
Under review as a conference paper at ICLR 2021

WEAK NAS PREDICTOR IS ALL YOU NEED

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Architecture Search (NAS) finds the best network architecture by explor-
ing the architecture-to-performance manifold. It often trains and evaluates a large
amount of architectures, causing tremendous computation cost. Recent predictor-
based NAS approaches attempt to solve this problem with two key steps: sam-
pling some architecture-performance pairs and fitting a proxy accuracy predictor.
Existing predictors attempt to model the performance distribution over the whole
architecture space, which could be too challenging given limited samples. Instead,
we envision that this ambitious goal may not be necessary if the final aim is to find
the best architecture. We present a novel framework to estimate weak predictors
progressively. Rather than expecting a single strong predictor to model the whole
space, we seek a progressive line of weak predictors that can connect a path to the
best architecture, thus greatly simplifying the learning task of each predictor. It is
based on the key property of the predictors that their probabilities of sampling bet-
ter architectures will keep increasing. We thus only sample a few well-performed
architectures guided by the predictive model, to estimate another better weak pre-
dictor. By this coarse-to-fine iteration, the ranking of sampling space is refined
gradually, which helps find the optimal architectures eventually. Experiments
demonstrate that our method costs fewer samples to find the top-performance ar-
chitectures on NAS-Benchmark-101 and NAS-Benchmark-201, and it achieves
the state-of-the-art ImageNet performance on the NASNet search space.

1 INTRODUCTION

Neural Architecture Search (NAS) has become a central topic in recent years with great progress (Liu
et al., 2018b; Luo et al., 2018; Wu et al., 2019; Howard et al., 2019; Ning et al., 2020; Wei et al.,
2020; Luo et al., 2018; Wen et al., 2019; Chau et al., 2020; Luo et al., 2020). Methodologically,
all existing NAS methods try to find the best network architecture by exploring the architecture-to-
performance manifold, such as reinforced-learning-based (Zoph & Le, 2016), evolution-based (Real
et al., 2019) or gradient-based Liu et al. (2018b) approaches. In order to cover the whole space, they
often train and evaluate a large amount of architectures, thus causing tremendous computation cost.

Recently, predictor-based NAS methods alleviate this problem with two key steps: one sampling
step to sample some architecture-performance pairs, and another performance modeling step to fit
the performance distribution by training a proxy accuracy predictor. An in-depth analysis of existing
methods (Luo et al., 2018) founds that most of those methods (Ning et al., 2020; Wei et al., 2020;
Luo et al., 2018; Wen et al., 2019; Chau et al., 2020; Luo et al., 2020) attempt to model the perfor-
mance distribution over the whole architecture space. However, since the architecture space is often
exponentially large and highly non-convex, modeling the whole space is very challenging especially
given limited samples. Meanwhile, different types of predictors in these methods have to demand
handcraft design of the architecture representations to improve the performance.

In this paper, we envision that the ambitious goal of modeling the whole space may not be necessary
if the final goal is to find the best architecture. Intuitively, we assume the whole space could be
divided into different sub-spaces, some of which are relatively good while some are relatively bad.
We tend to choose the good ones while neglecting the bad ones, which makes sure more samples
will be used to model the good subspace precisely and then find the best architecture. From another
perspective, instead of optimizing the predictor by sampling the whole space as well as existing
methods, we propose to jointly optimize the sampling strategy and the predictor learning, which
helps achieve better sample efficiency and prediction accuracy simultaneously.

1

Under review as a conference paper at ICLR 2021

Figure 1: Comparison between iterative weak pre-
dictors and non-iterative strong predictor on NAS-
Bench-201 ImageNet subset. Our method signif-
icantly reduces the needed amount of samples to
reach the optimal architecture.

Based on the above motivation, we present a
novel framework that estimates a series of weak
predictors progressively. Rather than expecting
a strong predictor to model the whole space,
we instead seek a progressive evolving of weak
predictors that can connect a path to the best ar-
chitecture. In this way, it greatly simplifies the
learning task of each predictor. To ensure mov-
ing the best architecture along the path, we in-
crease the sampling probability of better archi-
tectures guided by the weak predictor at each
iteration. Then, the consecutive weak predictor
with better samples will be trained in the next
iteration. We iterate until we arrive at an em-
bedding subspace where the best architectures
reside. The weak predictor achieved at the fi-
nal iteration becomes the dedicated predictor
focusing on such a fine subspace and the best
performed architecture can be easily predicted.

