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ABSTRACT

Modern enterprises are increasingly adopting business document understanding
workflows that leverage Vision Language Models (VLMs) for optical character
recognition (OCR), given their ability to jointly model layout and language. How-
ever, deployment is impeded by data and compute barriers: large enterprises face
de-identification pipelines requiring manual validation, while smaller ones lack
access to sufficiently large and varied datasets. Synthetic data pipelines that gen-
erate millions of <document, OCR> pairs also fall short, as they often fail to cap-
ture the nuanced structural and semantic challenges of real-world documents. To
address this gap, we introduce SAVIOR, a sample-efficient data curation method-
ology that identifies common failure cases in pretrained VLMs and explicitly cu-
rates examples for challenging scenarios such as vertical text, stylized logo text,
fine print, and degraded scans. Using SAVIOR, we construct SAVIOR-TRAIN,
a compact training dataset of 2,234 <document, OCR> tuples, and SAVIOR-
Bench, a benchmark of 509 financial documents annotated by domain experts. We
further introduce SAVIOR-OCR, a Qwen2.5-VL-7B-Instruct model fine-tuned
on SAVIOR-TRAIN. Experiments show that SAVIOR-OCR achieves a word-level
recall of 0.9257 on SAVIOR-Bench, outperforming PaddleOCR 3.0 (0.8685) and
Nanonets-OCR-s (0.9040). Beyond recall, we propose PAIRS, a structure-aware
evaluation metric that quantifies layout fidelity via pairwise spatial relations be-
tween tokens; SAVIOR-OCR achieves a PAIRS score of 0.802, demonstrating su-
perior preservation of document structure. To the best of our knowledge, SAVIOR
is the first methodology to enable sample-efficient adaptation of VLMs for OCR
in enterprise settings, delivering both high accuracy and strong layout fidelity with
minimal data and compute.

1 INTRODUCTION

Modern business document understanding (BDU) workflows Hyperbots Inc. (2025) operate on
multi-page, multi-modal documents and execute a sequence of complex downstream tasks such
as optical character recognition (OCR), summarization, information extraction, question answer-
ing, sentiment analysis, and missing data augmentation. In privacy-sensitive domains such as fi-
nance and accounting, enterprises often favor in-house deployment of open-source models such as
LLaMA Dubey et al. (2024) and Qwen Yang et al. (2025), rather than relying on externally hosted
commercial offerings like GPT-4o Hurst et al. (2024), Gemini Team et al. (2023), or Claude Caruc-
cio et al. (2024). This shift necessitates workflow-level optimizations that balance accuracy, latency,
and computational cost within enterprise constraints. One effective architectural choice is to lever-
age Vision-Language Models (VLMs) solely for perceptual grounding—i.e., extracting structured
OCR text from visually complex document images Li et al. (2023a)—followed by delegating rea-
soning, problem decomposition, and task orchestration to Large Language Models(LLMs) Sapkota
et al. (2025); Huang et al. (2024).Under this two-stage design, the deployed BDU workflows must
balance high token throughput with a small memory footprint. As shown in Table 1, a 7B model
in FP16 precision requires approximately 17 GB of VRAM on an NVIDIA A100 GPU. Quantiza-
tion techniques such as FP8 or INT4 post-training quantization can reduce VRAM requirements by
2×–4× with minimal accuracy degradation Deepsense.ai (2025). A quantized 7B model can run
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Table 1: Approximate GPU VRAM usage (FP16, ≈2K-token context, batch size = 1) during infer-
ence on an NVIDIA A100-80GB.

Model Params Approx. VRAM (GB)
Qwen2.5-VL-7B-Instruct ≈7B ≈17 GB Team (2025)
LLaMA 3.1 8B-Instruct ≈8B ≈16 GB (blakemart15)
LLaMA 3 70B-Instruct ≈70B ≈140 GB Team (2024)

