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Abstract

Unsupervised domain adaptation transfers knowledge from a fully labeled source domain to a
different target domain, where no labeled data are available. Some researchers have proposed
upper bounds for the target error when transferring knowledge. For example, Ben-David
et al. (2010) established a theory based on minimizing the source error and distance between
marginal distributions simultaneously. However, in most research, the joint error is ignored
because of its intractability. In this research, we argue that joint errors are essential for
domain adaptation problems, particularly when the domain gap is large. To address this
problem, we propose a novel objective related to the upper bound of the joint error. Moreover,
we adopt a source/pseudo-target label-induced hypothesis space that can reduce the search
space to further tighten this bound. To measure the dissimilarity between hypotheses, we
define a novel cross-margin discrepancy to alleviate instability during adversarial learning.
In addition, we present extensive empirical evidence showing that the proposed method
boosts the performance of image classification accuracy on standard domain adaptation
benchmarks.

1 Introduction

Traditional machine-learning theories generally assume that training and test data are drawn from an identical
distribution, that is, the same domain. However, this assumption does not necessarily hold in real-world
settings. Considering image classification as an example, several factors, such as the change in light, noise,
angle at which the image is captured, and different types of sensors, can lead to a domain gap that harms
the performance when predicting the test data. In many practical cases, a model trained in one domain is
expected to be applied to another. As a solution, domain adaptation (DA) aims to transfer the knowledge
learned from a source domain, which is typically fully labeled, into a different (although related) target
domain. This research focused on the most challenging case, unsupervised domain adaptation (UDA), in
which no target label is available.

Ben-David et al. (2010) suggested that the target error can be minimized by bounding the error on source data,
the discrepancy between domains, and a small optimal joint error. The optimal joint error is quantified by the
lowest error rate that a hypothesis can achieve in both domains. Many researchers have focused on learning
domain-invariant features such that the discrepancy between domains can be minimized. Two strategies
were explored for aligning the domains. The first method bridges domains by matching their statistics (Long
et al., 2015; 2017; Pan et al., 2009). The second method utilizes adversarial learning (Goodfellow et al., 2014)
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to develop a minimax game in which a domain discriminator is trained to distinguish the source from the
target domain while the feature extractor is trained to confuse it simultaneously (Ganin & Lempitsky, 2015;
Ganin et al., 2016; Tzeng et al., 2017). Despite the remarkable performance achieved by domain-matching
schemes, they still suffer from a major limitation: the joint distributions of feature spaces and categories are
not well-aligned across domains. As reported in Ganin et al. (2016), such methods fail to generalize to closely
related source–target pairs, for example, the adaptation from MNIST (LeCun et al., 1998) to SVHN (Netzer
et al., 2011). One potential reason is that when matching the marginal distributions of the two domains,
samples from different classes can be mixed up, where the joint error becomes nonnegligible because no
hypothesis can jointly classify the source and target data with high accuracy.

This research aims to address the aforementioned problem by incorporating the joint error to formalize
an optimizable upper bound such that the mismatch of the joint distributions can be properly penalized.
Adversarial learning is effective for aligning distributions (Ganin et al., 2016; Tzeng et al., 2017; Saito et al.,
2017b; Zhang et al., 2019b); however, it can suffer from instability owing to rapid changes in the discriminator.
We propose a specially designed distance measurement based on margin theory that has a smoother gradient
around the decision boundary to alleviate this instability, namely, cross-margin discrepancy (CMD). In
addition, when we apply CMD to the proposed target error bound, we can prove that part of the objective can
be transformed into a CGAN (Mirza & Osindero, 2014) objective 1, which is effective in aligning conditional
distributions. We evaluate the proposed method using several classification tasks. Our method improves
performance by a large margin, particularly when the domain gap is large. The contributions of this research
can be summarized as follows:

· We propose a novel objective that relates to an upper bound of the joint error and show that our
proposal can reduce the chance of misalignment through the distribution matching.

· We create a specific hypothesis space induced by source/pseudo-target labels to stiffen the proposed
objective and avoid optimizing a loose bound within an immense searching space.

· We adopt a novel measurement, namely CMD, which measures the dissimilarity between hypotheses.
We demonstrate that using this measurement, we can alleviate the instability during adversarial
learning.

· We provide extensive empirical evidence showing that our proposal outperforms other upper bound
related methods in image classification on several DA benchmarks, particularly when the domain
gap is large.

2 Related Work

The upper bound proposed by Ben-David et al. (2010) invoked numerous approaches that focused on reducing
the discrepancy between the source and target domains by learning domain-invariant features. Long et al.
(2015; 2017) utilized maximum mean discrepancy (MMD) to match the hidden representations of certain layers
in a deep neural network. Pan et al. (2011) proposed transfer component analysis to learn a subspace across
domains in a reproducing kernel Hilbert space using MMD, which dramatically minimizes the discrepancy
between domains. Li et al. (2018) applied adaptive batch normalization to modulate statistics from the
source to the target domain in the batch normalization layers across the network in a parameter-free manner.

Another way to learn domain-invariant features is to leverage generative adversarial networks. Ganin &
Lempitsky (2015) relaxed the discrepancy measurement in the upper bound from Ben-David et al. (2010),
where a domain classifier is trained to distinguish different domains while a feature extractor is trained to
confuse it. Tzeng et al. (2017) followed this idea but divided the training procedure into a classification
stage and an adversarial learning stage. Saito et al. (2017b) explored a tighter bound by explicitly utilizing
task-specific classifiers as discriminators such that features near the support of source samples will be favored
by the extractor. Zhang et al. (2019b) introduced margin disparity discrepancy, a novel measurement with
rigorous generalization bounds, to bridge the gap between the theory and algorithm. Methods that perform

1In Eq.9, we show that our proposal includes a CGAN objective that aligns three pairs of hypotheses induced distributions
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distribution alignment at the pixel level in raw images, known as image-to-image translation, have been
explored by Liu & Tuzel (2016); Bousmalis et al. (2017); Sankaranarayanan et al. (2017); Shrivastava et al.
(2016); Hoffman et al. (2018); Murez et al. (2017).

Distribution matching can not only bring domains closer, but also mix samples from different classes. Therefore,
Sener et al. (2016); Zhang et al. (2018) used pseudo-labels to learn discriminative target representations.
However, this typically requires a complex labeling procedure and data-dependent hyperparameters to set
a threshold for a reliable prediction. Long et al. (2018) proposed a framework that conditions adversarial
adaptation models on the discriminative information conveyed in classifier predictions. However, it matches
the marginal distributions of joint distributions for features and pseudo-predictions, which require a balanced
label assumption to achieve the alignment of conditional distributions. Wu et al. (2019) raised attention to
the increasing joint error caused by distribution matching and proposed a relaxed match by restricting the
power of domain classifier to handle the label shifting problem. However, this requires an overlap between
the source and target domains in the input space and does not necessarily reduce the joint error. Saito et al.
(2017a) claimed that their proposal can reduce the joint error along with the discrepancy between domains
by progressively creating a pseudo-labeled target set. However, it reforms the joint error as the sum of the
error on the source and pseudo-labeled target domains and a false label rate that cannot be optimized. In
this research, we proposed a theoretical approach that constructs an optimizable upper bound on the joint
error for UDA tasks.

In summary, the upper bound proposed by Ben-David et al. (2010) and its extensions (Ganin et al., 2016;
Tzeng et al., 2017; Saito et al., 2017b; Zhang et al., 2019b) continue to improve the alignment of the marginal
distributions of the source and target domains. However, the problem of ignoring joint errors remains unsolved.
In the following sections, we theoretically explain the ways by which it can harm performance in DA tasks
and the ways our proposal can handle this problem.

3 Proposed Method

In this section, we present details of the proposed method. First, in Sec.3.1, we propose a target error bound
and show its relation to the joint error. Then, we theoretically explain the importance of joint errors in
DA. Second, in Sec.3.2, we introduce approximated labeling functions inside constrained hypothesis space to
formalize an objective that can be optimized. Finally, in Sec.3.3, we propose a novel measurement for the
dissimilarity between hypotheses based on the margin theory and show its utility in adversarial learning.