Compared to existing predictor-based NAS, our
method has several merits. First, since only
weak predictors are required to locate the good
subspace, it yields better sample efficiency. On NAS-Benchmark-101 and NAS-Benchmark-201, it
costs significantly fewer samples to find the top-performance architecture than existing predictor-
based NAS methods. Second, it is much less sensitive to the architecture representation (e.g., dif-
ferent architecture embeddings) and the predictor formulation design (e.g., MLP, Gradient Boosting
Regression Tree, Random Forest). Experiments show our superior robustness in all their combina-
tions. Third, it is generalized to other search spaces. Given a limited sample budget, it achieves the
state-of-the-art ImageNet performance on the NASNet search space.

2 OUR APPROACH

2.1 REVISIT PREDICTOR-BASED NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) finds the best network architecture by exploring the architecture-
to-performance manifold. It can be formulated as an optimization problem. Given a search space of
network architectures X and a discrete architecture-to-performance mapping function f : X → P
from architecture set X to performance set P , the objective is to find the best neural architecture x∗

with the highest performance f(x) in the search space X:

x∗ = argmax
x∈X

f(x) (1)

A naı̈ve solution is to estimate the performance mapping f(x) through the full search space, how-
ever, it is prohibitively expensive since all architectures have to be exhaustively trained from scratch.
To address this problem, predictor-based NAS learns a proxy predictor f̃(x) to approximate f(x)
using some architecture-performance pairs , which significantly reduces the training cost. In general,
predictor-based NAS can be formulated as:

x∗ = argmax
x∈X

f̃(x|S)

s.t. f̃ = argmin
S,f̃∈F̃

∑
s∈S
L(f̃(s), f(s))

(2)

where L is the loss function for the predictor f̃ , F̃ is a set of all possible approximation to f ,
S := {S ⊆ X | |S| ≤ C} is the training pairs for predictor f̃ given sample budget C. Here, C is
directly correlated to the total training cost. Our objective is to minimize the loss L of the predictor
f̃ based on some sampled architectures S.

2

Under review as a conference paper at ICLR 2021

Figure 2: An illustration of our progressive weak predictors approximation (best viewed in color).
Previous predictor-based NAS uniformly sampled in the whole search space to fit a strong predic-
tor; Ours progressively shrink the sample space smaller based on predictions from previous weak
predictors and train new weak predictor towards subspace of better architectures

Previous predictor-based NAS methods attempt to solve Equation 2 with two key steps: (1) sampling
some architecture-performance pairs and (2) learning a proxy accuracy predictor. First, a common
practice in previous work is to sample training pairs S uniformly from the search space X to learn
the predictor. Such a sampling is inefficient considering that the goal of NAS is to find a subspace
of well-performed architectures in the search space. A biased sampling strategy towards the well-
performed architectures can be more desirable. Second, given such pairs S, previous predictor-based
NAS uses a predictor f̃ to model the performance distribution over the whole architecture space.
Since the architecture space is often enormously large and highly non-convex, it is too challenging
to model the whole space given the limited samples.

2.2 PROGRESSIVE WEAK PREDICTORS APPROXIMATION

We envision that the above ambitious goal may not be necessary if the final aim of NAS is to find the
best architecture. We argue that sampling S and learning f̃ should be co-evolving instead of a one-
time deal as done in existing predictor-based NAS. Demonstrated in Figure 2, rather than expecting
a single strong predictor to model the whole space at one time, we progressively evolve our weak
predictors to sample towards subspace of best architectures, thus greatly simplifying the learning
task of each predictor. With these coarse-to-fine iterations, the ranking of sampling space is refined
gradually, which helps find the optimal architectures eventually.

Thus, we propose a novel coordinate descent way to jointly optimize the sampling and learning
stages in predictor-based NAS progressively, which can be formulated as following:

Sampling Stage: P̃ k = {f̃k(s)|s ∈ X \ Sk} (3)

Sk+1 = argmax
Tk

(P̃ k) ∪ Sk (4)

Learning Stage: x∗ = argmax
x∈X

f̃(x|Sk+1)

s.t.f̃k+1 = argmin
f̃k∈F̃

∑
s∈Sk+1

L(f̃(s), f(s))
(5)

Suppose our iterative methods has K iterations, at k-th iteration where k = 1, 2, . . .K, we initialize
our training set S1 by randomly sampling a few samples from X to train an initial predictor f̃1. We
then jointly optimize the sampling set Sk and predictor f̃k in a progressive manner for K iterations.

