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ABSTRACT

Out-of-distribution (OOD) generalization has emerged as a critical challenge in
graph learning, as real-world graph data often exhibit diverse and shifting envi-
ronments that traditional models fail to generalize across. A promising solution
to address this issue is graph invariant learning (GIL), which aims to learn in-
variant representations by disentangling label-correlated invariant subgraphs from
environment-specific subgraphs. However, existing GIL methods face two major
challenges: (1) the difficulty of capturing and modeling diverse environments in
graph data, and (2) the semantic cliff, where invariant subgraphs from different
classes are difficult to distinguish, leading to poor class separability and increased
misclassifications. To tackle these challenges, we propose a novel method termed
Multi-Prototype Hyperspherical Invariant Learning (MPHIL), which introduces
two key innovations: (1) invariant learning in hyperspherical space, enabling ro-
bust invariant feature extraction and prototypical learning in a highly discriminative
space, and (2) class prototypes as intermediate variables, which eliminate the need
for explicit environment modeling in GIL and mitigate the semantic cliff issue
through multi-prototype-based classification. Derived from the theoretical frame-
work of GIL, we introduce two novel objective functions: the invariant prototype
matching loss to ensure samples are matched to the correct class prototypes, and
the prototype separation loss to increase the distinction between prototypes of
different classes in the hyperspherical space. Extensive experiments on 11 OOD
generalization benchmark datasets demonstrate that MPHIL achieves state-of-the-
art performance, significantly outperforming existing methods across graph data
from various domains and with different distribution shifts. The source code of
MPHIL is available at https://anonymous.4open.science/r/MPHIL-23C0/.

1 INTRODUCTION

Graph Neural Networks (GNNs) have made remarkable advancements in modeling and learning from
graph-structured data across various scenarios, including, but not limited to, social networks (Fan
et al., 2020; Chang et al., 2021), molecules (Shui & Karypis, 2020; Liu et al., 2023), and knowledge
graphs (Zhang et al., 2020; Ji et al., 2021). Despite the powerful representational capabilities of
GNNs, their success often relies on the assumption that the training and testing data follow the same
distribution. Unfortunately, such an assumption rarely holds in most real-world applications, where
out-of-distribution (OOD) data from different distributions often occurs (Liu et al., 2021). Empirical
evidence has shown that GNNs often struggle to maintain performance when tested on OOD data that
differ significantly from the training set (Wang et al., 2024; Li et al., 2022a). These vulnerabilities
underscore the critical need to enhance the OOD generalization capabilities of GNNs, which has
become a rapidly growing area of research (Gui et al., 2022; Ji et al., 2023).

Building on the success of invariant learning in addressing OOD generalization challenges in image
data (Creager et al., 2021; Ye et al., 2022), graph invariant learning (GIL) has recently emerged as a
prominent solution for tackling its counterpart problem in graph data (Li et al., 2022c; Fan et al., 2022;
Miao et al., 2022; Wu et al., 2022b). The fundamental assumption underlying GIL is that each graph
sample can be divided into two distinct components, namely invariant subgraph and environment
subgraph. The former exhibits deterministic and solid predictive relationships with the label of the
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graph sample, while the latter may show spurious correlations with the labels and can vary significantly
in response to distribution shifts (Yang et al., 2022; Chen et al., 2023). By effectively separating
invariant and environment information, GIL-based approaches can learn invariant representations from
the former and make reliable predictions. To achieve accurate separation, existing methods primarily
focus on capturing and modeling the environmental subgraphs, employing carefully designed loss
functions to minimize the correlations between the predicted environmental subgraphs and the
labels (Gui et al., 2023; Piao et al., 2024), or utilizing data augmentation strategies to simulate
potential environments in wild data (Wu et al., 2022a; Jia et al., 2024).

H2N

NH2

y=0

y=0

y=1

y=1

Invariant subgraph of class 0

Environment subgraph
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(a) Diversity of environments.
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(b) Semantic cliff across classes.

Figure 1: Case examples.

Although GIL-based methods are theoretically viable, they
underestimate the difficulties in capturing environment in-
formation in real-world graph data. These difficulties can
be attributed to the diversity, distinguishability, and lack of
labels of practical graph environments. Specifically, the envi-
ronments of graph data can exhibit substantial diversity in terms
of sizes, shapes, and topological properties. Taking molecu-
lar graphs as an example (Fig. 1(a)), the invariant subgraph
can be a specific functional group, while the environmental
subgraphs may display varied patterns, such as different scaf-
folds, side chains, or bonding configurations that modify the
overall structure (Zhuang et al., 2023). In this context, even
with augmented or reorganized environments during training,
GNN models struggle to identify all forms of environment sub-
graphs in real-world OOD samples. Moreover, unlike image
data where environments can be clearly segmented at the pixel
level, the structural boundaries between invariant and environ-
mental subgraphs in graph data are often ambiguous (see the
examples in Fig. 1(a)), which leads to poor distinguishability
of environments. Moreover, unlike certain visual datasets (Lin
et al., 2022) where environment labels (such as background or
image style) are available for model training, the environments
in graph data are highly complex, making it difficult to obtain
corresponding labels to aid in capturing environmental infor-
mation. Given the above difficulties, most existing GIL-based
approaches demonstrate suboptimal performance in identifying
environmental information, particularly in complex graph data,
as empirically demonstrated by (Chen et al., 2023). Conse-
quently, a natural question arises: (RQ1) Can we consider a
more feasible way to learn invariant representations on graphs without explicitly modeling the
environment information?

In addition to the challenges posed by environment capturing, another critical obstacle, referred to
as the semantic cliff across different classes (Xia et al., 2023), also hinders current GIL-based
approaches from making reliable decisions on OOD graph data. To be more specific, the semantic
cliff issue refers to a situation where invariant subgraphs or representations from different classes
share significant similarities, making them difficult to distinguish from one another (Van Tilborg
et al., 2022). For instance, as shown in Fig. 1(b), invariant subgraphs (e.g., functional groups)
across different molecular classes often share similar structural characteristics, with distinctions
frequently limited to a single atom or bond. In such cases, the decision boundaries between invariant
representations can become blurred, exacerbating the challenge of separating classes, particularly
when the invariant and environment subgraphs are not distinctly identifiable. Nevertheless, the
existing OOD generalization GNNs overemphasize the extraction of invariant information while
neglecting the distinction between invariant subgraphs belonging to different classes, which may lead
to their sub-optimal performance. Given this shortage, a natural follow-up question arises: (RQ2)
How can we develop a more robust OOD generalization approach that better discriminates between
invariant representations across different classes?

To answer the above research questions, in this paper, we propose a novel Multi-Prototype
Hyperspherical Invariant Learning (MPHIL for short) method. Building upon and enhancing the
theoretical framework of GIL, MPHIL introduces two advanced features: 1) invariant learning in
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hyperspherical space, which ensures the separability and informativeness of the learned invariant
representations, and 2) class prototype as intermediate variable, which eliminates the need for
explicit environment modeling in invariant learning and enables flexible decision boundaries for
prediction. More specifically, we derive a more practical invariant learning objective based on proto-
typical learning in hyperspherical space, incorporating two well-crafted loss terms. To address (RQ1),
we design an invariant prototype matching loss (LIPM ) that ensures samples from the same class are
assigned to the same class prototype in hyperspherical space. In this way, LIPM can allow the model
to extract robust invariant features across varying environments without explicitly modeling them. To
answer (RQ2), we produce a prototype separation loss (LPS) that pulls the prototypes belonging
to the same class closer together while ensuring those from different classes remain dissimilar. In
this way, LPS enhances the class separability in the context of OOD generalization and mitigates the
semantic cliff issue in graph data. Innovatively, we propose to assign multiple prototypes for each
class, which ensures adaptable decision boundaries and greater tolerance to environmental changes.
To sum up, the main contributions of this paper are as follows:

• Framework. Derived from the objective of GIL, we introduce a novel invariant learning frame-
work that leverages hyperspherical space and prototypical learning, ensuring robust invariant
representation learning while reducing the need for explicit graph environment modeling.

