expect the model will struggle on any downstream
task grounded in this grammar until the grammar itself
is learned, yielding a rapid growth in performance after.
Further, multiple capabilities corresponding to each task and
their interplay with the specific type constraints will have
their own rich learning dynamics, showing different phases
of learning depending on when the grammar is learned and
when the relevant type constraints are internalized.

3.2. Data Generating Process: Learning Tasks

In this work, we consider two variants of the general pipeline
above: (i) simple grammar, wherein relatively simple sen-
tences of lengths 4—6 that describe an entity and its proper-
ties can be sampled, and (ii) complex grammar, wherein

1We note that this is technically equivalent to the normal form
for a PCSG, wherein rules are made context-dependent by making
left non-terminals have multiple symbols involved (e.g., AB →
CD).

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Concept Percolation Hypothesis

Verb Phrase (VP)

+ Modifier + Descriptive Property
“ is very happy ”

+ Verb + Preposition + Object
“ is chased by the cat ”

+ Modifier + Verb + Conjunction + Verb
“ runs quickly and jumps ”

+ Conjunction + Object
“ and the bird ”

Simple Grammar
• “the man is very happy”

Complex Grammar
• “the can and the dog quickly run”
• “man is chased by the cat and the bird”

Noun Phrase (NP)

Generate Sentence: NP + VP

Modifier + Subject
“ the man ”

+Conjunction + Noun
“ and the dog ”

Class 1
(e.g., humans)

(Subject, Object)

Class 2
(e.g., animals)

Class 3
(e.g., furniture)

Age

Name

Walk

Job

Location

Color

Material

Height

Pronouns

Sound

(Verb, Properties)(b)(a)

Figure 2: Data generation process (DGP) by the probabilistic context-sensitive grammar (PCSG). (a) Schematic of
the sentence generation process using PCSG. For simple grammar, our DGP combines lists of “Modifier + Subject” and
“Modifier + Descriptive Property,” highlighted by the star symbol. For complex grammar, the DGP includes all possible
sampling methods. (b) We apply type constraints between (Subject, Object) and (Verb, Properties), where the type restricts
which sets of nodes can be connected, thereby introducing class structure into our DGP.

Unscramble: [be, only, it, to, understood, ., is] “it is only to be understood.”

Free: [null] “nothing in life is to be feared.”

Conditional: [now, time] “now is the time to understand more.”

Task Input Output

Figure 3: Task definitions. Our model is trained and evalu-
ated on three types of tasks. [top] Free generation task: The
model generates sentences with correct grammar. [middle]
Unscrambling task: The model is provided with a set of
words and must reorder them to form grammatically correct
sentences. [bottom] Conditional generation task: The model
is given two words and must generate grammatically correct
sentences using those two words.

sentences are much more complex, range from lengths 4—
75, and can have multiple phrases combined together via
conjunctions and relative properties. Sentences from these
grammars are restructured into a format that is fed into the
model for training, as shown in Fig. 3. The reformatted rep-
resentation explicitly describes a task the model is expected
to perform. Specifically, we consider the following tasks
with 80/10/10% splits in the training data respectively.

• Free generation: Produce a sentence that respects the
structure of the grammar, i.e., syntactic rules and seman-
tic type constraints.

• Unscrambling: A sentence is sampled from the gram-
mar and randomly permuted. The model is expected
to unscramble the sentence. Note that this is a task
known to show emergent behavior in real language
datasets with large-scale models (Wei et al., 2022). For
complex grammar, since sentences can be fairly long,
this task inherently involves a test of model’s ability to

length generalize—a standard compositional generaliza-
tion task (Hupkes et al., 2020).

• Conditional Generation: A set of tokens corresponding
to entities and properties are shown to the model, which
is expected to generate a sentence combining these to-
kens in a valid manner. Note that this task is inherently
compositional in nature (specifically it tests systematic-
ity (Hupkes et al., 2020)), and can be used to probe the
model’s ability to respect type constraints in the gram-
mar.

3.3. Experimental Setup

Before proceeding further, we briefly describe our experi-
mental setup. We train a two-block Transformer based on
the nanoGPT architecture (Andrej Karpathy, 2023) using
the next token prediction objective with Adam optimizer,
10−3 learning rate, and 10−4 weight decay for 70K itera-
tions. The sentences are sampled “online”, i.e., we sample
a fresh batch of data every iteration by following the rules
of the grammar. Since the grammar is probabilistically de-
fined, the odds of seeing the same sample multiple times
are exceedingly low. Unless otherwise stated, we have 1000
entities and 2000 properties uniformly distributed over 10
classes in the complex grammar, and a single class in the
simple grammar, with edges connecting properties sparsely
and randomly distributed over valid properties for a given
object (specifically, only 15% connections are made). We
emphasize that our results remain consistent upon ablations
of number of classes, number of properties, and the connec-
tion prior.

