

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INCORRUPTIBLE NEURAL NETWORKS: TRAINING MODELS THAT CAN GENERALIZE TO LARGE INTER- NAL PERTURBATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Flat regions of the neural network loss landscape have long been hypothesized to correlate with better generalization properties. A closely related but distinct problem is training models that are robust to internal perturbations to their weights, which may be an important need for future low-power hardware platforms. Several methods have been proposed to guide optimization toward improved generalization, such as sharpness-aware minimization (SAM) and random-weight perturbation (RWP), which rely on either adversarial or random perturbations, respectively. In this paper, we explore how to adapt these approaches to find minima robust to a wide variety of random corruptions to weights. First, we evaluate SAM/RWP across a wide variety of noise settings, and in doing so establish that over-regularization during training is key to finding optimally-robust minima. At the same time, we also observe that large perturbations lead to a vanishing gradient effect caused by unevenness in the loss landscape, an effect particularly pronounced in SAM. Quantifying this effect, we map out a general performance trend of SAM and RWP, determining that SAM works best for robustness to small perturbations, whereas RWP works best for large perturbations. Lastly, to overcome the deleterious vanishing gradient effect during training, we propose a dynamic perturbation schedule which matches the natural evolution of the loss landscape and produces minima more noise-robust than otherwise possible.

1 INTRODUCTION

Optimizing deep neural network models in order to locate flat minima in the loss landscape has long been a problem of interest to researchers, driven by the theory that flat minima correlate with better generalization on unseen data Nitish Shirish Keskar & Tang (2016); Dziugaite & Roy (2017); Jiang et al. (2019). From this line of thought have emerged several modified methods for optimization that are explicitly designed to locate flat minima. The most prominent of these, sharpness-aware minimization (SAM), uses a one-step adversarial (i.e. *worst-case*) perturbation along the direction of the gradient to ensure low loss over a finite volume of the loss landscape, and has been demonstrated to successfully improve generalization in a wide array of settings Foret et al. (2021). A lesser-known alternative, known as random-weight perturbation (RWP), has likewise been studied as a potential mechanism for finding flat minima, but in contrast to SAM, has failed to show consistent generalization benefit Bisla et al. (2022); Li et al. (2024a).

While flat minima are primarily studied to improve generalization, they are also relevant to finding minima that are robust to *weight-space* perturbations. Although high-fidelity digital hardware has minimized this issue, the growing demand for compute has driven interest in analog neural network accelerators as energy-efficient alternatives to digital processors Sebastian et al. (2020). Of particular concern to analog in-memory computing (AIMC) solutions are irreducible analog hardware errors, which induce accuracy-degrading effects. These errors arise from many sources, such as quantization errors, memory-cell programming errors, and conductance drift- of particular focus to this paper are programming errors, which manifest as random perturbations to the model’s parameters. Previous analog computing literature has identified this problem and proposed solutions for specific hardware configurations, relying on empirically-measured device error profiles to induce robustness for an exact deployment scenario Gokmen et al. (2019); Rasch et al. (2023). However, these works fail to

054 experimentally investigate a key idea underpinning their approach to noise-aware training: namely
 055 that the best test-time performance arises from faithfully emulating the expected test-time noise
 056 distribution during training (i.e. RWP using a matched noise distributions). We pose two natural
 057 questions in response: firstly, is the expected test-time noise distribution necessarily ideal when
 058 applied randomly during training, or can this distribution be more cleverly engineered? Secondly, we
 059 question whether or not random perturbations, in any form, are ideal for finding noise-robust minima,
 060 or if a more deliberate perturbation (as in the case of SAM) is in fact superior?