3.1 Upper Bound Incorporating Joint Error

We consider the UDA as a multiclass classification task in which the learning algorithm has access to a set of
n labeled points {(xi

s, yi
s) ∈ (X ∈ RD × Y = {1, ..., K})}n

i=1 sampled i.i.d. from the source domain S and set
of m unlabeled points {(xi

t) ∈ X ∈ Rd}m
i=1 sampled i.i.d. from target domain T . Let fS : X ∈ RD → RK and

fT : X ∈ RD → RK be the true labeling functions in the source and target domains, respectively, and their
outputs are one-hot vectors denoting the corresponding classes of inputs. Let ϵD(f, f ′) denote a distance
metric that measures the expectation of disagreement between two functions f, f ′ over distribution D. To
refer to the source error of a hypothesis h ∈ H : X ∈ RD → RK , we use the shorthand ϵS(h) := ϵS(h, fS),
which measures the disagreement w.r.t. the true labeling function fS over the domain S. Similarly, we use
ϵT (h) to denote the target error (the second argument of ϵ is omitted when we refer to the source and target
errors according to Ben-David et al. (2010)). With these notations, we propose the following upper
bound for target error2:

ϵT (h) ≤ ϵS(h) + ϵT (fS, fT ) + ϵS(fS, fT ) + ϵT (h, fS) − ϵS(h, fT )
= ϵS(h) + CS,T (fS, fT , h) (1)

For simplicity, we use CS,T (fS , fT , h) to denote ϵT (fS , fT )+ϵS(fS , fT )+ϵT (h, fS)−ϵS(h, fT ), which indicates
a discrepancy between the domains. The aformentioned upper bound is minimized when h = fS , and the

2See proof in A.6
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minimum is equal to ϵT (fS , fT ) given the triangle inequality2. Furthermore, we demonstrate that, in such a
case, our proposal becomes the upper bound of the optimal joint error2 λ.

The reason we focus on the joint error is that Ben-David et al. (2010) state the target error can be
upper bounded by the sum of the source error and the marginal discrepancy between domains and the joint
error:

ϵT (h) ≤ ϵS(h) + max
f1,f2∈H

|ϵS(f1, f2)− ϵT (f1, f2)|+ λ

However, many works (Ganin et al., 2016; Tzeng et al., 2017; Saito et al., 2017b; Zhang et al., 2019b;
Kim et al., 2019) choose to ignore λ and mainly focus on minimizing the marginal discrepancy within
a transformed input space Sg = {(g(xs), ys)|(xs, ys) ∼ S}, Tg = {g(xt)|xt ∼ T} introduced by a feature
extractor g : X ∈ RD → RF and h, f1, f2 ∈ HF : RF → RK :

min
h∈HF ,g

[ϵSg (h) + max
f1,f2∈HF

|ϵSg (f1, f2)− ϵTg (f1, f2)|] + λg,

where joint error is λg = minh∗∈HF ϵSg (h∗) + ϵTg (h∗). Without the feature extractor, the joint error is an
independent term. However, when we introduce the feature extractor g to minimize the marginal
discrepancy, we also violate the independence. The joint error varies with the change in g
and can become nonnegligible if samples from different classes are mixed, particularly when a
large domain gap exists (Zhao et al., 2019). In this case, regardless of the way we minimize the marginal
discrepancy, the target error is unbounded because not a single h can jointly classify both domains.

In Fig. 1b, we illustrate a case in which common methods fail to penalize mismatches. Without supervision,
samples from different classes can be aligned during marginal distribution matching, which introduces large
joint errors. This can be observed on the right-hand side of Fig. 1b, whereas the marginal discrepancy (areas
1, 3, 4, and 6) is relatively small, a large joint error (areas 2 and 5) exists. In this case, reducing the marginal
discrepancy (areas 1, 3, 4, and 6) increases the joint error (areas 2 and 5). Because the two areas represent
the overlaps of different classes, no hypothesis can correctly classify the samples in these areas, leading to
a nonnegligible joint error. In the case illustrated in Fig. 1b, fS is assumed to have a specific shape for
simplicity. Then, ϵT (fS , fT ) (the minimum of our upper bound) exactly measures the overlapping areas 2
and 5, which are equivalent to the optimal joint error. Our proposal is closely related to the optimal joint
error; thus, it can adequately reduce the size of the incorrect overlapping during distribution matching. In
addition, according to Mansour et al. (2009), we provide the Rademacher complexity bound in A.3.

(a) legend (b) joint error (c) location of fT

Figure 1: Left side of a classifier (arrow) is class A and the right side is class B; (a) Legend; (b) Joint error
(areas 2 and 5) is unbounded by a simple distribution matching; (c) even with the marginal distribution
aligned, fS and fT may be significantly different.

3.2 Hypothesis Space Constraint

Because the true labeling functions fS , fT are not available, we relax the upper bound Eq.1 by
considering maximum w.r.t. approximated labeling functions f1, f2 within a hypothesis space H3:

ϵT (h) ≤ ϵS(h) + CS,T (fS, fT , h) ≤ ϵS(h) + max
f1,f2∈H

CS,T (f1, f2, h)

3Our proposal holds even if fS , fT /∈ H, which is proved in A.4
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However, if we leave H unconstrained, the maximum term can be arbitrarily large. To obtain a tight bound,
the size of the hypothesis space must be restricted and an upper bound must be maintained. We assume
that it is possible to create two subspaces H1, H2 ⊆ H such that the following holds:

CS,T (fS, fT , h) ≤ max
f1∈H1,f2∈H2

CS,T (f1, f2, h) ≤ max
f1,f2∈H

CS,T (f1, f2, h) (2)

The right-hand side of the aforementioned inequality always holds because of the subspace relationship. A
sufficient condition for the left-hand inequality is fS ∈ H1, fT ∈ H2. The condition for H1 can be easily
achieved because we have source labels to create a space consisting of all the classifiers for the source domain,
namely Hsc that must contain fS . However, the condition for H2 is slightly problematic because we have no
access to the true labels of the target domain; therefore, locating fT is difficult. Consequently, we construct a
constrained hypothesis space for H2 that is likely to contain fT . Generally, it is difficult to demonstrate
the validity of the left side inequality of Eq.2 theoretically. Alternatively, we present the
experimental results of the real-world problem to support our assumption4.

As illustrated in Fig. 1c, if the conditional distributions are well-aligned (for example, the left-hand side of
Fig. 1c), after matching the source and target domains, it is reasonable to assume that fT ∈ Hsc. However,
good alignment cannot always be achieved, particularly when the domain gap is large (for example, the
right-hand side of Fig. 1c). Considering this, in the following sections, we propose a hypothesis
space based on the constraints for H2, which aims to alleviate the worst case caused by the unknown
location of fT .

3.2.1 Target-driven Hypothesis Space (THS)

We first create a space in which the hypothesis can classify all the samples from the source domain,
namely Hsc. Then, we create a space Ht̃c consisting of all classifiers for the pseudo-labeled target domain
{(xi

t, ỹi
t)) ∈ X × Y }m

i=1 (ỹi
t is provided by the prediction of h), where components f ∈ Ht̃c can minimize

ϵ̃T (f) := ϵT (f, h). We further define H2 as an intersection between two hypothesis spaces, i.e.,
Hγ

sc ∩H1−η

t̃c
, where the hypothesis can classify samples from the source domain with an accuracy of γ ∈ [0, 1]

and classify samples from the approximated target domain with an accuracy of 1 − η ∈ [0, 1] (generally,
we set γ = η for simplicity; however, in some experiments we tune the two parameters to
show the influence when restricting the belief toward the source predictions and leveraging
the pseudo-predictions). In practice, it is difficult to create such a space and sample from it owing to
its high computational cost. Alternatively, we use a weighted average to constrain the behavior of f2 as an
approximation of the sample from Hγ

sc ∩H1−η

t̃c
, which enables us to use η to balance the confidence in the

source and pseudo-target domains. This leads to the following constraints:

{
H1 = {f1| arg minf1∈H [ϵS(f1)]}
H2 = {f2| arg minf2∈H [γϵS(f2) + (1 − η)ϵ̃T (f2)]}

(3)

3.2.2 Intuition to the Difference between Hypothesis Spaces

The reason for placing the aforementioned constraints on the hypothesis space H2 can be intuitively explained
by Fig. 2. If we set the hypothesis space H2 to Hsc (a set of classifiers for all source samples), classifier
f2 ∈ H2 is forced to correctly classify all source samples. This increases the probability that all target samples
are outside the decision boundary of f2, particularly when the domain gap is large. In this case, these samples
can be moved to either side of the decision boundary of f2 to reduce objective ϵT (f1, f2) (shaded area in
Fig. 2a), which may cause incorrect alignment. By constructing H2 as an intersection of two hypothesis
spaces Hγ

sc (a set of classifiers for some of the source samples), H1−η

t̃c
(a set of classifiers for some of the

pseudo-labeled target samples) in Fig. 2b, we alleviate the restrictions on f2 such that the decision boundary
can pass through at least a few target samples where the objective (shaded area) can be properly reduced by

4We show that our proposal remains a valid upper bound, even if the domain gap is as large as we are unlikely to construct a
hypothesis space that contains fT in A.5
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moving the samples inside the decision boundary of f2. In addition, given these hypothesis space constraints,
we demonstrate that under certain conditions, our proposal reduces to other UDA methods5.

