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ABSTRACT

As Graph Neural Networks (GNNs) become more pervasive, it becomes paramount
to build reliable tools for explaining their predictions. A core desideratum is
that explanations are faithful, i.e., that they portray an accurate picture of the
GNN’s reasoning process. However, a number of different faithfulness metrics
exist, begging the question of what is faithfulness exactly and how to achieve
it. We make three key contributions. We begin by showing that existing metrics
are not interchangeable – i.e., explanations attaining high faithfulness according
to one metric may be unfaithful according to others – and can systematically
ignore important properties of explanations. We proceed to show that, surprisingly,
optimizing for faithfulness is not always a sensible design goal. Specifically, we
prove that for injective regular GNN architectures, perfectly faithful explanations
are completely uninformative. This does not apply to modular GNNs, such as
self-explainable and domain-invariant architectures, prompting us to study the
relationship between architectural choices and faithfulness. Finally, we show that
faithfulness is tightly linked to out-of-distribution generalization, in that simply
ensuring that a GNN can correctly recognize the domain-invariant subgraph, as
prescribed by the literature, does not guarantee that it is invariant unless this
subgraph is also faithful. The code is publicly available on GitHub1.

1 INTRODUCTION

The increasing popularity of GNNs (Scarselli et al., 2008; Kipf and Welling, 2016; Veličković et al.,
2018) for even high-stakes tasks (Agarwal et al., 2023) has prompted the development of tools for
explaining their decisions. Regular GNNs are opaque in that their decisions can only be explained in
a post-hoc fashion using specialized tools (Longa et al., 2024), whereas self-explainable GNNs are
designed to natively output explanations for their predictions (Kakkad et al., 2023). A key metric for
evaluating explanations is faithfulness (Pope et al., 2019; Yuan et al., 2022; Amara et al., 2022; Zhao
et al., 2023; Tan et al., 2022; Zheng et al., 2023). Intuitively, an explanation is faithful as long as it
highlights all and only those elements – edges and/or node features – of the input graph that are truly
relevant for the prediction. Faithful explanations, therefore, portray an accurate picture of the GNN’s
working and thus support understanding, trust allocation, and debugging (Teso et al., 2023).

Existing faithfulness metrics assess the stability of the model’s output to perturbations of the input
– e.g., to ensure that modifying the elements marked as irrelevant by the explanation has in fact no
effect – yet differ in many non-trivial details. For instance, some metrics perturb the input by zeroing
out all irrelevant node features (Agarwal et al., 2023) while others delete a subset of edges (Zheng
et al., 2023); see Section 3 for an overview. Unfortunately, the literature provides little guidance on
selecting appropriate metrics and tuning GNN architectures for faithfulness.

Not all metrics are the same. (Section 3) We begin by parameterizing existing metrics along two
dimensions: how stability is measured and what perturbations are allowed. We show that different
parameter choices yield rather different metrics, in the sense that explanations that are faithful for
one metric may not be faithful according to others. These differences are far reaching. In fact, we
show that different metrics can rank explanation algorithms differently and that popular metrics
can be systematically insensitive to the number of irrelevant elements captured by the explanation.
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It follows that faithfulness measurements cannot be interpreted unless their parameters are known:
this is relevant when evaluating XAI algorithm and in high-stakes applications, like loan approval,
where explanation providers could manipulate (but withhold) the parameters to mislead end-users
into overestimating the faithfulness of their explanations (Bordt et al., 2022).

Is faithfulness always worth optimizing for? (Section 4) Then, we study to what extent optimizing
for faithfulness is a sensible design goal. We show that for GNNs satisfying injectivity, explana-
tions achieving perfect faithfulness are not informative, and identify a natural trade-off between
expressiveness of the model and usefulness of faithful explanations. At the same time, we show that
for self-explainable GNNs and domain invariant GNNs, which employ a modular architecture, strict
faithful explanations can be informative, and evaluate how architectural design choices can impact
faithfulness, highlighting how popular models implicitly penalize faithfulness.

Faithfulness is key to OOD generalization. (Section 5) Finally, we highlight the central but so far
neglected role of faithfulness in domain invariance. Prior work (Cai et al., 2023; Chen et al., 2023;
Gui et al., 2023; Jiang et al., 2023) tackles domain invariance by constructing modular GNNs that
isolate the domain invariant portion of the input and use it for prediction. We show that extracting
a domain invariant subgraph is not enough for a GNN to be truly domain invariant: unless the
subgraph is also faithful, the information from the domain-dependent components of the input can still
influence the prediction, thus preventing domain invariance. This reveals a key limitation of current
design and evaluation strategies for domain-invariant GNNs, which neglect faithfulness altogether.

Overall, our hope is that these contributions will prompt researchers to reconsider faithfulness in
a broad sense, i.e., to reconsider i) how it should be computed, ii) how GNN architectures should
achieving it, and iii) its role outside of the XAI literature.

2 GRAPH NEURAL NETWORKS AND FAITHFULNESS

Throughout, we indicate graphs as G = (V,E) and annotated graphs as GA = (G,X), where
xu ∈ Rd are per-node features. We denote multisets as {{. . .}}, the k-hop neighborhood of u as
Nk(u), and shorten N1(u) to N(u), and ∥G∥ = |E| to m.

Graph Neural Networks (GNN) (Scarselli et al., 2008) are discriminative classifiers that, given
an input graph GA, define a conditional distribution pθ(· | GA) over candidate labels. In graph
classification, the label y ∈ {1, . . . , c} applies to the whole graph, while in node classification it
is a vector y ∈ {1, . . . , c}n with one element per node. Inference in GNNs is opaque, in that it
relies on message passing of embedding vectors along the graph’s topology. Usually, this amounts to
recursively applying an update-aggregate operation of the form:

hℓ
u = update(hℓ−1

u , aggr({{hℓ−1
v : v ∈ N(u)}})) (1)

to all nodes u, from the bottom to the top layer. Here, h0
u = xu are the node features, hℓ

u the
node embeddings at the ℓ-th layer, update a learnable non-linear function, and aggr a permutation-
invariant neighborhood aggregator (Bacciu et al., 2020; Bronstein et al., 2021). We refer to this form
of aggregation as local, as opposed to non-local aggregation where aggr runs over nodes outside of
N(u), e.g., via virtual nodes (Sestak et al., 2024). In node classification, the top-layer embeddings
are stacked into a matrix HL ∈ Rn×d, which is fed to a dense layer to obtain a label distribution
pθ(Y | GA) = softmax(HLW ), where W ∈ Rd×c are weights. In graph classification, they are
aggregated into an overall embedding hG = aggrG({{h

L
u : u ∈ V }}), also fed to a dense layer.

Explanations and Faithfulness. There exist a number of post-hoc techniques (Longa et al., 2024;
Agarwal et al., 2023; Kakkad et al., 2023) that given a GNN pθ can extract a local explanation for any
target decision (GA, ŷ). These explanations identify a subgraph RA of GA capturing those elements
– edges and/or features – deemed relevant for said decision. Unfortunately, explanations output by
post-hoc approaches may fail to identify all and only the truly relevant elements,2 in which case we
say they are not faithful to the GNN’s reasoning process (Longa et al., 2024; Agarwal et al., 2023).
Lack of faithfulness hinders understanding, trust modulation, and debugging (Teso et al., 2023).

This has prompted the development of self-explainable GNNs (SE-GNNs), a class of GNNs that
natively output explanations without any post-hoc analysis (Kakkad et al., 2023; Christiansen et al.,

2The tacit assumption in the XAI and domain invariance literature is that these elements exists.
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2023). SE-GNNs comprise two modules: the detector f extracts a class-discriminative subgraph RA

from the input, and the classifier g uses RA, and only RA, to infer a prediction. In this context, RA

acts as a local explanation. Both modules are GNNs, and the detector is encouraged to output human
interpretable explanations by leveraging attention (Miao et al., 2022a; Lin et al., 2020; Serra and
Niepert, 2022; Wu et al., 2022), high-level concepts or prototypes (Zhang et al., 2022; Ragno et al.,
2022; Dai and Wang, 2021; 2022; Magister et al., 2022), or other techniques (Yu et al., 2020; 2022;
Miao et al., 2022b; Giunchiglia et al., 2022).

In practice, the detector outputs per-element relevance scores (usually in [0, 1]), which are then used
to identify an explanation subgraph RA via, e.g., thresholding or topK. Importantly, the node features
XR ∈ R|RA|×d of RA are derived from, but not necessarily identical to, those of GA. These remarks
will become relevant when discussing strategies for improving faithfulness in Section 4.2.

Domain Invariance. Domain-invariant GNNs (DI-GNNs) aim to generalize across related domains
(Cai et al., 2023; Chen et al., 2023; Gui et al., 2023; Jiang et al., 2023). The underlying assumption
is that the label y depends only on (hidden) domain-invariant factors, while the input graph GA is
contaminated by domain-dependent elements. The literature suggests that, in order to generalize
across domains, DI-GNNs have to be plausible, that is, they should recover the (unobserved) truly
invariant subgraph as well as possible (Schölkopf et al., 2021; Jiang et al., 2023).

Like SE-GNNs, DI-GNNs are modular, i.e., they pair a detector f for identifying the invariant
subgraph RA, which plays the role of an explanation, with a classifier g taking RA as input. The
detector is encouraged to output highly plausible subgraphs through specialized regularization terms
and training strategies (Li et al., 2022; Chen et al., 2022; 2023; Gui et al., 2023). We will show in
Section 5 that this is not enough to ensure the model as a whole is domain invariant.

3 ARE ALL FAITHFULNESS METRICS THE SAME?

In the remainder, we fix a GNN pθ and a decision (GA, ŷ)
3 and study the faithfulness of a corre-

sponding local explanation RA. Intuitively, an explanation is faithful insofar as it is sufficient, i.e.,
keeping it fixed shields the model’s output from changes to its complement CA, and necessary, i.e.,
altering it affects the model’s output even if the complement CA is kept fixed (Watson et al., 2021;
Beckers, 2022; Marques-Silva and Ignatiev, 2022; Darwiche and Hirth, 2023).
Definition 1. An explanation RA is strictly sufficient if no change to the complement CA does induce
any change in the model’s output, strictly necessary if all changes to the explanation do, and strictly
faithful if it satisfies both conditions.

Existing metrics make these notions practical by restricting the set of changes they consider and
by implementing less strict measures of change in model output (Sanchez-Lengeling et al., 2020).
Specifically, unfaithfulness (Unf) (Agarwal et al., 2023) estimates sufficiency as the Kullback-Leibler
divergence between the original label distribution and that obtained after zeroing-out all irrelevant
features from GA. Fidelity minus (Fid-) (Pope et al., 2019; Yuan et al., 2022; Amara et al., 2022)
instead erases all edges and features deemed irrelevant by the explanation and measures the change
in likelihood of the prediction ŷ.4 Robust fidelity minus (RFid-) does the same but repeatedly deletes
random edges from CA (Zhao et al., 2023; Amara et al., 2023; Zheng et al., 2023). Finally, probability
of sufficiency (PS) estimates how often the model’s prediction changes after multiplying the node
features with the relevance scores output by the detector (Tan et al., 2022). Metrics for necessity are
specular, i.e., they manipulate the input by removing relevant elements instead, and include fidelity
plus (Fid+), robust fidelity plus (RFid+), and probability of necessity (PN).