3

Under review as a conference paper at ICLR 2021

Sampling Stage We first sort all the architectures in the search space X according to its predicted
performance P̃ k at every iteration k. Given the sample budget, we then sample new architectures
Sk+1 among the top T k ranked architectures.

Learning Stage We learn a predictor f̃k, where we want to minimize the the lossL of the predictor
f̃k based on sampled architectures Sk. We then evaluate all the architectures X in the search space
using the learned predictor f̃k to get the predicted performance P̃ k.

Progressive Approximation Through the above alternative iteration, the predictor f̃k would guide
the sampling process to gradually zoom into the promising architecture samples. In addition, the
good performing samples Sk+1 sampled from the promising architecture samples would in term
improve the performance of the predictor f̃k+1 in the well-performed architectures.

To demonstrate the effectiveness of our iterative scheme, Figure 3 (a) shows the progressive pro-
cedure of finding the optimal architecture x∗ and learning the predicted best architecture x̃∗k over 5
iterations. As we can see, the optimal architecture and the predicted best one are moving towards
each other closer and closer, which indicates that the performance of predictor over the optimal
architecture(s) is growing better. In Figure 3 (b), we use the error empirical distribution function
(EDF) proposed in (Radosavovic et al., 2020) to visualize the performance distribution of architec-
tures in the subspace. We plot the EDF of the top-200 models based on the predicted performance
over 5 iterations. As shown in Figure 3 (b), the subspace of top-performed architectures is consis-
tently evolving towards more promising architecture samples over 5 iterations. In conclusion, the
probabilities of sampling better architectures through these progressively improved weak predictors
indeed keep increasing, as we desire them to.

(a) (b)

Figure 3: Visualization of the search dynamics. (a): The trajectory of Predicted Best architecture
and Global Optimal through out 5 iterations; (b): Error empirical distribution function (EDF) of
predicted Top 200 architectures through out 5 iterations

2.3 GENERALIZABILITY ON PREDICTORS AND FEATURES

Here we analyze the generalizability of our method and demonstrate its robustness on different
predictors and features. In predictor-based NAS, the objective of learning the predictor f̃ can be
formulated as a regression problem (Wen et al., 2019) or a ranking (Ning et al., 2020) problem. The
choice of predictors is diverse, and usually critical to final performance (e.g. MLP (Ning et al., 2020;
Wei et al., 2020), LSTM (Luo et al., 2018), GCN (Wen et al., 2019; Chau et al., 2020), Gradient
Boosting Tree (Luo et al., 2020)). To illustrate our framework is generalizable and robust to the
specific choice of predictors, we compare the following predictor variants.

4

Under review as a conference paper at ICLR 2021

• Multilayer perceptron (MLP): MLP is the baseline commonly used in predictor-based NAS
(Ning et al., 2020) due to its simplicity. Here we use a 4-layer MLP with hidden layer di-
mension of (1000, 1000, 1000, 1000) which is sufficient to model the architecture encoding.
• Gradient Boosting Regression Tree (GBRT): Tree-based methods have recently been pre-

ferred in predictor-based NAS (Luo et al., 2020; Siems et al., 2020) since it is more suitable
to model discrete representation of the architectures. Here, we use the Gradient Boosting
Regression Tree based on XGBoost (Chen & Guestrin, 2016) implementation.
• Random Forest: Random Forrest is another variant of tree-based predictor, it differs from

Gradient Boosting Trees in that it combines decisions at the end instead of along each
hierarchy, and thus more robust to noise.

The selection of features to represent the architecture search space and learn the predictor is also
sensitive to the performance. Previous methods tended to hand craft the feature for the best perfor-
mance (e.g., raw architecture encoding (Wei et al., 2020), supernet statistic (Hu et al., 2020)). To
demonstrate our framework is robust across different features, we compare the following features.

• One-hot Vector: In NAS-Bench-201(Dong & Yang, 2020), its DART style search space
fixed the graph connectivity, so one-hot vector is used to encode the choice of operator.

• Adjacency Matrix: In NAS-Bench-101, we used the encoding scheme as well as (Ying
et al., 2019; Wei et al., 2020), where a 7×7 adjacency matrix represents the graph connec-
tivity and a 7-dimensional vector represents the choice of operator, on every node.