(a) H2 = Hsc (b) H2 = Hγ
sc ∩ H1−η

t̃c

Figure 2: Improper hypothesis space constraint can cause wrong alignment. (a) If f2 is forced to only classify
all source samples, it may completely misclassify all target samples when the domain gap is large; (b) If f2
can classify a part of source samples and pseudo-labeled target samples, S, T can be aligned in a desired way
by minimizing the upper bound (shadow area).

3.3 Cross-Margin Discrepancy (CMD)

In this section, inspired by the margin theory, we propose a novel discrepancy measurement called the
CMD for ϵ instead of the commonly used loss functions (e.g., logistic, hinge, L1) to stabilize the training of
adversarial learning. Following the aforementioned notation, we define the measurement of the discrepancy
between any two hypotheses f1, f2 ∈ H : X ∈ RD → RK (e.g., a multilayer perceptron with an output layer
of a softmax function) over a distribution D:

ϵD(f1, f2) = Ex∈D[cmd(f1, f2; x)] (4)

We then consider the probability function f(y|x), which indicates the y-th element of the output of f ∈
H : X ∈ RD → RK evaluated on input x. Thus, an induced labeling function, named lf from X → Y is
expressed by

lf : x→ arg max
y∈Y

f(y|x)

When two hypotheses (f1, f2) disagree on x, i.e., y1 = lf1(x) ̸= lf2(x) = y2, the loss is defined as
follows:

cmd(f1, f2; x) = log f1(y1|x) + log(1 − f1(y2|x)) + log f2(y2|x) + log(1 − f2(y1|x)) (5)

When two hypotheses (f1, f2) agree on x, i.e., y = lf1(x) = lf2(x), the loss is defined as follows:

cmd(f1, f2; x) = log max(f1(y|x), f2(y|x)) + log max(1 − f1(y|x), 1 − f2(y|x)) (6)

We demonstrate that CMD can be viewed as: a sum of two well-established margin losses6,
which play a significant role in achieving strong generalization performance (Koltchinskii & Panchenko, 2002);
an objective of CGAN7, which is an efficient method to align conditional distributions (Mirza & Osindero,
2014). Another reason to propose such a discrepancy measurement is that it textbf helps alleviate instability
in adversarial learning. As illustrated in Fig. 3b, during the optimization of a minimax game, when two
hypotheses attempt to maximize the discrepancy (shaded area), if one hypothesis moves exceedingly fast
around the decision boundary such that the discrepancy is maximized w.r.t. some samples, then these

5See the proof in A.2
6See proof in A.8
7See proof in A.9
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samples can be moved to either side to decrease the discrepancy by tuning the feature extractor. As shown in
Fig. 3a, the CMD is flat around the original, that is, the gradient with respect to the points near the decision
boundary is relatively small. This can help prevent the aforementioned failure because each update of the
hypotheses will be subtle during training.

(a) loss curve (b) instability

Figure 3: (a) Losses of binary classification, where the proposed method shows small gradient around the
original; (b) Steep gradients near the original may lead to an extreme move of the decision boundary.

3.4 Training Procedure

We introduce a feature extractor g : X ∈ RD → RF and the transformed feature space Sg =
{(g(xs), ys)|(xs, ys) ∼ S}, Tg = {g(xt)|xt ∼ T } as well as hypotheses h, f1, f2 ∈ HF : RF → RK .

First, we define the source error of h based on CMD:

Lce = ϵSg
(h) = ϵSg

(h, fS) = Exs,ys∈S [cmd(h, fS ; g(xs))]
= Exs,ys∈S [log fS(ys|xs) + log(1− h(ys|g(xs)))]
≈ −Exs,ys∈S log h(ys|g(xs)),

where the source error can be expressed as a cross-entropy loss because the true labeling functions map
the inputs to one-hot vectors, denoting their corresponding labels. The source errors of f1, f2 denoted by
ϵSg

(f1), ϵSg
(f2) can be derived analogously.

Second, we define constraints for approximated labeling functions f1, f2 to ensure they exist in
the proper hypothesis spaces H1, H2 based on Eq.3:{

LH1 = ϵSg
(f1)

LH2 = γϵSg
(f2) + (1− η)ϵ̃Tg

(f2),

where ϵ̃Tg
(f2) is estimated using a pseudo-label-based cross-entropy loss8:

ϵ̃Tg
(f2) = −Ext∈T log f2(lh(g(xt))|g(xt))

Then, we define the discrepancy term based on CMD:

Ldis = CSg,Tg (f1, f2, h)
= Ext∼T [cmd(f1, f2; g(xt)) + cmd(h, f1; g(xt))] + Exs∼S [cmd(f1, f2; g(xs))− cmd(h, f2; g(xs))]

Finally, by introducing a trade-off parameter β to balance the classification loss and the discrepancy, the
overall objective function can be written as follows:{

minf1,f2∈HF LH1 + LH2 − βLdis

minh∈HF ,g LH1 + LH2 + Lce + βLdis

(7)

8In complex datasets, regularization terms are introduced to prevent f2 from overfitting noisy pseudo-labels (A.1.3, Eq.8)
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Algorithm 1 MJE
Input: source data S and unlabeled target data T
Parameter: constrained classifiers f1, f2; shared feature extractor g; upper bound classifier h; hyperpa-
rameters β; learning rate α
Output: updated parameters g, h
for iteration = 1, 2, . . . do

Step A: optimize g, f1, f2 to satisfy the hypothesis constraint
Compute LH1 , LH2

Update g, f1, f2:
(g, f1, f2)← (g, f1, f2) + α∆(g, f1, f2) where ∆(g, f1, f2) = −∂(LH1 +LH2 )

∂(g,f1,f2)
Step B: maximize the discrepancy w.r.t. f1, f2 within the hypothesis space constraint

Compute LH1 , LH2 , Ldis

Update f1, f2:
(f1, f2)← (f1, f2) + α∆(f1, f2) where ∆(f1, f2) = −∂(LH1 +LH2 −βLdis)

∂(f1,f2)
Step C: minimize the entire target error upper bound w.r.t. g, h for fixed f1, f2

Compute Lce, Ldis

Update g, h:
(g, h)← (g, h) + α∆(g, h), where ∆(g, h) = −∂(Lce+βLdis)

∂(g,h)
end for

The procedures described in Alg.1, during one training cycle, we first train g, f1, f2 to satisfy the hypothesis
space constraint; second, we train f1, f2 to maximize the discrepancy term within the hypothesis space
constraint; finally, we train g, h to minimize the entire upper bound. Step C is executed four times in a
training cycle, according to Saito et al. (2017b). See A.9 for further details on this objective.

4 Evaluation

In this section, we evaluate our proposed method using several different datasets (Digit (Netzer et al., 2011;
LeCun et al., 1998; Hull, 1994), VisDA (Peng et al., 2017), Office-Home (Venkateswara et al., 2017), and
Office-31 (Saenko et al., 2010)). We choose MCD (Saito et al., 2017b) as the baseline for a major comparison
with ours because the two methods share the same concept of tightening the upper bound established by
Ben-David et al. (2010). In addition, the two methods utilize the same network architecture and training
procedure, enabling their results to be comparable. We conduct an ablation study (A.11) to demonstrate the
contributions of each part of our proposal. We manually create an imbalanced label situation and demonstrate
the robustness of our proposed method (A.10). The details of the experimental settings, hyperparameter
selection, and training objectives are provided in A.1, A.7, and A.9, respectively.

4.1 Experiment on Digit Dataset

In this experiment, our proposed method was assessed in four types of adaptation scenarios by adopting
commonly used digit datasets: MNIST (LeCun et al., 1998), street view house numbers (SVHN) (Netzer et al.,
2011), and USPS (Hull, 1994), such that the results can be easily compared with other popular methods. All
the experiments are performed in an unsupervised manner without any data augmentation. Tab. 1 lists the
accuracies of the different methods. Our proposed method improves the performance in nearly all settings,
except for a single result, compared with GPDA (Kim et al., 2019). However, their solution requires sampling,
which increases the data size and is equivalent to adding Gaussian noise to the last layer of the classifier,
which is considered a type of augmentation. The first setting of our proposal is THS + L1, where γ = η = 1
serves as a direct comparison with MCD because the two methods share the same architecture, except for
the upper bound, which demonstrates the importance of the joint error. The second and third settings of our
proposal show the influence of the CMD and hypothesis space constraint, respectively.