While existing metrics differ in many details, they nicely fit the same common format:
Definition 2. Let d be a divergence, pR a distribution over supergraphs of RA, and pC a distribution
over supergraphs of CA. Also, let ∆d(GA, G

′
A) = d(pθ(· | GA) ∥ pθ(· | G′

A)) measure the impact
of replacing GA with G′

A on the label distribution.5 Then, the degree of sufficiency and degree of
necessity of an explanation RA for a decision (GA, ŷ) are:

Sufd,pR
(RA) = EG′

A∼pR
[∆d(GA, G

′
A)], Necd,pC

(RA) = EG′
A∼pC

[∆d(GA, G
′
A)] (2)

3We focus on graph classification, but our results also hold for node classification unless otherwise specified.
4A variant based on the difference in accuracy also exists (Yuan et al., 2022).
5We drop the dependency on the label(s) for brevity.
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Table 1: Definition 2 recovers existing faithfulness metrics for appropriate choices of divergence d
and interventional distributions pR and pC .

Metric Estimates Divergence d Allowed changes
Unf Suf KL(pθ(· | GA), pθ(· | G′

A)) zero out all irrelevant features
Fid- |pθ(ŷ | GA)− pθ(ŷ | G′

A)| zero out all irrelevant features, delete all irrelevant edges
RFid- " delete a random subset of irrelevant edges
PS 1{pθ(ŷ | GA) = pθ(ŷ | G′

A)} multiply all irrelevant elements by relevance scores

Fid+ Nec |pθ(ŷ | GA)− pθ(ŷ | G′
A)| zero out all relevant features, delete all relevant edges

RFid+ " delete a random subset of relevant edges
PN 1{pθ(ŷ | GA) ̸= pθ(ŷ | G′

A)} multiply all relevant elements by relevance scores

The expectations in Eq. (2) are potentially unbounded, but can be normalized to [0, 1], the higher the
better, via a non-linear transformation, i.e., taking exp(−Sufd,pR

(RA)) and 1−exp(−Necd,pC
(RA)).

Table 1 shows that Definition 2 recovers all existing metrics for appropriate choices of divergence
d and distributions pR and pC . Alternative choices yield additional metrics that differ in how they
estimate the model’s response to input modifications (Appendix C.4).

While both sufficiency and necessity matter, there exists a natural tension between them. For instance,
explanations covering a larger portion of GA likely attain higher sufficiency but lower necessity.
This motivates us to define the degree of faithfulness Faithd,pR,pC

(RA) as the harmonic mean of
normalized sufficiency and necessity, which is biased towards the lower of the two. We henceforth
suppress the dependency on d, pR and pC whenever it is clear from context.

3.1 FAITHFULNESS METRICS ARE NOT INTERCHANGABLE

A first key observation is that, despite falling into a common template, existing metrics are not
interchangeable, in the sense that explanations that are highly faithful according to one metric can be
arbitrarily unfaithful for the others. We formalize this in the following proposition:

Proposition 1. Let (pR, pC) be a pair of distributions as per Definition 2. Then, depending on pθ
and GA, it is possible to find (p′R, p

′
C) such that |Sufd,pR

(RA)−Sufd,p′
R
(RA)| and |Necd,pC

(RA)−
Necd,p′

C
(RA)| are as large as the natural range of d.

All proofs and relevant discussion are in Appendix A and Appendix C.5. In essence, Proposition 1
means that faithfulness results cannot be properly interpreted unless the parameters d, pR and
pC are known. This entails that explanation producers – such as banks and algorithm designers –
responsible for certifying the faithfulness of explanations cannot withhold the parameters they used
in the computation, lest end-users blindly trust explanations that are not sufficiently faithful for their
downstream applications.

Table 2: Model ranking and absolute Suf
values for different distributions pR, av-
eraged over 5 seeds: both can signifi-
cantly change.

Split Model Motif2

pid1R pid2R

ID
LECI 1 (81 ± 03) 2 (82 ± 03)
GSAT 2 (78 ± 01) 1 (84 ± 02)
CIGA 3 (65 ± 07) 3 (73 ± 06)

pood1R pood2R

OOD
LECI 2 (83 ± 06) 1 (88 ± 06)
GSAT 3 (76 ± 02) 3 (79 ± 03)
CIGA 1 (85 ± 09) 2 (86 ± 03)

To understand the practical implications of our result, we
report in Table 2 the Suf values and ranking of expla-
nations produced by three popular modular GNNs (see
Table 4) on the Motif2 (Gui et al., 2023) dataset. This
comes with in-distribution (ID) and out-of-distribution
(OOD) splits, allowing us to sample perturbations from
different graph distributions. We consider different distri-
butions pR, as follows:

• pid1

R and pood1

R allow i) replacing the complement CA =
GA \RA of the input graph with that of another sample
G′

A = C ′
A ∪ R′

A taken from the same split, and ii)
removing random edges from CA.

• pid2

R and pood2

R only subsample the complement of each
graph by randomly removing a fixed budget of edges.

Metrics are reported for both ID or OOD splits. Over-
all, changing pR alters the ranking of the models, This
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confirms that care needs to be taken when picking a metric for comparing XAI algorithms and
explanations, as metrics are not interchangeable. See Appendix C.5 for additional results.

3.2 NOT ALL NECESSITY ESTIMATORS ARE EQUALLY RELIABLE

The non-interchangeability of metrics becomes particularly significant as not all estimators are equally
reliable. In fact, as we show next, commonly used necessity metrics are insensitive to the number
of irrelevant elements in the explanation. Recall that evaluating necessity involves assessing the
model’s sensitivity to changes to the explanation RA itself. Assuming that RA contains r truly
relevant edges (i.e., removing them impacts the label distribution) we would like RA’s necessity to
worsen as the number of truly irrelevant edges ∥RA∥ − r it covers grows.

Necessity metrics are systematically invariant to truly irrelevant edges. Existing metrics do not
satisfy this desideratum. This is because they delete either all of RA

6 (e.g., Fid+ and PN) or an
IID subset of edges thereof (RFid+). To see why this is problematic, consider a node classification
task and a target node u1, and split the graph GA into two subsets: those nodes whose messages
can impact the distribution of Y1, and those that cannot. For injective L-layer GNNs, these sets are
NL(u1) and G \NL(u1), respectively, as there are not enough layers for messages coming from the
latter to reach u1.

Now, consider a 1-layer GNN for node classification and an input line graph u1 ← u2 ← · · · ← un.
Since there is only one layer, only the messages from N1(u1) = {u1, u2} can contribute to the
distribution of Y1. By deleting all of RA, Fid+ and PN disconnect u1 from all other nodes, and as
such they cannot distinguish between a “perfect” explanation R = N1(u1) and a “bad” explanation
R′ = Nn(u1) that contains arbitrary many irrelevant edges, as in both cases the prediction is made
using u1 only. See Fig. 2 in the Appendix for an illustration. An analogous reasoning applies to
RFid+, which removes edges in an IID fashion. This means that the probability that it deletes the
edge between u1 and u2 is the same regardless of how many other edges appear in the explanation.
We formalize this observation in the following proposition:
Proposition 2. Fix a divergence d and a threshold ϵ > 0. Let R contain r truly relevant edges. Then,
Fid+(R), PN(R), and RFid+(R) do not depend on ∥R∥ − r.

How can we ensure that Nec depends on the number of irrelevant elements? We next show
that by selecting an appropriate distribution pC , necessity can be made to account for the number of
irrelevant edges. This can be achieved by erasing b edges from the explanation, with some constraints
on how b is chosen. Specifically, if b depends on ∥R∥, the metric – once again – does not properly
account for irrelevant items in the explanation, as the number of deletions increases according to
the size of the explanation. Indeed, a numerical simulation shows that the probability of deleting at
least one truly relevant edge does not depend on the number of irrelevant ones in the explanation,
if b is proportional to the explanation size (see Fig. 6 in the Appendix). On the other hand, if b is
proportional to the size of the input graph G, the number of deletions depends also on the size of the
complement, resulting in a metric confounded by the complement of the explanation7. This is best
seen in the following example:
Example 1. Fix an explanation R composed of two edges {e1, e2}, where only e1 is truly relevant. If
G has 10 edges, fixing a budget of deletion as 10% of the graph size yields a modified graph G′ such
that the probability of removing e1 is 1

2 . Instead, if G has 20 edges, the probability of removing it is
1. Hence, despite R being fixed, the probability of sampling truly relevant edges drastically changes.

We propose to avoid these issues by fixing a budget b that is proportional to a data set-wide statistic,
such as average the graph size m̄ = 1/|D|

∑
G∈D∥G∥, where D is the set of graphs. This way, it

no longer directly depends on the size of any specific input graph or explanation, while still being
adaptive to the target task. The considerations above can be formalized in the following result:
Proposition 3. Fix any divergence d and a constant budget b ≥ 1. Let SbR be the set of subgraphs of
G obtained by deleting b edges from R while keeping C fixed. Given an explanation R containing
r truly relevant edges, Nec(R) computed using a uniform pC over SbR depends on the number of
irrelevant edges ∥R∥ − r.

6In node classification, the node whose prediction is being explained is never removed.
7The dependency of b on G can be modeled as a causal graph Nec ← RA ← G → b → Nec, which

contains the backdoor path RA ← G→ b→ Nec confounding the estimation of Nec (Pearl, 2009).
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Table 4: Popular modular GNNs fail to fully implement {HS, ER, CF, LA}. ✗/✓ means that both
variants exist and the choice is made via cross-validation.

SE-GNNs HS ER CF LA DI-GNNs HS ER CF LA

GISST (Lin et al., 2020) ✗ ✗ ✓ ✓ CIGA (Chen et al., 2022) TopK ✓ ✗/✓ ✗/✓
GSAT (Miao et al., 2022a) ✗ ✗ ✓ ✗/✓ GSAT (Miao et al., 2022a) ✗ ✗ ✓ ✗/✓
RAGE (Kosan et al., 2023) ✗ ✗ ✓ ✓ LECI (Gui et al., 2023) ✗ ✗ ✓ ✗/✓

In essence, we propose measuring necessity using pC that is uniform over subgraphs of size ∥G∥−b,
where b is a hyper-parameter and set as above. We denote the resulting distribution pbC .

Table 3: Necessity values for GSAT
explanations on Motif2. Nec
with pbC penalizes larger explana-
tions, whereas RFid+ does not.

