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Abstract

Hemodynamic field estimation on the artery surface is valuable for patient-specific progno-
sis, diagnosis, and treatment of cardiovascular disease. Medical biomarkers like wall shear
stress (WSS) can be obtained from computational fluid dynamics (CFD) simulation of the
blood flow. Machine-learning methods could accelerate or replace the time-intensive CFD
simulation. We propose a graph convolutional network (GCN) that predicts hemodynamic
fields mapped to the vertices of a finite-element surface mesh. Our neural network is end-
to-end SE(3)-equivariant and uses anisotropic convolution filters, as well as pooling layers,
informed by the mesh structure. We generate a large dataset of CFD simulations in syn-
thetic arteries which we use to train and evaluate our neural network. We show that our
method can accurately predict WSS, up to two orders of magnitude faster than CFD.
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1. Introduction

Wall shear stress (WSS) on the coronary artery wall has been found to correlate with plaque
development and arterial remodelling Samady et al. (2011); Hoogendoorn et al. (2019) which
are key drivers of atherosclerosis, the number one cause of death. Clinical prognosis, di-
agnosis, and treatment planning could benefit from non-invasive WSS estimation based
on medical images of the coronary arteries. Computational fluid dynamics (CFD) simu-
lation can be used to quantify blood flow and derive WSS on the artery wall. However,
CFD is compute- and time-intensive and which impedes certain time-critical applications,
e.g. virtual surgery planning or shape optimisation of medical devices. Machine learn-
ing has been used as a replacement of CFD in hemodynamic-field estimation in coronary
arteries. To this end, deep neural networks are trained on a dataset of geometric artery
models, with hemodynamic fields mapped to their vertices, in an offline phase and then
evaluated to produce estimations online within seconds. Previous works have used hand-
crafted parametrisation Itu et al. (2016); Su et al. (2020) of the artery wall together with
convolutional neural networks (CNN). Ferez et al. (2021) have recently shown that graph
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Figure 1: Network architecture. Gray vertices are deactivated on each pooling scale.
Residual blocks consist of two convolution layers and a skip connection.

convolutional networks (GCN) outperfom previous approaches for the prediction of scalar
endothelial cell activation potential in the left atrial appendage. We propose a method to
estimate hemodynamic fields on an artery-wall surface mesh based on gauge-equivariant
mesh (GEM) convolution de Haan et al. (2021). Our neural network uses anisotropic con-
volution filters and is end-to-end SE(3) equivariant. In particular, network outputs rotate
according to the surface mesh and are independent of translation. In order to enable effi-
cient message passing on large meshes, we use a hierarchical pooling scheme. This paper is
a short version of our conference paper Suk et al. (2022) with updated numerical results.

2. Method

We use a three-level pooling scheme with convolution wrapped in residual blocks (Fig. 1).

2.1. Convolution

We use GEM convolution de Haan et al. (2021) on the mesh vertices V:

(K ∗ f)p := Kpfp +
∑

q∈N(p)

Kp,qρp,qfq, p ∈ V (1)

where Kp,Kp,q ∈ Rcout×cin are trainable kernels, fp, fq ∈ Rcin , ρp,q ∈ Rcin×cin , N(p) is
a vertex neighbourhood, fp is the feature vector mapped to vertex p, and ρp,q performs
parallel transport from q to p. Anisotropic filters depend on their neighbouring vertices q
while isotropic filters are constant over N(p).

2.2. Pooling

We create a hierarchy of vertex subsets V1 ⊃ V2 ⊃ V3 via farthest point sampling and find
disjoint point clusters to map to vertices of the respective coarser set. We define pooling
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NMAE [%] ε [%] △max [Pa] △mean [Pa]

mean median 75th mean median 75th mean median 75th mean median 75th

Single
Arteries
Lmax = 21.86 [Pa]

Lmedian = 2.03 [Pa]

IsoGCN 2.2 2.0 2.6 32.4 30.0 37.0 10.41 7.80 14.65 1.11 1.01 1.32

AttGCN 1.2 1.1 1.5 19.0 18.6 22.4 5.83 5.13 8.17 0.60 0.57 0.77

GEM-GCN 0.5 0.4 0.6 7.8 7.6 9.1 4.10 3.55 6.13 0.23 0.23 0.31

IsoGCN† 10.5 9.6 12.8 149.2 128.1 181.2 26.73 23.96 36.17 5.31 4.84 6.50

AttGCN† 8.3 7.5 10.1 123.7 111.1 152.9 25.63 22.93 34.52 4.22 3.82 5.13

GEM-GCN† 0.5 0.4 0.6 7.7 7.5 9.2 4.10 3.50 5.79 0.23 0.22 0.31

Bifurcating
Arteries
Lmax = 7.16 [Pa]

Lmedian = 1.27 [Pa]

IsoGCN 1.3 1.1 1.5 24.4 21.1 27.3 4.38 4.14 5.50 0.27 0.22 0.29

AttGCN 1.2 0.9 1.3 20.7 18.1 22.3 4.10 3.72 4.77 0.23 0.19 0.25

GEM-GCN 0.6 0.6 0.7 11.9 11.3 13.0 3.38 3.25 3.92 0.13 0.11 0.13

IsoGCN† 7.3 6.9 9.6 117.4 115.2 151.3 8.60 8.29 10.10 1.45 1.37 1.91

AttGCN† 7.4 7.4 10.1 119.6 117.1 161.1 8.39 8.33 9.78 1.48 1.47 2.01

GEM-GCN† 0.6 0.6 0.7 12.1 11.3 13.2 3.42 3.25 3.91 0.13 0.12 0.14

†evaluated on randomly rotated test samples

Table 1: Prediction accuracy in terms of normalised mean absolute error (NMAE), ap-
proximation error ε, max vertex-wise difference △max, and mean vertex-wise dif-
ference △mean. Ground-truth label statistics Lmax,median for scale.

by averaging features vectors fq in cluster q ∈ Cp after parallel-transporting to p via ρp,q.
Unpooling simply copies feature vectors back to each cluster element.

2.3. SE(3) equivariance

GEM convolution layers are SE3-equivariant if used with SO(3) input features. This is
because we can restrict SO(3) features to SO(2) in planes tangential to the object surface,
which rotate with the mesh by construction. We use linear combinations of relative vertex
position and surface normal as input features. Additionally, we supply the vertex-wise
geodesic distances to the artery inlet, which is an invariant scalar value.

3. Numerical experiments

We train our neural network by L1-error regression on two datasets of 2,000 synthetic coro-
nary artery simulations. The datasets consist of arteries with single inlet and outlet (around
8k vertices, 17k faces) and bifurcating arteries (around 17k vertices, 32k faces). For com-
parison, we introduce two baseline models by choosing Kp,q = Kp and ρp,q = I (”IsoGCN”)
and Kp,q = Kp and learned attention ρp,q = α(p, q) (”AttGCN”) in (1). Quantitative evalu-
ation (Table 1) shows GEM-GCN strictly outperforms the baseline models. We investigate
rotation equivariance by randomly rotating meshes at test time. IsoGCN and AttGCN
accuracy drops dramatically, in contrast to GEM-GCN accuracy.

4. Discussion

We show that our method can be a feasible CFD surrogate. Anisotropic graph convolution
and SE(3) equivariance lead to improved performance and eliminate the need for roto-
translational data augmentation. Hemodynamics estimation with GEM-GCN requires less
than 5 s, compared to more than 10 min for CFD simulation in the same artery.
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