9We use γ = 0.1 for MNIST → SVHN
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Table 1: Accuracy of models adapted on digits datasets (∗ denotes the entire training set)

METHOD
SVHN

to
MNIST

MNIST
to

SVHN

MNIST
to

USPS

MNIST∗

to
USPS∗

USPS
to

MNIST
Source Only 67.1 21.3 76.7 79.7 63.4

MDD†(Long et al., 2015) 71.1 - - 81.1 -
DANN†Ganin et al. (2016) 71.1 25.1 77.3 85.1 73.2
DRCN(Ghifary et al., 2016) 82.0±0.1 40.1±0.1 91.8±0.1 - 73.7±0.1
ADDA(Tzeng et al., 2017) 76.0±1.8 - 89.4±0.2 - 90.1±0.8
MCD(Saito et al., 2017b) 96.2±0.4 11.2±1.1 94.2±0.7 96.5±0.3 94.1±0.3
GPDA(Kim et al., 2019) 98.2±0.1 - 96.5±0.2 98.1±0.1 96.4±0.1

ours (THS + L1, γ = η = 1) 96.8±0.2 30.4±1.59 94.5±0.3 96.8±0.3 95.2±0.2
ours (THS + CMD, γ = η = 1) 97.5±0.2 31.5±1.89 95.3±0.3 97.2±0.2 95.6±0.2

ours (THS + CMD, γ = η = 0.9) 98.6±0.1 50.3±1.3 96.8±0.2 97.9±0.1 96.9±0.1

(a) domain gap affects γ (fixed
η = 1)

(b) M→S (c) S→M (d) M→U

Figure 4: (a) Sensitivity w.r.t. γ; (b) Comparisons for marginal discrepancy; (c)-(d) Comparisons for
convergence rate; All plots are drawn based on the average of three runs.

Fig. 4a shows the result when we fix η = 1 and we can observe that the hyperparameter γ is slightly sensitive
to the domain gap. In summary, setting γ = 1 yields the best performance in most situations because
fS , fT can be considerably close after aligning the distributions, particularly in these easily adapted scenarios.
However, in MNIST → SVHN, setting γ = 0.1 provides the optimum, which means that fS , fT are far away
owing to a large domain gap in which no feature extractor is capable of introducing an identical conditional
distribution in the feature space. In addition, we test the performance on different values for γ = η ̸= 1
setting and find that the accuracy remains high and varies subtly; therefore, we omit this figure. Furthermore,
Fig. 4b empirically proves that simply minimizing the discrepancy between the marginal distributions does
not necessarily lead to a reliable adaptation. In addition, Figs. 4c and 4d show the effectiveness of the CMD,
which accelerates convergence and provides a slightly better result.

4.2 Experiment on VisDA Dataset

The VisDA dataset (Peng et al., 2017) is designed for a 12-class adaptation task from synthetic to real object
images. The source domain contains 152,397 synthetic images generated by rendering 3D CAD models,
whereas the target domain is collected from MSCOCO (Lin et al., 2014) and consists of 55,388 real images.
Tab. 2 lists the accuracies of the different methods and the proposed method performed well under all settings.
Images in this dataset are more complex than digits; however, our method provides reliable performance.
Another key observation is that some competing methods (e.g., DANN and MCD), which can be categorized
as distribution matching based on adversarial learning, perform worse than MDD (which simply matches
statistics) in classes such as plane and horse, whereas our method performs better across all classes. This
clearly demonstrates the importance of joint error.
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Table 2: Accuracy of ResNet-101 model fine-tuned on VisDA dataset within 10 epochs

METHOD plane bcycl bus car horse knife mcycl person plant sktbrd train truck avg
Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

MDD(Long et al., 2015) 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
DANN(Ganin et al., 2016) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD(Saito et al., 2017b) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
GPDA(Kim et al., 2019) 83.0 74.3 80.4 66.0 87.6 75.3 83.8 73.1 90.1 57.3 80.2 37.9 73.3

MCC(Jin et al., 2020) 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
ours (THS + L1, γ = η = 1) 86.3 82.7 83.7 68.7 87.9 72.7 85.4 61.5 87.3 55.5 75.2 34.1 73.4

ours (THS + CMD, γ = η = 1) 88.4 83.3 74.8 78.0 88.1 43.2 88.2 68.9 87.6 65.5 92.6 58.5 76.4
ours (THS + CMD, γ = η = 0.9) 93.8 79.5 79.3 55.9 93.9 93.8 86.5 80.3 91.6 87.7 85.4 51.6 81.6

(a) fixed η = 1 (b) various values for γ = η (c) faster convergence (d) higher discrepancy

Figure 5: (a)-(b) Sensitivity w.r.t. γ,η; (c) Comparisons for convergence rate; (d) Comparisons for marginal
discrepancy; All plots are drawn based on the average of three runs.

Fig. 5a shows the result when we fix η = 1 and the performance decreases while relaxing the constraint, which
is perplexing to us. We expect an improvement here because it is difficult to believe that fS , fT eventually
exist in a similar space, determining from the relatively low prediction accuracy. Fig. 5b shows the adaptation
performance of different values for γ = η ̸= 1 setting, where the prediction accuracy decreases when η is
lower than 0.9. One possible reason is that f2 and h might nearly agree on the target domain, such that
the prediction of h cannot provide more accurate information on the target domain without introducing
noisy pseudo-labels. Figs. 5c and 5d demonstrate the effectiveness of the cross-margin discrepancy and the
importance of the joint error, respectively.

4.3 Experiment on Office-Home Dataset

Office-Home (Venkateswara et al., 2017) is a complex dataset containing 15,500 images from four significantly
different domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw). Tab. 3 lists the accuracies of
the different methods. The adaptation accuracy of the source only method is low, indicating that a large
domain gap is likely to exist. In such cases, we believe that simply minimizing the discrepancy between the
source and target domains can fail because the joint error may increase when aligning the distributions. Our
proposal generally provides better performance when adaptation is difficult (1st, 8th, and 11th columns).
These results suggest that our proposal, which incorporates the joint error into the target error upper
bound, can boost performance, particularly when there is a large domain gap. SPL (Wang & Breckon, 2020)
and SRDC (Tang et al., 2020) share a similar strategy, which can be described as cluster-based iterative
pseudo-labeling. Despite their outstanding performances, these methods lack a theoretical guarantee of the
generalization error bound. In addition, they assume that samples in the target domain are well clustered
within the feature space and could be labeled by the Euclidean distance from clusters obtained using K-means.
The first assumption is not always true because high-dimensional features can lie in a low-dimensional
manifold (e.g., the Swiss Roll dataset), where no cluster exists. Regarding the second assumption, the labeling
scheme can be vulnerable because K-means is sensitive to initialization, and the Euclidean distance can suffer
from the curse of dimensionality such that there is little difference in the distances between different pairs of
points.
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Table 3: Accuracy of ResNet-50 model fine-tuned on the Office-Home dataset. We repeated each experiment
five times and reported the average of the accuracy.

METHOD Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
Source Only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN(Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD(Saito et al., 2017b) 51.9 70.7 74.8 59.0 68.4 68.8 58.2 51.6 75.1 69.5 55.8 79.3 65.3
CDAN(Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

ADA(Wu et al., 2019) 50.1 63.4 70.9 56.6 66.5 65.9 54.7 51.5 74.2 66.8 54.9 77.6 62.8
SymNets(Zhang et al., 2019a) 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
SPL(Wang & Breckon, 2020) 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0

AADA(Yang et al., 2020) 54.0 71.3 77.5 60.8 70.8 71.2 59.1 51.8 76.9 71.0 57.4 81.8 67.0
SRDC(Tang et al., 2020) 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
SCAL(Wang et al., 2022) 55.3 72.7 78.7 63.1 71.7 73.5 61.4 51.6 79.9 72.5 57.8 81.0 68.3

ours (T HS + CMD, γ = η = 0.9) 60.3 77.8 81.0 66.0 74.4 74.5 66.7 59.3 81.8 74.2 62.7 84.9 72.0

(a) conditional discrepancy (ours) (b) conditional discrepancy (MCD) (c) marginal discrepancy (ours)

Figure 6: Feature visualization with t-SNE in scenario Real to Art; (a)-(b) shows the conditional discrepancy
by using different colors for each class; (c) shows the marginal discrepancy by using the same color for all the
classes.

In addition, we plot the learned features using t-SNE (van der Maaten & Hinton, 2008) in Fig. 6, which shows
Real to Art scenario. In Fig. 6a, we illustrate the source (dot) and target (cross) features using different
colors that represent their classes. In the proposed method, most of the target features are clustered to their
corresponding sources and do not show a large variance from the class center compared with MCD (Fig. 6b).
We also visualize the features of the source (red dots) and target (blue crosses) domains. Fig. 6c shows the
marginal discrepancy.

4.4 Experiment on Office-31 Dataset

Office-31 (Saenko et al., 2010) is a widely used dataset for verifying the effectiveness of a DA algorithm
that contains three diverse domains, Amazon (A), Webcam (W), and DSLR (D), with 4,652 images in 31
unbalanced classes. Tab. 4 lists the results for Office-31. In tasks D→A and W→A, determining by the
relatively low adaptation accuracy across all methods, a large domain gap between the source and target
domains is likely to exist. Our method functions well in such cases, demonstrating that it penalizes the
mismatch between the source and target domains. However, this advantage is not remarkable, particularly
for the task A→W, where our proposed method shows relatively high variance and poor performance. One
possible reason for this is that our method depends on learning reliable classifiers for the source domain to
satisfy the constraints of the hypothesis space. However, the Amazon domain contains considerable noise,
and the entire dataset lacks diversity (e.g., some domains only have several hundred samples with many
duplicates), rendering it difficult for an error-bound-based method that generally requires a sufficient sample
size to learn a reliable classifier.
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Table 4: Accuracy of ResNet-50 model fine-tuned on the Office-31 dataset. We repeated each experiment five
times and recorded the average and the standard deviation of the accuracy.