Metric Top-30% Top-90%

RFid+ (↑) 18 ± 02 21 ± 02

Nec (↑) 54 ± 04 34 ± 02

Experimental analysis. We empirically compare our proposed
Nec metric and RFid+ for assessing the necessity of expla-
nations produced by GSAT (Miao et al., 2022a) trained on
Motif2 (Gui et al., 2022). We measure them at two differ-
ent topK selection thresholds (Amara et al., 2022), measuring
how metrics behave for larger explanations. Confirming our
theoretical analysis, RFid+ assigns close to constant scores to
unnecessarily large explanations (Proposition 2), whereas Nec
equipped with our proposed pbC sensibly penalizes larger expla-
nations (Proposition 3). Metrics are normalized ensuring the
higher the better, d is set to be the L1 divergence, and values are averaged over 5 seeds. For RFid+,
the edge-deletion probability κ = 0.3, while for Nec the budget b = 0.3m̄. We provide more details
about metric implementation in Appendix B.2.2 and further comparisons in Appendix D.2.

4 IS FAITHFULNESS WORTH OPTIMIZING FOR?

We show that for regular injective GNNs, strict faithful explanations are trivial, highlighting a trade-
off between explainability and expressivity. For modular GNNs, instead, non-trivial strictly faithful
explanations are theoretically attainable provided certain conditions are met, see Appendix C.2.
We then verify that popular modular GNNs fail in fulfilling those conditions, highlighting strong
limitation in their current design principles.

4.1 FOR INJECTIVE REGULAR GNNS STRICTLY FAITHFUL EXPLANATIONS ARE TRIVIAL

Recall that an explanation RA is strictly faithful when no change to the complement CA affects the
model’s output, and when all elements of RA contribute to the final prediction (see Section 3). In the
following, we show that for regular GNNs strictly faithful explanations are completely uninformative.
To build intuition, notice that strictly sufficient explanations must subsume the computational graph
of the prediction, that is, the subgraph of GA induced by all nodes whose messages influence the
label distribution. In node classification, this is the L-hop neighborhood of the target node, and in
graph classification the whole input graph. More formally:

Proposition 4. Consider a binary classification task, an L-layer injective GNN, any pC and pR
not allowing the addition of new elements, and d being either a divergence between distributions or
the difference in prediction likelihood: i) for node classification that only uses local aggregators,
an explanation RA for a decision (GA, ŷu) is strictly faithful iff it matches NL(u). ii) For graph
classification, an explanation RA for a decision (GA, ŷ) is strictly faithful iff it matches GA.

In both cases strictly faithful explanations do not depend on the learned weights at all and, as
such, are uninformative. This is a direct consequence of injectivity, a prerequisite for GNNs to
implement the Weisfeiler-Lehman test (Xu et al., 2018; Bianchi and Lachi, 2024), and highlights a
trade-off between expressivity and explainability.8 This finding also complements existing negative
results on (even non-injective) regular GNNs, which provide no easy way of obtaining strictly faithful
explanations (Amara et al., 2022; Longa et al., 2024; Li et al., 2024).

8Of course, one can obtain more informative explanations by giving up on strict faithfulness and instead
aiming at producing explanations that are both faithful enough and smaller than the entire computational graph.
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Table 5: Test set accuracy and faithfulness of SE-GNNs augmented with the strategies outlined in Sec-
tion 4.2, averaged over 5 seeds. We do not augment GISST on BaMS, Motif2, and Motif-Size
since these datasets have constant input features for all nodes, making the modifications ineffective.

Dataset BaMS Motif2 Motif-Size BBBP

Acc Faith Acc Faith Acc Faith Acc Faith

GSAT 100 ± 00 35 ± 03 92 ± 01 61 ± 01 90 ± 01 60 ± 02 79 ± 04 27 ± 08

GSAT + ER 100 ± 00 35 ± 03 92 ± 01 63 ± 01 90 ± 01 65 ± 01 80 ± 02 33 ± 04

GSAT + HS 98 ± 01 21 ± 06 53 ± 02 24 ± 05 54 ± 03 22 ± 05 71 ± 01 31 ± 09

GSAT + ER + HS 99 ± 01 24 ± 04 57 ± 04 37 ± 03 56 ± 07 29 ± 09 73 ± 02 33 ± 02

GISST 100 ± 00 25 ± 03 92 ± 01 53 ± 02 92 ± 00 50 ± 02 84 ± 03 23 ± 11

GISST + ER – – – – – – 85 ± 06 27 ± 06

GISST + HS – – – – – – 83 ± 05 19 ± 07

GISST + ER + HS – – – – – – 81 ± 07 15 ± 09

RAGE 96 ± 01 33 ± 05 83 ± 02 64 ± 04 74 ± 09 63 ± 07 82 ± 01 33 ± 04

RAGE + ER 96 ± 02 33 ± 02 85 ± 06 66 ± 03 71 ± 09 55 ± 07 84 ± 01 33 ± 05

RAGE + HS 97 ± 01 46 ± 03 85 ± 01 65 ± 02 78 ± 07 65 ± 09 84 ± 02 46 ± 02

RAGE + ER + HS 96 ± 01 46 ± 04 83 ± 04 64 ± 04 75 ± 08 62 ± 12 82 ± 01 43 ± 03

4.2 THE CASE OF MODULAR GNNS

Modular GNNs are explicitly designed so that their predictions – at least on paper – depend solely
on the explanation they extract, yet popular modular architectures suffer from poor faithfulness
(Christiansen et al., 2023). To better understand this phenomenon, we analyze four “architectural
desiderata”, whose absence enables information to leak from the complement to the explanation,
allowing the complement to influence the label distribution and thus compromising faithfulness:

• Content Features (CF): since the message passing of the detector f is unconditional on its
predicted edge relevance score, the classifier g should have access to raw input (or content)
features, contrarily to using the detector’s latent representation which is heavily leaked;

• Hard Scores (HS): the detector f should associate exact zero importance to information in the
complement, thus preventing update and aggr from mixing information from RA and CA in g;

• Explanation Readout (ER): (for graph classification only) the final graph global readout should
aggregate only over RA. Since explanations are often soft edge masks over the entire graph,
scaling the node embedding according to their average importance scores can still reduce the
impact of irrelevant nodes;

• Local Aggregations (LA): non-local aggregations (see Section 2) can easily mix the information
of the explanation with that of its complement, and can create unwanted dependencies between
any pair of nodes in the graph.

All these architectural desiderata encourage or enforce the classifier g to rely solely on RA for making
predictions. In the remainder of this Section, we empirically investigate the impact on faithfulness of
integrating popular models with the desiderata they lack, reporting their accuracy as a sanity check.

Experimental analysis. We benchmarked six representative modular architectures, listed in Table 4,
following their respective evaluation testbed for graph classification. The datasets chosen for evalu-
ation are picked from the usual evaluation routines for SE-GNNs and DI-GNNs respectively. For
DI-GNNs, the chosen benchmarks can be divided into datasets with known domain-invariant input
motifs (Motif2-Basis, CMNIST-Color), datasets with presumed domain-invariant input motifs
(LBAPcore), and datasets where domain-invariant input motif are not expected (SST2). This last
case is especially problematic, as no clear advantage is expected in focusing on a subset of the input
graph. The full experimental setup is detailed in Appendix B.

Table 5 and Table 6 show the results for the original SE-GNNs and DI-GNNs architectures and their
augmented variants. Overall, we show that simple but often neglected architectural design choices
can greatly impact faithfulness. Our major findings are as follows:

(i) Local explanations are not always helpful. LBAPcore and SST2 are the hardest datasets to
improve on and, generally, have worse faithfulness and accuracy scores. This raises doubts about the
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Table 6: OOD test set accuracy and faithfulness of DI-GNNs augmented with the strategies delineated
in Section 4.2, averaged over 5 seeds.

Dataset Motif2 CMNIST LBAPcore SST2

Acc Faith Acc Faith Acc Faith Acc Faith

LECI 85 ± 07 58 ± 02 26 ± 10 48 ± 11 71 ± 01 43 ± 05 83 ± 01 26 ± 02

LECI + ER 86 ± 03 59 ± 02 58 ± 12 58 ± 03 71 ± 01 46 ± 02 82 ± 01 13 ± 02

LECI + HS 86 ± 04 57 ± 02 34 ± 10 57 ± 01 72 ± 01 24 ± 01 83 ± 01 18 ± 03

LECI + LA - - 46 ± 11 57 ± 03 69 ± 01 31 ± 03 81 ± 05 20 ± 04

LECI + ER + HS + LA 79 ± 11 55 ± 02 75 ± 06 61 ± 01 59 ± 02 21 ± 01 81 ± 02 16 ± 01

CIGA 46 ± 10 38 ± 08 23 ± 03 36 ± 03 69 ± 01 33 ± 02 76 ± 06 18 ± 01

CIGA + ER 45 ± 09 54 ± 04 23 ± 02 43 ± 07 59 ± 07 09 ± 06 74 ± 03 16 ± 01

CIGA + CF 53 ± 07 49 ± 02 13 ± 01 49 ± 09 49 ± 12 03 ± 01 55 ± 07 09 ± 12

CIGA + LA - - 30 ± 09 41 ± 03 68 ± 01 34 ± 08 79 ± 03 16 ± 01

CIGA + ER + CF + LA 47 ± 08 39 ± 07 23 ± 03 50 ± 02 66 ± 01 23 ± 10 76 ± 08 15 ± 02

GSAT 75 ± 06 58 ± 01 25 ± 04 48 ± 03 70 ± 03 40 ± 06 79 ± 04 22 ± 04

GSAT + ER 59 ± 06 60 ± 06 30 ± 06 48 ± 01 67 ± 01 32 ± 03 81 ± 01 23 ± 04

GSAT + HS 86 ± 03 42 ± 07 14 ± 03 44 ± 04 71 ± 01 28 ± 01 80 ± 02 17 ± 02

GSAT + LA - - 27 ± 03 46 ± 04 69 ± 03 44 ± 02 81 ± 01 21 ± 04

GSAT + ER + HS + LA 64 ± 08 47 ± 03 17 ± 02 51 ± 05 70 ± 01 38 ± 03 80 ± 01 17 ± 01

suitability of these – rather popular – datasets for evaluating local GNN explanations, as evidenced
by the fact that explanations tend to cover the entire graph with similar or nearly identical scores (see
Appendix D.1 for the details). Indeed, a standard GIN (Xu et al., 2018) trained without any OOD
regularization achieves scores 69.7 and 79.7 respectively, confirming that GNNs might not have an
advantage in focusing on a sparse input subgraph. Therefore, any strategy that pushes the model to
more closely align with the explanation is likely to force it to either discard information or assign
uniform weights across the entire topology, ultimately reducing both faithfulness and accuracy.

(ii) HS can significantly alter model behavior. Although RAGE seems to benefit from HS, as it
improves both faithfulness and accuracy in every dataset, it severely compromises the training of
GSAT in Motif2 and Motif-Size, resulting in a train and test accuracy of around 50%. In fact,
exact-zero scores for irrelevant edges are certainly desirable, yet it is known that it is hard to deal with
exact zeros in common gradient-based learning. More advanced techniques are therefore advocated
for reliably implementing hard scores (Serra and Niepert, 2022).