• Methodology. Based on the new GIL framework, we develop a new graph OOD generalization
method termed MPHIL. MPHIL incorporates two effective loss terms to enhance intra-class invari-
ance and inter-class separability, with a multi-prototype mechanism to handle diverse environments.

• Experiments. We conduct extensive experiments to validate the effectiveness of MPHIL, and the
results demonstrate its superior generalization ability compared to state-of-the-art methods across
various types of distribution shifts.

2 PRELIMINARIES AND BACKGROUND

In this section, we introduce the preliminaries and background of this work, including the formulation
of the graph OOD generalization problem, graph invariant learning, and hyperspherical embeddings.
A more comprehensive literature review can be found in Appendix A.

Problem Formulation. In this paper, we focus on the OOD generalization problem on graph
classification tasks (Li et al., 2022b; Jia et al., 2024; Fan et al., 2022; Wu et al., 2022b). We
denote a graph data sample as (G, y), where G ∈ G represents a graph instance and y ∈ Y
represents its label. The dataset collected from a set of environments E is denoted as D = {De}e∈E ,
where De = {(Ge

i , y
e
i )}n

e

i=1 represents the data from environment e, and ne is the number of
instances in environment e. Each pair (Ge

i , y
e
i ) is sampled independently from the joint distribution

Pe(G,Y) = P (G,Y|e). In the context of graph OOD generalization, the difficulty arises from the
discrepancy between the training data distribution Petr (G,Y) from environments etr ∈ Etr, and the
testing data distribution Pete(G,Y) from unseen environments ete ∈ Etest, where Ete ̸= Etrain. The
goal of OOD generalization is to learn an optimal predictor f : G → Y that performs well across
both training and unseen environments, Eall = Etr ∪ Ete, i.e.,

min
f∈F

max
e∈Eall

E(Ge,ye)∼Pe
[ℓ(f(Ge), ye)], (1)

where F denotes the hypothesis space, and ℓ(·, ·) represents the empirical risk function.

Graph Invariant Learning (GIL). Invariant learning focuses on capturing representations that
preserve consistency across different environments, ensuring that the learned invariant representation
zinv maintains consistency with the label y (Mitrovic et al., 2020; Wu et al., 2022b; Chen et al.,
2022b). Specifically, for graph OOD generalization, the objective of GIL is to learn an invariant
GNN f := fc ◦ g, where g : G → Zinv is an encoder that extracts the invariant representation
from the input graph G, and fc : Zinv → Y is a classifier that predicts the label y based on zinv.
From this perspective, the optimization objective of OOD generalization, as stated in Eq. (1), can be
reformulated as:

max
fc,g

I(zinv; y), s.t. zinv ⊥ e,∀e ∈ Etr, zinv = g(G), (2)

where I(zinv; y) denotes the mutual information between the invariant representation zinv and the
label y. This objective ensures that zinv is independent of the environment e, focusing solely on the
most relevant information for predicting y.
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Hyperspherical Learning. Hyperspherical learning enhances the discriminative ability and general-
ization of deep learning models by mapping feature vectors onto a unit sphere (Liu et al., 2017). To
learn a hyperspherical embedding for an input graph G, the representation vector z is mapped into hy-
perspherical space with arbitrary linear or non-linear projection functions, followed by normalization
to ensure that the projected vector ẑ lies on the unit hypersphere. To make classification prediction,
the hyperspherical embeddings ẑ are modeled using the von Mises-Fisher (vMF) distribution (Ming
et al., 2022), with the probability density for a unit vector in class c is given by:

p(ẑ;µ(c), κ) = Z(κ) exp(κµ(c)⊤ẑ), (3)

where µc denotes the prototype vector of class c with the unit norm, serving as the mean direction
for class c, while κ controls the concentration of samples around µc. The term Z(κ) serves as the
normalization factor for the distribution. Given the probability model in Eq.(3), the hyperspherical
embedding ẑ is assigned to class c with the following probability:

P
(
y = c | ẑ; {κ,µ(i)}Ci=1

)
=

Z(κ) exp
(
κµ(c)⊤ẑ

)
∑C

i=1 Z(κ) exp
(
κµ(i)⊤ẑ

) =
exp

(
µ(c)⊤ẑ/τ

)
∑C

i=1 exp
(
µ(i)⊤ẑ/τ

) , (4)

where τ = 1/κ is a temperature parameter. In this way, the classification problem is transferred to the
distance measurement between the graph embedding and the prototype of each class in hyperspherical
space, where the class prototype is usually defined as the embedding centroid of each class.

3 METHODOLOGY

In this section, we present the proposed method, Multi-Prototype Hyperspherical Invariant Learning
(MPHIL). In Sec. 3.1, we first derive our general framework based on the learning objective graph
invariant learning (GIL). Then, we describe the specific designs of the components in MPHIL, includ-
ing hyperspherical invariant representation learning (Sec. 3.2), multi-prototype classifier (Sec. 3.3),
and learning objectives (Sec. 3.4). The overall learning pipeline of MPHIL is shown in Fig. 2.

3.1 PROTOTYPICAL HYPERSPHERICAL INVARIANT LEARNING FRAMEWORK

The objective of GIL (i.e., Eq. (2)) aims to maximize the mutual information between the invariant
representation zinv and the label y, while ensuring that zinv remains independent of the environment
e. However, directly optimizing this objective with such strict constraints is challenging due to the
difficulty of modeling environments in graph data. To make the optimization more tractable, we relax
the independence constraint and introduce a soft-constrained formulation:

min
fc,g

− I(y; zinv) + βI(zinv; e), (5)

where e represents the environment to which the current graph belongs, but it cannot be directly
observed or accessed. The parameter β controls the trade-off between the predictive power of zinv
and its independence from the environment e.

Although the relaxed objective Eq. (5) is more feasible, the intractable properties of real-world graph
data (i.e., complex environment information and inter-class semantic cliff as discussed in Sec. 1) still
hinder us from learning reliable invariant representations and making accurate predictions with this
objective. Specifically, the diversity and complexity of environments make it challenging to explicitly
model e, leading to the difficulties of minimizing I(zinv; e). On the other hand, the semantic cliff
issue may cause indistinguishable zinv of samples belonging to different classes, resulting in the
hardness of maximizing I(y; zinv) using a simple cross-entropy loss.

To deal with the above challenges, we propose a new GIL framework based on hyperspherical space
with prototypical learning. Concretely, we model the invariant representations in a hyperspherical
space rather than an arbitrary Euclidean space, which enhances the discriminative ability of the
learned representations (Mettes et al., 2019). The desirable properties of hyperspherical space allow
us to introduce an intermediate variable, the class prototype µ, as a bridge between the hyperspherical
invariant representation zinv and label y, which alleviate the issues. To be more specific, the class
prototypes µ can directly capture the invariant patterns of each class, which enables the model to
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Figure 2: The overall framework of MPHIL. First, a GNN-based model generates the invariant
representation and maps it into the hyperspherical space. Then, the classifier makes the prediction
based on multiple prototypes. The overall method is trained by a three-term joint objective.

learn reliable invariant representations in the hyperspherical space without explicitly modeling the
environment e. Moreover, the prototype-based classifier is more robust against the semantic cliff
issue, since the semantic gaps between classes can be precisely represented by the distances between
prototypes in the hyperspherical space. Formally, the reformed learning objective is as follows, with
detailed deductions from Eq. (5) to Eq. (6) provided in Appendix B.1:

min
fc,g

−I(y; ẑinv,µ
(y))︸ ︷︷ ︸

LC

−I(y;µ(y))︸ ︷︷ ︸
LPS

−βI(ẑinv;µ
(y))︸ ︷︷ ︸

LIPM

, (6)

where ẑinv represents the invariant representation in the hyperspherical space and µ(y) is the prototype
corresponding to class y. In the following subsections, we will introduce MPHIL as a practical imple-
mentation of the above framework, including the encoder fc for representation learning (Sec. 3.2),
the multi-prototype classifier g (Sec. 3.3), and the three learning objective terms (Sec. 3.4).