METHOD A→W D→W W→D A→D D→A W→A Avg
Source Only 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DANN(Ganin et al., 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA(Tzeng et al., 2017) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
MCD(Saito et al., 2017b) 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN(Long et al., 2018) 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

SymNets(Zhang et al., 2019a) 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4
SPL(Wang & Breckon, 2020) 92.7±0.0 98.1±0.0 99.8±0.0 93.7±0.0 76.4±0.0 76.9±0.0 89.6

MCC(Jin et al., 2020) 95.5±0.2 98.6±0.1 100.0±0.0 94.4±0.3 72.9±0.2 74.9±0.3 89.4
SRDC(Tang et al., 2020) 94.6±1.0 99.2±0.5 100.0±0.0 92.6±0.6 78.1±1.3 76.3±0.2 90.1
SCAL(Wang et al., 2022) 93.5±0.2 98.5±0.1 100.0±0.0 93.4±0.3 72.4±0.1 74.0±0.3 88.6

ours (T HS + CMD, γ = η = 0.9) 91.9±0.5 99.0±0.2 100.0±.0 93.7±0.5 76.1±0.2 77.8±0.2 89.8

5 Conclusion

In this research, we propose a novel upper bound that considers joint errors. Subsequently, we pursue a tighter
bound with reasonable constraints on the hypothesis space. Additionally, we adopt a novel cross-domain
discrepancy for dissimilarity measurement, which alleviates instability during adversarial learning. Extensive
empirical evidence shows that an invariant representation is not sufficient to guarantee good generalization
performance in the target domain because the joint error affects, particularly when the domain gap is large.
We believe that our results contribute significantly in understanding UDA and stimulate future work on the
design of stronger adaptation algorithms.
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A Appendix

A.1 Experimental Setting

A.1.1 Digits Dataset

SVHN ↔ MNIST We first examine the adaptation from SVHN (Fig. 7a) to MNIST (Fig. 7b). We used
standard training and testing sets for both the source and target domains. The feature extractor contains
three 5× 5 convolutional layers with stride two 3× 3 max pooling placed after the first two convolutional
layers and a single fully-connected layer. For the classifiers, we used 2-layer fully-connected networks.

MNIST ↔ USPS As for the adaptation between MNIST and USPS (Fig. 7c), we followed the training
protocol established in Long et al. (2013) by sampling 2000 images from MNIST and 1800 from the USPS. For
the test samples, the standard version was used for both source and target domains. The feature generator
contains two 5× 5 convolutional layers with stride two 2× 2 max pooling placed after each convolutional
layer and a single fully-connected layer. For the classifiers, we used 2-layer fully-connected networks.

Throughout the experiment, we employed the CNN architecture used in Saito et al. (2017b), where batch
normalization was applied to each layer, and a 0.5 rate of dropout was used between fully-connected layers.
In addition, spectral normalization (Miyato et al., 2018) was deployed for the classifiers in all subsequent
experiments to stabilize adversarial learning. The major reason for utilizing this technique is that we
observe a performance drop when the network is overtrained (this generally occurs after several hundreds of
epochs). However, we are unsure whether this is caused by an overfitting of the source error or a general
neural network training problem related to early stopping (this phenomenon can also be observed in other
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algorithms). One common solution is to use a gradient reversal layer(Ganin et al., 2016) to balance the weight
between the source error and discrepancy between the two domains. However, this introduces additional
hyperparameters for tuning. Additionally, in the proposed CMD method, as illustrated in Fig. 8, we
maximize log f1(x, y1)+log(1−f2(x, y1)) with respect to the classifiers but minimize only log(1−f2(x, y1)) (a
part of the objective) with respect to the feature extractor to avoid unnecessary oscillation during adversarial
learning. This implies that the objectives we attempt to maximize and minimize are not is not equivalent.
In such cases, it is difficult to employ a gradient reversal layer, which is intended to train the classifiers
and feature extractors simultaneously in a single objective. With the help of spectral normalization, we can
ensure that the classifiers are approximately Lipschitz such that a performance drop at an early stage can be
avoided because the gradient with respect to the classifiers will be relatively small. Adam (Kingma & Ba,
2014) was used for optimization, with a minibatch size of 128 and a learning rate of 10−4.

(a) SVHN (b) MNIST (c) USPS

Figure 7: Random samples from each dataset.

Figure 8: Illustrated details for the cross-margin discrepancy

A.1.2 VisDA Dataset

The proposed method was further evaluated for object classification. The VisDA dataset (Peng et al., 2017),
which is designed for a 12-class adaptation task from a synthetic object to real object images, was used. .
The source domain contained 152,397 synthetic images generated by rendering 3D CAD models. Data from
the target domain were collected from MSCOCO (Lin et al., 2014), which consisted of 55,388 real images.
Because 3D models are generated without background or color diversity, the synthetic domain is slightly
different from the real domain, rendering it a considerably more difficult problem than digit adaptation. In
addition, this experiment was performed in an unsupervised fashion, and no data augmentation technique,
excluding horizontal flipping, was allowed. By following the protocol established by Saito et al. (2017b), We
evaluated our method by fine-tuning a ResNet-101 (He et al., 2015) model pretrained on ImageNet (Deng
et al., 2009). The model, except for the last layer combined with a single-layer bottleneck, was used as a
feature extractor, and a randomly initialized 2-layer fully-connected network was used as a classifier, where
batch normalization was applied to each layer and a 0.5 dropout rate was conducted. Stochastic gradient
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descent (SDG) with Nesterov moment was used for optimization with a minibatch size of 32 and an initial
learning rate of 10−3, which decayed exponentially. The network architecture used in Saito et al. (2017b) was
originally a 3-layer fully-connected classifier. However, as mentioned in the main paper, we have demonstrated
that a relatively weaker classifier improves the stability of adversarial learning. Therefore, we leverage the
framework proposed in Zhang et al. (2019b) by considering the top layer of the classifier, that is, a bottleneck,
as part of the feature extractor (it does not change the entire complexity of the model). Another crucial
point is that the network parameters with respect to ResNet-101 and the bottleneck were updated separately
at a ratio of 1:10, which is the same as in Zhang et al. (2019b). A similar approach was used in Saito et al.
(2017b) to decelerate the update of ResNet-101. The common reason is that excessively updating the feature
extractor is not recommended because ResNet-101 is extremely powerful that it can easily overfit the source
error. We applied horizontal flipping of the input images during training as the only data augmentation.
For the hyperparameter, we tested γ = {0.1, 0.5, 0.9, 1} and η = {0, 0.5, 0.8, 0.9}. For direct comparison, we
reported the accuracy after 10 epochs.

(a) synthetic images (b) real images

Figure 9: (a) Samples from source domain. (b) Samples from target domain.

A.1.3 Office-Home Dataset

Office-Home (Venkateswara et al., 2017) was a complex dataset (Fig. 10) containing 15,500 images from
four significantly different domains: Art (paintings, sketches, and/or artistic depictions), Clipart (clip art
images), Product (images without background), and Real-world (regular images captured with a camera). In
this experiment, following the protocol of Zhang et al. (2019b), we evaluated our method by fine-tuning a
ResNet-50 (He et al., 2015) model pretrained on ImageNet (Deng et al., 2009). The model, except for the
last layer combined with a single-layer bottleneck, was used as a feature extractor, and a randomly initialized
2-layer fully-connected network with a width of 1024 was used as a classifier, where batch normalization was
applied to each layer and a 0.5 dropout rate was conducted. For optimization, we used SGD with a Nesterov
momentum term fixed at 0.9, where the batch size was 32, and the learning rate was adjusted according
to Ganin et al. (2016). We applied horizontal flipping and resized the cropping of the input images during
training as data augmentation, similar to that in Zhang et al. (2019b).