(iii) ER, LA, and CF can be effective in promoting faithfulness. Motivated by these observations,
next we focus on the remaining datasets, where GNNs can identify sensible local explanations. ER
improves faithfulness in 10 cases out of 15, while leaving it unchanged in four. In two cases in
particular, whilst faithfulness increases, accuracy drops. This is a natural effect of being faithful: if
the explanation is not plausible enough9, the accuracy shall drop. When prompting CIGA to use input
features (CF), faithfulness increases by 33% on Motif2 and CMNIST on average. Similarly, LA
improves on average by 9.5% faithfulness and by 38% accuracy on CMNIST. In general, imposing
all desiderata jointly is beneficial when individually they also are.

Take-away. On the one hand, these results question the current design of modular GNNs, suggesting
that popular models include architectural components that implicitly penalize faithfulness, and that
the factors contributing to faithfulness may be more nuanced than previously assumed.

On the other, they show that merely preventing information from the complement to leak into
the prediction is insufficient to fully address the problem. A rather complementary direction of
investigation is that of making the detector f more stable to irrelevant modifications. In fact,
assuming a classifier perfectly implementing the desiderata above and an explanation RA, it is easy
to see that if the detector changes the predicted explanation for a modified graph G′

A ⊇ RA, then the
final prediction can arbitrarily change, thus also Suf does.

Training-time strategies are also likely to play a role. For example, necessity can intuitively be
encouraged via sparsification techniques (Lin et al., 2020; Kosan et al., 2023), whereas approaches
like contrastive learning (Chen et al., 2022; 2023), adversarial training (Gui et al., 2023), or data

9CIGA and GSAT score around 0.25 of WIoU plausibility on Motif2. See Appendix B.2 for details
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augmentation (Wu et al., 2022) are natural options for encouraging sufficiency. We plan to investigate
how those insights translate into new faithful-by-design modular architectures in future work.

5 FAITHFULNESS IS KEY FOR DOMAIN INVARIANCE
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Figure 1: Likelihood, faithfulness and
domain-invariance are correlated. The plot
shows the difference in likelihood between
splits. The red line is the best linear fit. Best
viewed in color.

Finally, we study the impact of faithfulness – and
lack thereof – on domain invariance. In the domain
invariance literature (Chen et al., 2022; Gui et al.,
2023), one distinguishes between in-distribution (ID)
and out-of-distribution (OOD) data, sampled from
pid(GA, Y ) and pood(GA, Y ), respectively, and the
goal is to learn a DI-GNN pθ that generalizes from
ID to OOD data. Input graphs are assumed to consist
of an invariant R∗

A ⊆ GA and a spurious subgraph,
with the ground-truth label only depending on the
invariant subgraph in a domain-invariant manner, that
is, pid(Y | R∗

A) = pood(Y | R∗
A) (Cai et al., 2023;

Chen et al., 2023; Jiang et al., 2023). Modular DI-
GNNs are designed to output a subgraph RA (which
plays the role of an explanation) and its degree of
invariance is proportional to its plausibility, i.e., how
closely it matches R∗

A.

We begin by showing that, even if the graphs RA

extracted by a DI-GNN (see Section 2) are maximally
plausible, unless they are also strictly sufficient, the
model’s prediction is not domain invariant. To build
intuition, take a DI-GNN that, for some input, outputs
a perfectly invariant explanation RA. Now, if the explanation is not strictly sufficient, by definition
there exists a modification to the complement of RA (which is domain-dependent) that alters the
predicted class distribution. Thus the model as a whole cannot be domain-invariant.

Proposition 5. Let pθ be a modular DI-GNN such that the detector f outputs graphs RA that are
maximally plausible, i.e., that comprise all and only those elements that are constant across the target
domains. If RA is not strictly sufficient, then the prediction is not domain invariant.

This result is significant because DI-GNNs typically optimize only for the invariance of the extracted
subgraph RA, neglecting how the classifier uses it afterward. The next result highlights that the degree
of faithfulness of RA – and specifically, that of sufficiency – plays a direct role in ensuring that the
model’s predictions are truly domain-invariant. In fact, the following Theorem bounds the difference
in likelihood between ID and OOD as a proxy to measure the change in the fit of the data, so that a
small difference corresponds to a consistent model behavior across domains. Differently from the
many generalisation bounds available in literature (Redko et al., 2020), ours pertains specifically to
explanation quality, both in terms of degree of invariance and degree of sufficiency.

Theorem 1. (Informal) Let pθ be a deterministic DI-GNN with detector f and classifier g, and
pid(GA, Y ) and pood(GA, Y ) be the ID and OOD empirical distributions, respectively. Then:∣∣∣E(GA,y)∼pid [pθ(y | GA)] − E(GA,y)∼pood [pθ(y | GA)]

∣∣∣ (3)

≤ ER∗
A

[
k1(λ

id
topo + λood

topo) + k2(λ
id
feat + λood

feat ) + (λid
suff + λood

suff )
]
.

Here, ER∗
A

runs over all possible invariant subgraphs, k1, k2 > 0 are Lipschitz constants of pθ, λid
topo,

λood
topo λ

id
feat, and λood

feat measure the implausibility of the detector’s output (with respect to topology and
features, respectively), and λid

suff, λ
ood
suff are the degree of sufficiency for ID and OOD data.

The Theorem is proved by applying the triangular inequality and basic properties of the expectation
and relies on two main assumptions: the domain invariance of R∗

A, and the Lipschitzness of GNNs.
In essence, Theorem 1 shows that a DI-GNN that fits well the ID data will fit well the OOD data if
RA is i) plausible (low λtopo and λfeat, thus invariant across domains), and ii) highly sufficient (low
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λsuff ). An illustration of the interplay between the LHS and the RHS of Theorem 1 is provided in
Appendix C.1. The practical relevance of this result is twofold: it suggests that researchers should
also consider sufficiency when evaluating DI-GNNs, as well as focus on the invariance of both
topology and feature, rather than topology only as often done (see Table 8).

We stress that while necessity does not appear in the bound, it becomes important if we wish the
invariant subgraph to be non-trivial. Indeed, Fig. 1 shows a statistically significant anti-correlation
(Pearson’s correlation −0.83, p-value 0.01) between the difference in average prediction’s likelihood
between ID and OOD data, and the combination of the degree of domain-invariance and faithfulness.
Notably, the same applies, yet with a slightly weaker correlation of −0.74 (p-value 0.02), when
replacing likelihood with accuracy. See Appendix B for further details.

6 RELATED WORK

Modular architectures. Modular GNNs are widely used for seeking trustworthiness, either in the
form of explainable (Lin et al., 2020; Miao et al., 2022b; Kosan et al., 2023) or confounding-free
predictions (Wu et al., 2022; Chen et al., 2022; Gui et al., 2023) (see Jiang et al. (2023) for a survey),
also in deep neural networks for non-relational data (Koh et al., 2020; Marconato et al., 2022).
Explanation quality is critical for interpretability and for ensuring fair and generalizable predictions
(Amara et al., 2022; Miao et al., 2022a; Longa et al., 2024). Despite being primarily designed
for faithfulness, as the prediction depends on the explanation only, little attention has been paid to
measuring how well the classifier adheres to its own explanations, an issue that can completely prevent
trust allocation (Agarwal et al., 2024). Indeed, recent work has shown how for popular SE-GNNs
architectures, the classifier seems to be more faithful to randomly generated subgraphs than to its
explanations (Christiansen et al., 2023). In this work, we investigate the reasons for this behavior,
discuss the applicability of faithfulness-enforcing strategies and extend the analysis to DI-GNNs.

Faithfulness. In the Explainable AI (Samek et al., 2021) and GNN literature (Agarwal et al., 2023),
sufficiency and faithfulness are often conflated, however, disregarding necessity opens to trivially
sufficient yet uninformative explanations. Faithfulness is also sometimes defined as the correlation
between the explainer’s “performance” and that of the model, that is, to what extent worsening model
performance worsen also the plausibility of explanations (Sanchez-Lengeling et al., 2020). However,
this is evaluating model and explainer performance separately and does not reflect the degree to which
a classifier relies on the provided explanation for making its prediction. Our notion of faithfulness is
rooted in causal explainability (Beckers, 2022) and disentanglement in causal representation learning
(Suter et al., 2019; Schölkopf et al., 2021). Like Beckers (2022), we argue that absolute measurements
of sufficiency, and more generally faithfulness, are uninformative unless properly contextualized, in
our case by the choice of parameters used for the measurements. Following Bordt et al. (2022), we
argue this leaves room for adversarial explanation providers to supply explanations that optimize
their objective rather than that of the explanation consumer.

7 KEY TAKEAWAYS AND BROADER IMPACT

We have studied the faithfulness of explanations in regular and modular GNNs. Our results indicate
that, despite conforming to a shared template, existing faithfulness metrics are not interchangeable
(Proposition 1) and in fact some even suffer from systematic issues (Proposition 2), which we show
can be avoided with an appropriate choice of parameters (Proposition 3). We have also shown that
optimizing for faithfulness is not always a sensible design goal (Proposition 4) and that improving
the faithfulness of SE-GNNs and DI-GNNs is non-trivial, suggesting limitations in the current design
of modular GNN. We also proved that faithfulness plays a surprisingly central role for domain
invariance, in that modular GNNs tailored for domain invariance cannot be invariant unless their
explanations are also sufficient (Proposition 5 and Theorem 1). This suggests that research on
DI-GNNs should focus on sufficiency, which it currently neglects.

Limitations: Our experiments explore simple yet overlooked design choices to enhance faithfulness
in modular GNNs, showing benefits for SOTA architectures. Developing truly faithful-by-design
solutions remains a challenge for future work. In addition, our notion of faithfulness relies on
input-level modifications of the graph topology. While this doesn’t impact training or inference time,
its evaluation can be slow for large input graphs, requiring more efficient implementations.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 1. Let (pR, pC) be a pair of distributions as per Definition 2. Then, depending on pθ
and GA, it is possible to find (p′R, p

′
C) such that |Sufd,pR

(RA)−Sufd,p′
R
(RA)| and |Necd,pC

(RA)−
Necd,p′

C
(RA)| are as large as the natural range of d.

Proof. We prove the statement for graph classification; the case of node classification is analogous.

Let S = supp(pR) and S ′ = supp(p′R), both finite. Assume RA attains a perfect degree of
sufficiency according to pR, i.e., SufpR

(RA) = 0, and take p′R such that S ∩ S ′ = ∅. Then:

|SufpR
(RA)− Sufp′

R
(RA)| =

∣∣∣ ∑
G′

A∈S

∆(GA, G
′
A)pR(G

′
A) +

∑
G′

A∈S′

∆(GA, G
′
A)p

′
R(G

′
A)

∣∣∣ (4)

The two sums have no terms in common, so we can independently control the second one through our
choice of interventional distribution p′R. In fact, it is maximized by those distributions that associate
all probability mass to graphs G′

A for which ∆(GA, G
′
A) is largest, e.g., counterfactuals. As long

as at least one counterfactual G′
A exists that includes RA as a subgraph, then p′R can allocate all

probability mass to it, in which case the right sum becomes as large as argmaxp,q d(p,q), that is, as
large as the natural range of the divergence d.

A similar reasoning applies to Nec. Take RA such that for all R′
A ∈ supp(pC) it holds that

∆(GA, G
′
A) > τ for some desired threshold τ . As long as there exists a graph G′

A ⊇ CA such that
pθ(· | GA) ≡ pθ(· | G′

A), then we can always choose an interventional distribution p′C that allocates
all mass to it. Hence, Necp′

C
(RA) = 0 and the difference in necessity will be at least τ .