3.2 HYPERSPHERICAL INVARIANT REPRESENTATION LEARNING

Encoder. In GIL, the goal of the encoder f is to extract invariant representations that are highly
correlated with the invariant subgraph of each sample. Nevertheless, explicitly identifying the
subgraphs via modeling the selecting probabilities of each node and edge may lead to increased
overhead and require more complex network architectures (Zhuang et al., 2023). To mitigate these
costs, we adopt a lightweight GNN-based model for efficient invariant representation learning. To be
specific, our model includes two GNNs: GNNE to encode the input graph G into the latent space,
producing the node representation H, and GNNS to compute the separation score S for the invariant
features:

H = GNNE(G) ∈ R|V|×d,S = σ(GNNS(G)) ∈ R|V|×d, (7)
where |V| is the number of nodes in the graph G, d is the latent dimension, and σ(·) is the Sigmoid
function to constrain S falls into the range of (0, 1). Then, the invariant representation zinv is
obtained through the following operation:

zinv = READOUT(H⊙ S) ∈ Rd, (8)

where ⊙ is the element-wise product and READOUT(·) is an aggregation function (e.g., mean) to
generate a graph-level representation.

Hyperspherical Projection. After obtaining zinv, the next step is to project it into hyperspherical
space. Concretely, the hyperspherical invariant representation ẑinv can be calculated by:

z̃inv = Proj(zinv), ẑinv = z̃inv/∥z̃inv∥2, (9)

where Proj(·) is an MLP-based projector that maps the representation into another space, and
dividing z̃inv by its norm constrains the representation vector to unit length. The hyperspherical
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projection allows invariant learning to occur in a more discriminative space. More importantly, the
hyperspherical space provides a foundation for prototypical learning, enabling the extraction of
invariant patterns without modeling environments and addressing the semantic cliff issue.

3.3 MULTI-PROTOTYPE HYPERSPHERICAL CLASSIFIER

Following hyperspherical projection, the next step is to construct a prototype-based classifier within
the hyperspherical space. In conventional hyperspherical learning approaches (Ke et al., 2022),
each class is typically assigned a single prototype. Although this is a straightforward solution, its
modeling capabilities regarding decision boundaries are limited, as it may not adequately capture
the complexity of the data distribution. More specifically, a single prototype often overfits easy-to-
classify samples while failing to consider the harder samples. To address this limitation, we propose
a multi-prototype hyperspherical classifier in which each class is represented by multiple prototypes.
This multi-prototype approach ensures that the classification decision space is more flexible and
comprehensive, enabling better modeling of the semantic differences among classes. In the following
paragraphs, we will explain how to initialize, update, and use the prototypes for prediction.

Prototype Initialization. For each class c ∈ {1, · · · , C}, we assign K prototypes for it, and they can
be denoted by M(c) ∈ RK×d = {µ(c)

k }Kk=1. At the beginning of model training, we initialize each
of them by µ

(c)
k ∼ N (0, I), where N (0, I) represents a standard multivariate Gaussian distribution.

Random initialization can help prevent the issue of mode collapse.

Prototype Updating. To ensure that the prototypes can represent the majority of samples in
their corresponding classes while preserving stability, we adopt the exponential moving average
(EMA) technique to update the prototypes asynchronously according to invariant representation ẑinv .
Specifically, the update rule for a batch of B samples is given by:

µ
(c)
k := Normalize

(
αµ

(c)
k + (1− α)

B∑
i=1

1(yi = c)W
(c)
i,k Ẑinv,i

)
, (10)

where α is the EMA update rate, W (c)
i,k is the weight of the i-th sample for prototype k in class c,

Ẑinv,i is the representations of the i-th sample, and 1(yi = c) is an indicator function that ensures the
update applies only to samples of class c. After each update, the prototype is normalized to maintain
its unit norm, ensuring it remains on the hypersphere and the distance calculations take place in
the same unit space as Ẑinv,i. Each representation Ẑinv,i is associated with multiple prototypes,
weighted by the assignment weight vector W (c)

i ∈ RK .

Assignment Weight Calculation. To ensure that each sample is matched with the most relevant
prototype, we introduce an attention-based matching mechanism. This approach computes the
attention score between each sample and its class prototypes to determine the assignment weights:

Q = Ẑinv,iWQ,K = M(c)WK ,W
(c)
i = softmax(

QK⊤
√
d′

), (11)

where WQ,WK ∈ Rd×d′
are the learnable weight matrices for the samples and the prototypes,

respectively, and d′ is the dimension of the projected space. The attention mechanism ensures that
the prototype µ(c) most similar to the current Ẑinv,i receives the highest weight, which improves
classification accuracy and helps the prototype remain aligned with its class center. In practice, to
ensure that each sample can only concentrate on a limited number of prototypes, we further introduce
a top-n pruning strategy: we only preserve W

(c)
i,k with the top-n largest values while setting the rest

to be 0. The detailed algorithmic process and discussions are provided in Appendix C.2.

Prototype-Based Prediction. To make classification decisions with the multi-prototype classifier,
we can calculate the prediction probability with the similarity between the invariant representation
ẑinv and the set of prototypes µ(c) associated with each class, which is defined as:

p(y = c|ẑinv; {w(c),µ(c)}(C)
c=1) =

max
k=1,...,K

w
(c)
k exp

(
µ

(c)
k

⊤
ẑinv/τ

)
∑C

j=1 max
k′=1,...,K

w
(j)
k′ exp

(
µ

(j)
k′

⊤
ẑinv/τ

) , (12)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where wc
k represents the weight of the k-th prototype µ

(c)
k assigned to the current sample for class c.

After that, the class prediction can be directly obtained by an argmax operation.

3.4 MPHIL LEARNING OBJECTIVES

In this subsection, we formulate the learning objective terms of MPHIL in Eq. (6), including the
invariant prototype matching loss LIPM, prototype separation loss LPS, and the classification loss
LC. For LIPM and LPS, we formulate them with contrastive learning loss, which is proved to be
an effective mutual information estimator (Sordoni et al., 2021; Xie et al., 2022; Sun et al., 2024).
For the term of −I(y; ẑinv,µ

(y)), we show in the Appendix B.2 that it can be implemented with
classification loss.

Invariant Prototype Matching Loss LIPM. The challenge of disentangling invariant features from
environmental variations lies at the heart of OOD generalization. In our formulation, the misalignment
of a sample with an incorrect prototype can be seen as a signal of environmental interference. In
contrast, successful alignment with the correct prototype reflects the capture of stable and invariant
features. Motivated by this, we design LIPM that operates by reinforcing the proximity of samples
to their invariant representations and penalizing the influence of environmental factors, implicitly
captured through incorrect prototype associations. The loss function is expressed as follows:

LIPM = − 1

B

B∑
i=1

log

∑
c=yi

exp
(
ẑ⊤i µ

(c)/τ
)∑

c=yi
exp

(
ẑ⊤i µ

(c)/τ
)
+
∑

ĉ̸=yi
exp

(
ẑ⊤i µ

(ĉ)/τ
) , (13)

where B represents the batch size, with i indexing each sample in the batch. ẑi represents the
hyperspherical invariant representation, µ(c) is the correct class prototype, µ(ĉ) denotes the proto-
types of the incorrect classes ĉ ̸= yi, and τ is a temperature factor. This formulation reflects the
dual objective of pulling samples towards their class-invariant prototypes while ensuring that the
influence of prototypes associated with environmental shifts is minimized. The numerator reinforces
the similarity between the sample’s invariant representation and its correct prototype, while the
denominator introduces competition between correct and incorrect prototypes, implicitly modeling
the influence of environmental noise.

