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ABSTRACT

3D image analysis is crucial in fields such as autonomous driving and biomedical
research. However, existing 3D point cloud classification models are often black
boxes, limiting trust and usability in safety-critical applications. To address this,
we propose POINTMIL, an inherently locally interpretable point cloud classifier
using Multiple Instance Learning (MIL). POINTMIL offers local interpretability,
providing fine-grained point-specific explanations to point-based models without
the need for post-hoc methods, addressing the limitations of global or impre-
cise interpretability approaches. We applied POINTMIL to popular point cloud
classifiers, CurveNet, DGCNN and PointNet, and proposed a transformer-based
backbone to extract high-quality point-specific features. POINTMIL transformed
these models to become inherently interpretable while increasing predictive per-
formance on standard benchmarks (ModelNet40, ShapeNetPart) and achieving
state-of-the-art mACC (97.3%) and F1 (97.5%) on the IntrA biomedical data set.

Figure 1: Current point cloud classifiers usually only provide predictive probabilities. We propose
POINTMIL to inherently incorporate interpretability and improve predictive performance into point-
based architectures.

1 INTRODUCTION

Three-dimensional (3D) imaging data is prevalent in various fields, including autonomous driving,
augmented reality, robotics, and biology. In autonomous driving, 3D point clouds enable vehicles to
perceive and navigate their surroundings safely, identifying obstacles and road features. In biology,
the 3D shape of cells has provided insight into the underlying cell state (Viana et al., 2023), enabling
advances in diagnostics (Song et al., 2024) and drug discovery.

Significant progress has been made in the processing of point clouds representations of 3D shapes
for classification and segmentation tasks (Guo et al., 2020). However, most methods are black
boxes that do not explain their decision-making, which limits adoption in real world scenarios due
to concerns about safety and trustworthiness (Rudin, 2019; Rudin et al., 2022). Despite significant
advancements in the interpretability of machine learning models in 2D image analysis (Zhang et al.,
2021; Wang et al., 2023; Hu et al., 2024; Paul et al., 2024), there has been a lack of research on the
interpretability of 3D point cloud models. More so, of those proposed, the majority are either post-
hoc meaning that an extra modelling step is required to obtain interpretations, or they are globally
interpretable meaning that they lack the ability to offer fine-grained, point-specific explanations.
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To address these challenges and elucidate the model’s decision-making process, we propose POINT-
MIL, an inherently interpretable classification framework for point clouds that offers fine-grained,
local and class-specific interpretations using Multiple Instance Learning (MIL; Dietterich et al.
(1997)). Given its ability to handle data organised into bags of instances, MIL is well suited for
point cloud analysis, especially in bioimaging domains, where each point in a point cloud is as-
signed the same label, but only certain points are discriminatory (Yang et al., 2020). Building on
this foundation, we present a model that leverages the strengths of MIL to offer robust performance
and interpretability in point cloud classification. Furthermore, we introduce a contextual attention
mechanism, which incorporates neighbourhood information into the attention calculation, address-
ing the sparsity of traditional attention methods and enabling smoother, more coherent attention
distributions. This adaptation ensures that the model can better capture local geometric relation-
ships within the point cloud, improving both classification performance and interpretability. Our
main contributions are as follows:

1. We propose POINTMIL, a point-based classification pipeline based on MIL, to offer inher-
ent local interpretability and enhanced classification performance to existing point-based
feature extractors.

2. We introduce a new transformer-based model to extract high-quality point-specific features
from a point cloud.

3. We incorporate contextual attention to address sparsity in attention weights, improving
interpretability and classification performance by leveraging local neighbourhood informa-
tion.

4. We show the generality of POINTMIL on de-facto public benchmarks (ModelNet40 (Wu
et al., 2015) and ShapeNetPart (Yi et al., 2016)) and biomedical imaging datasets, achieving
the state-of-the-art on IntrA (Yang et al., 2020).

2 RELATED WORK

Point cloud analysis: One of the first methods that used unordered point clouds directly for classifi-
cation and segmentation was PointNet (Qi et al., 2017a). PointNet, however, ignored local relation-
ships between points. Subsequently, PointNet++ (Qi et al., 2017b) introduced hierarchical feature
learning to capture locality recursively. Many modern algorithms are built on the design philosophy
of PointNet++, including convolutional kernel-based (Li et al., 2018b; Thomas et al., 2019; Wu et al.,
2019), graph-based (Wang et al., 2019a;b; Xu et al., 2020), MLP-based (Choe et al., 2022; Ma et al.,
2022), and transformer-based methods (Zhang et al., 2020; Zhao et al., 2021; Guo et al., 2021; Yu
et al., 2021; Cheng et al., 2022; Akwensi et al., 2024). Although significant progress has been made
in advancing classification and segmentation accuracy, little work has focused on interpretability.