This simple result warrants some discussion. First, we note that the assumptions it hinges on are
rather weak. Its two key requirements are that: i) S and S ′ are finite: this is the case for all existing
metrics, whose interventional distributions are defined over the set of subgraphs of the input graph,
which are finitely many; ii) The GNN admits counterfactuals that subsume RA (for sufficiency) or
inputs that subsume CA and map to the predicted label ŷ (for necessity), both frequent occurrences in
practice.

Second, the construction behind the proof also mimics actual differences between faithfulness metrics
from the literature. In fact, ignoring differences in choice of divergence, the main difference between
unfaithfulness (which allocates non-zero probability only to subgraphs obtained by deleting features
from the input), fidelity minus (which deletes all edges), and robust fidelity minus (which deletes
a random subset of edges at random) is exactly their interventional distributions pR, which also
happen to have either disjoint or almost disjoint supports (in which case a similar result applies almost
verbatim). Our construction then amounts to saying that there are many practical situations in which
one can achieve good unfaithfulness and poor fidelity minus, or vice versa.

Let us briefly discuss the relationship between metrics having the same interventional distribution
but different divergences d and d′. On the bright side, it is easy to see that, as long as both d and
d′ are proper divergences, an explanation RA achieving perfect sufficiency according to one will
also attain perfect sufficiency according to the other, precisely because perfect sufficiency is attained
when ∆(GA, G

′
A) = 0 for all G′

A ∼ pR, which can occur if and only if both divergenes are zero (by
definition of divergence). The same holds for the degree of necessity. For non-optimal sufficiency
and necessity, the difference due to replacing divergences is governed by well-known inequalities,
such as Hölder’s (between Lp distances) and Pinsker’s (relating the KL to the L1 distance).

The situation is different if d is a proper divergence (say, the KL divergence) and d′ is a difference
in likelihoods. In this case, there are situations in which the two quantities can differ. To see this,
consider a multi-class classification problem, target decision (GA, ŷ) and a modified input G′

A ∼ pR
such that i) pθ(ŷ | GA) = pθ(ŷ | G′

A), but ii) the two label distributions have disjoint support. In this
case, the KL divergence between them would be unbounded, yet the difference in likelihood would be
null. Depending on the choice of pR, this can yield a large difference between degrees of sufficiency
(and similarly for necessity).
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A.2 PROOF OF PROPOSITION 2

Proposition 2. Fix a divergence d and a threshold ϵ > 0. Let R contain r truly relevant edges. Then,
Fid+(R), PN(R), and RFid+(R) do not depend on ∥R∥ − r.

Proof. Fid+ and PN are systematically invariant to truly irrelevant edges. We begin by showing
that metrics like Fid+, which estimate necessity by deleting the whole explanation RA,10 suffer
from this issue. Consider a L-layer GNN for predicting a label of interest for a node u, and take
RA ⊆ NL(u) which covers all truly relevant edges and R′

A ⊃ RA. Fid+ associates the same value to
both RA and R′

A, as in both cases the model predicts Y1 using u only, meaning that, surprisingly,
Fid+(RA) = Fid+(R′

A). When the edge relevance scores are binary, PN behaves exactly like Fid+,
in which case it also suffers from this issue.

RFid+ is systematically invariant to truly irrelevant edges. Considering the same setting as above,
it turns out that also RFid+(RA) = RFid+(R′

A). In fact, RFid+ estimates necessity by removing
edges in an IID fashion, which means that the probability that it deletes the edges in RA is the same
regardless of how many other edges appear in R′

A \RA. This intuition can be formalized as follows:
Let Uj be a random variable determining whether edge ej is kept, such that Uj ∼ Bernoulli(κ),
with κ a user-provided hyperparameter. As in Proposition 3, let SbR be the set of subgraphs of G
obtained by deleting b edges from R while keeping C fixed, and Ab

R = {G′ ∈ SbR : ∆(G,G′) ≥ ϵ}
those subgraphs that lead to a large enough change in ∆. Also, let SR = S1R ∪ . . .∪SmR and similarly
for AR. Then, we can study RFid+ in terms of how likely the corrupted graphs G′ it samples have
missing relevant edges, i.e., P (G′ ∈ AR).

P (G′ ∈ AR) = 1− P (G′ /∈ AR) (5)
= 1− P (U1 = 1, . . . , Um = 1) (6)

= 1−
m∏
j=1

P (Uj = 1) (7)

= 1− κm (8)
(9)

In the second to last step, we made use of the independence of all Ui’s. The above probability does
not depend on the number of irrelevant edges ∥R∥ − r.

A.3 PROOF OF PROPOSITION 3

Proposition 3. Fix any divergence d and a constant budget b ≥ 1. Let SbR be the set of subgraphs of
G obtained by deleting b edges from R while keeping C fixed. Given an explanation R containing
r truly relevant edges, Nec(R) computed using a uniform pC over SbR depends on the number of
irrelevant edges ∥R∥ − r.

Proof. Let SbR be the set of subgraphs of G obtained by deleting b edges from R while keeping C
fixed, and Ab

R = {G′ ∈ SbR : ∆(G,G′) ≥ ϵ} those subgraphs that lead to a large enough change in
∆. Then, when choosing a budget b of deletions and a uniform pC(G) over subgraphs with ∥G∥ − b
edges, P (G′ ∈ Ab

R) = |Ab
R|/|SbR|, which decreases as the number of irrelevant edges in R increases.

Note that |SbR| =
(∥R∥

b

)
, while |Ab

R| =
∑b

c=1

(
r
c

)(∥R∥−r
r−c

)
.

A.4 PROOF OF PROPOSITION 4

Proposition 4. Consider a binary classification task, an L-layer injective GNN, any pC and pR
not allowing the addition of new elements, and d being either a divergence between distributions or
the difference in prediction likelihood: i) for node classification that only uses local aggregators,
an explanation RA for a decision (GA, ŷu) is strictly faithful iff it matches NL(u). ii) For graph
classification, an explanation RA for a decision (GA, ŷ) is strictly faithful iff it matches GA.

10In node classification, the node whose prediction is being explained is never removed.
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Proof. Before proceeding, it is useful to introduce the notion of computational graph, that is, the
subgraph of GA induced by those nodes whose messages are relevant for determining the label
distribution P (Yu | GA) or P (Y | GA). For node classification, it is easy to see that for GNNs with
local aggregators, the only messages reaching u are those coming from nodes within NL(u), and for
injective GNNs, all such messages impact the label distribution. For graph classification, which is
implicitly global, all nodes in the computational graph are the entirety of GA.

Next, consider any pair of interventional distribution, pC and pC , excluding the addition of new nodes
or edges. We show that if RA does not subsume the entirety of the computational graph, then when
computing strict sufficiency we can always alter those elements of the computation graph that fall in
the complement CA. By injectivity of pθ, any change to the features or edges of the computational
graph yields a difference in label distribution, necessarily affecting both classes and therefore any
divergence or difference in likelihood d11. It follows that RA cannot be strictly sufficient for any d,
and therefore neither strictly faithful.

The converse also holds: if RA covers the entire computational graph, then it is necessarily strictly
sufficient. This is because the complement CA has no overlap with the computational graph, so
altering it has no impact on the label distribution.

If instead, the interventional distributions allow for the addition of new items, like new nodes or new
edges, then a strictly faithful explanation might not exist altogether as the induced perturbation can
adversarially include the trivial class-discriminative pattern of the non-predicted class, forcing the
model to always switch prediction.

A.5 PROOF OF PROPOSITION 5

Proposition 5. Let pθ be a modular DI-GNN such that the detector f outputs graphs RA that are
maximally plausible, i.e., that comprise all and only those elements that are constant across the target
domains. If RA is not strictly sufficient, then the prediction is not domain invariant.

Proof. We proceed by contradiction. Let GA be an input graph such that the explanation RA for
model pθ and decision (GA, ŷ) is perfectly domain-invariant yet not strictly sufficient. We assume
that the model prediction does not depend on domain-induced spurious information, meaning that
every modification applied to CA will not have any impact on the model prediction (according to
d). However, the lack of strict sufficiency implies that ∃G′

A ∈ supp(pR) such that ∆(GA, GA
′) > 0.

This means that there exists a perturbation outside of RA that altered the model prediction, which is
in contradiction with assuming that it does not depend on domain-induced information.

A.6 PROOF OF THEOREM 1

Theorem: Let pθ be a deterministic DI-GNN with detector f and classifier g and d be the difference
in likelihood of the predicted label. Also, let pθ be Lipshitz with respect to changes to both the topology
and the features of the input, that is, for every pair of graphs GA = (G,X) and G′

A = (G′, X ′), it
must hold that: ∣∣∣∣pθ(Y | (G,X))− pθ(Y | (G′, X))

∣∣∣∣ ≤ k1d1(G,G′) (10)∣∣∣∣pθ(Y | (G,X))− pθ(Y | (G,X ′))

∣∣∣∣ ≤ k2d2(X,X ′) (11)

for suitable distance functions d1 and d2. Then:∣∣∣E(GA,y)∼pid [pθ(y | GA)] − E(GA,y)∼pood [pθ(y | GA)]
∣∣∣ (12)

≤ ER∗
A
[k1(λ

id
topo + λood

topo) + k2(λ
id
feat + λood

feat ) + (λid
suff + λood

suff )]

Here, k1, k2 > 0 are Lipschitz constants of pθ, λid
topo, λid

topo λ
ood
feat , and λood

feat measure the (negated) de-
gree of domain invariance of the detector’s output (with respect to topology and features, respectively),
and λid

suff, λ
ood
suff are the degree of sufficiency for ID and OOD data.

11It is not affecting the difference in accuracy however, as a change in prediction confidence does not always
entail a change in most-likely output class.
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Proof. Let f∗ be an ideal detector that for every input GA outputs the maximal domain-invariant
subgraph R∗

A = (R∗, XR∗
). Note that, for every (Gid

A , yid) ∼ pid and (Good
A , yood) ∼ pood that

share the same invariant subgraph (that is, such that f∗(Gid
A ) = f∗(Good

A ) = R∗
A) any DI-GNN

constructed by stitching together f∗ and a deterministic classifier g will predict the same label
distribution for both graphs, i.e., pg(Y | f∗(Gid

A )) ≡ pg(Y | f∗(Good
A )).

Now, fix any invariant subgraph R∗
A. When conditioning on it, it holds:

E(GA,y)∼pid(GA,Y |R∗
A)[pθ(y | f∗(Gid

A ))] = E(GA,y)∼pood(GA,Y |R∗
A)[pθ(y | f∗(Good

A ))] (13)

where the two expectations run over ID and OOD samples that share the same invariant subgraph R∗
A.