Prototype Separation Loss LPS. In hyperspherical space, all invariant ẑ representations are com-
pactly clustered around their respective class prototypes. To ensure inter-class separability, prototypes
of different classes must be distinguishable. The prototype separation loss LPS is designed to enforce
this by maximizing the separation between prototypes of different classes while encouraging the
similarity of prototypes within the same class. The loss function is defined as:

LPS = − 1

CK

C∑
c=1

K∑
k=1

log

∑K
i=1 I(i ̸= k) exp

(
(µ

(c)
k )⊤µ

(c)
i /τ

)
∑C

c′=1

∑K
j=1 I(c′ ̸= c) exp

(
(µ

(c)
k )⊤µ

(c′)
j /τ

) , (14)

where C represents the total number of classes, K denotes the number of prototypes assigned to
each class, µ(c)

k and µ
(c)
i correspond to different prototypes within the same class c, µ(c)

k and µ
(c′)
j

represent prototypes from different classes, and µ
(c)
k and µ

(c′)
j represent prototypes from different

classes. Such an indicator function ensures that the comparisons are made between distinct prototypes,
enhancing intra-class similarity and inter-class separation.

Classification Loss LC. To calculate the classification loss with the multi-prototype classifier, we
update the classification probability in Eq. (12) to be closed to truth labels with a classification loss.
Take multi-class classification as example, we use the cross-entropy loss:

LC = − 1

BC

B∑
i=1

C∑
c=1

yiclog(p(y = c | ẑi; {wc,µ(c)}(C)
c=1)). (15)

With the above loss terms, the final objective of MPHIL can be written as L = LC + LPS + βLIPM.
The pseudo-code algorithm and complexity analysis of MPHIL is provided in Appendix C.
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Table 1: Performance comparison in terms of accuracy. Detailed results with standard deviation are
in Table 5 and 6. The best and runner-up results are highlighted in bold and underlined. The results
of MoleOOD/iMoLD on Motif/CMNIST are not available since they are molecule-specific methods.

Method
GOOD DrugOOD

Motif CMNIST HIV IC50 EC50
basis size color scaffold size assay scaffold size assay scaffold size

ERM 60.93 46.63 26.64 69.55 59.19 70.61 67.54 66.10 65.27 65.02 65.17
IRM 64.94 54.52 29.63 70.17 59.94 71.15 67.22 67.58 67.77 63.86 59.19
VREX 61.59 55.85 27.13 69.34 58.49 70.98 68.02 65.67 69.84 62.31 65.89
Coral 61.95 55.80 29.21 70.69 59.39 71.28 68.36 67.53 72.08 64.83 58.47

MoleOOD - - - 69.39 58.63 71.62 68.58 67.22 72.69 65.78 64.11
CIGA 67.81 51.87 25.06 69.40 61.81 71.86 69.14 66.99 69.15 67.32 65.60
GIL 65.30 54.65 31.82 68.59 60.97 70.66 67.81 66.23 70.25 63.95 64.91
GREA 59.91 47.36 22.12 71.98 60.11 70.23 67.20 66.09 74.17 65.84 61.11
IGM 74.69 52.01 33.95 71.36 62.54 68.05 63.16 63.89 76.28 67.57 60.98

DIR 64.39 43.11 22.53 68.44 57.67 69.84 66.33 62.92 65.81 63.76 61.56
DisC 65.08 42.23 23.53 58.85 49.33 61.40 62.70 64.43 63.71 60.57 57.38

GSAT 62.27 50.03 35.02 70.07 60.73 70.59 66.94 64.53 73.82 62.65 62.65
CAL 68.01 47.23 27.15 69.12 59.34 70.09 65.90 64.42 74.54 65.19 61.21
iMoLD - - - 72.05 62.86 71.77 67.94 66.29 77.23 66.95 67.18
GALA 72.97 60.82 40.62 71.22 65.29 70.58 66.35 66.54 77.24 66.98 63.71
EQuAD 75.46 55.10 40.29 71.49 64.09 71.57 67.74 67.54 77.64 65.73 64.39

MPHIL 76.23 58.43 41.29 74.69 66.84 72.96 68.62 68.06 78.08 68.94 68.11

4 EXPERIMENTS

In this section, we present our experimental setup (Sec. 4.1) and showcase the results in (Sec. 4.2).
For each experiment, we first highlight the research question being addressed, followed by a detailed
discussion of the findings.
4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the performance of MPHIL on two real-world benchmarks, GOOD (Gui
et al., 2022) and DrugOOD (Ji et al., 2023), with various distribution shifts to evaluate our method.
Specifically, GOOD is a comprehensive graph OOD benchmark, and we selected three datasets: (1)
GOOD-HIV (Wu et al., 2018), a molecular graph dataset predicting HIV inhibition; (2) GOOD-
CMNIST (Arjovsky et al., 2019), containing graphs transformed from MNIST using superpixel
techniques; and (3) GOOD-Motif (Wu et al., 2022b), a synthetic dataset where graph motifs determine
the label. DrugOOD is designed for AI-driven drug discovery with three types of distribution shifts:
scaffold, size, and assay, and applies these to two measurements (IC50 and EC50). Details of datasets
are in Appendix D.1.

Baselines. We compare MPHIL against ERM and two kinds of OOD baselines: (1) Traditional OOD
generalization approaches, including Coral (Sun & Saenko, 2016), IRM (Arjovsky et al., 2019) and
VREx (Krueger et al., 2021); (2) graph-specific OOD generalization methods, including environment-
based approaches (MoleOOD (Yang et al., 2022), CIGA (Chen et al., 2022b), GIL (Li et al., 2022c),
and GREA (Liu et al., 2022), IGM (Jia et al., 2024)), causal explanation-based approaches (Disc (Fan
et al., 2022) and DIR(Wu et al., 2022b)), and advanced architecture-based approaches (CAL (Sui
et al., 2022) and GSAT (Miao et al., 2022),iMoLD (Zhuang et al., 2023)),GALA (Yao et al., 2024),
EQuAD (Chen et al., 2024). Details of all baselines are in Appendix D.2.

Implementation Details. To ensure fairness, we adopt the same experimental setup as iMold across
two benchmarks. For molecular datasets with edge features, we use a three-layer GIN with a hidden
dimension of 300, while for non-molecular graphs, we employ a four-layer GIN with a hidden
dimension of 128. The projector is a two-layer MLP with a hidden dimension set to half that of the
GIN encoder. EMA rate α for prototype updating is fixed at 0.99. Adam optimizer is used for model
parameter updates. All baselines use the optimal parameters from their original papers. Additional
hyperparameter details can be found in Appendix D.3.

4.2 PERFORMANCE COMPARISON

In this experiment, we aim to answer Q1: Whether MPHIL achieves the best performance on
OOD generalization benchmarks? The answer is YES, since MPHIL shows the best results on the
majority of datasets. Specifically, we have the following observations.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

▷ State-of-the-art results. According to Table 1, MPHIL achieves state-of-the-art performance
on 10 out of 11 datasets, and secures the second place on the remaining dataset. The average
improvements against the previous SOTA are 2.17% on GOOD and 1.68% on DrugOOD. Notably,
MPHIL achieves competitive performance across various types of datasets with different data shifts,
demonstrating its generalization ability on different data. Moreover, our model achieves the best
results in both binary and multi-class tasks, highlighting the effectiveness of the multi-prototype
classifier in handling different classification tasks.

▷ Sub-optimal performance of environment-based methods. Among all baselines, environment-
based methods only achieve the best performance on 4 datasets, while other methods perform best
on the remaining datasets. Notably, architecture-based OOD generalization methods achieves the
best results on the largest number of datasets. These observations suggest that environment-based
methods are limited by the challenge of accurately capturing environmental information in graph
data, leading to a discrepancy between theoretical expectations and empirical results. In contrast, the
remarkable performance of MPHIL also proves that graph OOD generalization can still be achieved
without specific environmental information.

