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Figure 1: We propose ViewCraft3D (VC3D), a method to generate 3D vector graphics from a single
image. VC3D can leverage 3D prior knowledge to generate high-quality and view-consistent 3D
vector graphics.

Abstract

3D vector graphics play a crucial role in various applications including 3D shape
retrieval, conceptual design, and virtual reality interactions due to their ability
to capture essential structural information with minimal representation. While
recent approaches have shown promise in generating 3D vector graphics, they often
suffer from lengthy processing times and struggle to maintain view consistency. To
address these limitations, we propose ViewCraft3D (VC3D), an efficient method
that leverages 3D priors to generate 3D vector graphics. Specifically, our approach
begins with 3D object analysis, employs a geometric extraction algorithm to
fit 3D vector graphics to the underlying structure, and applies view-consistent
refinement process to enhance visual quality. Our comprehensive experiments
demonstrate that VC3D outperforms previous methods in both qualitative and
quantitative evaluations, while significantly reducing computational overhead.
The resulting 3D sketches maintain view consistency and effectively capture the
essential characteristics of the original objects. Project page: https://zhtjtcz.
github.io/VC3D_page/.

1 Introduction

Three-dimensional vector graphics offer a unique balance between abstraction and comprehensibility,
using minimal line elements to convey complex spatial information. These economical representations
have become integral to diverse computing applications, from improving immersive experiences in
virtual environments to facilitating 3D shape retrieval and reconstruction tasks [49, 20, 19, 13, 48].
In virtual reality creation environments, 3D vector graphics serve as intuitive building blocks that
allow artists to materialize spatial concepts directly within immersive spaces [51, 1, 50], bridging
the gap between imagination and digital realization. Recent interactive sketching tools [2, 1, 52]
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have enhanced these creative capabilities by enabling direct manipulation in 3D space. Despite these
advances, creating effective 3D vector graphics remains prohibitively difficult for non-specialists
due to the intricate combination of spatial reasoning, technical interface skills, and artistic judgment
required. This expertise barrier significantly limits widespread adoption and accessibility, highlighting
the need for automated approaches that can generate high-quality 3D vector graphics without requiring
users to have specialized training or artistic expertise.

Figure 2: Examples of VR sketches [31].

Recent years have witnessed remarkable progress
in 2D vector graphics generation. Works like CLI-
Passo [34] and CLIPDraw [7] pioneered the use
of CLIP’s visual-semantic understanding to guide
vector graphics optimization. Building on these
foundations, methods such as VectorFusion [11],
DiffSketcher [41], and SVGDreamer [43] further
leveraged diffusion models to achieve higher fi-
delity and controllability in vector graphics gen-
eration. Concurrently, the field of 3D content cre-
ation [44, 54, 15, 38, 35, 46] has been revolution-
ized by neural rendering techniques and generative
models, making high-quality 3D asset creation in-
creasingly accessible. The convergence of these advancements has catalyzed research in 3D vector
graphics, with pioneering works like 3Doodle [5] and Diff3DS [53] demonstrating the feasibility
of generating expressive 3D line drawings. These approaches have achieved impressive results
in creating 3D vector graphics. However, existing methods predominantly rely on 2D generative
priors—leveraging models like CLIP [26] and diffusion model [28] as supervision signals—while
employing Score Distillation Sampling (SDS) [23] for optimization in 2D projection space rather than
directly in 3D. These indirect approaches inherit a fundamental limitation of 2D SDS optimization:
cross-view inconsistency, which constrains the ability of methods [23, 53]—where the same 3D
element appears inconsistently from different viewpoints. Even with the use of more powerful pre-
trained models, these approaches often struggle to generate coherent 3D vector graphics that remain
consistent across arbitrary viewpoints. For example, Diff3DS [53] employs MVDream [30] to tackle
this issue, but the improvement is only partial. On the other hand, 2D priors from pretrained image
generation models offer only conceptual-level guidance, lacking precise recovery of critical lines
typically found in human-drawn 3D sketches, as illustrated in Figure 2. As a result, the generated
outputs often suffer from messy strokes, missing details, and low structural fidelity.