Interpretability on point clouds: Interpretability methods for point clouds can be classified along
two key dimensions: (1) the stage at which interpretability is introduced and (2) the scope of the
explanations provided. Regarding the stage, methods are either post-hoc or inherently interpretable.
Post-hoc methods generate explanations after the model has made its predictions, often through
additional analysis, approximation techniques, or assessing gradients with respect to the input Zhou
et al. (2016). In contrast, inherently interpretable methods are designed to integrate interpretability
into the model itself, producing explanations as part of the prediction process. Regarding the scope,
methods are categorised as either local or global. Local approaches focus on explaining individual
predictions, offering insights specific to a single input. Global approaches aim to provide a holistic
understanding of the model’s behaviour across all inputs.

Since PointNet ++ (Qi et al., 2017b), many point-based models have used some form of sampling
and grouping (Guo et al., 2021; Zhao et al., 2021; Xiang et al., 2021; Ma et al., 2022), thus losing
per-point information in the classification stage. Therefore, most local interpretability methods for
point cloud classification are post-hoc. These include gradient-based (Zhang et al., 2019; Huang
et al., 2020) and surrogate models Tan & Kotthaus (2022) based on LIME (Ribeiro et al., 2016).
Zhang et al. (2019) and Huang et al. (2020) developed explainability methods for PointNet. Both
methods used global average pooling (GAP) followed by a classification layer and thus required
the gradients to be projected back in a post-hoc manner to assess the contribution of each point to
discriminating classes. Taghanaki et al. (2020) introduced a module into point set encoders that
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masked points with negligible contributions, leaving only informative points in the classification
layer. Similarly, Zheng et al. (2019) obtained saliency maps by shifting points to the object centroid
and calculating the corresponding loss gradient with respect to the shifted points. However, post
hoc methods have been shown to be deceptive and often troublesome (Laugel et al., 2019; Rudin
et al., 2021; Feng et al., 2024). For example, the interpretations of post hoc methods can differ
depending on the interpretability methods (Li et al., 2018a), leading to convincing but conflicting
interpretations for the same classification. Post-hoc methods also involve an additional modelling
step, raising further concerns about the precision of their interpretations Fan et al. (2021). In order
to obtain local interpretations for point cloud classification, POINTMIL required features for each
input point.

Few inherently interpretable methods for point cloud classifications have been proposed, and of
these, most are global. Arnold et al. (2023) developed XPCC, a prototype-based interpretable model
that used point cloud representation distributions to learn class-specific prototypes. Similarly, Feng
et al. (2024) developed Interpretable3D, a prototype-based global interpretability model that can be
used in conjunction with other model architectures for classification and segmentation. However,
none of these inherently interpretable methods offers local interpretations on a per-point basis. While
global interpretability provides valuable insights into the overall behaviour of a model, local methods
can be especially beneficial when understanding specific, individual predictions is crucial, offering
more granular and context-sensitive explanations. To our knowledge, no one has yet offered an
inherently locally interpretable model for point cloud classification. POINTMIL utilises MIL to
offer an inherently locally interpretable model.

Multiple instance learning: In the typical binary MIL problem, a bag is labelled positive if and
only if at least one of its instances is labelled positive (Dietterich et al., 1997); however, there is
no access to individual instances during training. MIL algorithms then attempt to classify entire
bags of instances and often pinpoint important or class conditional discriminatory instances as inter-
pretability output. Many MIL methods have been proposed for drug activity prediction (Dietterich
et al., 1997), video image analysis (Ali & Shah, 2010), and cancer detection and sub-typing (Ilse
et al., 2018; Shao et al., 2021; Lu et al., 2021; Fourkioti et al., 2024). Recently, Early et al. (2024)
extended MIL to time series classification in an interpretable plug-and-play framework. However,
to our knowledge, no one has used MIL for interpretable point cloud classification.

3 METHODS

Given a point cloud P ∈ RN×3 = {pi|i = 1, . . . , N}, consisting of N points in Cartesian space
(x, y, z), and their associated d-dimensional point features (often point normals, however, these can
be the point coordinates if no per-point features exist) F ∈ RN×din = {fi|i = 1, . . . , N}, traditional
point-based methods use a point-based encoder fenc to learn a global representation z ∈ Rd for P
by aggregating the points with equal weighting (often through adaptive pooling), followed by a
classification head fclf .