We proceed by noting that:

E(GA,y)∼pid(·|R∗
A)

∣∣∣∣pθ(y | (R∗, XR∗
))− pθ(y | (R,XR∗

))

∣∣∣∣ ≤ k1 E(GA,y)∼pid(·|R∗
A)[d1(R

∗, R)]︸ ︷︷ ︸
:=λtopo

(14)

The expectation on the RHS is the average topological distance of the predicted invariant subgraphs
to R∗

A, which corresponds to the degree of invariance (plausibility) of R, and will be referred to as
λtopo. At the same time, it also holds that:

E(GA,y)∼pid(·|R∗
A)

∣∣∣∣pθ(y | (R,XR∗
))− pθ(y | (R,XR))

∣∣∣∣ ≤ k2 E(GA,y)∼pid(·|R∗
A)[d2(X

R∗
, XR)]︸ ︷︷ ︸

:=λfeat

(15)

where the expectation on the RHS is now the average distance between the features of the predicted
invariant subgraphs and those of R∗

A, and will be referred to as λfeat. Combining Eq. (14) and Eq. (15)
using the triangular inequality, yields:

E(GA,y)∼pid(·|R∗
A)

∣∣∣∣pθ(y | R∗
A)− pθ(y | RA)

∣∣∣∣ (16)

= E(GA,y)∼pid(·|R∗
A)

∣∣∣∣pθ(y | R∗
A)− pθ(y | (R,XR∗

)) + pθ(y | (R,XR∗
))− pθ(y | RA)

∣∣∣∣ (17)

≤ E
∣∣∣∣pθ(y | (R∗, XR∗

))− pθ(y | (R,XR∗
))

∣∣∣∣+ E
∣∣∣∣pθ(y | (R,XR∗

))− pθ(y | (R,XR))

∣∣∣∣ (18)

≤ k1λ
id
topo + k2λ

id
feat (19)

This holds for any fixed R∗
A.

Next, we bound the expected difference between the label distribution determined by RA and that
determined by GA using the degree of sufficiency. For notational convenience, we draw complements
C ′

A rather than full modified graphs G′
A from pR, and we denote the operation of joining RA and

C ′
A to form G′

A with the ∪ operator, and where we use the difference in prediction likelihood as
divergence d. We proceed as follows:

E(GA,y)∼pid(·|R∗
A)

∣∣∣∣pθ(y | RA)− pθ(y | GA)

∣∣∣∣ (20)

= E(GA,y)∼pid(·|R∗
A)

∣∣∣∣EC′
A∼pR(GA)

[
pθ(y | RA ∪ C ′

A)
]
− pθ(y | GA)

∣∣∣∣ (21)

≤ E(GA,y)∼pid(·|R∗
A)EC′

A∼pR(GA)

∣∣∣∣pθ(y | RA ∪ C ′
A)− pθ(y | GA)

∣∣∣∣ (22)

= E(GA,y)∼pid(·|R∗
A)Suf(RA) := λsuff (23)

(24)
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In the first to second step, we made use of the law of total probability and the product rule, for which:

pθ(y | RA) =
∑
C′

A

p(y, C ′
A | RA) =

∑
C′

A

p(y, C ′
A, RA)

p(RA)
=

∑
C′

A

p(y | C ′
A, RA)p(C

′
A | RA)p(RA)

p(RA)

(25)

=
∑
C′

A

pθ(y | RA ∪ C ′
A)pR(C

′
A) = EC′

A∼pR
pθ(y | RA ∪ C ′

A) (26)

Then, applying again the triangular inequality between Eq. (20) and Eq. (16) yields:

E(GA,y)∼pid(·|R∗
A)

∣∣∣∣pθ(y | R∗
A)− pθ(y | GA)

∣∣∣∣ ≤ k1λ
id
topo + k2λ

id
feat + λid

suff. (27)

The same derivation applies to pood(GA), so we obtain:

E(GA,y)∼pood(·|R∗
A)

∣∣∣∣pθ(y | R∗
A)− pθ(y | GA)

∣∣∣∣ ≤ k1λ
ood
topo + k2λ

ood
feat + λood

suff , (28)

Combining these two bounds using the triangular inequality one last time, we derive:∣∣∣∣E(GA,y)∼pid(·|R∗
A)pθ(y | GA)− E(GA,y)∼pood(·|R∗

A)pθ(y | GA)

∣∣∣∣ (29)

≤ E (Gid
A ,y)∼pid(·|R∗

A)

(Good
A ,y)∼pood(·|R∗

A)

∣∣∣∣pθ(y | Gid
A )− pθ(y | Good

A )

∣∣∣∣ (30)

≤ k1(λ
id
topo + λood

topo) + k2(λ
id
feat + λood

feat ) + (λid
suff + λood

suff ). (31)

Again, this holds for all choices of R∗
A.

Finally, we leverage these inequalities to bound the difference in likelihood between ID and OOD
data for all possible choices of R∗

A:

ER∗
A

[∣∣∣E(GA,y)∼pid(·|R∗
A)pθ(y | GA)− E(GA,y)∼pood(·|R∗

A)pθ(y | GA)
∣∣∣] (32)

≥
∣∣∣∣ER∗

A

[
E(GA,y)∼pid(·|R∗

A)pθ(y | GA)− E(GA,y)∼pood(·|R∗
A)pθ(y | GA)

] ∣∣∣∣ (33)

=

∣∣∣∣E(GA,y)∼pidpθ(y | GA)− E(GA,y)∼poodpθ(y | GA)

∣∣∣∣ (34)

where ER∗
A

runs over all possible invariant subgraphs and no longer depends on the specific choice of
R∗

A. By monotonicity of the expectation we conclude that:∣∣∣∣E(GA,y)∼pidpθ(y | GA)−E(GA,y)∼poodpθ(y | GA)

∣∣∣∣ (35)

≤ ER∗
A

[
k1(λ

id
topo + λood

topo) + k2(λ
id
feat + λood

feat ) + (λid
suff + λood

suff )
]

(36)

B EXPERIMENTAL DETAILS

B.1 DATASETS

In this study, we conduct an investigation across seven graph classification datasets commonly used
for evaluating SE-GNNs and DI-GNNs. Specifically, we examine three synthetic datasets and four
real-world datasets, and in the following paragraphs, we provide a detailed description of each.
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Synthetic datasets

• BaMS (Azzolin et al., 2022) is a synthetic dataset consisting of 1,000 Barabasi-Albert (BA) graphs,
each with network motifs (house, grid, wheel) randomly attached at various positions. Class 0
includes plain BA graphs and BA graphs enriched with either a house, a grid, a wheel, or all three
motifs together. Class 1 consists of BA graphs enriched with a combination of two motifs: a house
and a grid, a house and a wheel, or a wheel and a grid. This dataset is utilized in the context of
self-explainable Graph Neural Networks (GNNs), with the expected ground truth explanations
being the specific motif combinations in each class.

• Motif2-Basis (Gui et al., 2023) is a synthetic dataset comprising 24,000 graphs categorized
into three classes. Each graph consists of a basis and a motif. The basis can be a ladder, a tree
(or a path), or a wheel. The motifs are a house (class 0), a five-node cycle (class 1), or a crane
(class 2). The dataset is divided into training (18,000 graphs), validation (3,000 graphs), and
test sets (3,000 graphs). In the context of OOD analysis, two additional sets are considered:
the OOD validation set and the OOD test set. In these sets, the class-discriminative subgraph
RA (i.e., the motifs) remains fixed, while the bases vary. Specifically, the basis for the OOD
validation set (3,000 graphs) is a circular ladder, and the basis for the OOD test(3,000 graphs) set
is a Dorogovtsev-Mendes graph (Dorogovtsev and Mendes, 2002).

• Motif-Basis (Gui et al., 2022) is specular to Motif2-Basis, where the OOD test set
contains graphs generated connecting the three motifs above to simple line paths of varying length.

• Motif-Size (Gui et al., 2022) is a synthetic dataset consisting of 24,000 graphs categorized
into three classes. Similar to Motif2-Basis, each network is composed of a basis and a motif,
with the motif serving as the class-discriminative subgraph RA. The basis structures include a
ladder, a tree (or a path), a wheel, a circular ladder, or a star. The motifs are a house (class 0), a
five-node cycle (class 1), or a crane (class 2). The dataset is divided into training (18,000 graphs),
validation (3,000 graphs), and test sets (3,000 graphs). In the context of OOD analysis, the size of
the basis is increased. Specifically, in the OOD validation set (3,000 networks), the basis sizes are
increased up to three times their original size, while in the OOD test set (3,000 graphs), the basis
sizes are increased up to seven times.

Real-world datasets

• BBBP (Wu et al., 2018) is a dataset derived from a study on modeling and predicting barrier
permeability (Martins et al., 2012). It comprises 2,050 compounds, with 483 labeled as positive
and 1,567 as negative.

• CMNIST-Color (Gui et al., 2022) contains 70,000 graphs of hand-written digits transformed
from the MNIST database using superpixel techniques (Monti et al., 2017). The digits are colored
according to their domains and concepts. In the training set, which contains 50,000 graphs, the
digits are colored using five different colors. To evaluate the model’s performance on out-of-
distribution data, the validation and testing set each contain 10,000 graphs with two new colors
introduced specifically for these sets.

• LBAPcore-Assay (Gui et al., 2023) is a molecular dataset consisting of 34,179 graphs sourced
from the 311 largest chemical assays. The validation set comprises 19,028 graphs from the next
largest 314 assays, while the test set includes 19,302 graphs from the smallest 314 assays.

• SST2-Length is a sentiment analysis dataset based on the NLP task of sentiment analysis,
adapted from the work of Yuan et al. (Yuan et al., 2022). In this dataset, each sentence is
transformed into a grammar tree graph, where individual words serve as nodes and their associated
word embeddings act as node features. The primary task is a binary classification to predict the
sentiment polarity of each sentence. The dataset comprises 70,042 graphs, divided into training,
validation, and test sets. The out-of-distribution (OOD) validation and test sets are specifically
created to evaluate performance on data with longer sentence lengths.

B.2 IMPLEMENTATION DETAILS

B.2.1 TRAINING AND REPRODUCIBILITY

The models are developed leveraging repositories provided by previous work. Specifically:
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Figure 2: Existing necessity metrics are invariant to the number of truly irrelevant edges that
they cover. For a line graph and a 1-layer GNN, the truly relevant edges for predicting the label of u1

are those in N1(u1) = {u1, u2}. However, existing necessity metrics do not distinguish between R
(which contains no truly irrelevant edge) and a dummy R′ (which contains arbitrarily many).

• CIGA, LECI and GSAT are developed based on the repository from Gui et al. (2023), using
commit fb39550453b4160527f0dcf11da63de43a276ad5.

• RAGE is implemented using the code available at https://anonymous.4open.science/
r/RAGE as described in Kosan et al. (2023).

• For GISST, we use the repository from https://anonymous.4open.science/r/
SEGNNEval, following the approach outlined in Lin et al. (2020).

To encourage reproducibility, we stick to the hyperparameters provided in each respective repos-
itory, except for GSAT on BBBP and BaMS where we set the values of ood_param to 0.5 and
extra_param to [True, 10, 0.2], and for Motif2-Basis and Motif-Size in Table 5 where
we set the values of ood_param to 10 and extra_param to [True, 10, 0.2]. To favor a fair
comparison with the other architectures, we changed the RAGE’s default GNN backbone to GIN (Xu
et al., 2018), using a mean global readout for the final prediction. Model selection was performed on
the ID validation set.