To overcome these challenges, we propose ViewCraft3D (VC3D), a novel approach that leverages
3D priors for generating high-fidelity and view-consistent 3D vector graphics. Instead of relying
on optimization using 2D priors [53, 5], our method is grounded in 3D geometric attributes within
the 3D domain. This allows it to naturally inherit the cross-view consistency of the 3D object while
faithfully preserving its spatial structure and geometric details, as illustrated in Figure 1. Specifically,
we start by reconstructing a 3D mesh using a pre-trained image-to-3D model. Based on the resulting
mesh, we identify salient regions in 3D space that capture the object’s key structural features. We
then perform point-level clustering using spatial proximity and orientation alignment. These clusters
are subsequently fitted with 3D Bézier curves, and Chamfer Distance loss is used to ensure accurate
geometric approximation. To further refine these vector graphics, we introduce a 3D score distillation
sampling loss based on pretrained 3D generative models, which optimizes the Bézier curve parameters
to enhance both visual quality and structural fidelity. This approach maintains view consistency by
construction, as the optimization occurs directly in 3D space guided by 3D priors.

In summary, our contributions are threefold:

• We propose ViewCraft3D (VC3D), a novel framework for generating high-fidelity 3D vector
graphics that leverages 3D priors rather than 2D projections;

• We develop a two-phase optimization approach combining geometric fitting with 3D-prior
guided refinement, significantly improving visual quality.

• We conduct extensive experiments demonstrating that our approach outperforms existing
methods in both view consistency and generation speed. The results suggest promising
directions for future studies.
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2 Related Work

2.1 2D Vector Graphics Generation

Early approaches in 2D SVG generation, such as CLIPasso [34] and CLIPDraw [7], utilized the visual-
semantic understanding of the CLIP model [26] to guide vector optimization. Subsequent research
introduced more sophisticated approaches, notably those employing diffusion models [8, 28, 6]. Work
like VectorFusion [11], DiffSketcher [41], SVGDreamer [43], and SVGDreamer++ [42] demonstrated
significant improvements in generation quality by employing Score Distillation Sampling [23].
This technique effectively transfers the generative capabilities of pixel-based models to the vector
domain. In addition, SVGFusion [40] explored the use of the DiT architecture [22] to generate SVG.
Furthermore, specialized approaches have been developed for specific applications. These include
Word-as-image [10] for typographic design, CLIPascene [33] for scene sketching with varying
abstraction levels, and VectorPainter [9] for stylized graphics synthesis.

More recently, efforts have focused on mitigating the computational cost associated with iterative
optimization. Works based on autoregressive models, such as Iconshop [37], have demonstrated the
potential for rapid generation, significantly reducing processing times. Concurrently, the adaptation
of large language models (LLMs) for SVG generation has emerged as another promising research
avenue, with works like LLM4SVG [39] and Chat2SVG [36]. And OmniSVG [45] attempts to
employ Vision-Language Models (VLMs) as end-to-end multimodal SVG generators. Together,
these recent advancements aim to ensure high-quality generation while paving the way for future
extensions into 3D representations.

2.2 Recent Advances in 3D Content Generation

Recent years have witnessed remarkable progress in 3D content generation driven by diffusion-
based approaches. Early works like Zero-123 [17] pioneered single-image view synthesis using
geometric priors from diffusion models, while One-2-3-45 [16] extended this to generate full 360-
degree textured meshes. Multi-view consistency became a focus with MVDream [30], which
serves as an implicit 3D prior through multi-view image generation, and Wonder3D [18], which
employs cross-domain attention for consistent normal and color generation. Recent innovations
have further elevated capabilities: Unique3D [35] improved fidelity through multi-level upscaling,
HunYuan3D [44, 54] achieved photorealistic quality, TripoSG [15] utilized triplane optimization with
large-scale data, and Hi3DGen [46] enhanced geometric fidelity through normal bridging. These
cutting-edge approaches primarily focus on generating complete 3D assets with textures and materials,
while our work emphasizes the creation of 3D vector graphics that maintain characteristic abstractions
and representational efficiency. By leveraging the 3D understanding embedded in these advanced
models, particularly TripoSG’s structural representations, we guide our vector optimization toward
semantically meaningful and view-consistent results.

2.3 3D Vector Graphics Generation

Building upon both the 2D vector graphics techniques and recent 3D generation advances discussed
above, 3D vector graphics generation has emerged as a promising research direction. These repre-
sentations extend the fundamental advantages of 2D vector graphics while leveraging 3D generative
capabilities to model complex spatial structures and depth information. This integration enhances
their utility in diverse fields, including web development and digital art. In artistic contexts, works
like DreamWire [25] and Fabricable 3D Wire Art [32] have showcased the potential of 3D vector
graphics to create compelling, view-dependent visual effects, where the perceived objects change
based on viewing angle.