within 8 GB VRAM, allowing up to 10 concurrent replicas per 80 GB A100, which is critical for
maximizing GPU utilization under fixed infrastructure budgets. In high-throughput settings, serv-
ing heterogeneous requests in parallel is as important as minimizing token-level latency. Inference
engines like vLLM Kwon et al. (2023a), which use paged attention and unified KV-cache manage-
ment, enable near-linear scaling with concurrent requests and support long-context inference (up to
128k tokens OpenAI (2024))—a key requirement in document-heavy workflows. Consider a repre-
sentative workload: 34,720 invoices per month, at an average of 1.5 pages per invoice. Assuming
4,000 tokens per page (including OCR, summarization, extraction, and reasoning), this results in 208
million tokens per month. Using GPT-4o at a rate of $12.50 per million tokens, processing 208.32
million tokens monthly results in a total cost of approximately $2,604. In contrast, a single 80 GB
A100 GPU running multiple quantized 7B model replicas can process up to 59,000 pages per month
(at one page per 90 seconds), matching required throughput at comparable cost—while preserving
data privacy and providing full control over model behavior. Thus, quantization and inference opti-
mization are not merely performance enhancements; they are prerequisites for deploying scalable,
cost-efficient, and privacy-compliant multi-modal BDUs in production.

Even when compute infrastructure is in place, real-world data constraints significantly limit en-
terprise adoption of two-stage VLM-OCR and LLM workflows. Large enterprises often pos-
sess expansive document archives, but using them for model fine-tuning is hindered by extensive
de-identification pipelines, with manual validation of personally identifiable information (PII) caus-
ing delays of weeks or longer Nanu et al. (2025). On the other hand, small and medium enter-
prises frequently lack the scale or diversity of labeled documents needed to reliably adapt models to
finance-specific contexts, making them heavily reliant on public or synthetic datasets Kumar et al.
(2024). While synthetic datasets can be generated at scale, they commonly omit critical layout
features and domain-specific semantics—such as vertical text, stylized logos, or noisy scans—and
tend to produce “sterile” formats that do not generalize well in commercial deployments Bose et al.
(2024). As a result, models trained in such environments often underperform when confronted with
real-world variability. These limitations reveal the inadequacy of real or synthetic data volume as a
substitute for strategically curated data that reflects failure modes, edge-case semantics, and layout
robustness. This also underscores the importance of principled data curation methodologies over
brute-force generation strategies, especially for enterprise-grade document understanding systems.
To mitigate this gap, we introduce SAVIOR, a sample-efficient data curation methodology that ex-
plicitly curates data based on known failure modes, reducing both annotation overhead and compute
requirements.

Our contributions are as follows:

• SAVIOR, a targeted data curation methodology that identifies and curates examples from
common OCR failure scenarios (e.g., vertical text, logo-embedded fields, fine print, noisy
scans), enabling sample-efficient OCR alignment.

• Two accompanying resources: SAVIOR-TRAIN, a 2,234-sample curated training set, and
SAVIOR-BENCH, a 509-document benchmark annotated by finance-domain experts.

• PAIRS, a novel evaluation metric that measures pairwise relational similarity between pre-
dicted and ground-truth word positions, providing the first structure-aware assessment of
OCR outputs.

2 RELATED WORK

The landscape of document understanding has shifted significantly with the advent of multimodal
and layout-aware models. Traditional OCR pipelines such as Tesseract Smith (2007), EasyOCR,
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and PP-OCR Du et al. (2020) employ modular architectures with discrete stages for text detection,
recognition, and heuristic layout analysis. While these systems are efficient and interpretable, they
often exhibit brittle performance under real-world enterprise conditions, including skewed align-
ments, visual degradation, occlusions (e.g., stamps, logos), and dense multilingual footers Rao et al.
(2025); Kaushik et al. (2024). Furthermore, their limited contextual reasoning capabilities hinder
performance in tasks like key-value extraction, cross-page entity linking, and document question
answering. VLMs have emerged as a more robust alternative, offering unified architectures that
jointly model textual and visual context. Early efforts such as LayoutLM Xu et al. (2020) and Lay-
outLMv3 Huang et al. (2022) introduced 2D positional embeddings to incorporate layout structure,
enabling improvements on form-based tasks like FUNSD Jaume et al. (2019) and CORD Park et al.
(2019). However, these models remained reliant on external OCR engines and struggled with visual
anomalies.