We introduce a slightly different loss function for ϵ̃Tg
(f2): For unlabeled target data {xi

t ∈ T}m
i=1, the network

predictions given by h, f2 are represented by {qi ∈ Q}m
i=1 and {pi ∈ P}m

i=1, where the confidence of class k is
defined by

qi,k = h(g(xi
t), y = k), pi,k = f2(g(xi

t), y = k)
In addition to the hypothesis space constraint, we add a class balance regularization term for f2 to encourage
entropy maximization of the label distribution in the target domain, which improves the performance,
particularly when the class number is large(Saito et al., 2017b):

min
p

1
m

m∑
i=1

KL(pi||qi) +
K∑

k=1

∑m
i=1 pi,k

m
log

∑m
i=1 pi,k

m

For a fixed Q, by setting the approximate gradient to zero, we obtain the following closed-form solution to
the aforementioned problem(Dizaji et al., 2017):

p∗
i,k =

qi,k/
√∑m

i=1 qi,k∑K
k=1 qi,k/

√∑m
i=1 qi,k
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Finally, we train g, f2 to push pi,k toward p∗
i,k by minimizing the following KL divergence:

ϵ̃Tg
(f2) = − 1

m

m∑
i=1

K∑
k=1

p∗
i,k log f2(g(xi

t), y = k) (8)

Figure 10: Sample images from the Office-Home dataset (Venkateswara et al., 2017).

A.1.4 Office-31 Dataset

Office-31 (Saenko et al., 2010) (Fig. 11) is a widely used dataset for verifying the effectiveness of a DA
algorithm. It contains three diverse domains: Amazon from the Amazon website, Webcam by web camera,
and DSLR by digital SLR camera with 4,652 images in 31 unbalanced classes. Several noisy samples are
shown in Fig.12 to backup our assumption for the failure case. In this experiment, following the protocol of
Zhang et al. (2019b), we evaluated our method by fine-tuning a ResNet-50 (He et al., 2015) model pretrained
on ImageNet (Deng et al., 2009). The model used here is nearly identical to that used in the Office-Home
experiment, except for a different width of 2,048 for the classifiers. For optimization, we used SGD with
a Nesterov momentum term fixed at 0.9, where the batch size was 32, and the learning rate was adjusted
according to Ganin et al. (2016). We applied horizontal flipping and resized the cropping of the input images
during training as data augmentation, similar to that in Zhang et al. (2019b).

Figure 11: Sample images from the Office-31 dataset.

A.2 Comparisons with Other Methods

This section present that, under certain conditions, the proposed joint error-based upper bound can be
reduced to other popular upper bounds, demonstrating the generality of our proposal.
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Figure 12: Noisy images from the Office-31 dataset.

A.2.1 Margin Disparity Discrepancy

Zhang et al. (2019b) proposed a novel margin-aware generalization bound based on scoring functions and
defined a new divergence MDD. The training objective used in MDD can be alternatively expressed as (here,
ϵ(h, f) denotes the margin disparity) follows:

min
h∈HF ,g

[ϵSg
(h) + max

f∈HF
(ϵTg

(f, h)− ϵSg
(f, h))]

From Eq.3, if we set f1 = f2 = f and free the constraint of f to any f ∈ HF , our proposal degrades exactly
to MDD. As discussed previously, the assumption of an identical true labeling function fS = fT is dangerous
because we are not aware of the location of fT and a perfect alignment between the conditional distributions
of the source and target domains is not likely to occur in practice. In addition, an unconstrained hypothesis
space for f is not helpful in building a tight bound.

A.2.2 Maximum Classifier Discrepancy

Saito et al. (2017b) proposed two task-specific classifiers f1, f2 that are used to separate the decision boundary
on the source domain, such that the feature extractor is encouraged to produce features near the support of
the source samples. The objective used in MCD can be alternatively expressed as follows:{

ming[ϵSg
(f1) + maxf1,f2∈H(ϵTg

(f1, f2))]
s.t. H = {f | arg minf∈HF ,g ϵSg

(f)}

From Eq.3, if we set γ = η = 1 and h = f1, our proposal reduces to MCD. As proved in 3.1, the proposed
upper bound is optimized when h = fS . However, this no longer holds after the upper bound is relaxed by
obtaining the supremum; that is, setting h = f1 does not necessarily minimize the objective. In addition, as
discussed previously, assuming H2 = Hsc = H1 lacks generality because fT can be far from fS and does not
necessarily classify all source samples, which means that the assumption of MCD is not likely to be applicable
to cases in which a large domain gap exists.

A.3 Rademacher Complexity

Let H be a set of real-valued functions defined over set X. Given a sample S ∈ Xm, the empirical Rademacher
complexity of H is defined as follows:

ℜ̂S(H) = 2
m
Eσ

[
sup
h∈H
|

m∑
i=1

σih(xi)|

∣∣∣∣∣S = (x1, ..., xm)
]

The expectation is calculated over σ = (σ1, ..., σn), where σi is an independent uniform random variable that
accepts values in {−1, +1}.

Rademacher complexity measures the ability of a class of functions to fit noise. It has the additional advantage
of being data-dependent and can be measured from finite samples, which can lead to tighter bounds than
those based on other measures of complexity, such as the VC-dimension. Following the established theory
proposed by Mansour et al. (2009), we denote the empirical average of hypothesis h : X → {0, 1} by R̂(h)
and its expectation over samples drawn according to the distribution considered by R(h). The following is a
version of the Rademacher complexity bound (Koltchinskii & Panchenko, 2000; Bartlett & Mendelson, 2002):
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Let H be a class of functions mapping X × Y → [0, 1] and S = ((x1, y1), ..., (xm, ym)) be a finite sample
drawn i.i.d. according to the distribution Q. Then, for any σ > 0 with a probability of at least 1− σ over a
sample S of size m, the following inequality holds for all h ∈ H:

R(h) ≤ R̂(h) + ℜ̂S(H) + 3

√
log 2

σ

2m

From our proposed upper bound, we have: ϵT (h) ≤ ϵS(h)+CS,T (fS , fT , h), where CS,T is further bounded by:
supf1∈H1,f2∈H2{ϵT (f1, f2) + ϵS(f1, f2) + ϵT (h, f1)− ϵS(h, f2)}. We relax this bound by applying ϵS(f1, f2) ≤
ϵS(f1, h) + ϵS(f2, h) and name it d(S, T ; h) = supf1∈H1,f2∈H2{ϵT (f1, f2) + ϵS(f1, h) + ϵT (f1, h)}. We assume
that the loss function ϵ is bounded by M > 0:ϵ(h, h′) ≤M for all h, h′ ∈ H. Let Q be a distribution over X
and let Q̂ denote the corresponding empirical distribution for sample S = (x1, ..., xm). Then, we can scale the
loss ϵ to [0, 1] by dividing by M and denote the new class by ϵH1,H2 , which represents the class of functions
{x→ ϵ(f1(x), f2(x)) : f1 ∈ H1, f2 ∈ H2}. From the aforementioned theorem, for any σ > 0 with a probability
of at least 1− σ, the following inequality holds for all f1 ∈ H1, f2 ∈ H2:

ϵQ(f1, f2)
M

≤
ϵQ̂(f1, f2)

M
+ ℜ̂S(ϵH1,H2/M) + 3

√
log 2

σ

2m

The empirical Rademacher complexity has the property that ℜ̂(αH) = αℜ̂(H) for any hypothesis class
H and positive number α simplifies the aforementioned bound. Let S be a distribution over X and Ŝ be
the corresponding empirical distribution for sample S̃, and let T be a distribution over X and T̂ be the
corresponding empirical distribution for sample T̃ . Then, for any σ > 0, with a probability of at least 1− σ
over samples S̃ of size m drawn according to S and samples T̃ of size n drawn according to T , we can write
the following:

d(S, T ; h) ≤ sup
f1∈H1,f2∈H2

{ϵT̂ (f1, f2) + ϵŜ(f1, h) + ϵT̂ (f1, h)}

+ ℜ̂T̃ (ϵH1,H2) + ℜ̂S̃(ϵH1) + ℜ̂T̃ (ϵH1)

+ 3M(

√
log 2

σ

2m
+ 2

√
log 2

σ

2n
)

A.4 Compatibility

Despite the assumption that H includes fT was made in previous research like Mansour et al. (2009), we
agree that assuming the true labeling functions lie in a specific hypothesis space lacks generality. However, if
the algorithm is run within finite samples, it is possible that a function inside a specific hypothesis space
with enough complexity can perfectly mimic the behavior of the true labeling function for those samples.
Therefore, even if the hypothesis space we use does not contain true labeling functions, it does not harm the
actual learning process. The proof is as follows:

ϵT (h) = ϵT (h, fT )
= ϵT (h, fT )− ϵT (h, fS) + ϵT (h, fS) + ϵS(h, fS)− ϵS(h, fS) + ϵS(h, fT )− ϵS(h, fT )
= ϵS(h, fS) + (ϵT (h, fT )− ϵT (h, fS)) + (ϵS(h, fT )− ϵS(h, fS)) + ϵT (h, fS)− ϵS(h, fT )
≤ ϵS(h) + ϵT (fS , fT ) + ϵS(fS , fT ) + ϵT (h, fS)− ϵS(h, fT )
≤ ϵS(h) + ϵT (fS , f∗

S) + ϵT (f∗
S , f∗

T ) + ϵT (f∗
T , fT ) + ϵS(fS , f∗

S) + ϵS(f∗
S , f∗

T ) + ϵS(f∗
T , fT )

+ ϵT (h, f∗
S) + ϵT (f∗

S , fS)− ϵS(h, f∗
T ) + ϵS(f∗

T , fT )
= ϵS(h) + CS,T (f∗

S , f∗
T , h) + θ,

where θ = 2ϵT (fS , f∗
S) + ϵS(fS , f∗

S) + 2ϵS(f∗
T , fT ) + ϵT (f∗

T , fT ).