(a) CIFAR10 (b) CIFAR100 (c) ImageNet16-120

Figure 4: Evaluations of robustness across different predictors on NAS-Bench-201

(a) CIFAR10 Validation Set (b) CIFAR10 Test Set

Figure 5: Evaluations of robustness across different predictors on NAS-Bench-101

We compare the robustness across different predictors under our framework shown in Figure 4. We
can see that all predictors perform similarly among different target datasets. As shown in Figure 4
with Figure 5, although different architecture encoding methods are used, our method can perform
similarly well among different predictors, which demonstrates that our proposed method is robust
to different predictors and features selection.

5

Under review as a conference paper at ICLR 2021

3 EXPERIMENTS

3.1 SETUP

NAS-Bench-101 (Ying et al., 2019) is one of the first datasets used to benchmark NAS algorithms.
The dataset provides a Directed Acyclic Graph (DAG) based cell structure, while (1) The connectiv-
ity of DAG can be arbitrary with a maximum number of 7 nodes and 9 edges (2) Each nodes on the
DAG can choose from operator of 1×1 convolution, 3×3 convolution or 3×3 max-pooling. After
removing duplications, the dataset consists of 423,624 diverse architectures trained on CIFAR10
dataset with each architecture trained for 3 trials.

NAS-Bench-201 (Dong & Yang, 2020) is another recent NAS benchmark with a reduced DARTS-
like search space. The DAG of each cell is fixed similar to DARTS(Liu et al., 2018b), however
we can choose from 5 different operations (1×1 convolution, 3×3 convolution, 3×3 avg-pooling,
skip, no connection) on each of the 6 edges totaling a search space of 15,625 architectures. The
dataset is trained on 3 different datasets (CIFAR10/CIFAR100/ImageNet16-120) with each archi-
tecture trained for 3 trials.

For experiments on both benchmarks, we followed the same setting as (Wen et al., 2019). We use
the validation accuracy as search signal, while test accuracy is only used for reporting the accuracy
on the model that was selected at the end of a search. Since the best performing architecture on the
validation and testing set does not necessarily match, we also report the performance on finding the
oracle on the validation set of our NAS algorithm in the following experiments.

Open Domain Search: we follow the same NASNet search space used in (Zoph et al., 2018) to
directly search for best-performing architectures on ImageNet. Due to the huge computational costs
needed to train and evaluate architecture performance on ImageNet, we leverage a weight-sharing
supernet approach (Guo et al., 2019) and use supernet accuracy as a performance proxy indicator.

3.2 COMPARISON TO STATE-OF-THE-ART (SOTA) METHODS

We evaluate our method on both NAS-Bench-101 and NAS-Bench-201. We also apply our method
to open domain search directly on ImageNet dataset using NASNet search space.

NAS-Bench-101

We conduct experiments on the popular NAS-Bench-101 benchmark and compare with multiple
popular methods (Real et al., 2019; Wang et al., 2019b;a; Luo et al., 2018; Wen et al., 2019). We
first study the performance by limiting the number of queries. In Table 1, we vary the number of
queries used in our method by changing the number of iterations. It is clear to see that, the searched
performance consistently improves as more iterations are used. When compared to the results from
popular predictor-based NAS methods, such as NAO (Luo et al., 2018) and Neural Predictor (Wen
et al., 2019), our method (a) reaches higher search performance provided with the same query budget
for training; and (b) uses fewer samples towards the same accuracy goal.

We then plot the best accuracy against number of samples in Figure 6 to show the sample efficiency
on both validation and test set of NAS-Bench-101, we can see that our method consistently requires
fewer sample to reach higher accuracy, compared to Random Search and Regularized Evolution.

Finally, Table 2 shows that our method significantly outperforms baselines in terms of sample effi-
ciency. Specifically, our method costs 44×, 20×, 17×, and 2.66× less samples to reach the optimal
architecture, compared to Random Search, Regularized Evolution (Real et al., 2019), MCTS (Wang
et al., 2019b), LaNAS (Wang et al., 2019a), respectively.

NAS-Bench-201

We further evaluate our method on NAS-Bench-201. Since it is relatively newly released, we com-
pare with two baseline methods Regularized Evolution (Real et al., 2019) and random search using
our own implementation. Shown in Table 3, we conduct searches on all three subsets (CIFAR10,
CIFAR100, ImageNet16-120) and report the average number of samples needed to reach global op-
timal over 250 runs. It is obvious to see that our method requires the minimum number of samples
among all settings.