A major shift occurred with encoder-decoder architectures such as Donut Kim et al. (2022), which
bypass OCR entirely by generating structured outputs directly from pixels. Donut achieved strong
results on semi-structured documents, but its performance declined on visually complex layouts,
such as invoices that combine tables with prose. Subsequent models like UDOP Tang et al. (2023)
and DocOwl Hu et al. (2024) pushed this direction forward by integrating instruction tuning and
enhanced visual-text alignment, enabling end-to-end learning for tasks including document QA and
visual question answering (VQA). Simultaneously, general-purpose multimodal systems such as
BLIP-2 Li et al. (2023b), LLaVA Liu et al. (2023), and InternVL Chen et al. (2024) achieved strong
results on benchmarks like OCRBench v2 Lu et al. (2023) and DocVQA Mathew et al. (2021),
demonstrating competitive performance without extensive domain-specific finetuning. In parallel,
OCR-to-LLM pipelines have gained prominence, particularly for reasoning-intensive applications.
Recent work Wang et al. (2023); Huang et al. (2023) shows that high-quality OCR (e.g., PP-OCR Du
et al. (2020)) paired with LLMs such as GPT-4o, Claude 3, or Qwen2.5 can outperform VLMs on
downstream tasks involving compositionality and numerical reasoning. This paradigm is especially
effective in enterprise contexts, where challenges include tabular consistency, long-range references,
and complex metadata interpretation. OCR+LLM pipelines benefit from flexible prompting, struc-
tured input formats, and ease of debugging—important considerations in privacy-sensitive and reg-
ulated industries.

Despite these advances, both VLM-based and OCR+LLM systems continue to struggle with
enterprise-specific edge cases, such as vertical or low-contrast text, rotated headers, logo overlaps,
fine-print clauses, and non-standard fonts. Publicly available benchmarks often fail to capture these
phenomena, and synthetic corpora such as SynthDoG Kim et al. (2022) and IIT-CDIP Lewis et al.
(2006) do not reflect the visual noise and semantic variability present in real-world documents.
Privacy constraints further limit the availability of annotated enterprise datasets, making robust gen-
eralization across formats and layouts a persistent challenge. On the efficiency front, recent work
on quantization Yu et al. (2025); Goyal et al. (2024) and parameter-efficient finetuning (PEFT) Hu
et al. (2022); Chang et al. (2024) has improved the deployability of VLMs in resource-constrained
environments. Nevertheless, most of these techniques are benchmarked only on standard layouts,
and few have been stress-tested against enterprise-specific anomalies. Even state-of-the-art mod-
els exhibit hallucination, omission, or token reordering errors in documents with complex visual
hierarchies or embedded stamps within tabular regions.

In summary, both VLM-based OCR and OCR+LLM pipelines now represent the state-of-the-art in
business document understanding. VLMs offer strong visual-textual alignment and robustness to
layout noise, while OCR+LLM pipelines excel at compositional reasoning and structured interpre-
tation. However, both approaches are fundamentally limited by the lack of curated data that captures
enterprise-specific failure modes. To address this gap, we introduce SAVIOR—a targeted data cura-
tion methodology designed to expose VLMs to representative edge cases and enable sample-efficient
adaptation. We release SAVIOR-TRAIN, a curated dataset of 2,234 training samples emphasizing
visually challenging enterprise layouts, and SAVIOR-Bench, a 509-sample benchmark of annotated
invoices with edge-case artifacts. Our fine-tuned model, SAVIOR-OCR, surpasses larger commer-
cial baselines on real-world invoice OCR, while requiring orders of magnitude less training data and
memory.
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3 METHODOLOGY

SAVIOR (Sample-efficient Adaptation of Vision models for Intelligent OCR Representation) is a
targeted data curation methodology designed to align Vision-Language Models (VLMs) with the
structural and semantic requirements of enterprise OCR. The guiding principle is not to maximize
dataset size, but to maximize coverage of high-impact failure modes with minimal samples. Unlike
conventional OCR pipelines that emphasize character-level transcription, SAVIOR explicitly curates
training data to preserve semantic meaning, layout structure, and hierarchical relationships required
by downstream LLMs in business document workflows.

3.1 OVERVIEW OF THE SAVIOR PIPELINE

The methodology proceeds in three stages:

1. Failure Mode Identification. We first characterize common breakdowns in pretrained
VLMs by running Qwen2.5-VL-7B-Instruct on a held-out validation set of 1,000 invoices
and auditing its OCR outputs. Domain experts annotated recurring failure cases, including
token fragmentation, layout misordering, and missed fine print. This process yielded a tax-
onomy of critical scenarios where transcription errors have outsized impact on downstream
tasks such as compliance, risk analysis, and structured field extraction.