Metrics: For the unscrambling task, we compute two met-
rics. Specifically, the per-token accuracy, which assesses
at a given token from the ground truth sentence whether

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Concept Percolation Hypothesis

the generated sentence from the model corresponding to the
scrambled version of the ground truth matches the ground
truth at that token’s location. We also evaluate an exact
match accuracy, which assesses whether every token at ev-
ery location is the model generation matches the ground
truth sentence. We note that the per token accuracy is an
approximately continuous version of the exact match ac-
curacy, and was first introduced in the paper by Schaeffer
et al. (Schaeffer et al., 2023) to claim that emergent abili-
ties can lose their abrupt nature upon change of metric. As
we show, even the per token accuracy shows precise tran-
sitions that mark specific behavioral changes in the model.
Relatedly, for the conditional generation task, we use con-
straint accuracy as a metric. Specifically, herein we evaluate
whether an operand the model is supposed to include in its
produced sentence, i.e., the conditioning information, is
present in the sentence at all—that is, at any location. We
compute accuracy as sum of indicator variables that repeat
this process for all tokens in the conditioning information.

4. Results
Having defined our experimental setup, we now intend to
evaluate (i) whether our proposed phenomenological defini-
tion of emergence is captured by the setup and (ii) whether
we can extract useful insights into the mechanisms of emer-
gence based upon our setup.

4.1. Demonstrating Emergence and Phases of Language
Acquisition in Transformers

As per our definition, emergent properties show rapid, non-
linear growth in performance, with several capabilities
emerging simultaneously, especially when the capability
is compositional in nature (Okawa et al., 2023; Arora and
Goyal, 2023). We find our empirical setup does exhibit this
phenomenology for both the simple and complex grammar
settings (see Fig. 4). More importantly, for the two tasks that
we evaluate, i.e., unscrambling and conditional generation
show precise and large changes in their performance at lit-
erally the same training step. That said, we do see a specific
transition / emergence point in the unscrambling task in the
complex grammar wherein the model suddenly substantially
improves in its exact match accuracy (see Fig. 4b). As we
show next, this point corresponds to the model learning how
to generalize to longer length sentences. Since sentences in
the simple grammar are shorter, this transition point does
not occur in the plots in Fig. 4a.

4.2. Length Generalization

To further analyze precisely what is happening at the ex-
tra transition point at ∼15K training steps in the complex
grammar, we evaluate the model generations at a more mi-
croscopic level. Specifically, we decompose the inputs to the

Co
nd

iti
on

al
 g

en
er

at
io

n
Un

sc
ra

m
bl

in
g

Un
sc

ra
m

bl
in

g

Syntax Acquisition

Subject, Property

Modifiers Length Generalization

Co
nd

iti
on

al
 g

en
er

at
io

n
Un

sc
ra

m
bl

in
g

Un
sc

ra
m

bl
in

g

Syntax Acquisition

Subject, Property

Modifiers

(a) Simple Grammar (b) Complex Grammar

Figure 4: Learning dynamics of evaluation metrics cap-
ture multiple interpretable phase changes. (a) Time
course of scores for the unscrambling task and the condi-
tional generation task in the simple grammar setup. Distinct
parameters indicate the onset of capability acquisition. (b)
Same plot for the complex grammar setup. An additional
jump, observed most clearly in the unscrambling task score
for exact matches, corresponds to length generalization.

model according to their lengths and evaluate the model’s
performance on the unscrambling task. Interestingly, we see
that for sentences the model first learns the sentences with
lengths 4–6, and then suddenly at iteration 15K improves
in its performance to exactly solve the task by ∼40–50%.
Evaluating the model generations by eye, we see the model
improves in its ability to produce relative properties, i.e.,
verbs, which help connect a subject phrase with an object
phrase, hence explaining the cause behind this length gen-
eralization We furthermore find that the per-token accuracy
barely, but noticeably improves. This improvement marks
getting literally one more token right, which is the relative
verb token. Overall, this transition explains how the model
improves in its length generalization by essentially learn-
ing an integral rule of the grammar that enables connecting
different noun phrases, i.e., ones with subjects to ones with
objects.