4.3 ABLATION STUDY

Table 2: Performance of MPHIL and its variants.
Variants CMNIST-color HIV-scaffold IC50-size
MPHIL 41.29 (3.85) 74.69 (1.77) 68.06 (0.55)
ERM 26.64 (2.37) 69.55 (2.39) 66.10 (0.31)

w/o LIPM 37.86 (3.44) 70.61 (1.52) 67.09 (0.65)
w/o LPS 37.53 (2.18) 71.06 (1.56) 66.21 (0.37)

w/o Project 21.05 (4.89) 65.78 (3.57) 51.96 (2.54)
w/o Multi-P 20.58 (3.78) 62.11 (1.95) 57.64 (1.02)
w/o Inv. Enc. 34.86 (2.92) 66.72 (1.19) 63.73 (0.89)

w/o Update 38.95 (3.01) 67.89 (1.84) 64.14 (1.22)
w/o Prune 40.58 (3.78) 71.11 (1.95) 67.64 (1.02)

Here, we aim to discover Q2: Does each
module in MPHIL contribute to effective
OOD generalization? The answer is YES,
as removing any key component leads to
performance degradation, as demonstrated
by the results in Table 2. We have the fol-
lowing discussions.

▷ Ablation on LIPM and LPS. We re-
move LIPM and LPS in the Eq. (6) respec-
tively to explore their impacts on the per-
formance of OOD generalization. The ex-
perimental results demonstrate a clear fact:
merely optimizing for invariance (w/o LPS) or separability (w/o LIPM) weakens the OOD general-
ization ability of our model, especially for the multi-class classification task. This provides strong
evidence that ensuring both invariance and separability is a sufficient and necessary condition for
effective OOD generalization in graph learning.

▷ Ablation on the design of MPHIL. To verify the effectiveness of each module designed for
MPHIL, we conducted ablation studies by removing the hyperspherical projection(w/o Project),
multi-prototype mechanism (w/o Multi-P), invariant encoder (w/o Inv.Enc), and prototype-related
weight calculations (w/o Update) and pruning (w/o Prune). The results confirm their necessity.
First, removing the hyperspherical projection significantly drops performance, as optimizing Eq. (6)
requires hyperspherical space. Without it, results are even worse than ERM. Similarly, setting the
prototype count to one blurs decision boundaries and affects the loss function LPS, compromis-
ing inter-class separability. Lastly, replacing the invariant encoder GNNS with GNNE directly
introduces environment-related noise, making it difficult to obtain effective invariant features, thus
hindering OOD generalization. Additionally, the removal of prototype-related weight calculations and
weight pruning degraded prototypes into the average of all class samples, resulting in the prototypes
degrading into the average representation of all samples in the class, failing to maintain classification
performance in OOD scenarios.

4.4 VISUALIZATION EXPERIMENTS y=0(train)
y=1(train)
y=0(test)
y=1(test)

(a) CIGA

y=0(train)
y=1(train)
y=0(test)
y=1(test)

(b) Ours

Figure 3: t-SNE visualization on HIV-Scaffold.

In this subsection, we aim to investi-
gate Q3: How can the key designs
(i.e., hyperspherical space and multi-
prototype mechanism) improve the
representation capability of MPHIL
from a qualitative perspective? We
conduct the following visualization ex-
periments to answer this question.
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(d) HIV-scaffold
Figure 4: The two figures on the left present a hyperparameter analysis of the number of prototypes
K, while the two figures on the right illustrate the impact of the coefficient β for the loss term LIPM.

▷ Hyperspherical representation space. To further validate the advantage of hyperspherical latent
space over traditional latent spaces, we visualized the invariant representation ẑinv in both the training
set (ID) and the test set (OOD). Using t-SNE, we visualize the representation distributions learned
by MPHIL and the SOTA method, CIGA, as shown in Fig. 3. It is evident that MPHIL produces
more separable invariant representations, while also exhibiting tighter clustering for samples of the
same class, indicating successful capture of environment-invariant features. In contrast, although
CIGA achieves a certain level of intra-class compactness, its lower separability hinders its overall
performance.

prototype 1

y=0

y=1

prototype 2 prototype 3

Figure 5: Visualizations of prototypes and invariant
subgraphs (highlighted) of IC50-assay dataset.

▷ Prototypes visualization. We also re-
veal the characteristics of prototypes by vi-
sualizing samples that exhibit the highest
similarity to each prototype. Fig. 5 shows
that prototypes from different classes cap-
ture distinct invariant subgraphs, ensuring
a strong correlation with their respective
labels. Furthermore, within the same cate-
gory, different prototypes encapsulate sam-
ples with varying environmental subgraphs.
This effectively validates the association
between multi-prototype learning and environmental adaptability.

4.5 HYPERPARAMETER ANALYSIS

In this experiment, we will investigate Q4: How do the key hyperparameters impact the perfor-
mance of MPHIL? The following experiments are conducted to answer this question.

▷ Analysis of K. To investigate the effect of the number of prototypes on model performance, we
vary k from 2 to 6 and present the experimental results in Fig. 4(a) and 4(b). We observe that the
best performance is achieved when the number of prototypes is approximately twice the number of
classes (e.g., 2 or 3 for GOOD-HIV, and 5 or 6 for GOOD-Motif). Deviating from this optimal range,
either too many or too few prototypes negatively impacts the final performance.

▷ Analysis of β. To discover the sensitivity of MPHIL to coefficient β in LIPM, we search β from
{0.01, 0.05, 0.1, 0.2, 0.3} and present the results in Fig. 4(c) and 4(d). We observe that a small β
(e.g., 0.01 and 0.05) hampers the model’s ability to effectively learn invariant features, while selecting
a moderate β (i.e., 0.1) leads to the best performance.

5 CONCLUSION

In this work, we introduce a novel graph invariant learning framework integrated with hyperspherical
space and prototypical learning, ensuring that the learned representations are both environment-
invariant and class-separable without relying on environmental information. Building upon this
framework, we present a new graph out-of-distribution generalization method named MPHIL. MPHIL
achieves inter-class invariance and intra-class separability by optimizing two effective loss functions
and leverages class prototypes – defined as the mean feature vectors of each category – to eliminate
dependency on individual prototypes. Experimental evaluations on the DrugOOD and GOOD
benchmarks demonstrate the effectiveness of MPHIL.
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interest. We are committed to maintaining the highest standards of scientific integrity and ethics to
ensure the validity and reliability of our findings.

REPRODUCIBILITY STATEMENT

Our model is clearly formalized in the main text for clarity and comprehensive understanding. Detailed
implementation, including related works, proof, metholdogy details, experimental details, is provided
in Appendix. The experimental settings and baselines have been rigorously checked for fair compari-
son. The source code of our method is available in https://anonymous.4open.science/r/MPHIL-23C0/.
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A RELATED WORKS

Out-of-Distribution (OOD) Generalization. Due to the sensitivity of deep neural networks to
distributional shifts, their performance can vary dramatically, making out-of-distribution (OOD)
generalization an important research topic (Arjovsky et al., 2019; Li et al., 2022b; Krueger et al.,
2021). OOD generalization is more challenging than domain adaptation because it targets open
environments, aiming to generalize from training on known distributions to completely unseen
distributions (Farahani et al., 2021; Kundu et al., 2020). The predominant approach for OOD
generalization is invariant learning, which encourages the model to learn representations that remain
consistent across environments, thus maintaining predictive power on OOD data (Creager et al.,
2021). Additionally, methods such as distributionally robust optimization (Rahimian & Mehrotra,
2019), data augmentation (Volpi et al., 2018), and test-time adaptation (Chen et al., 2022a) have also
been proposed to tackle the OOD generalization problem.