2. Targeted Data Curation. For each identified failure scenario, we curated representative
document–OCR pairs. Rather than indiscriminately generating synthetic data, SAVIOR
emphasizes authentic edge cases sourced from enterprise workflows. To ensure sufficient
diversity, actual documents were combined with systematically generated failure cases
that emulate vertical text, stylized logos, or degraded scans but do not contain sensitive
or domain-specific content. This hybrid strategy provides realistic variability while avoid-
ing over-reliance on either raw enterprise data or sterile synthetic corpora.

3. Balanced Dataset Construction. Curated examples were balanced across failure modes to
form a compact but diverse training corpus. The objective is to ensure sufficient coverage
of each mode while keeping annotation overhead low, thereby enabling sample-efficient
fine-tuning.

3.2 CRITICAL FAILURE SCENARIOS

The following scenarios were explicitly targeted in SAVIOR-TRAIN:

• Vertical Text Orientation. Headers and annotations in vertical layouts often cause token
fragmentation (e.g., “SUBTOTAL” → “S U B T O T A L”).

• Fine Print and Regulatory Text. Small-font disclaimers and compliance clauses are fre-
quently missed, leading to downstream regulatory blind spots.

• Multi-column Layouts. Incorrect reading order in multi-column structures produces jum-
bled streams that disrupt logical segmentation.

• Stylized and Logo-embedded Text. Key entities within logos or stylized headers are often
omitted, producing incomplete vendor or company records.

• Degraded Image Quality. Scans with noise, skew, or blur corrupt OCR outputs and prop-
agate errors into structured extraction.

• Mixed Content Types. Printed–handwritten combinations (e.g., approvals, forms) chal-
lenge VLMs and yield fragmented records.

• Hierarchical Structure Loss. Flattened or ignored headers, bullets, and indentation de-
grade semantic grouping and logical flow.

3.3 ALIGNMENT WITH EVALUATION

SAVIOR explicitly curates data to stress both semantic fidelity and layout preservation. These axes
correspond to the evaluation metrics introduced later: word-level recall and layout similarity. By de-
signing SAVIOR-TRAIN around failure modes that most severely disrupt these metrics, the method-
ology ensures that gains in OCR performance translate directly into improved enterprise workflows.
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3.4 SAMPLE SIZE JUSTIFICATION

SAVIOR-TRAIN was deliberately capped at 2,234 samples. This constraint demonstrates that strate-
gically curated data, even at small scale, can outperform million-sample synthetic corpora. The
methodology therefore enables high OCR accuracy with minimal data and compute, supporting
deployment in resource-constrained enterprise environments.

4 DATASETS

In this section, we present the datasets introduced as part of the SAVIOR methodology: SAVIOR-
TRAIN, a curated training set targeting critical OCR failure modes, and SAVIOR-Bench, an evalu-
ation benchmark for assessing semantic and structural fidelity in enterprise document understanding.
Representative paired examples showing original documents and corresponding SAVIOR-OCR out-
puts are provided in Figure 2.

4.1 SAVIOR-TRAIN

OCR errors that disrupt semantic meaning or structural coherence can cause cascading failures
across information extraction, summarization, and compliance tasks. SAVIOR-TRAIN addresses
this by selecting and curating samples that directly correspond to such failure modes. The final
training set comprises 2,234 document-OCR pairs, strategically balanced across a range of chal-
lenging scenarios:

• Vertical text: 200 documents (9.0%) containing rotated or vertically aligned text essential
for financial field recognition.

• Fine print: 100 documents (4.5%) featuring small-font regulatory text critical for compli-
ance extraction.

• Multi-column layouts: 150 documents (6.7%) requiring precise reading order to preserve
context.

• Logo-embedded text: 500 documents (22.4%) with stylized text elements containing en-
tity information.

• Degraded image quality: 200 documents (9.0%) exhibiting real-world scanning artifacts
such as blur, skew, and compression.

• Handwritten content: 50 documents (2.2%) integrating mixed printed and handwritten
text.

• Structured headers: 1,000 documents (44.8%) preserving formatting hierarchy for logical
segmentation.

• Bold/emphasized text: 1,034 documents (46.3%) containing visual emphasis markers that
aid importance detection.