B.2.2 COMPUTING FAITHFULNESS

• Necessity: Nec follows the guidelines presented in Section 3.2. The idea is that choosing a fixed
budget depending, for example, on a dataset-wide statistic is a simple yet sensible choice for a
necessity metric properly accounting for the number of irrelevant edges present in an explanation.
Specifically, we chose the budget b as a fixed proportion of the average number of undirected
edges for each split of the dataset, where the proportion ratio is set to 5% in all our experiments.
For each explanation, we sample a number q1 of perturbed graphs, where q1 is fixed at 8 in our
experiments and each modification deletes a random edge.

• Sufficiency: For Suf, instead, we apply two types of perturbations: (i) replace the complement
of the explanation with that of a random sample from the same data split, joining with random
connections the original explanation with the sampled complement; (ii) delete random edges
from the complement, as prescribed by Nec. We repeat these interventions for a number q1 of
samples for each explanation, where q1 is fixed at 8 in our experiments, as for Nec. Since the
joining operation is performed explicitly at the input level, the resulting procedure can become
computationally heavy, especially for large graphs. Alternative approaches try to emulate input
interventions with latent interventions, where manipulations to the embedding of explanation and
complement are applied, respectively (Wu et al., 2022; Sui et al., 2022). We argue that this type
of latent intervention is suboptimal for a correct evaluation of faithfulness, as the latent vectors
used for interventions are not guaranteed to sufficiently disentangle explanation and complement
information, resulting in leakages.

• Faithfulness: Faith corresponds to the harmonic mean of the normalized Nec and normalized Suf
scores, where we set d as the L1 divergence for both metrics, and it is computed over a subset
of q2 of input graphs, which is set to 800 in our experiments. Since most modular GNNs output
soft edge scores, we extract the relevant subgraph via TopK selection, where the size ratios vary
in {0.3, 0.6, 0.9}. Then, the resulting Faith is taken as the best value across ratios. An ablation
study to compare the resulting scores across a varying number of samples q2 and interventions q1
is provided in Fig. 10 and Fig. 11. In all experiments, we use the normalized Suf and Nec, such
that the values are the higher the better.
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Are faithfulness metrics well calibrated? In general, all metrics outlined in Table 1 are not
calibrated, in the sense that a value of, e.g., 0.5 does not have the same meaning across metrics. This
issue is naturally present also in Suf and Nec, and can impair metric comparison across different
hyper-parameters. Nonetheless, this is not affecting our empirical investigation as we always stick to
the same hyper-parameters.

B.2.3 COMPUTING THE DEGREE OF INVARIANCE (PLAUSIBILITY)

The degree of invariance appearing in Theorem 1 represents how close the predicted subgraph RA

is to the truly domain-invariant input motif, which is assumed to be the only stable factor enabling
for stable predictions across domains. Carrying over the terminology from XAI, we compute this
quantity as the plausibility (Longa et al., 2024) of the provided subgraph with respect to a known
ground truth. Specifically, we compute the topology-wise degree of invariance as the Weighted
Intersection over Union (WIoU) between the provided explanation relevance score, and the expected
ground truth scores, which equal 1 for the invariant edges in the graph, and 0 for the others. The
feature-wise degree of invariance, instead, is unmeasured as the ground truth over invariant features is
typically overlooked, and no settled evaluation testbed is available. The same is done for computing
the plausibility of SE-GNNs with respect to a known ground truth explanation.

B.2.4 IMPLEMENTATION OF FAITHFULNESS-ENFORCING STRATEGIES

As stated in Section 4.2, we included the aforementioned architectural desiderata in several popular
models to verify their impact on model accuracy and faithfulness. In the following, we describe how
the four desiderata are implemented in practice:

• Hard Scores (HS) To enforce the generation of binary 0-1 explanation masks by the detector f , we
apply a technique similar to the Straight-Through (ST) trick used in the discrete Gumbel-Softmax
Estimator (Jang et al., 2017). Specifically, during the forward pass, we utilize the binary version
of the mask, while in the backward pass, we use the continuous version.

• Content Features (CF) To ensure the classifier uses only raw input features, we simply replace
the feature matrix with that of the input data before feeding it to the classifier g.

• Explanation Readout (ER) The Explanation Readout strategy computes the graph embedding
by applying a global aggregator encouraging the classifier to adhere more to RA. This involves
multiplying the node mask M , obtained by averaging over incident nodes the predicted edge mask,
with the node embedding before performing the final global readout, i.e., hG = aggrG({{Muh

L
u :

u ∈ V }}). Since explanations are soft scores over GA, this approach ensures the model adheres
more closely to the soft mask.

• Local aggr (LA) To enhance the expressivity of Graph Neural Networks (GNNs), some models
incorporate virtual nodes (Barceló et al., 2020; Hu et al., 2020; Sestak et al., 2024). We remove
those to mitigate the risk of mixing the information of the explanation with that of its complement,
which can create unwanted dependencies between pairs of nodes in the graph.

B.2.5 CHANGES WITH RESPECT TO THE ORIGINAL CODEBASE

Here we describe two minor changes we did to the original codebase.

• Stable TopK & Permutation-Invariant Metrics. We found the original implementation of the
topK operator to exhibit instabilities when used on GPU, in particular in the presence of equal
scores for which alternatively the first or the last elements of the tensor are returned. This results
in order-dependent metric values, either over -or under-estimated according to the order of ground
truth edges in the graph12.
To avoid this bias and to have more predictable behavior, we switched to a stable implementation
of the topK operator which always selects elements with the same score as they appear in the input
tensor, and we randomly permute nodes and edges in each graph at loading time.

12In synthetic datasets, ground truth edges are typically the last elements as they are attached to an already
generated base-graph.
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• Undirected Explanation Scores. Accordingly to the original version of the codebase intro-
duced in Training and Reproducibility paragraph, LECI, and GSAT are averaging the edge
attention scores among directions for each undirected edge via torch_sparse.transpose.
However, we found that, even by sticking to the original package versioning, the way
torch_sparse.transpose is used is not weighting edge scores as expected, but
rather is acting as an identity mapping. To fix this bug and to produce undirected edge
scores without changing the edge attention mechanism, we average the edge scores via
torch_geometric.to_undirected. More details are available in our codebase.
Table 7 compares performance scores for directed vs undirected explanation scores showing
comparable performance aggregated over all datasets and models.

Table 7: Model performance scores for directed vs undirected explanation scores. Models labeled
with ’(D)’ use directed edge scores.

Dataset / Model LECI CIGA GSAT LECI (D) CIGA (D) GSAT (D)

Motif-Basis 72 ± 06 42 ± 02 57 ± 03 82 ± 05 50 ± 05 52 ± 04

Motif2-Basis 85 ± 07 46 ± 10 75 ± 06 81 ± 06 40 ± 03 77 ± 05

Motif-Size 41 ± 06 43 ± 05 51 ± 03 54 ± 06 47 ± 02 52 ± 04

SST2 83 ± 01 76 ± 06 79 ± 04 83 ± 01 77 ± 04 81 ± 02

LBAPcore 71 ± 00 69 ± 01 70 ± 00 72 ± 00 70 ± 01 71 ± 00

CMNIST 26 ± 10 23 ± 03 25 ± 04 28 ± 17 21 ± 03 38 ± 04

C FURTHER DISCUSSION

C.1 DOES EXPLANATION INVARIANCE ENTAIL INVARIANT MODELS?

To build intuition, take a DI-GNN that, for some input, outputs a perfectly invariant explanation
RA. Now, if the explanation is not strictly sufficient, by definition there exists a modification to the
complement of RA (which is domain-dependent) that alters the predicted class distribution. Thus the
model as a whole cannot be domain-invariant.

This naturally fits Theorem 1. If the detector outputs perfectly invariant explanations λtopo and λfeat

at the RHS of Eq. (3) are zero, yet the sufficiency term λsuff can still be larger than zero, meaning
that the model can fail invariance (LHS > 0, e.g., it might fit ID data properly but OOD data poorly).

We illustrate the relationship between the RHS and LHS in Fig. 3, which shows that despite CIGA
having more invariant explanations than GSAT, it has worse sufficiency and they tend to fit ID and
OOD with a comparable shift. The plots report the LHS (difference in ID and OOD fit) and RHS
(invariance/plausibility and sufficiency) of nine DI-GNNs used in our experiments on two data sets.
The x-axis shows that CIGA (yellow) tends to be more domain-invariant (plausible) than GSAT
(green) despite having worse sufficiency. The y-axis shows that these models tend to fit ID and OOD
data very differently, especially CIGA despite its explanations being more invariant (plausible) than
GSAT ’s.

As expected, explanation invariance does not entail models are domain invariant.

C.2 CAN WE ACHIEVE STRICT FAITHFULNESS IN MODULAR GNNS?

In Proposition 4 we provide a theoretical argument regarding the impossibility of injective regular
GNNs to achieve strict faithfulness. Can we provide a similar result for modular GNNs as well? We
can answer this question with a constructive argument: Assume a perfectly stable detector f , i.e.,
it always predicts the same RA for all G′

A ∼ pR. Assume also an injective classifier g such that it
implements HS, CF, and ER, as described in Section 4.2. Then, intuitively, the classifier uses no
information outside of RA, as the features it is aggregating solely belong to the explanation itself.
Then, as RA is not changing after perturbations of the complement by the stability assumption, every
deterministic GNN will achieve strict sufficiency. Then, by injectivity of g, every modification to RA

will change the model output, meaning RA is also strictly necessary.
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Figure 3: The plots shows the LHS (difference in ID and OOD likelihood) and RHS (invari-
ance/plausibility and sufficiency) of Theorem 1 for nine DI-GNNs used in our experiments on
three data sets. The x-axis shows that CIGA (orange) tends to be more domain-invariant (plausible)
than GSAT (green) despite having worse sufficiency. The y-axis shows that these models tend to fit
ID and OOD data very differently, especially CIGA despite its explanations being more invariant
(plausible) than GSAT ’s. The only model achieving considerably low likelihood difference is LECI
(blue) for Motif2-Basis and Motif-Basis, which scores the best both in explanation invari-
ance and Suf. ↓ (↑) stands for the lower (the higher) the better.

This nice result, however, hinders a number of implementation challenges, some of which are already
discussed in Section 4.2. In addition, also the possibility of learning truly injective GNN classifiers
has recently been questioned (Jaeger, 2023), making this result more of a conceptual blueprint than
an actual model design.

Table 8: Many popular DI-GNNs neglect the invariance of node features (λfeat).