Let f∗
S = arg minf∈H ϵS

⋃
2T (fS , f) and f∗

T = arg minf∈H ϵ2S
⋃

T (fT , f) such that f∗
S , f∗

T ∈ H can perfectly
mimic the behavior of fS , fT on S and T . Then θ can be completely ignored, and the obtained bound
becomes compatible with the original upper bound by replacing fS , fT with f∗

S , f∗
T .

20



Published in Transactions on Machine Learning Research (06/2023)

A.5 Validity

In Sec.3.2, we assume that it is possible to create two subspaces H1, H2 ⊆ Hf such that:

CS,T (fS , fT , h) ≤ max
f1∈H1,f2∈H2

CS,T (f1, f2, h)

This assumption is difficult to prove theoretically; thus, we show the validity of the inequality using
experimental results. In this section, we select an adaptation scenario in which the domain gap is large
(Product to Clipart scenario of the Office-Home dataset). We used the full source and target labels to estimate
CS,T (fS , fT , h) as the ground truth. The upper bound is computed with two subspaces H1, H2 given by the
target-driven hypothesis space proposal (Sec.3.2.1) that utilizes pseudo-labels, as follows:{

H1 = {f1| arg minf1∈H [ϵS(f1)]}
H2 = {f2| arg minf2∈H [γϵS(f2) + (1− η)ϵ̃T (f2)]}

Fig.13 shows that our proposal remains a valid upper bound in practice even if the domain gap is extremely
large that the subspace H2 is unlikely to include fT .

Figure 13: Estimated means of ground truth and upper bound by three runs in scenario Pr→Cl adapted
with THS + CMD proposal.

A.6 Proof

A.6.1 Proof for the Upper Bound

Given the aforementioned notation and the triangle inequality, we have the following:

ϵT (h) = ϵT (h, fT )
= ϵT (h, fT ) + [ϵT (h, fS)− ϵT (h, fS)] + [ϵS(h, fS)− ϵS(h, fS)] + [ϵS(h, fT )− ϵS(h, fT )]
= ϵS(h, fS) + [ϵT (h, fT )− ϵT (h, fS)] + [ϵS(h, fT )− ϵS(h, fS)] + ϵT (h, fS)− ϵS(h, fT )
≤ ϵS(h) + ϵT (fS , fT ) + ϵS(fS , fT ) + ϵT (h, fS)− ϵS(h, fT )

A.6.2 Proof for the Optimum

We demonstrate that our upper bound is minimized when h = fS and is equivalent to ϵT (fS , fT ).

First, by setting h = fS , we obtain

ϵS(h) + ϵT (fS , fT ) + ϵS(fS , fT ) + ϵT (h, fS)− ϵS(h, fT ) = ϵT (fS , fT )
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Then, according to the triangle inequality and nonnegativity of the distance metric, we have

[ϵS(h) + ϵS(fS , fT )] + ϵT (fS , fT ) + ϵT (h, fS)− ϵS(h, fT )
≥ ϵS(h, fT ) + ϵT (fS , fT ) + ϵT (h, fS)− ϵS(h, fT )
= ϵT (fS , fT ) + ϵT (h, fS)
≥ ϵT (fS , fT )

A.6.3 Proof for the Relation to Joint error

We demonstrate that when our upper bound is minimized, it is equivalent to the upper bound of the optimal
joint error λ because of the following:

ϵT (fS , fT ) = ϵT (fS , fT ) + ϵS(fS , fS)
= ϵT (fS) + ϵS(fS)
≥ min

h∈H
(ϵT (h) + ϵS(h)) = λ

A.7 Hyperparameter Selection

In all experiments, the hyperparameters γ, η were set based on the validation performance on a separate
dataset consisting of a few hundred labeled target samples. As shown in the main paper, the performance
of our proposed method is sensitive to changes in the hyperparameters. However, it also suggests that an
appropriate choice of hyperparameters can significantly boost the performance, which enabled us to select
the hyperparameters via a validation dataset with 200 samples. Fig. 14 shows two examples of the validation
performance of different adaptation tasks with respect to γ, η.

(a) T HS + L1 where η = 1 (b) T HS + CMD where γ = η

Figure 14: Validation performance when varying the hyperparameters γ, η on a separate dataset

A.8 Relations between the Margin Theory and CMD

The margin between the data points and the classification surface plays a significant role in achieving strong
generalization performance. To quantify ϵ into a differentiable measurement as a surrogate for the 0-1 loss,
we introduce the margin theory developed by Koltchinskii & Panchenko (2002), where the margin loss is
interpreted as follows:

E(x,y)∈D[max(0, 1 + max
y′ ̸=y

s(y′|x)− s(y|x))],
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where the output of the score function s(y|x) for multiclass classification indicates the confidence of the
prediction for class y.

We aim to utilize this concept to further improve the reliability of our proposed method by leveraging this
margin loss to define a novel measurement of the discrepancy between the two hypotheses f1, f2 (e.g., a
multilayer perceptron with an output layer of a softmax function) over a distribution D, namely, the CMD:

ϵD(f1, f2) = Ex∈D[cmd(f1, f2; x)]

Before further discussion, we first introduce two distributions Df1 , Df2 induced by labeling functions f1, f2,
respectively, where Df1 = {(x, lf1(x))|x ∼ D} and Df2 = {(x, lf2(x))|x ∼ D} (function l returns the
predictive labels). Then, we consider the case in which the two hypotheses (f1 and f2) disagree, that is,
y1 = lf1(x) ̸= lf2(x) = y2, and the primitive loss is defined as follows:

cmd(f1, f2; x) = log f1(y1|x)− log f2(y1|x) + log f2(y2|x)− log f1(y2|x)
= log f1(y1|x)− log f1(y2|x) + log f2(y2|x)− log f2(y1|x)

Then, the CMD ϵD(f1, f2) can be expressed as follows:

E(x,y)∈Df2
[max
y′ ̸=y

log f1(y′|x)− log f1(y|x)] + E(x,y)∈Df1
[max
y′ ̸=y

log f2(y′|x)− log f2(y|x)]

This is the sum of the margin loss for f1 on Df2 and the margin loss for f2 on Df1 if we use the logarithm of
softmax as the score function.

Following the method introduced by Goodfellow et al. (2014) for mitigating the burden of exploding or
vanishing gradients, we optimize the dual form of the aforementioned primitive loss in practice:

cmd(f1, f2; x) = log f1(y1|x) + log(1− f1(y2|x)) + log f2(y2|x) + log(1− f2(y1|x))

A.9 Details of the Training Objective

This section briefly describes the training objectives of the proposed method. We consider the THS objective
as an example, and each term in the objective is defined as follows:

{
minh∈HF ,g[ϵSg

(h) + maxf1∈H1,f2∈H2 CSg,Tg
(f1, f2, h)]

s.t. H1, H2 = {f1, f2| arg minf1,f2∈HF ,g[ϵSg (f1) + γϵSg (f2) + (1− η)ϵ̃Tg (f2)]},

where g represents a feature extractor and h, f1, f2 are classifiers with a softmax output (i.e., h(x, y) represents
the confidence of sample x classified as label y). First, we can use the cross-entropy loss to achieve the
following hypothesis space constraint:

{
ϵSg (f1) = −Ex,y∼S log(f1(y|g(x)))
γϵSg

(f2) + (1− η)ϵ̃Tg
(f2) = −γEx,y∼S log(f2(y|g(x)))− (1− η)Ex∼T log(f2(lh(x)|g(x)))

We then use the proposed CMD to reorganize CSg,Tg
(f1, f2, h). Before further derivation, we introduce

three proxy distributions Sf1=f2 , Sf1\f2 , andSf2\f1 induced by f1, f2, where Sf1=f2 = {x, y|x ∼ S, lf1(x) =
lf2(x) = y}, Sf1\f2 = {x, y|x ∼ S, y = lf1(x) ̸= lf2(x)}, Sf2\f1 = {x, y|x ∼ S, lf1(x) ̸= lf2(x) = y} (the
labeling function l returns labels of the most confident prediction by f). Analogously, we define the others as
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Table 5: Influence of β on the adaptation of SVHN→MNIST under our proposal (THS + CMD, η = 0).