4.2 SAVIOR-BENCH

SAVIOR-Bench is a test dataset comprising 509 documents drawn from real-world business work-
flows. Each document is annotated to assess not only token-level transcription accuracy but also the
preservation of semantic content and structural layout essential for downstream LLM-based process-
ing. The benchmark reflects the distribution of failure modes in SAVIOR-TRAIN, enabling rigorous
evaluation of a model’s ability to address enterprise-specific challenges such as layout fidelity, se-
mantic segmentation, and regulatory content extraction. Evaluation on SAVIOR-Bench emphasizes
the end-to-end impact of OCR quality on downstream tasks, including structured field extraction,
compliance analysis, and document classification.

4.3 DATA ANNOTATION

All annotations were produced by a specialized team comprising eight finance and accounting grad-
uates with an average age of 23, supervised by a domain expert with 14 years of industry experi-
ence. The annotation team, based in Bengaluru, India, focused on capturing semantic intent, visual
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hierarchy, and layout fidelity which are criteria aligned with the needs of downstream enterprise
applications. A.3 depicts the Inter-Annotator scores on the SAVIOR-TRAIN dataset.

5 EVALUATION METRICS

We evaluate models on SAVIOR-Bench and report two complementary metrics designed to assess
both semantic completeness and structural fidelity:

5.1 WORD-LEVEL RECALL

Word-level recall quantifies the proportion of ground-truth words correctly recovered by the OCR
system, counting each occurrence separately. Let G denote the multiset of ground-truth words and
P the multiset of predicted words. For each w ∈ G, a match is counted if w ∈ P , and one instance
of w is then consumed from P . Recall is defined as:

Recall =
1

|G|
∑
w∈G

1{w ∈ P },

where 1{·} is the indicator function.

We adopt word-level recall instead of character-level accuracy, since downstream applications rely
on complete tokens. For example, predicting “Totl” instead of “Total” may be close at the charac-
ter level, but it fails entirely in a key–value extraction task. Word-level recall thus better reflects
semantic fidelity in enterprise document workflows.

5.2 LAYOUT SIMILARITY METRIC - PAIRS

While existing metrics capture transcription quality, they do not account for whether the spatial
structure of the document is preserved. In enterprise workflows, layout fidelity is critical: an output
that contains the correct words but misplaces them can render key–value extraction or tabular pars-
ing unusable. For example, if an invoice contains “Total: $1,500” but the text is misplaced near the
amount to be paid instead of the discount amount, word-level recall would still rate the transcrip-
tion as correct. However, downstream LLMs for key–value extraction would misinterpret the field,
resulting in incorrect mappings in enterprise workflows. We therefore introduce a layout similarity
metric that quantifies structural accuracy.

We represent both ground truth and predictions as 2D arrays. Each document is divided into lines,
and within each line, words are placed into horizontal cells. Every word i is assigned coordinates
(xi, yi), where xi denotes the index of the cell containing the center character of the word, and yi
is the line number. This representation makes it possible to compare word positions consistently
between prediction and ground truth. For each unordered pair (i, j), 1 ≤ i < j ≤ N , we compute
horizontal, vertical, and Euclidean distances in the ground truth,

hij = |xj − xi|, vij = |yj − yi|, dij =
√

(xj − xi)2 + (yj − yi)2,

and analogously h′
ij , v

′
ij , d

′
ij in the prediction.

The relative error for each pair is

eij =
|d′ij − dij |
dij + ϵ

,

which we convert into a bounded similarity score

sij = 1− e2ij ,

where the quadratic penalty ensures that larger deviations are penalized more strongly. The raw
layout similarity is then

Sraw =
2

N(N − 1)

∑
1≤i<j≤N

sij .

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To normalize across documents with different scales, we compute z-scored distances zij = (dij −
µ)/σ and z′ij = (d′ij − µ)/σ, where µ and σ are the mean and standard deviation of {dij}. The
normalized similarity is

Sz =
2

N(N − 1)

∑
1≤i<j≤N

(
1−

( |z′ij − zij |
|zij |+ ϵ

)2
)
.

This metric directly evaluates whether relative word positions are preserved, complementing word-
level recall by capturing structural fidelity in OCR outputs.

6 TRAINING STRATEGY AND EXPERIMENTAL SETUP

6.1 TRAINING STRATEGY

Our fine-tuning methodology is designed for sample-efficient adaptation by strategically targeting
key model components. We apply Low-Rank Adaptation (LoRA) with a rank of 32 and scaling
factor α = 64 to two specific areas: the final layer of the vision encoder and the language model
decoder. This targeted approach for fine-tuning the last encoder layer allows the model to refine its
high-level visual feature extraction for enterprise-specific challenges, such as stylized logos and fine
print. Simultaneously, strengthening the decoder is crucial for improving its robustness in generating
accurate text from degraded or noisy inputs, such as poor-quality scans.