We propose a new approach by learning a representation zi ∈ Rd for each point pi for i ∈
{1, . . . , N}, and then applying MIL pooling for simultaneous classification and interpretability. Our
framework consists of a point-based feature extractor fenc and a MIL pooling module fMIL.

3.1 FEATURE EXTRACTOR

To develop a per-point feature extractor, we modified the transformer block introduced by Yu et al.
(2021). We adapted their transformer block to not use the farthest point sampling. This feature
extractor aimed to incorporate contextual information into the point cloud features by: (1) grouping
points with k-Nearest Neighbours (k-NN), (2) including relative positional embeddings, and (3)
refining per point features through an attention mechanism. These are detailed in the following
sections.

Group features through k-nearest neighbours: We grouped features through k-nearest neigh-
bours (k-NN). Unlike Yu et al. (2021), we did not use point sampling strategies.

3
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Formally, we constructed a k-NN graph on P with the graph including a self-loop to per-point
features:

N (pi) = KNN(P, ||pi − pj ||22),pi,pj ∈ P,

f ′i = [(fj − fi), fi]j∈N (pi) ∈ Rk×2din ,
(1)

where KNN(·) is the k-NN function, [·, ·] is concatenation, k is the hyperparameter of the k-NN
graph, N (pi) is the set of neighbours of pi, and f ′i is the point feature augmented with local contex-
tual information.

Learned relative positional encoding: To encode spatial configurations per point-cloud neighbour-
hood we incorporated positional embeddings, hi such that:

hi ∈ Rk×dh = ϕpos([pi − pj ]j∈N (pi)), (2)

where ϕpos is an MLP and dh is the output channel dimension of ϕpos. The features were then
further augmented with this positional encoding to give:

f ′′i = [f ′i ,hi]. (3)

Thus, we obtained a new feature set F′′ ∈ RN×k×(2din+dh) = {f ′′i }Ni=1. This is then passed

Attention on the augmented features: The resulting features, F′′, were then fed into a transformer
with EdgeConv as the query operation. Recall that EdgeConv (Wang et al., 2019b) computes graph
features for each point using the equation:

ei ∈ Rde = maxj∈N (pi)(ϕedge(pi,pj − pi)), (4)

where ϕedge is an MLP with output dimension de. The F′′ were then transformed using attention
Vaswani et al. (2017):

Q ∈ RN×dk = EdgeConv (F′′)Wq

K ∈ R(N×k)×dk = Flatten (F′′)Wk

V ∈ R(N×k)×dv = Flatten (F′′)Wv,

(5)

where Wq ∈ Rde×dk , Wk ∈ R(2din+dh)×dk and Wv ∈ R(2din+dh)×dv are learnable weight
matrices. Our final per-point output features from the transformer block was then given by:

zi ∈ RN×dv = qi(softmax(ki)
Tvi). (6)

We also presented analysis on PointNet Qi et al. (2017a), DGCNN Wang et al. (2019b), and Cur-
veNet Xiang et al. (2021)feature extractors. For PointNet and DGCNN we replaced the classification
heads of these architectures with MIL pooling described in Section 3.2. CurveNet uses FPS and the
original architecture downsamples the original point cloud. In order to retain point-level features for
every point, we adapted CurveNet slightly to remove point sampling. We showed the affect of this
adaptation on classification results so that any difference in performance can then be attributed to
the MIL pooling instead of this adaptation.

3.2 MIL POOLING

After obtaining feature representations zi for each point pi, we evaluated four MIL pooling methods
that offer inherent interpretability, Instance (Wang et al., 2018), Attention (Ilse et al., 2018),
Additive (Javed et al., 2022), and Conjunctive (Early et al., 2024).

Instance pooling predicts the label of each point through an instance classifier and then pools the
predictions by taking the mean:

ŷi ∈ Rc = fclf (zi) ; Ŷ =
1

N

N∑
i=1

(ŷi) , (7)

where c is the number of classes.
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Attention pooling calculates the attention weights of the point features through an MLP, cal-
culates a weighted average feature representation for the point cloud using those weights and then
classifies that features using an MLP:

ai ∈ [0, 1] = fattn (zi) ; Ŷ = fclf

(
1

N

N∑
i=1

aizi

)
. (8)

Additive pooling calculates attention weights for each point feature, then classifies each point
according to its weighted feature vector, and finally produces a bag classification from the mean of
all weighted instance classifications:

ai ∈ [0, 1] = fattn (zi) ; ŷi = fclf (aizi) ; Ŷ =
1

N

N∑
i=1

(ŷi) . (9)