Invariant Learning. Invariant learning explores stable relationships between features and labels
across environments, aiming to learn representations that remain effective in OOD scenarios (Creager
et al., 2021; Ahuja et al., 2020). Its interpretability is ensured by a causal data generation process (Sun
et al., 2020). (Ye et al., 2021) proved the theoretical error lower bound for OOD generalization based
on invariant learning. Notably, the definition of environmental information is critical to invariant
learning, yet it also restricts its further development, as it often requires the training set to encompass
a diverse and comprehensive range of environments (Lin et al., 2022). It has been proved from
theoretical and experimental perspectives (Rosenfeld et al., 2020; Nagarajan et al., 2020).

OOD Generalization on Graphs. Inspired by invariant learning, many OOD generalization methods
in the graph domain have been proposed, adopting this core idea, and several representative works
have emerged. (Yang et al., 2022; Li et al., 2022c; Liu et al., 2022; Jia et al., 2024; Fan et al., 2022;
Sui et al., 2022; Miao et al., 2022). Their core idea is to design an effective model or learning
strategy that can identify meaningful invariant subgraphs from the input while ignoring the influence
of environmental noise (Wu et al., 2022b; Chen et al., 2022b). However, the difficulty of modeling
environment information in the graph domain has recently garnered attention, with researchers
generally agreeing that directly applying invariant learning to graph OOD generalization presents
challenges (Chen et al., 2023; Zhuang et al., 2023).

Hyperspherical Learning. Hyperspherical learning has gained attention due to its advantages over
traditional Euclidean methods in high-dimensional (Davidson et al., 2018; Ke et al., 2022). The core
idea lies in using a projector to project representations onto a unit sphere space for prototype-based
classification (Mettes et al., 2019). SphereNet first proposed the concept of deep hyperspherical
learning based utilized SphereConv as its basic convolution operator, demonstrating that mapping rep-
resentations onto the hypersphere improves classification accuracy and robustness to variations (Liu
et al., 2017). Recently, hyperspherical learning has been extended to applications like contrastive
learning and OOD detection, allowing for better disentanglement of features (Ming et al., 2022; Bai
et al., 2024). Despite these advancements, challenges remain in effectively combining hyperspherical
representations with invariant learning to address OOD generalization in graph-based tasks, where
accurately defining environmental information is particularly difficult.

B MPHIL OBJECTIVE DEDUCTIONS

B.1 PROOF OF THE OVERALL OBJECTIVE

In this section, we explain how we derived our goal in Eq. (6) from Eq. (5). Let’s recall that Eq. (5) is
formulated as:

min
fc,g

− I(y; zinv) + βI(zinv; e), (16)

For the first term −I(y; zinv), since we are mapping invariant features to hyperspherical space, we
replace zinv with ẑinv . Then according to the definition of mutual information:

−I(y; ẑinv) = −Ey,ẑinv

[
log

p(y, ẑinv)

p(y)p(ẑinv)

]
. (17)
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We introduce intermediate variables µy to rewrite Eq. (17) as:

−I(y; ẑinv) = −Evy,ẑinv,µy

[
log

p(y, ẑinv,µ
y)

p(ẑinv,µy)p(y)

]
− Ey,ẑinv,µy

[
log

p(y, ẑinv)p(ẑinv,µ
y)

p(y, ẑinv,µy)p(ẑinv)

]
= −Ey,ẑinv,µy

[
log

p(y, ẑinv,µ
y)

p(ẑinv,µy)p(y)

]
+ Ey,ẑinv,µy

[
log

p(y, ẑinv,µ
y)p(ẑinv)

p(y, ẑinv)p(ẑinv,µy)

]
= −Ey,ẑinv,µy

[
log

p(y, ẑinv,µ
y)

p(ẑinv,µy)p(y)

]
+ Ey,ẑinv,µy

[
log

p(y,µy|ẑinv)
p(y|ẑinv)p(µy)|ẑinv

]
.

(18)

By the definition of Conditional mutual information, we have the following equation:

−I(y; ẑinv) = −I(y; ẑinv,µ
y) + I(y;µy|ẑinv),

−I(y;µy) = −I(y; ẑinv,µ
y) + I(y; ẑinv|µy).

(19)

By merging the same terms, we have:

−I(y; ẑinv) = −I(y;µy) + [I(y;µy|ẑinv)− I(y; ẑinv|µy)]. (20)

Since our classification is based on the distance between µy and ẑinv , we add −I(y; ẑinv,µ
y) back

into the above equation and obtain a lower bound:

−I(y; ẑinv) ≥ −I(y;µy) + [I(y;µy|ẑinv)− I(y; ẑinv|µy)]− I(y; ẑinv,µ
y). (21)

Since the µy are updated by ẑinv from the same class, we can approximate I(y;µy|ẑinv) equal to
I(y; ẑinv|µy) and obtain the new lower bound:

−I(y; ẑinv) ≥ −I(y;µy)− I(y; ẑinv,µ
y). (22)

For the second term I(zinv; e), we can also rewrite it as:

I(ẑinv; e) = I(ẑinv; e,µ
y)− I(ẑinv;µ

y|e). (23)

Given that the environmental labels e are unknown, we drop the term I(ẑinv; e,µ
y) as it cannot be

directly computed. This leads to the following lower bound:

I(ẑinv; e) ≥ −I(ẑinv;µ
y|e). (24)

We can obtain a achievable target by Eq. (22) and Eq. (24) as follow:

−I(y; zinv) + βI(zinv; e) ≥ −I(y;µy)− I(y; ẑinv,µ
y)− βI(ẑinv;µ

y|e). (25)

In fact, p(ẑinv,µy|e) ≥ p(ẑinv;µ
y), Eq. (25) can be achieved by:

−I(y; zinv) + βI(zinv; e) ≥ −I(y;µy)− I(y; ẑinv,µ
y)− βI(ẑinv;µ

y). (26)

Finally, optimizing Eq. (5) can be equivalent to optimizing its lower bound and we can obtain the
objective without environment e as shown in Eq. (6):

min
fc,g

−I(y; ẑinv,µ
(y))︸ ︷︷ ︸

LC

−I(y;µ(y))︸ ︷︷ ︸
LPS

−βI(ẑinv;µ
(y))︸ ︷︷ ︸

LIPM

. (27)

B.2 PROOF OF LC

For the term I(y; ẑinv,µ
(y)), it can be written as:

I(y; ẑinv,µ
(y)) = Ey,ẑinv,µy

[
log

p(y|ẑinv,µy)

p(y)

]
, (28)
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according to (Seo et al., 2023), we have:

I(y; ẑinv,µ
(y)) ≥ Ey,ẑinv,µy

[
log

qθ(y|γ(ẑinv,µy))

p(y)

]
, (29)

where qθ(y|γ(ẑinv,µy)) is the variational approximation of p(y|γ(ẑinv,µy)). γ(, ) is the function
to calculate the similarity between ẑinv and µy . Then we can have:

I(y; ẑinv,µ
(y)) ≥ Ey,ẑinv,µy

[
log

qθ(y|γ(ẑinv,µy))

p(y)

]
≥ Ey,ẑinv,µy [log qθ(y|γ(ẑinv,µy))]− Ey[log p(y)]

≥ Ey,ẑinv,µy [log qθ(y|γ(ẑinv,µy))]

:= −LC. (30)

Finally, we prove that min I(y; ẑinv,µ
(y)) is equivalent to minimizing the classification loss LC.

C METHODOLOGY DETAILS

C.1 OVERALL ALGORITHM OF MPHIL

The training algorithm of MPHIL is shown in Algorithm. 1. After that, we use the well-trained
GNNS ,GNNE , Proj and all prototypes M(c) = {µ(c)

k }Kk=1 to perform inference on the test set. The
pseudo-code for this process is shown in Algorithm. 2.

Algorithm 1 The training algorithm of MPHIL.
Input: Scoring GNN GNNS ; Encoding GNN GNNE ; Projection Proj; Number of prototypes for

each class K; The data loader of in-distribution training set Dtrain.
Output: Well-trained GNNS , GNNE , Proj and all prototypes M(c).