6.2 IMPLEMENTATION DETAILS

The vision encoder and language model are optimized with learning rates of 1× 10−4 and 5× 10−4

respectively. Training uses a batch size of 1 with gradient accumulation over 10 steps. All models
are trained on 2 NVIDIA H100 80GB GPUs using CUDA 12.3 and driver version 535.216.03.
We evaluate models on SAVIOR-Bench, a 509-document benchmark annotated by domain experts.
Inference is performed with top-p = 0.9 and temperature= 0.1.

6.3 BASELINE MODELS.

We include commercial and open-source OCR systems such as Nanonets-OCR-s and PaddleOCR
3.0 as baselines. These systems were evaluated in their native inference settings without fine-tuning
on SAVIOR-TRAIN. This choice reflects an architectural incompatibility: while SAVIOR-OCR
and Qwen models generate sequence-aligned word streams, Nanonets outputs a markup-style rep-
resentation and PaddleOCR produces bounding-box keyed dictionaries. These formats cannot be
straightforwardly aligned to the token-sequence supervision used in SAVIOR-TRAIN without build-
ing custom adapters. Furthermore, layout fidelity is only reported for models whose outputs can be
controlled through prompting to yield sequential text. As a result, layout similarity metrics are not
applicable to Nanonets or PaddleOCR, and we restrict these evaluations to models with prompt-
controllable outputs.

7 RESULTS AND ANALYSIS

7.1 WORD RECALL

As show in Table 2, Qwen2.5VL-7B-Instruct, fine-tuned with SAVIOR, achieves the highest word-
level recall of 0.9257 on SAVIOR-BENCH, outperforming both open-source and commercial base-
lines, including Nanonets-OCR-s (0.9040) and PaddleOCR 3.0 (0.8685). Despite being trained on
only 2,234 curated samples, the model demonstrates strong generalization, highlighting the sample-
efficiency of the SAVIOR methodology. The 3B variant achieves a recall of 0.9167, while the 32B
model reaches 0.9239, offering marginal gains at substantially higher computational cost. This sug-
gests that the 7B model offers the best trade-off between performance and efficiency for practical
deployment in enterprise workflows.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on SAVIOR-Bench. Layout metric evaluates structure-aware
fidelity. All Qwen models were fine-tuned on 2,234 samples using SAVIOR.

Model # Params Word Recall Layout Metric
Nanonets-OCR-s ∼3B 0.903979 N/A
PaddleOCR 3.0 N/A 0.868466 N/A
Qwen2.5VL-3B-Instruct ∼3B 0.916745 0.706812
Qwen2.5VL-7B-Instruct ∼7B 0.925748 0.706616
Qwen2.5VL-32B-Instruct ∼32B 0.923889 0.714861
GPT-4.0 N/A 0.885481 0.582667
Mistral OCR N/A 0.861161 0.538257
Gemini-2.5-Flash N/A 0.914493 0.607481
olmOCR-7B-0725-FP8 ∼7B 0.746395 0.586474

Table 3: Average raw layout similarity scores (higher is better).

Model Euclidean Horizontal Vertical
olmOCR-7B-0725-FP8 0.7006 0.5756 0.7831
Mistral-OCR 0.6526 0.5175 0.7456
Qwen2.5VL-7B-Instr. 0.8200 0.6978 0.8895
GPT-4o 0.7140 0.5483 0.7847
Gemini-2.5-Flash 0.7560 0.5803 0.7781
Qwen2.5VL-3B-Instr. 0.8214 0.6940 0.8945
Qwen2.5VL-32B-Instr. 0.8356 0.7203 0.8761

7.2 PAIRS METRIC FOR LAYOUT PRESERVATION

Table 3 reports raw layout similarity scores across horizontal, vertical, and Euclidean distances.
Qwen2.5VL models achieve the highest scores in all dimensions, with Euclidean similarity around
0.82 and vertical similarity close to 0.89. Gemini-2.5-Flash and GPT-4o achieve intermediate per-
formance, while Mistral OCR shows the lowest alignment quality, particularly along the horizontal
axis (0.5175). Across all models, vertical similarity scores consistently exceed horizontal scores,
suggesting that baseline alignment is more reliably preserved than intra-line spacing. Table 4 shows
layout similarity after z-score normalization, which accounts for scale differences between docu-
ments. Relative rankings remain consistent: Qwen models lead across all dimensions, and Mistral
OCR continues to lag. Vertical alignment remains more stable than horizontal alignment, even after
normalization, possibly due to OCR systems’ difficulty in capturing font-size variation and kerning
that affect horizontal spacing.