And finally, Conjunctive pooling trains the point attention and point classification heads inde-
pendently so that attention weights and point predictions are computed on the features alone. The
final point cloud classification is given by the weighted sum of the point classifications weighted by
the attention weights:

ai ∈ [0, 1] = fattn (zi) ; ŷi = fclf (zi) ; Ŷ =
1

N

N∑
i=1

(aiŷi) . (10)

3.3 CONTEXTUAL ATTENTION

As Early et al. (2024) showed that these pooling operations often produced sparse explanations
which occasionally did not cover the entire discriminatory regions, we propose injecting a con-
textual prior into our calculation of attention, following ideas similar to Fourkioti et al. (2024).
For attention-based pooling methods, Attention, Additive, and Conjunctive, attention
weights for each point are calculated as:

ai ∈ [0, 1] = fattn(zi), (11)

where fattn is an MLP and zi is a feature vector for each point pi. We propose updating these
attention weights according to the attention weights of the nearest neighbours of each point i, such
that:

anew
i ∈ [0, 1] =

1

k

∑
j∈N (pi)

aj , (12)

where N (pi) represents the set of points in the neighbourhood of pi. This update mechanism
smooths the attention weights by incorporating the information from the local neighbourhood, thus
addressing the sparsity of the original attention mechanism and providing a more context-aware
attention distribution across the point cloud.

3.4 INTERPRETABILITY

Interpretations were derived through MIL pooling. The Instance pooling strategy classifies each
point individually before pooling, yielding point-level predictions: {ŷi|i = 1, . . . , N}. Additive
and Conjunctive also make per-point predictions; however, the interpretations are scaled by
attention weights: {aiŷi|i = 1, . . . , N}. For each of these pooling algorithms, we applied a softmax
operation over the class dimension and took the index of the class for which we wished to obtain
interpretations, so that we obtained a scalar for each point in the point cloud. For the Attention
pooling strategy, we used the attention weights: a ∈ R1×N = {ai|i = 1, . . . , N}, which were
interpreted as a measure of general importance for each point in the point cloud and were not class-
specific.
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Table 1: Interpretability results in terms of AOPCR and NDCG@n (AOPCR/NDCG@n) on IntrA.
The best results are given for each method in bold.

PointNet DGCNN CurveNet Transformer Avg.

PSM 0.579/0.243 0.916/0.248 1.371/0.218 6.518/0.320 2.346/0.257
CLAIM 0.967/0.187 6.033/0.480 1.363/0.252 14.023/0.593 5.597/0.378

Add. 0.792/0.254 4.486/0.482 0.615/0.266 18.162/0.613 6.014/0.401
Att. 0.005/0.222 −0.031/0.223 1.52/0.260 14.541/0.539 4.009/0.311
Conj. 0.741/0.208 4.828/0.467 2.66/0.207 16.305/0.610 6.134/0.373
Inst. 0.973/0.225 5.212/0.462 1.709/0.236 16.166/0.587 6.015/0.378

4 EXPERIMENTS

We compared the interpretability of POINTMIL with other locally interpretable point cloud classifi-
cation methods including class attentive interpretable mapping (CLAIM; Huang et al. (2020)), and
point cloud saliency maps (PSM; Zheng et al. (2019)). Similarly to class activation maps (CAM;
Zhou et al. (2016)), CLAIM uses global average pooling (GAP) after per-point feature extractors
(the original paper focused on PointNet) and projects the weights of the classifier after GAP on the
features of each point to obtain interpretations for each point. PSM assigns scores to each point
based on its contribution to the classification loss. This is done by shifting the points towards the
centroid of the point cloud and then calculating the gradient of the loss with respect to each point
in spherical coordinates. We then compared POINTMIL to several other point-based architectures
in terms of classification performance and assessed how the MIL pooling affected the results of the
original backbones in segmentation tasks.

4.1 EVALUATION METRICS

We used the area over the perturbation curve to random (AOPCR; Samek et al. (2017)) and nor-
malised discounted cumulative gain at n (NDCG@n) to quantitatively evaluate interpretability
(Early et al., 2022; 2024). Please see Appendix for more details. For classification, we used the
overall accuracy (oACC), mean class accuracy per class (mACC), and the F1 score. For segmenta-
tion, we used the average class intersection of union (IoU) and the instance IoU.