1: For each class c ∈ {1, · · · , C}, assign K prototypes for it which can be denoted by M(c) =

{µ(c)
k }Kk=1.

2: Initialize each of them by µ
(c)
k ∼ N (0, I)

3: for epoch in epochs do
4: for each Gbatch in Dtrain do
5: Obtain Zinv using GNNS and GNNE via Eq. (7) and (8)
6: Obtain Ẑinv using Proj via Eq. (9)
7: Compute W (c) using µ(c) and Ẑinv via Eq. (11).
8: for each prototype µ

(c)
k do

9: Update it using Ẑinv and W (c) via Eq. (10).
10: end for
11: Get p(y = c | ẑi; {wc,µ(c)}(C)

c=1) using Ẑinv , W (c) and µ(c) via Eq. (12)
12: Compute the final loss L with Ẑinv, µ(c) and p(y = c | ẑi; {wc,µ(c)}(C)

c=1) via Eq. (13),
(14) and (15)

13: Update parameters of GNNS , GNNE and Proj with the gradient of L.
14: end for
15: end for

C.2 WEIGHT PRUNING

Directly assigning weights to all prototypes within a class can lead to excessive similarity between
prototypes, especially for difficult samples. This could blur decision boundaries and reduce the
model’s ability to correctly classify hard-to-distinguish samples.

To address this, we apply a top-n pruning strategy, which keeps only the most relevant prototypes
for each sample. The max weights are retained, and the rest are pruned as follows:

W
(c)
i,k = 1[W

(c)
i,k > β] ∗W (c)

i,k , (31)
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Algorithm 2 The inference algorithm of MPHIL.

Input: Well-trained GNNS ,GNNE , Proj and all prototypes M(c) = {µ(c)
k }Kk=1. The data loader of

Out-of-distribution testing set Dtest.
Output: Classification probability p(y = c | ẑi; {wc,µ(c)}(C)

c=1)
1: for each Gbatch in Dtest do
2: Obtain Zinv using GNNS and GNNE via Eq. (7) and (8)
3: Obtain Ẑinv using Proj via Eq. (9)
4: Compute W (c) using µ(c) and Ẑinv via Eq. (11).
5: Get p(y = c | ẑi; {wc,µ(c)}(C)

c=1) using Ẑinv , W (c) and µ(c) via Eq. (12)
6: end for

where β is the threshold corresponding to the top-n weight, and 1[W (c)
i,k > β] is an indicator function

that retains only the weights for the top-n prototypes. This pruning mechanism ensures that the
prototypes remain distinct and that the decision space for each class is well-defined, allowing for
improved classification performance. By applying this attention-based weight calculation and top-n
pruning, the model ensures a more accurate and robust matching of samples to prototypes, enhancing
classification, especially in OOD scenarios.

C.3 COMPLEXITY ANALYSIS

The time complexity of MPHIL is O(|E|d+ |V |d2), where |V | denotes the number of nodes and |E|
denotes the number of edges, d is the dimension of the final representation. Specifically, for GNNS

and GNNE , their complexity is denoted as O(|E|d + |V |d2). The complexity of the projector is
O(|V |d2), while the complexities of calculating weights and updating prototypes are O(|V ||K|d)
where K is the number of prototypes. The complexity of computing the final classification probability
also is O(|V |Kd). Since K is a very small constant, we can ignore O(|V |Kd), resulting in a final
complexity of O(|E|d + |V |d2). Theoretically, the time complexity of MPHIL is on par with the
existing methods.

D EXPERIMENTAL DETAILS

D.1 DATASETS

Overview of the Dataset. In this work, we use 11 publicly benchmark datasets, 5 of them are
from GOOD (Gui et al., 2022) benchmark. They are the combination of 3 datasets (GOOD-HIV,
GOOD-Motif and GOOD-CMNIST) with different distribution shift (scaffold, size, basis, color). The
rest 6 datasets are from DrugOOD (Ji et al., 2023) benchmark, including IC50-Assay, IC50-Scaffold,
IC50-Size, EC50-Assay, EC50-Scaffold, and EC50-Size. The prefix denotes the measurement and
the suffix denotes the distribution-splitting strategies. We use the default dataset split proposed in
each benchmark. Statistics of each dataset are in Table 3.

Distribution split. In this work, we investigate various types of distribution-splitting strategies for
different datasets.

• Scaffold. Molecular scaffold is the core structure of a molecule that supports its overall
composition, but it only exhibits specific properties when combined with particular func-
tional groups. Distribution shift occurs when there are significant changes in the scaffold
structure.

• Size. The size of a graph refers to the total number of nodes, and it is also implicitly related
to the graph’s structural properties. Distribution shift occurs when there is a significant
change in graph size.

• Assay. The assay is an experimental technique used to examine or determine molecular
characteristics. Due to differences in assay conditions and targets, activity values measured
by different assays can vary significantly. Assay variation results in a distribution shift.
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Table 3: Dateset statistics.

Dataset Task Metric Train Val Test

GOOD

HIV
scaffold Binary Classification ROC-AUC 24682 4133 4108

size Binary Classification ROC-AUC 26169 4112 3961

Motif
basis Multi-label Classification ACC 18000 3000 3000

size Multi-label Classification ACC 18000 3000 3000

CMNIST color Multi-label Classification ACC 42000 7000 7000

DrugOOD

IC50

assay Binary Classification ROC-AUC 34953 19475 19463

scaffold Binary Classification ROC-AUC 22025 19478 19480

size Binary Classification ROC-AUC 37497 17987 16761

EC50

assay Binary Classification ROC-AUC 4978 2761 2725

scaffold Binary Classification ROC-AUC 2743 2723 2762

size Binary Classification ROC-AUC 5189 2495 2505

• Basis. The generation of a motif involves combining a base graph (wheel, tree, ladder, star,
and path) with a motif (house, cycle, and crane), but only the motif is directly associated
with the label. Distribution shift occurs when the base graph changes.

• Color. CMNIST is a graph dataset constructed from handwritten digit images. Following
previous research, we declare a distribution shift when the color of the handwritten digits
changes.

D.2 BASELINES

In our experiments, the methods we compared can be divided into two categories, one is ERM and
traditional OOD generalization methods:

• ERM is a standard learning approach that minimizes the average training error, assuming
the training and test data come from the same distribution.

• IRM (Arjovsky et al., 2019) aims to learn representations that remain invariant across
different environments, by minimizing the maximum error over all environments.

• VREx (Krueger et al., 2021) propose a penalty on the variance of training risks which can
providing more robustness to changes in the input distribution.

• Coral (Sun & Saenko, 2016) utilize a nonlinear transformation to align the second-order
statistical features of the source and target domain distributions

Another class of methods is specifically designed for Graph OOD generalization:

• MoleOOD (Yang et al., 2022) learn the environment invariant molecular substructure by a
environment inference model and a molecular decomposing model.

• CIGA (Chen et al., 2022b) proposes an optimization objective based on mutual information
to ensure the learning of invariant subgraphs that are not affected by the environment.

• GIL (Li et al., 2022c) performs environment identification and invariant risk loss optimiza-
tion by separating the invariant subgraph and the environment subgraph.

• GERA (Liu et al., 2022) performs data augmentation by replacing the input graph with the
environment subgraph to improve the generalization ability of the model

• IGM (Jia et al., 2024) performs data augmentation by simultaneously performing a hybrid
strategy of invariant subgraphs and environment subgraphs.

• DIR (Wu et al., 2022b) identifies causal associations between input graphs and labels by
performing counterfactual interventions.
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Table 4: Hyper-parameter configuration.

proj_dim att_dim K lr β

DrugOOD

IC50
Assay 300 128 3 0.001 0.1

Scaffold 300 128 3 0.001 0.1
Size 300 128 3 0.001 0.1

EC50
Assay 300 128 3 0.001 0.1

Scaffold 300 128 3 0.001 0.1
Size 300 128 3 0.001 0.1

GOOD

HIV
Scaffold 300 128 3 0.01 0.1

Size 300 128 3 0.01 0.1

Motif
Basis 256 128 6 0.01 0.2
Size 256 128 6 0.01 0.2

CMNIST Color 256 128 5 0.01 0.2

• DisC (Fan et al., 2022) learns causal and bias representations through a causal and disentan-
gling based learning strategy separately.