To harness these benefits and enable such advanced applications, the development of robust 3D vector
graphics generation techniques has become a key research focus. Initial explorations in this area
include 3Doodle [5], which pioneered a method for generating 3D vector graphics from multi-view
images of the target object. Subsequently, Diff3DS [53] utilized the Score Distillation Sampling
to produce 3D vector graphics conditioned on text or image input. Dream3DVG [47] leverages
the optimization process of a 3D Gaussian Splatting [12] to establish a coarse-to-fine generation
approach. However, a notable aspect of these current generative approaches is their predominant
reliance on 2D view-specific loss for optimization. View-specific loss is computed independently

3



per camera view, and gradients are aggregated across views during optimization. Without strong
3D regularization (e.g., geometry priors or multi-view constraints), this results in locally optimal
solutions per view that can conflict globally. While yielding impressive outcomes, this strategy may
not fully exploit 3D spatial cues, potentially leading to challenges such as view inconsistency in the
final 3D vector representations.

3 Methodology

3.1 Overview

In this section, we introduce ViewCraft3D (VC3D), an optimization based method that creates a 3D
vector graphic S3D based on an input image I . We define a 3D vector graphic S3D as a set of 3D
Bézier curves {Ci}ni=1. The curves are defined by a set of control points {Pi,j}mj=1, where Pi,j ∈ R3

is the j-th control point of the i-th curve.

Our method workflow is illustrated in Figure 3. It begins by reconstructing a 3D mesh M from a
user-provided image I using an image-to-3D model [15]. We then apply a two-stage process on
the resulting mesh, consisting of Bézier curve fitting followed by detail refinement. The primary
structure fitting stage identifies high-curvature regions in the reconstructed mesh, converts them into
a point cloud, and fits Bézier curves to approximate these structures. The detail refinement stage
re-initializes additional curves in regions overlooked during the first stage and optimizes them using
Score Distillation Sampling(SDS) loss [23], leveraging priors from the diffusion model to guide the
optimization and enhance fine-grained details in the resulting 3D vector graphic representation. This
two-stage approach ensures both structural accuracy and high-fidelity detail preservation.

ℒ𝑐(෪𝒫𝑐 , 𝑃𝑠)

Pretrained

Image to 3D Model

ℒSDS

3D Mesh ℳ Salient Point 

Cloud 𝒫𝑠
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𝑛

Sampled Point 
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3D Reconstruction

Figure 3: The overall architecture of the proposed method, showcasing the initial generation of 3D
Vector Graphic (3D VG) from an input image and subsequent detail refinement using a pretrained
image-to-3D model.

3.2 Stage I: Primary Structure Fitting

In this stage, we extract key structural information from the reconstructed mesh M and use it to
fit 3D Bézier curves. The fitting process is further optimized using a specially designed Chamfer
Distance loss.

3.2.1 Salient Point Cloud Extraction

To identify high-curvature regions on the mesh, we adopt the Sharp Edge Sampling (SES) process
from Dora [4] to extract a salient point cloud. We traverse each edge of the mesh. For each edge,
if it belongs to two adjacent faces, we compute the angle between the normal vectors of these two
faces. If the angle is below a predefined threshold, we consider this edge as a salient edge. To address
the challenge of extracting salient edges from smooth surfaces (e.g., spheres), we uniformly sample
camera parameters on a horizontal plane. For each sampled viewpoint, we compute the front faces
and back faces. Edges shared by a front face and a back face are identified as silhouette edges. All
such silhouette edges are subsequently incorporated into the salient edge set. After identifying all
salient edges, we sample points along these edges to create a point cloud Ps as ground truth.
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3.2.2 Point Cloud Clustering

After obtaining the salient point cloud Ps, we aggregate these discrete points into clusters suitable for
Bézier curve fitting. Inspired by EdgeGaussians [3], we perform clustering for edge fitting based on
vertex orientations. While EdgeGaussians directly utilize the principal directions of 3D Gaussians
as orientation vectors, such directional information is absent in our discrete point cloud Ps. To
address this, we introduce an initialization step to estimate orientation vectors for each point in
Ps. Specifically, for each point p, we first identify its k nearest neighbors and then apply Principal
Component Analysis (PCA) [21] to the local neighborhood. The resulting primary eigenvector is
used as an approximation of p’s orientation vector v⃗p.