4.3. Overgeneralization results

Up to this point, our results focused on a setting wherein
two classes never share a property, i.e., their entities never
share a property. We now extend our results to allow classes
to share properties, such that beyond learning a singular con-
cept class, the model can see shared properties to possibly
“overgeneralize” to similar classes. Specifically, we make
2 out of 10 concept classes share 10% properties now and

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Concept Percolation Hypothesis

Figure 5: Length Generalization. (a) There exists a clear
improvement in the exact match score for the unscrambling
task. (b) This improvement is only barely observed in the per
token accuracy since the learned property is compositional.

perform evaluations for the model’s ability to perform condi-
tional generation for objects from a class and the properties
from same/another class. Precisely, we define a notion of
“distance” as follows: (i) Distance 0, evaluations within the
same class; (ii) Distance 1, evaluations of objects with prop-
erties of the class that shares a property; and (iii) Distance
2, all remaining classes. Results are shown in Fig. 6. We
find the model first learns to generalize to within the same
class, then class at distance 1, and then at distance 2. For
clarity purposes, the figure was pruned at 10K steps, but the
trend continues to persist across training.

5. Matrix representation of data and learning
compositions

In this section, we propose a framework for modeling the
emergence of capabilities through learning compositions.
Specifically, we consider the learning of a concept class,
where each entity in the class is expected to have common
properties. The entities and properties may each be single
words, such as a noun and a verb, or multiple words, as in
the case of objective and subjective phrases that we observed
in the length generalization setup. The question is whether
upon sub-sampling pairs of entities and properties from a
concept class, can the model learn that, in fact, all pairs of
entities and properties are valid and compose the concept
class.

Figure 6: Overgeneralization Dynamics Resemble an
Inter-Class Percolation Process. Accuracy of the com-
positional generalization task, where the model must com-
pose verb and noun phrases from (i) the same class, (ii) two
classes that are sparsely connected, and (iii) two classes with
far fewer connections. The model demonstrates overgeneral-
ization in this task, and notably, the order of generalization
resembles the percolation process on a graph, where the
nodes are noun phrases (NP) and verb phrases (VP), and the
edges represent their composition.

For instance, in the case of a concept class such as “human”,
the set of entities can include names of humans as well
as human-associated entities such as an astronaut. The
corresponding properties for the “human” concept class will
be, for example, name, age, height, as well as associations
with possible verbs. An astronaut, being human, is expected
to have all these properties, although data specifying the
properties of an astronaut will be rare or even absent in the
training data.

We are interested in the case where the data, such as sen-
tences, includes examples of these pairs of entities and prop-
erties. This could be represented by a matrix where rows
and columns represent the entities and the properties, and
the matrix values indicate the quantity or density of data
available for each composition, such as a noun-verb pairing.
We define this matrix as the concept density matrix:

Definition 5.1. (Concept Density Matrix.) Let D be an
N × M matrix with real-valued entries between 0 and 1,
inclusive. Each entry Dnm represents the density for the
entity and property pair (n,m) (e.g., the amount of data that
represents the specific composition), where n ∈ {1, ..., N}
and m ∈ {1, ...,M} are the indices of the entities and
properties, respectively.

For example, consider the case where there are three
values of entities and properties (N = M = 3),
with the nouns (rows) being {“Alice”, “astronaut”, “tele-
phone”}, and the properties (columns) being verbs, such as
{“walking”,“horse-riding”,“ringing”}. The corresponding

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Concept Percolation Hypothesis

D will be:

D =

1 1 0
1 0 0
0 0 1

 . (1)

A common composition such as “Alice walking” will lead
to a value of 1 at the intersection of “Alice” and “walking”,
i.e., D11 = 1. Conversely, a highly unlikely composition
like “astronaut horse-riding” will be absent in the dataset,
and will be represented by a zero at the respective matrix
position, i.e., D22 = 0. We can also assume for example
that Alice ringing or a telephone walking are rare, which
yields D13 = D31 = 0.

We introduce the concept propagation matrix to model
the inference of novel entity-feature combinations from the
incomplete data represented in D.

Definition 5.2. Concept Propagation Matrix. An n-th
order concept propagation matrix (n ≥ 0) is defined as
T (n) = (DDT)nD = CnD, where C := DDT .