6

Under review as a conference paper at ICLR 2021

Table 1: Comparsion to SOTA on NAS-Bench-101 by limiting the total amount of queries

Method #Queries Test Acc.(%) SD(%) Test Regret(%)

Random Search 2000 93.64 0.25 0.68
NAO (Luo et al., 2018) 2000 93.90 0.03 0.42

Reg Evolution (Real et al., 2019) 2000 93.96 0.05 0.36
Neural Predictor (Wen et al., 2019) 2000 94.04 0.05 0.28

Ours (Non-iterative) 2000 93.92 0.082 0.04

Ours (1 iteration) 100 93.47 0.183 0.85
Ours (4 iterations) 400 94.15 0.146 0.17
Ours (10 iterations) 1000 94.20 0.077 0.12
Ours (20 iterations) 2000 94.22 0.028 0.10

(a) CIFAR10 Validation (b) CIFAR10 Testing

Figure 6: Comparison to SOTA on NAS-Bench-101 by varying number of samples. Central lines
demonstrate the average, and the shade regions depict the confidence intervals

Table 2: Comparison on the number of samples required to find the global optimal architecture over
100 runs on NAS-Bench-101

Method #Queries
Random Search 188139.8

Reg Evolution (Real et al., 2019) 87402.7
MCTS (Wang et al., 2019b) 73977.2
LaNAS (Wang et al., 2019a) 11390.7

Ours 4275.3

We also conduct a controlled experiment by varing the number of samples. As in Figure 7, our
average performance over different number of samples yields a clear gain over Regularized Evolu-
tion (Real et al., 2019) in all three subsets. Our confidence interval is also tighter than Regularized
Evolution, showcasing our method’s superior stability/reliability.

Open Domain Search

In order to demonstrate our method’s generalizability, we further apply it to open domain search
without ground-truth. We adopt the popular search space from NASNet and compare with several
popular methods (Zoph et al., 2018; Real et al., 2019; Liu et al., 2018a; Luo et al., 2018) with the
utilization of number of samples reported. Shown in Table 5, it is clear to see that, using fewest
samples among all, our method achieves state-of-the-art ImageNet top-1 error with similar number
of parameters and FLOPs. Our searched architecture is also competitive to expert-design networks.
Comparing with the previous SOTA predictor-based NAS method (Luo et al., 2018), our method

7

Under review as a conference paper at ICLR 2021

Table 3: Comparison on the number of samples required to find the global optimal over 250 runs on
NAS-Bench-201

Method CIFAR10 CIFAR100 ImageNet16-120
valid test valid test valid test

Random Search 7873.98 7782.12 7716.85 7621.24 7776.55 7726.15
Reg Evolution (Real et al., 2019) 478.41 563.25 399.78 438.24 802.57 715.12

Ours 119.17 186.30 86.08 89.26 159.33 176.61

(a) CIFAR10 (b) CIFAR100 (c) ImageNet16-120

Figure 7: Comparison to SOTA on NAS-Bench-201 by varying number of samples. Central line
demonstrates the average, shade demonstrates the confidence interval

reduces 0.9% top-1 error, using the same number of samples, which is significant. This experiment
well proves that our method is robust, generalizable, and can be effectively applied to real-world
open domain search.

Table 4: Compared to SOTA results on ImageNet using NASNet search space

Method #Queries Top-1 Err.(%) Top-5 Err.(%) Params(M) FLOPs(M)

MobileNetV2 Manual 25.3 - 6.9 585
ShuffletNetV2 Manual 25.1 - 5.0 591

EfficientNet-B0 Manual 23.7 6.8 5.3 390

NASNet-A (Zoph et al., 2018) 20000 26.0 8.4 5.3 564
AmoebaNet-A (Real et al., 2019) 10000 25.5 8.0 5.1 555

PNAS (Liu et al., 2018a) 1160 25.8 8.1 5.1 588
NAO (Luo et al., 2018) 1000 24.5 7.8 6.5 590

Ours 1000 23.6 6.8 5.9 597

4 CONCLUSION

In this paper, we present a novel predictor-based NAS framework that progressively shrinks the
sampling space, by learning a series of weak predictors that can connect towards the best architec-
tures. We argue that using a single strong predictor to model the whole search space with limited
samples may be too challenging a task and seemingly unnecessary. Instead by co-evolving the sam-
pling stage and learning stage, our weak predictors can progressively evolve to sample towards the
subspace of best architectures, thus greatly simplifying the learning task of each predictor. Exten-
sive experiments on popular NAS benchmarks prove that proposed method is sample-efficient and
robust to various combinations of predictors and architecture encoding means. We further apply our
method to open domain search and demonstrate its generalization. Our future work will investigate
how to jointly the predictor and encoding in our framework.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Thomas Chau, Łukasz Dudziak, Mohamed S Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas D
Lane. Brp-nas: Prediction-based nas using gcns. arXiv preprint arXiv:2007.08668, 2020.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 1294–1303, 2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architec-
ture search. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HJxyZkBKDr.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. arXiv preprint
arXiv:1904.00420, 2019.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324, 2019.