• GSAT (Miao et al., 2022) learns the interpretable label-relevant subgraph through an
attention mechanism that is injected with stochasticity.

• CAL Sui et al. (2022) proposes a causal attention learning strategy to ensure that GNNs
learn effective representations instead of optimizing loss through shortcuts.

• iMoLD (Zhuang et al., 2023) designs two GNNs to directly extract causal features from the
encoded graph representation.

• GALA (Chen et al., 2024) designs designs a new loss function to ensure graph OOD
generalization without environmental information as much as possible.

• EQuAD (Yao et al., 2024) learns how to effectively remove spurious features by optimizing
the self-supervised informax function.

D.3 IMPLEMENTATION DETAILS

Baselines. For all traditional OOD methods, we conduct experiments on different datasets using the
code provided by GOOD (Gui et al., 2022) and DrugOOD (Ji et al., 2023) benchmark. For graph
OOD generalization methods with public code, we perform experiments in the same environments as
our method and employ grid search to select hyper-parameters, ensuring fairness in the results.

Our method. We implement our proposed MPHIL under the Pytorch (Paszke et al., 2019) and
PyG (Fey & Lenssen, 2019). For all datasets containing molecular graphs (all datasets from DrugOOD
and GOODHIV), we fix the learning rate to 0.001 and select the hyper-parameters by ranging
the proj_dim from {100, 200, 300}, att_dim from {64, 128, 256}, K from {2, 3, 4, 5} and β from
{0.01, 0.1, 0.2}. For the other datasets, we fix the learning rate to 0.01 and select the hyper-parameters
by ranging the proj_dim from {64, 128, 256}, att_dim from {64, 128, 256}, K from {3, 4, 5, 6}
and β from {0.01, 0.1, 0.2}. For the top-n pruning, we force n to be half of K. We conduct a
grid search to select hyper-parameters and refer to Table 4 for the detailed configuration. For all
experiments, we fix the number of epochs to 200 and run the experiment five times with different
seeds, select the model to run on the test set based on its performance on validation, and report the
mean and standard deviation.
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D.4 SUPPLEMENTAL RESULTS

We report the complete experimental results with means and standard deviations in Tables 5 and 6 .

Table 5: Performance comparison in terms of average accuracy (standard deviation) on GOOD
benchmark.

Method GOOD-Motif GOOD-CMNIST GOOD-HIV
basis size color scaffold size

ERM 60.93 (2.11) 46.63 (7.12) 26.64 (2.37) 69.55 (2.39) 59.19 (2.29)
IRM 64.94 (4.85) 54.52 (3.27) 29.63 (2.06) 70.17 (2.78) 59.94 (1.59)
VREX 61.59 (6.58) 55.85 (9.42) 27.13 (2.90) 69.34 (3.54) 58.49 (2.28)
Coral 61.95 (4.36) 55.80 (4.05) 29.21 (6.87) 70.69 (2.25) 59.39 (2.90)

MoleOOD - - - 69.39 (3.43) 58.63 (1.78)
CIGA 67.81 (2.42) 51.87 (5.15) 25.06 (3.07) 69.40 (1.97) 61.81 (1.68)
GIL 65.30 (3.02) 54.65 (2.09) 31.82 (4.24) 68.59 (2.11) 60.97 (2.88)
GREA 59.91 (2.74) 47.36 (3.82) 22.12 (5.07) 71.98 (2.87) 60.11 (1.07)
IGM 74.69 (8.51) 52.01 (5.87) 33.95 (4.16) 71.36 (2.87) 62.54 (2.88)

DIR 64.39 (2.02) 43.11 (2.78) 22.53 (2.56) 68.44 (2.51) 57.67 (3.75)
DisC 65.08 (5.06) 42.23 (4.20) 23.53 (0.67) 58.85 (7.26) 49.33 (3.84)

GSAT 62.27 (8.79) 50.03 (5.71) 35.02 (2.78) 70.07 (1.76) 60.73 (2.39)
CAL 68.01 (3.27) 47.23 (3.01) 27.15 (5.66) 69.12 (1.10) 59.34 (2.14)
GALA 66.91 (2.77) 45.39 (5.84) 38.95 (2.97) 69.12 (1.10) 59.34 (2.14)
iMoLD - - - 72.05 (2.16) 62.86 (2.34)
GALA 72.97 (4.28) 60.82 (0.51) 40.62 (2.11) 71.22 (1.93) 65.29 (0.72)
EQuAD 75.46 (4.35) 55.10 (2.91) 40.29 (3.95) 71.49 (0.67) 64.09 (1.08)

MPHIL 76.23 (4.89) 58.43 (3.15) 41.29 (3.85) 73.94 (1.77) 66.84 (1.09)

Table 6: Performance comparison in terms of average accuracy (standard deviation) on DrugOOD
benchmark.

Method DrugOOD-IC50 DrugOOD-EC50
assay scaffold size assay scaffold size

ERM 70.61 (0.75) 67.54 (0.42) 66.10 (0.31) 65.27 (2.39) 65.02 (1.10) 65.17 (0.32)
IRM 71.15 (0.57) 67.22 (0.62) 67.58 (0.58) 67.77 (2.71) 63.86 (1.36) 59.19 (0.83)
VREx 70.98 (0.77) 68.02 (0.43) 65.67 (0.19) 69.84 (1.88) 62.31 (0.96) 65.89 (0.83)
Coral 71.28 (0.91) 68.36 (0.61) 67.53 (0.32) 72.08 (2.80) 64.83 (1.64) 58.47 (0.43)

MoleOOD 71.62 (0.50) 68.58 (1.14) 67.22 (0.96) 72.69 (4.16) 65.78 (1.47) 64.11 (1.04)
CIGA 71.86 (1.37) 69.14 (0.70) 66.99 (1.40) 69.15 (5.79) 67.32 (1.35) 65.60 (0.82)
GIL 70.66 (1.75) 67.81 (1.03) 66.23 (1.98) 70.25 (5.79) 63.95 (1.17) 64.91 (0.76)
GREA 70.23 (1.17) 67.20 (0.77) 66.09 (0.56) 74.17 (1.47) 65.84 (1.35) 61.11 (0.46)
IGM 68.05 (1.84) 63.16 (3.29) 63.89 (2.97) 76.28 (4.43) 67.57 (0.62) 60.98 (1.05)

DIR 69.84 (1.41) 66.33 (0.65) 62.92 (1.89) 65.81 (2.93) 63.76 (3.22) 61.56 (4.23)
DisC 61.40 (2.56) 62.70 (2.11) 64.43 (0.60) 63.71 (5.56) 60.57 (2.27) 57.38 (2.48)

GSAT 70.59 (0.43) 66.94 (1.43) 64.53 (0.51) 73.82 (2.62) 62.65 (1.79) 62.65 (1.79)
CAL 70.09 (1.03) 65.90 (1.04) 64.42 (0.50) 74.54 (1.48) 65.19 (0.87) 61.21 (1.76)
iMoLD 71.77 (0.54) 67.94 (0.59) 66.29 (0.74) 77.23 (1.72) 66.95 (1.26) 67.18 (0.86)
GALA 70.58 (2.63) 66.35 (0.86) 66.54 (0.93) 77.24 (2.17) 66.98 (0.84) 63.71 (1.17)
EQuAD 71.57 (0.95) 67.74 (0.57) 67.54 (0.27) 77.64 (0.63) 65.73 (0.17) 64.39 (0.67)

MPHIL 72.96 (1.21) 68.62 (0.78) 68.06 (0.55) 78.08 (0.54) 68.34 (0.61) 68.11 (0.58)
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