SVHN
to

MNIST
β = 0.001 β = 0.01 β = 0.1

Acc 98.4±0.1 98.6±0.1 97.2±0.3

Sf1=h, Sf2=h, Tf1\f2. According to the definition of CMD (Sec.3.3):

ĈSg,Tg
(f1, f2, h)

= Ex,y∼Sf1=f2
[log max(f1(y|g(x)), f2(y|g(x))) + log max(1 − f1(y|g(x)), 1 − f2(y|g(x)))]

+ Ex,y∼Sf1\f2
[log f1(y|g(x)) + log(1 − f2(y|g(x)))] + Ex,y∼Sf2\f1

[log(1 − f1(y|g(x))) + log f2(y|g(x))]

+ Ex,y∼Tf1=f2
[log max(f1(y|g(x)), f2(y|g(x))) + log max(1 − f1(y|g(x)), 1 − f2(y|g(x)))]

+ Ex,y∼Tf1\f2
[log f1(y|g(x)) + log(1 − f2(y|g(x)))] + Ex,y∼Tf2\f1

[log(1 − f1(y|g(x))) + log f2(y|g(x))]

+ Ex,y∼Tf1=h
[log max(f1(y|g(x)), h(y|g(x))) + log max(1 − f1(y|g(x)), 1 − h(y|g(x)))]

+ Ex,y∼Tf1\h
[log f1(y|g(x)) + log(1 − h(y|g(x)))] + Ex,y∼Th\f1

[log(1 − f1(y|g(x))) + log h(y|g(x))]

− Ex,y∼Sf2=h
[log max(h(y|g(x)), f2(y|g(x))) + log max(1 − h(y|g(x)), 1 − f2(y|g(x)))]

− Ex,y∼Sf2\h
[log f2(y|g(x)) + log(1 − h(y|g(x)))] − Ex,y∼Sh\f2

[log(1 − f2(y|g(x))) + log h(y|g(x))], (9)

where part of this objective can be regarded as a CGAN objective aiming to align the conditional distributions
of three pairs of hypothesis induced distributions (Sf1=f2 ⇔ Tf1=f2 , Sf1\f2 ⇔ Tf2\f1 , Sf2\f1 ⇔ Tf1\f2) under
a minor assumption that f1, f2 are more confident about S, T , respectively.
As explained in A.1.1, to avoid unnecessary oscillations during adversarial learning, we only optimize a part
of the objective (the part considered as fake by the classifier) w.r.t. g, h such that it can be consistent with
the general CGAN objective. This implies the objective (ĈSg,Tg

(f1, f2, h)) that we attempt to maximize is
not equivalent to (ČSg,Tg (f1, f2, h)) that we attempt to minimize.

ČSg,Tg
(f1, f2, h)

= Ex,y∼Sf1=f2
log max(1 − f1(y|g(x)), 1 − f2(y|g(x)))

+ Ex,y∼Sf1\f2
log(1 − f2(y|g(x))) + Ex,y∼Sf2\f1

log(1 − f1(y|g(x)))

+ Ex,y∼Tf1=f2
log max(1 − f1(y|g(x)), 1 − f2(y|g(x)))

+ Ex,y∼Tf1\f2
log(1 − f2(y|g(x))) + Ex,y∼Tf2\f1

log(1 − f1(y|g(x)))

+ Ex,y∼Tf1=h
log max(1 − f1(y|g(x)), 1 − h(y|g(x)))

+ Ex,y∼Tf1\h
log(1 − h(y|g(x))) + Ex,y∼Th\f1

log(1 − f1(y|g(x)))

− Ex,y∼Sf2=h
log max(1 − h(y|g(x)), 1 − f2(y|g(x)))

− Ex,y∼Sf2\h
log(1 − h(y|g(x))) − Ex,y∼Sh\f2

log(1 − f2(y|g(x))), (10)

Because we apply different measurements to the source error and discrepancy, we introduce a scaling factor β
to ensure that neither of them can dominate back propagation. β = 0.01 was used in all the experiments
because we observed that the source error was generally approximately 1e − 2 and the discrepancy was
generally approximately 1e0. We also conducted a simple experiment to check the influence of β and the
results are listed in Tab.5.

A.10 Imbalance Label Distribution

In this section, we describe an additional experiment in which the label distribution of the source is significantly
different from that of the target domain. We choose Office-Home dataset and manually remove the samples
of an entire class (’clock’) from the target (Clipart) domain to create an imbalance scenario. The adaptation
accuracy is listed in Tab.6. In theory, our proposal does not suffer from an imbalance in the label distribution.
Unlike other methods that can only match marginal distributions, the proposed method is designed to align
conditional distributions. In practice, the experimental results demonstrate the validity of our theory because
no remarkable performance drop exists in our proposed method compared to other methods. Despite this
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Table 6: Accuracy of ResNet-50 model fine-tuned on the Office-Home dataset. ∗ represents the imbalance
label distribution setting, where we manually remove the samples of an entire class from the target domain.

METHOD Ar→Cl Pr→Cl Rw→Cl
Source Only 34.9 31.2 41.2

DANN(Ganin et al., 2016) 45.6 43.7 51.8
MCD(Saito et al., 2017b) 51.9 51.6 55.8
CDAN(Long et al., 2018) 50.7 50.9 56.7

SymNets(Zhang et al., 2019a) 47.7 48.8 52.6
SPL(Wang & Breckon, 2020) 54.5 53.1 55.3

AADA(Yang et al., 2020) 54.0 51.8 57.4
SRDC(Tang et al., 2020) 52.3 53.8 57.1
SCAL(Wang et al., 2022) 55.3 51.6 57.8

ours (T HS + CMD, η = 0.9) 60.3 59.2 62.7
DANN∗ 43.1 40.5 49.2
MCD∗ 50.5 49.7 54.3

ours∗ (T HS + CMD, η = 0.9) 60.0 58.5 62.2

Table 7: Simple ablation study to demonstrate the contribution from each part of the proposal (
√

in the
column “optimal joint error” means to include the joint error in the upper bound, in contrast to the training
objective proposed by MCD;

√
in the column “CMD” means to use the proposed discrepancy measurement

for ϵ, whereas × indicates that we use L1 norm alternatively;
√

in the column “pseudo-labels induced
hypothesis space” means the hypothesis space for f2 is created based on pseudo-labels of target samples,
which is corresponding to our THS proposal in the main paper, where η ̸= 1). We repeat the adaptation
from SVHN to MNIST five times and record the average and the standard deviation of the accuracy.

METHOD
optimal

joint
error

cross
margin

discrepancy

pseudo-labels
induced

hypothesis space

SVHN
to

MNIST
BASELINE × × × 96.2±0.4

×
√

× 96.6±0.2
× ×

√
97.1±0.3

×
√ √

97.6±0.2
OURS

√
× × 96.8±0.2√ √

× 97.5±0.2√
×

√
98.2±0.2√ √ √
98.6±0.1

extreme imbalance in the label distribution, our proposed method still outperformed other methods trained
on the full target domain.

A.11 Ablation Study

In this section, we conduct a simple ablation study to show the way each part of the proposal, that is, the
objective, including the joint error, the CMD, and the pseudo-label-induced hypothesis space, contributes
to the performance gain. For comparison, we chose MCD(Saito et al., 2017b) as the baseline because its
assumption regarding the hypothesis space is similar to that of our proposal. In addition, the two methods
shared the same network architecture in their implementation, rendering the experimental results directly
comparable. In Tab. 7, the fifth row shows the effectiveness of the proposed upper bound, where we use
L1 as the discrepancy measurement without involving any pseudo-target information, and improves the
performance compared to MCD in the first row. The sixth row shows the results when it is replaced with the
CMD. The last row shows the results of leveraging information from the pseudo-labeled target samples to
create a more reliable hypothesis space for f2. These results show that every part of our proposal improves
the performance. To verify the effectiveness of the proposed method further, we conducted another ablation
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Table 8: Simple ablation study to demonstrate the contribution from each part of the proposal (
√

in the
column “optimal joint error” means to include the joint error in the upper bound, in contrast to the training
objective proposed by MCD;

√
in the column “CMD” means to use the proposed discrepancy measurement

for ϵ, whereas × indicates that we use L1 norm alternatively;
√

in the column “pseudo-labels induced
hypothesis space” means the hypothesis space for f2 is created based on pseudo-labels of target samples,
which is corresponding to our THS proposal in the main paper, where η ̸= 1). We repeat the adaptation on
VisDA dataset three times and record the average and the standard deviation of the accuracy.

METHOD
optimal

joint
error

cross
margin

discrepancy

pseudo-labels
induced

hypothesis space
VisDA

BASELINE × × × 71.9±0.4
×

√
× 73.1±0.3

× ×
√

76.2±0.3
×

√ √
76.8±0.2

OURS
√

× × 73.4±0.3√ √
× 76.4±0.3√

×
√

79.2±0.2√ √ √
81.6±0.2

study on VisDA dataset. The results in Tab. 8 show a similar conclusion that each part of our proposal is
beneficial for adaptation, despite a more complicated scenario.
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