The concept propagation matrix can be intuitively under-
stood using a bipartite graph, as shown in Figure 7. A bipar-
tite graph in this case is a sub-graph of the type constraints
graph, where one set of nodes represents entities while
the other represents properties, with edges indicating the
presence of entity-feature pairings in the training data. The
strength of connectivity of the graph directly corresponds to
the values in the concept composition propagation matrix,
T (n).

Specifically, if two concepts are connected by a path of
minimal length 2k + 1 (i.e., the shortest path between them
alternates between the two sets k times), the corresponding
entry in T (n) becomes non-zero only for n ≥ k. In other
words, the number of propagation steps n required for the
object and feature pair to be associated is determined by the
minimal number of hops needed to connect the two nodes in
the graph. Conversely, if two nodes belong to disconnected
regions of the graph, their composition remains fundamen-
tally unlearnable, regardless of the order of propagation,
indicating that composition is not valid as a class. This is
reflected by the corresponding entry in T (n) remaining zero
for all n. For example, in the case where the concepts rep-
resented by the first and third rows belong to disconnected
regions of the graph, and consequently, their composition
(e.g., astronaut ringing) cannot be achieved even after an
infinite number of hops between nodes.

With this first-order propagation, we now have a finite
score for T

(1)
22 , which corresponds to “astronaut horse-

riding”. It is clear from the form of the matrix that
T

(n)
11 , T

(n)
12 , T

(n)
21 , T

(n)
22 , T

(n)
33 will be finite for all n ≥ 1,

whereas T
(n)
13 , T

(n)
12 , T

(n)
31 , T

(n)
32 will remain zero for all n.

This suggests that our model of concept propagation will

La
rg

es
t c

lu
st

er
 s

ize

Connection fraction

(b) (c)
horse-riding

walking

ringing

Man

Astronaut

Telephone

(a1)

(a2) On

Table

Man riding

Astronaut
walking

Telephone
Ringing

the horse

the path

Behind

Figure 7: Emergence of compositional abilities as a per-
colation phase transition in a bipartite concept graph.
(a1) The dataset is represented as a bipartite graph with
subjects on the left and verbs on the right. Compositional
generalization can occur for two nodes that are not directly
connected (e.g., “astronaut” and “horse-riding”) if they can
be connected by stitching edges. (b) When only a fraction
of the concept classes are included in the dataset and the
edge density is low, concept variables (nodes) form many
disconnected clusters, indicated by different colors (left).
As more concept classes are added (dashed edges) to the
bipartite graph, the small clusters begin to merge (middle).
With a sufficient number of edges, a macroscopic number
of nodes can be connected, forming a single cluster (right).
This suggests that a model can compositionally generalize
to most concept classes with enough edges and inference
steps. (c) Our formalism establishes this transition as a
second-order phase transition, where the size of the largest
cluster increases non-linearly as the fraction of connected
node pairs is scaled.

never allow the composition of certain compositions of con-
cept values such as “Alice ringing” or “telephone walking”.
In the bipartite graph, this amounts to having two distinct
clusters that are connected within themselves but not across
each other. Such a situation corresponds to the learning of a
concept; Alice and an astronaut are both humans, whereas
telephones are not.

6. Percolation Transition on Concept Graphs
Using the bipartite graph framework, the generalization, or
the learning of the concept class, can be defined as the situa-
tion where a large cluster of entity-feature connected pairs
arises despite the sparse concept density matrix. A critical
aspect to examine is the proportion of the inference matrix
values where T

(∞)
nm is non-zero, out of the total possible

pairs N ×M . This particular scenario aligns with the bond
percolation problem on a bipartite graph.

In bond percolation, we investigate how the largest con-
nected cluster’s size varies with the probability p of each
edge (bond) being present. In a typical setting, there exists
a critical threshold value, p = pc, called the percolation
threshold. Below this threshold (p < pc), the graph typ-
ically exhibits a disconnected phase characterized by the
absence of extensively connected clusters, with most nodes

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Concept Percolation Hypothesis

Memorization Phase

(disconnected clusters)

Generalization phase

(connected large clusters)

Figure 8: Memorization and generalization in the bipar-
tite graph percolation simulation. The transition from the
memorization phase with disconnected clusters to the gener-
alization phase with connected large clusters appears at the
percolation threshold. Distinct colors in the lines correspond
to the number of steps corresponding to n in the concept
propagation matrix, with the darkest line corresponding to
n → ∞.

either isolated or part of smaller clusters. Above this thresh-
old (p > pc), the graph transitions to a connected phase,
significantly increasing the likelihood of a vast connected
component spanning a large portion of the graph. This
shift from a predominantly disconnected state to one with a
macroscopic cluster is a defining characteristic of the per-
colation process, and this transition sharpens as the number
of components in the system increases. See Fig. 1 for the
schematic.