4.2 DATASETS

We evaluated POINTMIL on several open source datasets, including two real-world datasets of 3D
cell shapes (IntrA (Yang et al., 2020) and 3D red blood cell (RBC) dataset (Simionato et al., 2021))

Figure 2: POINTMIL, CLAIM and PSM interpretability visualisations and corresponding perturba-
tion curves using the Transformer backbonfor example cells from the IntrA dataset.
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Figure 3: Interpretability visualisation and corresponding perturbation curves for different RBC
shapes.

and two of everyday objects (ModelNet40 (Wu et al., 2015) and ShapeNetPart (Yi et al., 2016)). See
Appendix F for more details.

5 RESULTS

5.1 INTERPRETABILITY

Table 1 shows the interpretability results on the IntrA dataset for PointNet, DGCNN, CurveNet, and
the Transformer backbone. Additional results are shown in Appendix B. POINTMIL provided better
interpretability performance than both PSM and CLAIM, overall. Across backbones, POINTMIL
had the highest AOPCR and NDCG@n. The only exception was CLAIM that had a higher AOPCR
for the DGCNN backbone. Among the interpretability methods, the Transformer produced the
highest AOPCR and NDCG@n results. This could be due to the attention mechanisms within the
Transformer block that already enabled the model to focus on informative points, which is further
exacerbated by the MIL pooling.

Visualisations of the interpretability for each method on the annotated Aneurysm class using the
Transformer backbone are shown in Figure 2. The red points indicate areas deemed significant by
the model for that specific class. Aneurysm’s are presented by the abnormal buldging or ballooning
of blood vessels. The first column in Figure 2 shows local annotations of Aneurysms, with each
other column presenting interpretations for the Aneurysm class using different methods. The last
columns show the perturbation curves. These present the decay in the logit of the predicted class
after removing the most important points. A larger decay suggests that those points are indeed
discriminative for the class. POINTMIL is clearly able to localise on informative regions better
than other methods as seen by the visualisation as well as a larger decay in logits shown by the
perturbation curve. Among all MIL pooling methods, Additive and Conjunctive performed

Figure 4: Interpretability outputs and perturbation curves of POINTMIL with the Transformer back-
bone for different shape classes from ModelNet40

7
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best. This superior performance of Additive and Conjunctive pooling can be attributed to
their ability to better aggregate point-level importance scores. Additive pooling scales point features
with their importance weights, preserving detailed information while focusing on relevant points.
Conjunctive pooling further enhances this by independently computing attention weights and class-
specific contributions, explicitly aligning the model’s focus with the predicted class. In contrast,
Instance pooling lacks this contextual weighting, and Attention pooling does not offer class-specific
explanations and rather provides a general measure of importance across classes, which limits their
interpretability.

We also present local interpretations for other datasets lacking ground truth annotations. Figure 3 il-
lustrates the visual interpretations for six of the nine classes of RBC with their corresponding pertur-
bation curves, demonstrating that POINTMIL successfully localises biologically relevant structural
areas. For example, Discocytes are characterised by their biconcave shapes, with significant regions
identified around the central concavity. In the case of Acanthocytes, which exhibit several spicules
of varying sizes that project from their surfaces at irregular intervals, POINTMIL similarly focused
on these projections. For Knizocytes, which have a triangular morphology, the model highlighted
the areas where the lobes converge. Additionally, POINTMIL pinpointed the spiky projections of
Echinocytes and Keratocytes, as well as the interaction zones where two cells meet in Cell Clusters.

Figure 5: Interpretability visualisations of incorrect classifications
from POINTMIL with the transformer backbone on ModelNet40.

POINTMIL is a versatile
tool that is not limited to
specific domains, making it
suitable for a wide range
of 3D shape classification
tasks. Figure 4 presents
the visual interpretations of
POINTMIL applied to the
ModelNet40 dataset, show-
casing a subset of classes.
For instance, in the case
of the Piano, the model
focused primarily on the
keys, while the it empha-
sised on the branches and
foliage of a Plant. Simi-
larly, for the Chair, crucial
features included the seat and legs. The perturbation curves in Figure 4 illustrate that when the
points identified as most informative for classifying a piano are removed, POINTMIL misclassi-
fies the object as a Night Stand. Similarly, when the points identified as the most informative for
classifying a chair are removed, POINTMIL misclassifies the object as a TV stand. The Appendix
shows how POINTMIL identifies the wings and fuselage as informative regions for Airplane, and the
shelves as most informative in classifying a Bookshelf. These interpretations reveal how POINTMIL
effectively identified and localised relevant features across various object categories, enhancing our
understanding of the model’s decision-making process.