Model Node Feature Invariance
DIR (Wu et al., 2022) ✗
VGIB (Yu et al., 2022) ✗
OODGAT (Song and Wang, 2022) ✗
GIL (Li et al., 2022) ✗
GSAT (Miao et al., 2022a) ✗
LRI (Miao et al., 2022b) ✓
CIGA (Chen et al., 2022) ✗
CAL (Sui et al., 2022) ✗
RIGNN Luo et al. (2023) ✗
GALA (Chen et al., 2023) ✗
LECI (Gui et al., 2023) ✓
DIsC (Fan et al., 2024) ✗
GSINA (Ding et al., 2024) ✗

C.3 TESTING FOR NON-STRICT SUFFICIENCY

Proposition 5 showed that strict sufficiency is a necessary condition for a DI-GNNs to be domain
invariant. In particular, even if an explanation RA captures the desired invariant subgraph, if it is not
strictly sufficient then the prediction will not be domain invariant. Testing for non-strict sufficiency
then amounts to finding a counter-example of modification outside of RA that leads to a change in
model output, as measure by the chosen d. In Algorithm 1 we illustrate a simple algorithm for testing
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non-strict sufficiency, which given as input the input graph GA, the predicted invariant subgraph RA,
the chosen distribution pR specifying the set of allowed modifications, and a budget of perturbations
σ, it returns True if RA is not strictly sufficient. If the algorithm returns False, then the explanation
might still be non strictly sufficient, unless σ ≥ |pR| and each element of pR is sampled at least once.
More efficient algorithms are possible, for example by adapting informed perturbation search under
constraints as done in adversarial perturbation search (Gosch et al., 2024).

Algorithm 1 Testing for non strict sufficiency
Require: Input graph GA = CA ∪ RA, predicted invariant subgraph RA, chosen distribution pR,

budget of perturbations σ, threshold τ
Ensure: Returns True if the explanation is non strictly sufficient

1: for i = 1 to σ do
2: Sample C ′

A ∼ pR
3: G′

A = C ′
A ∪RA

4: if ∆d(GA, G
′
A) ≥ τ then

5: return True
6: end if
7: end for
8: return False

C.4 CHOOSING FAITHFULNESS PARAMETERS IS TASK DEPENDENT

In light of Definition 2 and Table 1, selecting a faithfulness metric then amounts to choosing a suitable
pR, pC , and d. Proposition 1 shows that different parameters are not interchangeable, begging
the question of how to properly choose the appropriate metric. In this section, we argue that the
choice of metric is application dependent: stricter metrics make sense in high-stakes applications,
where faithfulness is a must, and for providing adversarial robustness guarantees (for, e.g., Machine
Learning as a Service), while looser metrics are more meaningful if adversarial inputs are not a
concern. There is a clear monotonic relationship between these, in that being strictly sufficient (resp.
faithful) to a stricter metric implies being strictly sufficient (resp. faithful) to the looser one. To see
this, consider two different choices for pR:

• Strictest choice: p1R allows the modification of the complement of the explanation in every
conceivable way via node/edge addition and removal and arbitrary feature perturbations. Being
strictly sufficient wrt p1R means being invariant to any possible change to the complement.

• Loosest choice: p2R allows only node/edge removal. This is the most narrow distribution, and it
corresponds to the typical setting of sufficiency metrics presented in Table 1. p2R finds a reasonable
use in controlled and low-stakes applications, where only minor perturbations are expected.

While a dual argument holds for pC , we showed in Section 3.2 that some necessity metrics are
surprisingly flawed, in that they do not capture the desired semantics. Regarding the choice of d
instead, consider a similar distinction:

• Strictest choice: d1 is any divergence between class probability distributions, like L1 or KL. It
accounts for any change in the model’s outputs, and it is thus desirable in scenarios where the
ranking of classes matters, for example in conformal prediction sets for Human Decision Making
(Cresswell et al.).

• Intermediate choice: d2 is the difference in prediction likelihood, and will only account for
changes in the confidence of the predicted class. Thus, d2 is more suitable in scenarios in which
only the most likely prediction is relevant.

• Loosest choice: d3 is the difference in accuracy or most likely prediction. It only accounts for
changes in the most likely class, neglecting any change in the model’s confidence.

Those insights apply to both post-hoc and modular GNN settings.
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C.5 FAITHFULNESS METRICS ARE NOT INTERCHANGEABLE

In this Section we complement the empirical analysis of Table 2, showing the results also for
Motif-Size and CMNIST.

Table 9: Ranking of models and absolute Suf values according to different interventional distributions
pR, averaged over 5 random seeds. Results confirm that faithfulness measures can differ only
based on the reference distribution, as both rankings and absolute values can significantly change.

# Ranking (Suf) Motif-Size Motif2 CMNIST

pid1R pid2R pid1R pid2R pid1R pid2R

ID
LECI 2 (79 ± 06) 2 (83 ± 06) 1 (81 ± 03) 2 (82 ± 03) 1 (72 ± 19) 1 (82 ± 18)
GSAT 1 (83 ± 02) 1 (86 ± 01) 2 (78 ± 01) 1 (84 ± 02) 2 (56 ± 13) 2 (59 ± 01)
CIGA 3 (70 ± 04) 3 (72 ± 04) 3 (65 ± 07) 3 (73 ± 06) 3 (30 ± 05) 3 (43 ± 07)

pood1R pood2R pood1R pood2R pood1R pood2R

OOD
LECI 1 (81 ± 06) 1 (89 ± 05) 2 (83 ± 06) 1 (88 ± 06) 1 (68 ± 19) 1 (81 ± 13)
GSAT 2 (73 ± 01) 2 (80 ± 01) 3 (76 ± 02) 3 (79 ± 03) 2 (50 ± 07) 2 (54 ± 13)
CIGA 3 (55 ± 05) 3 (70 ± 08) 1 (85 ± 09) 2 (86 ± 03) 3 (35 ± 10) 3 (45 ± 07)

For Motif-Size and Motif2, in two cases out of four just changing the type of perturbation
allowed by pR (replacing the complement vs removing random edges; across columns) changes
the ranking of models. Instead, changing the graph distribution (ID vs OOD; across rows) alters
the ranking in every case. For CMNIST instead, the rankings are stable across distributions, even if
absolute values can still sensibly change. Overall, these results confirm that different metrics yielded
by different distributions are not interchangeable.

D FURTHER EXPERIMENTS

D.1 FAILURE CASES

Table 10: Model performance scores for SST2 and LBAPcore on ID validation set and OOD test
set.

Dataset / Model GIN LECI GSAT

ID val. OOD test ID val. OOD test ID val. OOD test

SST2 91 ± 00 80 ± 01 92 ± 00 83 ± 01 91 ± 00 79 ± 04

LBAPcore 92 ± 00 70 ± 00 92 ± 00 71 ± 01 92 ± 01 70 ± 03

As discussed in Section 4.2, SST2-Length and LBAPcore are two particularly challenging
dataset for improving faithfulness. We claim this may come from the task benefiting from global
information being used, which clashes with the goal of modular architectures that seek sparse and
local discriminative subgraphs. Consider, in fact, the results reported in Table 10 where even a
simple regular GNN baseline trained without any invariance-aware strategies exhibits comparable
performance compared to more advanced and complex DI-GNNs. To inspect where DI-GNNs fall
short, we plot in Fig. 4 and Fig. 5 the distribution of edge scores predicted by the detector of LECI
and GSAT, where it is clear that they failed in identifying any sparse invariant subgraph, therefore
falling back to a regular-GNN-like behavior. This is especially expected for SST2-Length, which
is a graph-adapted sentiment classification dataset where node features are contextual embeddings
extracted from a BERT-like Transformer (Yuan et al., 2022) – which produces intrinsically globally-
correlated node representations by the nature of its self-attention layers (Vaswani et al., 2017). Indeed,
BERT-like Transformers are the models achieving state-of-the-art performance in this task (Yuan
et al., 2022).
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Figure 4: Histograms of explanation relevance scores for LECI (top), and GSAT (bottom) on
SST2 (seed 1). Both models failed in identifying a sparse input subgraph, assigning constant scores
(or very close thereof) to every edge.
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Figure 5: Histograms of explanation relevance scores for LECI (top), and GSAT (bottom) on
LBAPcore (seed 1). Both models failed in identifying a sparse input subgraph, assigning constant
scores (or very close thereof) to every edge.
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Figure 6: Probability of deleting at least one truly relevant edge is independent of the number of
irrelevant edges if the deletion budget depends on the explanation size. Given an explanation R
with r truly relevant edges (r = 5), and a budget b proportional to the size of the explanation, the plot
shows P (R′ ∈ Ab

R(R
′)) where R′ ∼ pbC(G), for a growing number of irrelevant edges in R. The

plot shows that the probability is approximately constant, i.e., it does not depend on the number of
irrelevant edges. The segments with decreasing behaviour (especially visible for a 10% budget, the
blue curve) correspond to areas where the budget is indeed constant, and thus not proportional to the
explanation size. For instance, between 1 and 14 irrelevant edges, a budget of 10% corresponds to
deleting one edge.
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Figure 7: Dependency of the necessity met-
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and Nec of explanations output by GSAT on
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parameter κ, b ∈ {3%, 5%}. RFid+ assigns sim-
ilar or even higher scores to larger explanations,
while Nec (with a budget b proportional to the
average graph size m̄) decreases for increasing
explanation size, as expected.

D.2 SENSITIVITY OF RFid+ AND Nec TO THE EXPLANATION SIZE

As in the proof of Proposition 3, let SbR be the set of subgraphs of G obtained by deleting b edges
from R while keeping C fixed, and Ab

R = {G′ ∈ SbR : ∆(G,G′) ≥ ϵ} those subgraphs that lead to
a large enough change in ∆. Then, in Fig. 6 we numerically simulate the probability of deleting at
least one truly relevant edge from an explanation with a growing number of irrelevant ones, where
the number of deletions is proportional to the explanation size. The figure shows that the probability
is basically insensitive to the number of irrelevant edges.

In Fig. 7 we integrate the results reported in Table 3 and provide a more detailed experiment showing
that for GSAT, RFid+ is in fact insensible to the number of irrelevant edges in the explanation,
while Nec with a suitable pC is not. In Fig. 8 and Fig. 9 we further show that this behavior is in
fact general, and occurs across different models and datasets. Specifically, for the same setting
delineated in Section 3.2, we report the results also for the LECI (Gui et al., 2023) model over
LBAPcore-Assay (Gui et al., 2022) molecular benchmark.
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Figure 8: RFid+ is insensitive to irrelevant edges. RFid+ and Nec with pbC are computed for
LECI and averaged across 5 seeds on Motif2-Basis (top) and LBAPcore (bottom) for different
explanation sizes (x-axis) and for different metric hyper-parameter κ, b ∈ {3%, 5%, 10%}. RFid+
assigns similar or even higher scores to larger explanations, while Nec tends to penalize larger
explanations.
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Figure 9: RFid+ is insensitive to irrelevant edges. RFid+ and Nec with pbC are computed for
GSAT and averaged across 5 seeds on Motif2-Basis (top) and LBAPcore (bottom) for different
explanation sizes (x-axis) and for different metric hyper-parameter κ, b ∈ {3%, 5%, 10%}. RFid+
assigns similar or even higher scores to larger explanations, while Nec tends to penalize larger
explanations.
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Figure 10: Ablation study of faithfulness scores across varying number of number of samples q2.
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Figure 11: Ablation study of faithfulness scores across varying number of interventions q1.
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