Consider a simple model situation with N = 1000 nodes
as entities and M = 1000 nods as properties in the concept
class of our interest. As we progressively increase the frac-
tion of connecting edges in the graph, where the edges are
randomly chosen, the largest cluster’s relative size (com-
pared to N+M) transitions from nearly zero to a significant
number.

As seen in Fig. 8, the number of learned compositions scales
more or less linearly as a function of the number of added
edges in the regime of p < pc, indicating that the model
can essentially only mimic the data in the training set. In
scenarios where connecting edges are selected randomly on
the graph with probability p, the percolation threshold is
obtained as pc ≃

√
1/NM for large N and M (Newman

et al., 2001). For p > pc, the number of nodes included in
the connected cluster will become macroscopic, meaning
that the probability that a randomly selected pair of an object

and a feature will be finite. We present in Appendix A the
derivation of the percolation threshold for bipartite graphs
that are uncorrelated, and how the cluster size (i.e., number
of nodes in the largest connected graph) scales as ∼ (p −
pc)

β with β = 1 for usual cases.

We posit that the percolation threshold corresponds to the
point at which our model generalizes from the sparse con-
cept density matrix to a more complete representation of
the concept class. When the number of edges surpasses the
threshold, the model can infer novel compositions, even for
entity-feature pairs that were not explicitly present in the
training data. This suggests that the emergence of compo-
sitional abilities in our framework can be understood as a
percolation phase transition on a bipartite graph.

7. Discussion and conclusion
In this work we proposed a data generation and learning
task framework and demonstrated that many of the “emer-
gent” properties discussed in larger model and data experi-
ments are essentially captured. We have proposed a specific
scenario regarding the mechanism of emergence, which is
the phase transition behavior of percolation in the bipartite
graph.

A key next step will be to quantitatively test the percolation
scenario within this synthetic data approach as well as in
larger model experiments. Candidates for this test include
the data size dependence of the onset of emergence, which
should match with the prediction of the percolation thresh-
old. For sufficiently complicated tasks of language learning
that involve syntax as well as semantics as in our proposed
setup, it will be also of significant interest to seek which
specific properties fit and do not fit with the emergence and
phase transition scenario.

References
Shun-Ichi Amari. A universal theorem on learning curves.

Neural networks, 6(2):161–166, 1993.

Philip W Anderson. More is different: Broken symmetry
and the nature of the hierarchical structure of science.
Science, 177(4047):393–396, 1972.

Andrej Karpathy. nanoGPT, 2023. https://github.
com/karpathy/nanoGPT,.

Anthropic. Introducing Claude, 2023.
https://www.anthropic.com/index/
introducing-claude. Accessed on: June 21,
2023.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel
Paleka, Miles Turpin, Peter Hase, Ekdeep Singh Lubana,

8

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Concept Percolation Hypothesis

Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foun-
dational challenges in assuring alignment and safety of
large language models. arXiv preprint arXiv:2404.09932,
2024.

Sanjeev Arora and Anirudh Goyal. A theory for emergence
of complex skills in language models. arXiv preprint
arXiv:2307.15936, 2023.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham
Kakade, Eran Malach, and Cyril Zhang. Hidden progress
in deep learning: SGD learns parities near the computa-
tional limit. Advances in Neural Information Processing
Systems, 35:21750–21764, 2022.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce
Lee, Yufei Guo, et al. Improving image generation with
better captions. Computer Science. https://cdn. openai.
com/papers/dall-e-3. pdf, 2(3):8, 2023.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler,
and Manfred K Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the ACM (JACM),
36(4):929–965, 1989.

Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon
Van Handel, and Amir Yehudayoff. A theory of univer-
sal learning. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 532–
541, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Marco Cascella, Federico Semeraro, Jonathan Montomoli,
Valentina Bellini, Ornella Piazza, and Elena Bignami.
The Breakthrough of Large Language Models Release for
Medical Applications: 1-Year Timeline and Perspectives.
Journal of Medical Systems, 2024.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho,
Matthew L. Leavitt, and Naomi Saphra. Sudden Drops
in the Loss: Syntax Acquisition, Phase Transitions,
and Simplicity Bias in MLMs. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=MO5PiKHELW.