7.3 ABLATION STUDY

To assess deployment readiness under resource constraints, we evaluate 4-bit quantized variants of
the 3B and 7B models using merged-weight representations. As shown in Table 5, quantization
results in modest performance drops: the 7B model’s recall decreases by 0.0086, with negligible
impact on layout similarity. The 3B model sees a recall drop of 0.0303 but remains competitive.
These results indicate that SAVIOR-trained models retain strong OCR capabilities under aggressive
compression, supporting their use in low-resource or edge deployment settings.

8 CONCLUSION AND FUTURE-WORK

We presented SAVIOR, a sample-efficient data curation methodology for aligning Vision Language
Models (VLMs) with OCR tasks in enterprise settings. SAVIOR targets known failure modes in
pretrained VLMs—such as vertical text, embedded logos, fine print, and degraded scans—through
explicit, minimal, and high-utility data curation. We introduced two resources: SAVIOR-TRAIN,
a 2,234-sample curated training dataset, and SAVIOR-Bench, a 509-document benchmark with ex-
pert OCR annotations from the finance and accounting domain. We introduced PAIRS, a novel eval-
uation metric that captures pairwise relational similarity between predicted and ground-truth word

8
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Table 4: Average z-score normalised layout similarity scores (higher is better).

Model Euclidean Horizontal Vertical
olmOCR-7B-0725-FP8 0.4198 0.4340 0.6057
Mistral-OCR 0.3704 0.3732 0.5702
GPT-4o 0.4164 0.4148 0.6178
Gemini-2.5-Flash 0.4567 0.4506 0.6231
Qwen2.5-VL-3B-Instr. 0.5548 0.5622 0.7140
Qwen2.5VL-7B-Instr. 0.5557 0.5648 0.7119
Qwen2.5-VL-32B-Instr. 0.5747 0.5906 0.6916

Table 5: Performance of 4-bit quantized Qwen models.

Model Recall Layout Metric
Qwen2.5-VL-7B-Instruct 0.9171 0.7073
Qwen2.5-VL-3B-Instruct 0.8864 0.6843

positions, offering the first structure-aware assessment for OCR outputs. Our model, SAVIOR-
OCR, a fine-tuned Qwen2.5-VL variant, outperforms large-scale OCR baselines like PaddleOCR
and Nanonets-OCR-s on SAVIOR-Bench, while using fewer training samples. These results demon-
strate that targeted curation, rather than scale alone, is key to achieving high OCR accuracy in
enterprise workflows. The results indicate that SAVIOR-trained models remain robust under 4-
bit quantization, supporting deployment in low-memory or latency-sensitive environments.Future
work includes extending SAVIOR to additional document types (e.g., contracts, receipts), exploring
automated identification of OCR failure modes using model introspection signals such as attention
heatmaps and confidence scores, and integrating SAVIOR-style training with multimodal instruction
tuning for downstream tasks like key-value extraction and summarization. We believe SAVIOR lays
the groundwork for lightweight, domain-adaptive, and privacy-conscious document understanding
systems for enterprise AI.
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A APPENDIX

A.1 COMPARISON OF QUANTIZATION STRATEGIES

We perform 4-bit and 8-bit quantization on the 3B and 7B LoRA-adapter-merged variants of the
Qwen2.5-VL-Instruct model family, and evaluate their throughput when deployed using the vLLM
framework Kwon et al. (2023b) in In Table 6.1

Table 6: Memory (VRAM) and throughput (tokens/sec) across quantized models for SAVIOR-OCR
variants

Model
Quantization method GPU VRAM

(GB)
Throughput
(tokens/sec)

Qwen2.5-VL-3B-Instruct

8-bit BNB A100 74.0 164.69
8-bit BNB H100 56.3 343.65
4-bit BNB A100 74.3 1085.81
4-bit BNB H100 66.9 2783.16

Qwen2.5-VL-7B-Instruct

8-bit BNB A100 72.1 195.48
8-bit BNB H100 56.5 342.80
4-bit BNB A100 75.6 977.60
4-bit BNB H100 56.4 3471.41

For both Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-7B-Instruct models, 4-bit quantization yields
significantly higher throughput compared to 8-bit, with the 7B model on H100 achieving the highest
throughput of 3,471.41 tokens/sec.