Previous Point in Cluster Candidate PointPoint in Cluster

(a) Initial Cluster (b) First Expansion (c) Second Expansion (d) Final Cluster

Unselected PointsOrientation Vector

Figure 4: The visualization process of Point Cloud Clustering. Each point is assigned an orientation
vector (blue arrows). In (a), the orange point initializes the cluster, and a candidate point (red) is
evaluated based on spatial proximity and orientation similarity. In (b), the candidate point meets both
criteria and is incorporated into the cluster. This process iterates until the final cluster is formed, as
shown in (d).

Once orientation vectors are assigned to each point, we partition the point cloud into multiple clusters
using an iterative expansion process as shown in Fig 4. Each cluster is initialized from a randomly
selected starting point and grows by progressively incorporating neighboring points that satisfy both
spatial proximity and orientation similarity. Specifically, we use the most recently added point in the
cluster, denoted as p, to guide the selection of the next candidate. A candidate point q is added to the
current cluster if it meets two criteria: (1) it lies within the spatial neighborhood of the cluster, i.e.,
dis(p, q) ≤ dthresh; and (2) the direction of the new edge formed by p and q aligns with the orientation
vector of q, i.e., arccos

(∣∣∣ p⃗q
|p⃗q| ·

v⃗q
|v⃗q|

∣∣∣) < θthresh. The expansion continues until no additional points
can be incorporated under these constraints, completing one cluster.

This process repeats across the point cloud to generate a complete set of directional clusters, each
representing potential curves for subsequent Bézier fitting. The randomized clustering method ensures
comprehensive coverage of all geometric features while avoiding bias toward specific regions. Finally,
we filter the small clusters with fewer than τ points, as they are likely to be noise or outliers.

3.2.3 Bézier Curves Fitting

After obtaining these clusters, we attempt to fit them with either straight lines or Bézier curves,
selecting the one with the least error as the fitting result for that cluster.

The fitting process is performed using the Chamfer Distance loss function [24] to minimize the
distance between the Bézier curves and the salient point cloud Ps obtained in Sec. 3.2.1. The fitted
Bézier curves are denoted as {Ci}ni=1. For our implementation, we use cubic Bézier curves with
four control points P0, P1, P2, P3 ∈ R3. The parametric equation for a 3D cubic Bézier curve can be
written as:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1] (1)

To generate a point cloud from a set of Bézier curves {Ci}ni=1, we uniformly sample s points along
each curve by evaluating the parametric function B(t) at tj = j−1

s−1 for j = 1, . . . , s. The resulting
point cloud Pc is defined as:
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Pc =
{
Bi(tj) | i ∈ {1, . . . , n}, j ∈ {1, . . . , s}

}
. (2)

Chamfer Distance loss is computed as follows:

Lc(P̃c, Ps) =
λ

|P̃c|

∑
p∈P̃c

min
q∈Ps

∥p− q∥2 + 1

|Ps|
∑
q∈Ps

min
p∈P̃c

∥p− q∥2 (3)

where P̃c denotes Pc augmented with Gaussian noise (introduced for data augmentation), and λ
is a hyperparameter to balance the two terms. The generation of point cloud Pc, which relies on
the Bézier curve formulation in Eq. 1, is differentiable with respect to the curve’s control points.
Consequently, the chain rule enables the gradients from Lc to propagate back to these control points,
facilitating their iterative optimization.

3.3 Stage II: Detail Refinement

Some objects may contain intricate-to-approximate regions that Stage I might miss due to limitations
in the salient point cloud extraction or clustering process. These regions are identified by analyzing
the mesh’s vertex distribution and locating areas not adequately covered by the point cloud Pc

generated in Stage I. For such cases, we introduce an additional refinement stage to handle these
regions by distilling priors from a pretrained image-to-3D model.

First, the parameters of the initial curves {Ci}ni=1 from Stage I are frozen. We randomly initialize
new Bézier curves {C ′

i}n
′

i=1 (with parameters θ′) in regions that are intricate to approximate, thereby
complementing the primary structure. To jointly represent both curve sets, we sample a combined
point cloud Pcombined = Pc ∪ Pc′ and encode it into a latent space Z using a pretrained VAE
encoder from [15]: z = E(Pcombined). Then we refine only the new parameters θ′ via SDS loss [23],
supervised by the input image I .