Figure 6: Interpretability visualisations of incorrect classifi-
cations from POINTMIL with the transformer backbone on
ModelNet40.

Figure 5 presents the interpretabil-
ity results for different backbones
when classifying a bed from the
ModelNet40 dataset. Interestingly,
DGCNN, CurveNet, and the Trans-
former backbone consistently high-
light similar regions of importance,
particularly focusing on the frame
and headboard of the bed, which
are key features distinguishing it
from other objects. This consistency
across backbones demonstrates the
robustness of POINTMIL in identi-

fying informative regions regardless of the underlying architecture. Additionally, the agreement
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Table 2: Classification results on IntrA, RBC, and ModelNet40. All results are shown without voting
strategy on 1024 points. The highest results are shown in bold. Differences between backbones and
POINTMIL are shown in violet. CurveNet without fps point downsampling are shown with a †.

IntrA RBC ModelNet40

Method mACC(↑) F1(↑) mACC(↑) F1(↑) mACC (↑) oACC(↑)

PointNet(Qi et al., 2017a) 81.8 82.4 67.7 67.1 86.2 89.2
PointNet++(Qi et al., 2017b) 92.7 94.2 86.2 87.1 - 91.9
PointConv(Wu et al., 2019) 83.0 82.1 68.1 67.9 - 92.5
DGCNNWang et al. (2019b) 90.6 91.8 84.8 85.1 90.2 92.9
PCT(Guo et al., 2021) 69.2 68.9 68.7 69.2 - 93.2
CurveNet(Xiang et al., 2021) 88.3 89.8 88.3 87.8 - 93.8
CurveNet†(Xiang et al., 2021) 87.8 87.8 85.8 85.7 90.6 93.4
PointMLP(Ma et al., 2022) 88.4 88.8 91.8 92.2 91.3 94.1
PointNeXt(Qian et al., 2022) 91.8 94.7 86.1 87.1 90.8 93.2
3DMedPT(Yu et al., 2021) 92.2 93.3 81.3 83.2 - 93.4

POINTMIL(PointNet) 82.0+0.2 82.4+0.0 69.0+1.3 69.1+2.0 87.1+0.9 90.7+1.5

POINTMIL(DGCNN) 95.2 +3.2 94.6+2.8 92.4+7.6 92.4+7.3 90.8+0.6 93.1+0.2

POINTMIL(CurveNet†) 91.3+3.5 89.9+2.1 91.2+5.4 90.5+4.8 91.0+0.4 93.5+0.1

POINTMIL(Trans) 97.3+5.1 97.5+4.2 92.6 +11.3 92.2+9.0 89.0 92.7−0.7

among backbones suggests that POINTMIL effectively leverages the feature representations gener-
ated by each model, ensuring the interpretability results are meaningful and aligned with the task.

Finally, we demonstrated how POINTMIL could be used to assess where the model went wrong.
For example, Figure 6 shows example confusion plots in which the attention of the predicted class
is shown in red. Interestingly, for classifying plants, the model only focused on the plant, although
when classifying flower pots, the model focused on both the flower and the pot.

5.2 CLASSIFICATION

Interpretability should promote classification accuracy and not hinder it. To showcase this, we per-
formed classification on three separate datasets, two 3D cell-shape datasets, IntrA (Yang et al.,
2020), and RBC (Simionato et al., 2021), and the 3D shape classification benchmark ModelNet40
(Wu et al., 2015). The results are shown in Table 2. POINTMIL outperformed all methods on In-
trA and RBC in terms of mACC and F1 score by a considerable margin of at least 4.5% and 3.3%
respectively. POINTMIL achieved state-of-the-art on IntrA with an mACC of 97.3% and an F1 of
97.5% using Conjunctive pooling with the Transformer backbone. Importantly, POINTMIL in-
creased the performance of all backbones on all datasets by up to 11.3% in terms of mACC on RBC
(shown in violet in Table 2). While POINTMIL was outperformed by recent state-of-the-art meth-
ods like PointMLP (Ma et al., 2022), CurveNet (Xiang et al., 2021) and PCT (Guo et al., 2021) on
Modelnet40, POINTMIL outperformed these methods by considerable margins on IntrA and RBC.