A.2 THROUGHPUT ANALYSIS ON VLLM VS PYTORCH

To assess the deployment viability of our SAVIOR-OCR models in latency-sensitive environments,
we measured token-level throughput across two inference engines: vLLM and PyTorch.

As shown in Table 7, vLLM consistently achieves the highest throughput in all models. These
experiments demonstrate the importance of selecting optimized inference engines to meet latency
and throughput requirements in enterprise settings.

Table 7: Throughput (tokens/sec) across inference engines for SAVIOR-OCR (merged and 4-bit
quantized) variants on single 80GB A-100 GPU.

Inference Engine OCR Model Variant Throughput
(tokens/sec)

vLLM Qwen2.5-VL-3B-Instruct 1085.81
Qwen2.5-VL7B-Instruct 977.60

PyTorch Qwen2.5-VL-3B-Instruct 424.98
Qwen2.5-VL-7B-Instruct 507.61

A.3 INTER-ANNOTATOR AGREEMENT SCORES FOR SAVIOR-TRAIN

To evaluate the consistency of human annotations, we computed inter-annotator agreement (IAA)
on the OCR transcriptions produced by two independent annotators per document in Table 8. Since
the outputs are free-form strings, we used fuzzy string similarity (normalized Levenshtein ratio) as
our agreement metric. Across 187 double-annotated samples, we observed a mean similarity score
of 0.761, indicating moderate-to-strong agreement.

1We observed qualitatively similar quantization behavior for the 32B model but focus our analysis on
smaller variants (3B, 7B) given their suitability for efficient deployment in enterprise settings.
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Figure 1: Histogram of inter-annotator similarity scores (OCR annotations).

Table 8: Inter-Annotator Agreement (IAA) on OCR annotations using fuzzy string similarity.

Metric Value
Number of annotation pairs 187
Mean similarity 0.761
Minimum similarity 0.307
Maximum similarity 0.987
Standard deviation 0.117

A.4 DATASET AVAILABILITY

SAVIOR-TRAIN contains 2,234 <document,OCR> tuples and SAVIOR-Bench contains 509
<document,OCR> tuples. Due to enterprise privacy and compliance constraints, we are unable
to release the dataset and code. We believe the detailed methodology provides a clear blueprint for
other researchers to apply the SAVIOR principles in their respective domains for reproducibility. We
are exploring options for a possible release of a de-identified version of the datasets in the future.

A.5 SAMPLE DOCUMENTS FROM SAVIOR-BENCH

Figure 2 shows representative samples from SAVIOR-BENCH showing original documents (left)
and SAVIOR-OCR outputs (right), demonstrating cross-language OCR and failure mode handling.
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(a) Financial document with stylized logo, bold
text, structured headers and handwritten compo-
nents. SAVIOR-OCR output (a).

(b) Spanish document with stylized logo, struc-
tured headers and bold text SAVIOR-OCR for (b).

Figure 2
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(c) Invoice with stylized logo, bold text and hand-
written components SAVIOR-OCR for (c).

(d) Financial document with multi-column text
and fine-print text. SAVIOR-OCR output for (d).

Figure 2
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(e) A degraded scan of a financial document. SAVIOR-OCR output for (e).

Figure 2

17


	Introduction
	Related Work
	Methodology
	Overview of the SAVIOR Pipeline
	Critical Failure Scenarios
	Alignment with Evaluation
	Sample Size Justification

	Datasets
	SAVIOR-TRAIN
	SAVIOR-Bench
	Data annotation

	Evaluation Metrics
	Word-Level Recall
	Layout Similarity Metric - PaIRS

	Training strategy and experimental setup
	Training Strategy
	Implementation Details
	Baseline Models.

	Results and Analysis
	Word Recall
	PaIRS metric for layout preservation
	Ablation Study

	Conclusion and Future-work
	Appendix
	Comparison of Quantization Strategies
	Throughput Analysis on vLLM vs PyTorch
	Inter-Annotator Agreement Scores for SAVIOR-TRAIN
	Dataset Availability
	SAMPLE DOCUMENTS FROM SAVIOR-Bench