Noam Chomsky. Three models for the description of lan-
guage. IRE Transactions on information theory, 2(3):
113–124, 1956.

Reuven Cohen, Daniel Ben-Avraham, and Shlomo Havlin.
Percolation critical exponents in scale-free networks.
Physical Review E, 66(3):036113, 2002.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran
Malach, and Cyril Zhang. Pareto frontiers in neural fea-
ture learning: Data, compute, width, and luck. arXiv
preprint arXiv:2309.03800, 2023.

Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova
Dassarma, Dawn Drain, Nelson Elhage, et al. Predictabil-
ity and surprise in large generative models. In 2022
ACM Conference on Fairness, Accountability, and Trans-
parency, pages 1747–1764, 2022.

Gemini Team. Gemini: a family of highly capable multi-
modal models. arXiv preprint arXiv:2312.11805, 2023.

David Haussler, H Sebastian Seung, Michael Kearns, and
Naftali Tishby. Rigorous learning curve bounds from
statistical mechanics. In Proceedings of the seventh an-
nual conference on Computational learning theory, pages
76–87, 1994.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. Compositionality decomposed: How do neural
networks generalise? Journal of Artificial Intelligence
Research, 67:757–795, 2020.

Margot Kaminski. Regulating the Risks of AI. Boston
University Law Review, 103:1347, 2023.

Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok:
Grokking Beyond Algorithmic Data, March 2023.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher D. Manning. Grokking of Hierarchical Struc-
ture in Vanilla Transformers, May 2023.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith,
and Jacob Steinhardt. Progress measures for grokking
via mechanistic interpretability. In The Eleventh Inter-
national Conference on Learning Representations, sep
2022. URL https://openreview.net/forum?
id=9XFSbDPmdW.

M. E. J. Newman. The Structure and Function of Complex
Networks. SIAM Review, 45(2):167–256, January 2003.
ISSN 0036-1445, 1095-7200.

Mark EJ Newman, Steven H Strogatz, and Duncan J Watts.
Random graphs with arbitrary degree distributions and
their applications. Physical review E, 64(2):026118,
2001.

9

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Concept Percolation Hypothesis

Maya Okawa, Ekdeep Singh Lubana, Robert P Dick, and
Hidenori Tanaka. Compositional abilities emerge mul-
tiplicatively: Exploring diffusion models on a synthetic
task. arXiv preprint arXiv:2310.09336, 2023.

OpenAI. Gpt-4, 2023. https://openai.com/
research/gpt-4. Accessed on: June 21, 2023.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The
effects of reward misspecification: Mapping and mitigat-
ing misaligned models. arXiv preprint arXiv:2201.03544,
2022.

Alethea Power, Yuri Burda, Harri Edwards, Igor
Babuschkin, and Vedant Misra. Grokking: Generalization
beyond overfitting on small algorithmic datasets. arXiv
preprint arXiv:2201.02177, 2022.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Mil-
lican, Jordan Hoffmann, Francis Song, John Aslanides,
Sarah Henderson, Roman Ring, Susannah Young, et al.
Scaling language models: Methods, analysis & insights
from training gopher. arXiv preprint arXiv:2112.11446,
2021.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are
emergent abilities of Large Language Models a mirage?
arXiv preprint arXiv:2304.15004, 2023.

Hyunjune Sebastian Seung, Haim Sompolinsky, and Naftali
Tishby. Statistical mechanics of learning from examples.
Physical review A, 45(8):6056, 1992.

Michael Sipser. Introduction to the theory of computation.
ACM Sigact News, 27(1):27–29, 1996.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu
Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R
Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-
Alonso, et al. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

Jacob Steinhardt. Emergent Deception and
Emergent Optimization, feb 2023. URL
https://bounded-regret.ghost.io/
emergent-deception-optimization/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, ..., and Thomas Scialom. Llama 2: Open
Foundation and Fine-Tuned Chat Models, 2023.

Tom Viering and Marco Loog. The shape of learning curves:
a review. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

Timothy LH Watkin, Albrecht Rau, and Michael Biehl. The
statistical mechanics of learning a rule. Reviews of Mod-
ern Physics, 65(2):499, 1993.

Jason Wei. 137 emergent abilities of large language mod-
els, 2022. https://www.jasonwei.net/blog/
emergence. Accessed on: October 20, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Bar-
ret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten
Bosma, Denny Zhou, Donald Metzler, et al. Emer-
gent abilities of large language models. arXiv preprint
arXiv:2206.07682, 2022.