5.3 ABLATION STUDIES

We evaluated the effect of including contextual attention 3.3 in our attention-based pooling mech-
anisms: Additive, Attention, and Conjunctive and the impact of varying the value of
k (Figure 7). A value of k = 0 represented no contextual attention. Including contextual at-
tention consistently offered advantages across all pooling methods and metrics compared to not
using it. In terms of F1 and mACC contextual attention led to improved performance, particu-
larly with the Conjunctive and Attention mechanisms, which consistently outperformed
the Additive method as k increased. All pooling methods produced F1 and mACC scores of
> 97% after including contextual attention. For AOPCR, contextual attention was found to be most
beneficial when using a value of k = 12. Lastly, considering NDCG@n, increasing k provided
the most benefit to Attention pooling, while offering slight improvements to Additive and
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Figure 7: Ablation studies on the value of k in our contextual attention on F1, mACC, AOPCR, and
NDCG@n using the transformer backbone.

Conjunctive. Additive and Conjunctive pooling outperformed Attention pooling
across interpretability metrics, whether or not contextual attention was used. Although contextual
pooling improved classification and interpretation methods, there exists a trade-off in computation
since the time complexity for k-NN graph search is O(N2) for the N number of points. The graph
construction time complexity is also O(Nk), therefore as k increases, this process takes longer.

5.4 SEGMENTATION

Table 3: Segmentation results on IntrA and ShapeNetPart in
terms of Class (Cls.) and Instance (Inst.) mIoU. The highest
metrics are shown in bold.

IntrA ShapeNetPart

Method IoU(↑) Cls. IoU(↑) Inst. IoU(↑)

PointNet 72.2 81.7 84.2
DGCNN 76.4 83.6 85.2
3DMedPT 82.4 84.3 -

POINTMIL(PointNet) 72.3 81.5 84.0
POINTMIL(DGCNN) 79.7 84.2 85.6
POINTMIL(Trans) 84.0 82.0 82.1

We evaluated POINTMIL for
part segmentation on IntrA and
ShapeNetPart. For IntrA, only the
Aneurysm class contains annota-
tions, therefore, we only reported
metrics on this class. We followed
the same settings as from Qi
et al. (2017a) for segmentation on
ShapeNetPart. Here 2,048 points
were randomly selected for input
from each shape. We compared
POINTMIL with the original back-
bones used (PointNet, DGCNN,
and 3DMedPT). The class-specific
per-point interpretations were used
as segmentation predictions (see
Section 3.4). We assessed the Conjunctive and Additive MIL pooling as Instance was
the equivalent to the original model’s segmentation algorithms and Attention does not produce
class-specific per-point classification as interpretations. Interestingly, the segmentation results
did not deteriorate and sometimes improved when using POINTMIL on both datasets. The only
exception was 3DMedPT on ShapeNetPart, where the original 3DMedPT outperformed POINTMIL
with the transformer backbone by a relatively larger margin.

6 CONCLUSION

In this work, we introduced POINTMIL, the first framework to apply MIL to point cloud classi-
fication. Unlike existing methods, POINTMIL provides fine-grained point-specific interpretability
without post-hoc techniques. Using MIL, our approach improved both interpretability and classifi-
cation performance on multiple backbones and datasets. It also demonstrated promise in biomedical
applications, such as the IntrA dataset where POINTMIL achieved state-of-the-art F1 and mACC by
a significant margin. POINTMIL also showed potential in segmentation tasks, indicating its versa-
tility beyond classification. The choice of pooling method should be guided by the specific require-
ments of the task and dataset characteristics. For tasks prioritising interpretability, Conjunctive
pooling with contextual attention is recommended due to its class-specific focus. For applications
prioritising simplicity, Instance pooling offers computational efficiency. In conclusion, POINTMIL
is a novel approach that effectively improved classification performance while providing inherent
local interpretability, making it a valuable tool for 3D point cloud analysis in real-world applica-
tions.
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REPRODUCIBILITY STATEMENT

The code for this work was implemented in Python 3.10, with PyTorch and Lightning as the main
machine learning libraries. The anonymous code is available at https://anonymous.4open.
science/r/PointMIL_ICLR-98B2/. Model training was performed using an NVIDIA Tesla
V100 GPU with 32GB of VRAM and CUDA v12.0 to enable GPU support.
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B ADDITIONAL RESULTS

This section contains additional results of individual pooling methods.

B.1 INTERPRETABILITY

Tables 4, 5, and 6 show the IntrA interpretability results for each of the pooling methods using the
Transformer, PointNet, and DGCNN backbones, respectively. The mean and standard deviations on
the test sets across the five folds are shown.

Table 4: Additional POINTMIL interpretability results on IntrA using the transformer backbone.
We also show the effect of the best contextual attention for each attention-based method.