∇θ′LSDS = Et,ϵ

[
w(t) (ϵϕ(zt, I; t)− ϵ)

∂z

∂θ′

]
(4)

where zt is the noised latent variable at timestep t, ϵϕ is the denoising model conditioned on I ,
and w(t) is a weighting function. This process iteratively adjusts the newly added Bézier curves
to fill in missing details from Stage I, ensuring consistency and high fidelity in the final 3D vector
representation S3D = {Ci}ni=1 ∪ {C ′

i}n
′

i=1.

3.4 3D Vector Graphics Rendering

To enable both qualitative visualization and quantitative evaluation, 3D vector graphic S3D should
be projected onto a 2D plane. As proved by 3Doodle [5], the perspective projection of a 3D Bézier
curve onto a 2D plane yields a 2D rational Bézier curve. Given a 3D curve B(t) and image plane at
z = f (where z is the depth axis and f the focal length), the projection is:

B2D(t) =

(
Bx(t)

f
Bz(t)

By(t)
f

Bz(t)

)
(5)

Consequently, by defining camera parameters in 3D space, we obtain a set of 2D rational Bézier
curves corresponding to the camera’s viewpoint. These curves can be rendered using DiffVG [14]
to generate corresponding SVG files, which are subsequently utilized for both quantitative and
qualitative analysis.
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4 Experiment

4.1 Implementation Details

Our VC3D framework is implemented in PyTorch. For primary structure fitting stage, we set the
distance threshold dthresh = 0.05 and angle threshold θthresh = 50◦. Each Bézier curve is defined by 4
control points, with s = 64 sample points per curve for optimization. For detail refinement stage, we
employ TripoSG [15] as our pretrained image-to-3D model, with SDS loss weight set to 2× 10−4.
We use the SGD optimizer [27] with a learning rate of 5× 10−3.

All experiments are conducted on a single NVIDIA RTX 4090 GPU. For each input, our method
typically produces fewer than 100 Bézier curves. Our full method takes about 30 minutes to generate
a vector graphic, with 100 optimization steps for Stage I and 200 steps for Stage II. We collected 40
images from prior works and online sources as inputs. All generated 3D vector graphics are rendered
into 12 views using identical camera parameters, upon which the metrics are computed.

4.2 Experimental Results

We compare our approach with two state-of-the-art methods in 3D vector graphics generation:
Diff3DS [53], which designs a depth-aware differentiable rasterizer and leverages 2D diffusion model
priors through SDS loss to generate 3D vector graphics from text or images, and 3Doodle [5], which
employs perceptual losses with multi-view guidance to obtain 3D Bézier curve representations of
objects. To comprehensively evaluate the quality and fidelity of the generated 3D vector graphics, we
employ CLIPScore [26] to measure semantic alignment between rendered views and input images
Furthermore, we use an aesthetic indicator [29] to quantify the aesthetic value.

4.2.1 Qualitative Evaluation

Input Image 3Doodle        ~6h Diff3DS        ~2h VC3D (Ours)        ~0.5h

Figure 5: Qualitative comparison of different methods. Diff3DS and VC3D use a single image I as
input, while 3Doodle uses 120 rendered images of the mesh reconstruction result M as input.

Figure 5 presents qualitative comparisons between our method and previous work, 3Doodle [5]
and Diff3DS [53]. As shown, VC3D produces cleaner, more accurate, and more view-consistent
3D vector graphics. Previous works struggle to capture fine details in reference images, such as
the patterns on butterfly or the handle of the coffee cup. Additionally, their outputs often contain
excessive messy lines (e.g., the chair example).
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4.2.2 Quantitative Evaluation

Table 1 presents the quantitative analysis results of all methods. Our method outperforms both
previous approaches in CLIPScore and Aesthetic Score metrics. Our method achieves a cosine
similarity of 0.799, which is higher than the 0.729 achieved by 3Doodle and the 0.673 achieved by
Diff3DS. At the same time, we achieved the highest score in Aesthetic Score. These superior results
demonstrate our method’s ability to generate semantically and geometrically superior 3D vector
graphics.

In addition to the metrics mentioned above, our method demonstrates significant advantages in
generation time. Our method requires only a few SDS loss optimization steps, significantly reducing
generation time. The total runtime for two stages is approximately 0.5 hours, showing notable
improvements compared to 3Doodle (~6 hours) and Diff3DS (~2 hours).

Table 1: Quantitative comparison of VC3D and
previous methods on evaluation metrics. The
bold numbers represent the best performance.