Yiming Hu, Yuding Liang, Zichao Guo, Ruosi Wan, Xiangyu Zhang, Yichen Wei, Qingyi Gu, and
Jian Sun. Angle-based search space shrinking for neural architecture search. arXiv preprint
arXiv:2004.13431, 2020.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in neural information processing systems, pp. 7816–7827, 2018.

Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture
search with gbdt. arXiv preprint arXiv:2007.04785, 2020.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based
neural architecture encoding scheme for predictor-based nas. arXiv preprint arXiv:2004.01899,
2020.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10428–10436, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter. Nas-
bench-301 and the case for surrogate benchmarks for neural architecture search. arXiv preprint
arXiv:2008.09777, 2020.

Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. Sample-efficient neural
architecture search by learning action space, 2019a.

Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca. Alphax: explor-
ing neural architectures with deep neural networks and monte carlo tree search. arXiv preprint
arXiv:1903.11059, 2019b.

9

https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr

Under review as a conference paper at ICLR 2021

Chen Wei, Chuang Niu, Yiping Tang, and Jimin Liang. Npenas: Neural predictor guided evolution
for neural architecture search. arXiv preprint arXiv:2003.12857, 2020.

Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. arXiv preprint arXiv:1912.00848, 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742, 2019.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc-
darts: Partial channel connections for memory-efficient differentiable architecture search. arXiv
preprint arXiv:1907.05737, 2019.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning, pp. 7105–7114, 2019.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

10

Under review as a conference paper at ICLR 2021

A MORE COMPARSION ON NASNET SEARCH SPACE

In Table 5, we show more comparsion to representative Gradient-based methods including
SNAS(Xie et al., 2018), DARTS(Liu et al., 2018b), P-DARTS(Chen et al., 2019), PC-DARTS(Xu
et al., 2019), DS-NAS(Xu et al., 2019).

Table 5: More Comparsion to SOTA results on ImageNet using NASNet search space. WS denote
Weight-Sharing

Model Methods #Queries Top-1 Err.(%) Top-5 Err.(%) Params(M) FLOPs(M) GPU Days

MobileNetV2
Manual

- 25.3 - 6.9 585 -
ShuffletNetV2 - 25.1 - 5.0 591 -

EfficientNet-B0 - 23.7 6.8 5.3 390 -

SNAS(Xie et al., 2018)

Gradient-based

- 27.3 9.2 4.3 522 1.5
DARTS(Liu et al., 2018b) - 26.9 9.0 4.9 595 4.0

P-DARTS(Chen et al., 2019) - 24.4 7.4 4.9 557 0.3
PC-DARTS(Xu et al., 2019) - 24.2 7.3 5.3 597 3.8

DS-NAS(Xu et al., 2019) - 24.2 7.3 5.3 597 10.4

NASNet-A (Zoph et al., 2018)

Sample-based

20000 26.0 8.4 5.3 564 2000
AmoebaNet-A (Real et al., 2019) 10000 25.5 8.0 5.1 555 3150

PNAS (Liu et al., 2018a) 1160 25.8 8.1 5.1 588 200
NAO (Luo et al., 2018) 1000 24.5 7.8 6.5 590 200

Ours Sample-based + WS 1000 23.6 6.8 5.9 597 1.08

B VISUALIZATION OF NASBENCH SEARCH SPACE

Figure 8 illustrates the histogram of architecture performance in NASBench-101/201, we also ac-
company a zoomed in view of the histogram, those histograms clearly show that the NAS search
spaces bias heavily towards good performing architectures.

(a) NASBench-101 (b) NASBench-201

Figure 8: (a) Histogram of Architecture Performance in NASBench-101 (b) Histogram of Architec-
ture Performance in NASBench-201 (CIFAR10)

11

	Introduction
	Our Approach
	Revisit Predictor-based Neural Architecture Search
	Progressive Weak Predictors Approximation
	Generalizability on Predictors and Features

	Experiments
	Setup
	Comparison to State-of-the-art (SOTA) Methods

	Conclusion
	More Comparsion on NASNet Search Space
	Visualization of NASBench Search Space