Model NDCG@n AOPCR

Additive 0.6130.033 18.1084.374

Additive + context 12 0.6080.035 18.1623.013

Attention 0.4260.030 10.3361.065

Attention + context 12 0.5390.019 14.5411.821

Conjunctive 0.5920.018 12.5262.960

Conjunctive + context 12 0.6100.024 16.3055.859

Instance 0.5870.022 16.1663.794

Table 5: Additional interpretability results on IntrA using POINTMIL with the PointNet backbone
Model NDCG@n AOPCR

Additive 0.2540.064 0.7920.298

Attention 0.2220.027 0.0050.035

Instance 0.2250.072 0.9730.212

Conjunctive 0.2080.067 0.7410.140

Table 6: Additional interpretability results on IntrA using POINTMIL with the DGCNN backbone
Model NDCG@n AOPCR

Additive 0.4820.009 4.4860.550

Attention 0.2230.002 −0.0310.070

Conjunctive 0.4670.008 4.8280.617

Instance 0.4620.022 5.2120.547
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C ROBUSTNESS TO NOISE

Figure 8: Robustness evaluation of models to noisy inputs.

Similar to the methods described by
Xiang et al. (2021) and Yan et al.
(2020), we assessed the robustness of
POINTMIL to noisy inputs. Specif-
ically, we measured the F1 score of
models trained on clean (raw) in-
puts when subjected to noisy inputs
during inference. This approach al-
lowed us to evaluate the model’s abil-
ity to maintain performance in the
presence of input perturbations. he
F1 score is plotted against the num-
ber of noisy points introduced during
inference for different POINTMIL
methods with the Transformer back-
bone and baseline models (DGCNN,
PointMLP, PointNet) in Figure 8.POINTMIL methods demonstrate higher robustness to noise com-
pared to baseline models, with Additive and Conjunctive maintaining consistently high F1
scores.

D SEGMENTATION

Figure 9 presents segmentation results for POINTMIL with the Transformer backbone in the IntrA
dataset. Clearly, POINTMIL is able to accurately Aneurysm regions with a 3D shape of a diseased
blood vessel.

Figure 9: Segmentation examples for POINTMIL with the Transformer backbone on the IntrA
dataset.

E MODEL DETAILS

E.1 CLASSIFICATION HEAD

We tested several different classification heads for each pooling algorithm for each dataset. The final
classification heads for each dataset are summarised in Table 7.

E.2 ATTENTION HEAD

We used the same attention head for all attention-based pooling. This is summarised in Table 8.
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Table 7: Classification head architecture
Type Layer Input Output

Linear Linear b× 1×N × d (feature dimension) b× 1×N × c

Non-linear Linear + ReLU b× 1×N × d b× 1×N × d//2
Linear + ReLU b× 1×N × d//2 b× 1×N × d//4
Linear b× 1×N × d//4 b× 1× 1× c (Point Pred)

Table 8: Attention head architecture
Process Layer Input Output

Attention Linear + tanh b× 1×N × d b× 1×N × 8
Linear + sigmoid b× 1×N × 8 b× 1×N × 1 (Attn. Scores)

F DATASETS

F.1 INTRA

IntrA is an open source dataset of 3D intracranial aneurysm (Yang et al., 2020). The task is to clas-
sify blood vessels as healthy and aneurysm. There is a total of 1909 blood vessel segments, includ-
ing 1694 healthy vessel segments and 215 aneurysm segments for diagnosis. 116 of the aneurysm
segments are expertly annotated. We use IntrA to evaluate interpretability, classification, and seg-
mentation.

F.2 RED BLOOD CELL

We used another dataset of 3D red blood cells (RBC; Simionato et al. (2021)) for classification. This
dataset includes 825 3D red blood cells imaged using confocal microscopy grouped into 9 expertly
annotated shape classes.

F.3 MODELNET40

ModelNet40 (Wu et al., 2015) is the de-facto benchmark for point cloud classification containing
9,843 training and 2,468 testing meshed CAD models belonging to 40 different object classes.

F.4 SHAPENETPART

ShapeNetPart (Yi et al., 2016) consists of 16,881 shapes with 16 classes belonging to 50 parts labels.
We use ShapeNetPart for segmentation.

G TRAINIG SPLITS

For IntrA and RBC, we used a five-fold cross-validation and reported the average test metrics across
folds. For ModelNet40 and ShapeNetPart, we used the provided train and test splits and reported
the test results.

H RENDERING

All renderings of point clouds were made with Mitsuba2.

I VISUAL INTERPRETATION EXAMPLES

Figure 10 shows additional interpretability visualisations on ModelNet40.
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Figure 10: Examples of POINTMIL interpretations for correctly classified shapes from ModelNet40.
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