Method CLIPScore ↑ Aesthetic
Score ↑

3Doodle 0.729 4.122
Diff3DS 0.673 3.769

VC3D (Ours) 0.799 4.352

Table 2: Ablation study results comparing differ-
ent variants of our proposed method. The bold
numbers represent the best performance.

Method CLIPScore ↑ Aesthetic
Score ↑

Variant 1 0.779 4.096
Variant 2 0.805 4.167

Full Method 0.818 4.297

4.3 Ablation Studies and Analysis

To demonstrate the respective contributions of the Chamfer Distance loss and SDS loss, we performed
ablation experiments. We selected a subset of 20 images from the inputs in Section 4.2.1, where
all examples were optimized with SDS loss. And results were recorded after three distinct stages,
corresponding to three variants: (1) Variant 1: This variant refers to the model with the salient point
cloud extraction and the point cloud clustering, (2) Variant 2: This variant is the model with the
first stage only, i.e., Primary Structure Fitting, and (3) Full Method: This is our proposed method,
which comprises two stages. The results are shown in Table 2. The improvements of the Variant 2
against the Variant 1 indicate the benefits brought by using CD loss for optimization. Comparing the
performance of Variant 2 and Full Method, it is clear that the detail refinement stage can further
improve the performance in CLIPScore and Aesthetic Score metrics.

In Figure 6, we show the optimization process of Chamfer Distance loss. The initially fitted Bézier
curves often fail to accurately cover the salient point cloud Ps. The coherence between curves is
also suboptimal. As optimization progresses, the curves gradually extend to form more complete
structures, ultimately achieving both improved coverage of the salient features and enhanced inter-
curve coherence while preserving the overall geometric fidelity of the original shape.

Step 0 Step 50 Step 100

1

2

Step 0 Step 50 Step 100

Figure 6: Illustration of the optimization process using Chamfer Distance loss Lc.
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The visual improvements brought by the SDS loss can be observed in Figure 7, where the refinement
stage compensates for previously overlooked details (e.g., terminal branches on corals) and improves
the structural coherence of the 3D vector graphics.

w/o SDS Loss

Case (a)

1

Input Image w/ SDS Loss w/o SDS LossInput Image w/ SDS Loss

Figure 7: Illustration of the optimization effect of SDS loss Lsds. SDS loss effectively recovers
missing structural information while enhancing geometric detail representation.

These results demonstrate that our two-stage approach effectively balances structural accuracy with
visual quality, leading to more compelling and semantically accurate 3D vector graphics.

We also experimented with the number of Bézier curves. Since the number of Bézier curves is equal
to the number of point clusters, we can control the number of curves by adjusting the cluster count,
i.e., by changing the filtering threshold τ in Point Cloud Clustering stage. As shown in Figure 8, when
τ = 10, point clusters with fewer than 10 points are removed. Increasing the threshold eliminates
more clusters, reducing the number of Bézier curves retained and producing an abstract result.

Case (a)
1

Input Image 𝜏 = 10 𝜏 = 20 𝜏 = 30 𝜏 = 40

Figure 8: Effect of the filtering threshold in Point Cloud Clustering. The number of Bézier curves
gradually decreases as τ increases, producing a more abstract effect.

5 Limitations and Future Works

While VC3D efficiently generates view-consistent 3D vector graphics, it currently lacks occlusion
relationships between curves. When rendering to 2D images, all curves share uniform transparency,
which may compromise visual fidelity. Future work could address this by utilizing the corresponding
mesh. Since the mesh is available, the position of each Bézier curve relative to the camera parameters
can be determined, allowing for the processing of occlusion relationships.

In addition, considering that our method can generate corresponding 3D vector graphics from meshes
with minimal time cost, we can build 3D vector graphics datasets based on open-source mesh datasets
in the future, providing a research foundation for subsequent work.

6 Conclusion

In this paper, we present VC3D, a novel framework for generating view-consistent 3D vector graphics
using 3D priors. Operating directly in 3D space rather than 2D projection planes, our approach
effectively addresses view inconsistency issues. Our two-stage algorithm first identifies salient
structures through geometric clustering and Bézier curve fitting, then refines results using SDS loss
with a pretrained image-to-3D model. Experiments demonstrate that VC3D preserves geometric
characteristics while maintaining view consistency across viewpoints, with advantages in generation
efficiency. This research makes high-quality 3D vector graphics creation more accessible and
applicable to virtual reality, shape retrieval, and conceptual design.
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