Wikipedia. Context Sensitive Grammars, 2023.
https://en.wikipedia.org/wiki/
Context-sensitive_grammar.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu
Chen, and Jian Zhang. On the Tool Manipulation Ca-
pability of Open-source Large Language Models. arXiv
preprint arXiv:2305.16504, 2023.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen,
Anirudh Goyal, and Sanjeev Arora. Skill-Mix: A flexi-
ble and expandable family of evaluations for AI models.
arXiv preprint arXiv:2310.17567, 2023.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku,
Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autore-
gressive models for content-rich text-to-image generation.
arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Bojan Žunkovič and Enej Ilievski. Grokking phase transi-
tions in learning local rules with gradient descent, Octo-
ber 2022.

10

https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://bounded-regret.ghost.io/emergent-deception-optimization/
https://bounded-regret.ghost.io/emergent-deception-optimization/
https://www.jasonwei.net/blog/emergence
https://www.jasonwei.net/blog/emergence
https://en.wikipedia.org/wiki/Context-sensitive_grammar
https://en.wikipedia.org/wiki/Context-sensitive_grammar

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Concept Percolation Hypothesis

A. Percolation threshold in the bipartite graph setup
For general bipartite graphs that are uncorrelated, meaning that they are completely described by the degree distributions
P1(k) and P2(k) for the objects and features, respectively, the percolation threshold is

pc =

√
⟨k⟩1⟨k⟩2

⟨k(k − 1)⟩1⟨k(k − 1)⟩2
. (2)

Here, ⟨·⟩i denotes the expected value with respect to Pi(k), and we require N⟨k⟩1 = M⟨k⟩2 for consistency. The case of
randomly selecting connecting edges as demonstrated in the main text will correspond to starting from a complete bipartite
graph, in which case P1(k) = δk,M and P2(k) = δk,N , leading to pc =

√
1/(N − 1)(M − 1) ≃

√
1/NM .

To derive Eq. (2) we use the generating function as explained in (Newman et al., 2001). Firstly, we introduce the generating
function for the degree distribution of two concepts, i = 1, 2:

G0
i (x) :=

∞∑
k=0

Pi(k)x
k (3)

The generating function can be used to calculate moments of the probability distribution, such as the mean and variance, by
taking derivatives:

dG0
i (x)

dx

∣∣∣∣
x=1

=

∞∑
k=0

kPi(k)x
k−1

∣∣∣∣∣
x=1

=

∞∑
k=0

kPi(k) = ⟨k⟩i (4)

d2G0
i (x)

dx2

∣∣∣∣
x=1

=

∞∑
k=0

k(k − 1)Pi(k)x
k−2

∣∣∣∣∣
x=1

=

∞∑
k=0

k(k − 1)Pi(k) = ⟨k(k − 1)⟩i. (5)

Here we denoted the average over the degree distribution of concept i as ⟨·⟩i.

Another useful property of generating functions is that the generating function of the sum of the degrees can be described by
the power of generating functions. For example, the distribution of the sum of degrees from two randomly selected nodes
from sets i and j, denoted by P̃ij(k), will satisfy

∞∑
k=0

P̃ij(k)x
k = G0

i (x)G
0
j (x). (6)

With these properties in mind, we further introduce the generating function for the distribution of outgoing edges from a
node that we arrive at by following a randomly chosen edge:

G1
i (x) :=

∑∞
k=0 kPi(k)x

k−1∑∞
k=0 kPi(k)

=
G0′

i (x)

⟨k⟩i
. (7)

which can be obtained by noticing that the probability of the degree of a node arrived at from a randomly chosen edge is
proportional to kPi(k). The decreased power of x by one in the numerator is to exclude the originally chosen edge.

We further introduce the generating function for the distribution of the number of concepts in i that can be reached from a
node in the concept j(̸= i) that is connected to a randomly chosen edge as G̃1

i (x), and the same when randomly choosing a
node in concept j, G̃0

i (x). These functions satisfy

G̃0
i (x) = G0

i (G
1
j (x)) (8)

G̃1
i (x) = G1

i (G
1
j (x)). (9)

We also introduce the generating function for the distribution of the sizes of components in concept i that are reached by
choosing an edge, H1

i (x), and the same when choosing a node in concept i, H0
i (x). These satisfy

H0
i (x) = xG̃0

i (H
1
j (x)) (10)

H1
i (x) = xG̃1

i (H
1
j (x)). (11)

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Concept Percolation Hypothesis

Here, the key assumption is that there is no closed loop of edges in the network, which holds if the fraction of connection is
low and there is no cluster (i.e., sub-critical regime).

The average cluster size of concept i, i.e., the number of nodes in i that are connected with each other, is then ⟨Si⟩ = H0′

i (1),
which is

⟨Si⟩ = 1 +
G̃0′

i (1)

1− G̃1′
i (1)

, (12)

using the derivatives of Eqs. (10),11). The percolation threshold is when the denominator in the second term of Eq. (12)
becomes zero, so

G̃1′

i (1) = G1′

i (1)G1′

j (1) =
G0′′

1 (1)G0′′

2 (1)

⟨k⟩1⟨k⟩2
=

⟨k(k − 1)⟩1⟨k(k − 1)⟩2
⟨k⟩1⟨k⟩2

= 1 (13)

Now, when the connection of each a probability of connection p associated with each bond on top of the original graph, the
generating function of the degrees will become

G0
i (x; p) =

∞∑
k=0

∞∑
n=k

Pi(n)

(
n

k

)
pk(1− p)n−kxk (14)

=

∞∑
n=0

Pi(n)(px+ 1− p)n = G0
i (1 + (x− 1)p). (15)

From the first line to the second line, we used
∑∞

k=0

∑∞
n=k =

∑∞
n=0

∑n
k=0. We can then rewrite Eq. (13) as

⟨k(k − 1)⟩p1⟨k(k − 1)⟩p2
⟨k⟩p1⟨k⟩

p
2

= p2
⟨k(k − 1)⟩1⟨k(k − 1)⟩2

⟨k⟩1⟨k⟩2
= 1, (16)

from which we obtain Eq. (2). Here we used ⟨k(k − 1)⟩pi = G0′′

i (1; p) = p2G0′′

i (1) = p2⟨k(k − 1)⟩i and ⟨k⟩pi =

G0′

i (1; p) = pG0′

i (1) = p⟨k⟩i.

A.1. Exponent in the cluster size

The critical exponent associated with the number of nodes in the cluster for p > pc, S ∼ (p− pc)
β , is determined to be

β = 1 when there is no specific structure in the graph. To see this, let us consider that u = H0
i (1) is the probability that

a node in i is included in a finite size cluster (i.e., not the large connected cluster). Recall that H0
i (1) was the generating

function of the number of nodes in concept i included in the cluster in the subcritical regime (p < pc); we are here assuming
that the statistics will not change even in the supercritical regime (p > pc) when neglecting the large cluster. Then, from
Eqs. (10,11), we have

H0
i (1) = u = G̃0

i (H
1
j (1)) = G̃0

i (G̃
1
j (u)) (17)

= G0
i (G

1
j (G

0
j (G

1
i (u)))) =: f(u) (18)

which is a self-consistent equation.

By writing u = 1− ϵ, we have f(1− ϵ, p) = 1− ϵf ′(1, p) + ϵ2f ′′(1, p)/2..., where the derivative is taken for u. Noticing
that f ′(1, pc) = 1, we obtain the relation

ϵ = (p− pc)
∂2

∂u∂p
f(u, p)

∣∣∣∣
u=1,p=pc

[
1

2

∂3

∂u2∂p
f(u, p)

∣∣∣∣
u=1,p=pc

]
+ o(p− pc) + o(ϵ) (19)

∼ (p− pc), (20)

indicating β = 1

As an interesting generalization, a classic result (Cohen et al., 2002) shows that even for the situation where pc > 0, the
power β can deviate from one. This corresponds to when the differential coefficients in Eq. (19) diverge, corresponding to
cases where the second or third moment being ill-defined. For the case of Pi(k) ∼ k−γ with 3 < γ < 4, we can show that
β = 1/(γ − 3).

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Concept Percolation Hypothesis

A.2. Transition Behavior for Finite Inference Steps

The mapping of the inference scheme to the percolation problem becomes precise only in the context of infinite inference
steps. For a finite number of steps, denoted as n, the pertinent question is the number of node pairs across the sets
connected within 2n + 1 edges. Using the average degrees ⟨k⟩1 and ⟨k⟩2 respectively, a node in the first set can reach
approximately ⟨k⟩n+1

1 ⟨k⟩n2 nodes after 2n+ 1 steps. Hence, the approximate fraction of connected edges within 2n+ 1
steps is N⟨k⟩n+1

1 ⟨k⟩n2 .

13