061 Naively, one might assume that the same methods for finding flat minima should remain applicable
 062 to the problem of weight perturbations. However, several subtle differences require us to consider
 063 the problem with extra care. First, generalizability is associated with flatness in the *training* loss
 064 landscape; in contrast, weight-noise robustness directly requires flatness in the *test* loss landscape.
 065 Second, dependent on the size of applied perturbations, a minimum may require a *significantly* greater
 066 degree of flatness over a larger volume than is needed for good generalization. As a result, these
 067 methods need to be used well outside the operating point that is typically studied. Lastly, the nature
 068 of the flat minimum should respect a known distribution of perturbations (i.e. the minimum should be
 069 flat where perturbations are most likely to occur). As such, the ability to produce a general robustness
 070 across a multitude of perturbation scenarios is another question of significant relevance.

071 In this paper, we investigate three key questions: first, is resilience to weight-space noise best
 072 addressed through exactly matching the form of training and test perturbations experienced? Second,
 073 can we infer an optimal training protocol based on the expected noise characteristics of inference?
 074 Lastly, can we understand the mechanisms through which these perturbative training methods achieve
 075 noise-robustness, and can we engineer improvements? Our initial experiments show that over-
 076 regularization, i.e. using training perturbations larger than test-time noise, yields optimally robust
 077 models, in contrast to the conventional wisdom on noise-robust training. Next, when comparing RWP
 078 with SAM, we find that SAM actually produces more noise-robust models for test-time noise below a
 079 certain strength threshold, even as it finds strictly sharper training minima. However, SAM is also
 080 more sensitive to the scaling of its perturbation, resulting in less-optimal minima under high test-time
 081 noise. We identify that increasing training perturbation strength causes a vanishing-gradient effect
 082 due to the rapidly increasing loss, with SAM being more affected due to its sharper perturbation
 083 direction. To mitigate this, we propose dynamic perturbation schedules for SAM and RWP, starting
 084 with small perturbations early in training to better align with the loss landscape.

085 In summary, our key contributions are as follows:

- 086 • We empirically show that optimal noise-robustness is not achieved through matching
 087 training/test perturbations, but rather through applying stronger perturbations (i.e. over-
 088 regularization) during training.
- 089 • We chart the relative benefit of SAM and RWP based on the strength of the test noise,
 090 showing that SAM is superior in weaker noise settings but poor in strong-noise settings.
- 091 • We identify a vanishing-gradient effect which arises from strong perturbations, degrading
 092 training particularly for SAM.
- 093 • We demonstrate that perturbative training can be further enhanced through an appropriately-
 094 selected dynamic perturbation schedule which increases as training proceeds produces
 095 significantly more noise-robust models.
- 096 • We validate our results using simulations of analog hardware, demonstrating improvement
 097 over the conventional approach in this domain.

100 2 RELATED WORK

101 2.1 CORRUPTION-ROBUST NEURAL NETWORKS

102 Many previous works have studied the robustness of neural networks to input corruptions, either
 103 adversarial Goodfellow et al. (2015); Mustafa et al. (2019); Yan et al. (2018) or random (common
 104 corruptions) Rusak et al. (2020); Fang et al. (2023); Kar et al. (2022); Mintun et al. (2021); Guo et al.
 105 (2023); Modas et al. (2022). However, few works have previously considered the setting of random
 106 noise corruptions to model weights. In the realm of AIMC, several prior works have examined
 107

108 the resiliency of neural network inference accuracy to various sources of device noise Yang et al.
 109 (2022); Gokmen et al. (2019); Kariyappa et al. (2021); Rasch et al. (2023); Xiao et al. (2022b). The
 110 most comprehensive of these, Rasch et. al., applies regularization through injecting hardware noise
 111 emulating the target deployment platform during training. However, the methods these works propose
 112 are either application-specific or focus on hardware mitigations, and neglect to connect these ideas to
 113 the broader problem of finding flat minima.
 114

115 2.2 SHARPNESS-AWARE MINIMIZATION

116 SAM has recently emerged as a popular approach for finding flat, well-generalizing minima in the
 117 training landscape Foret et al. (2021). In contrast to standard SGD-based optimization methods, SAM
 118 first perturbs the model using a gradient ascent step, approximating a local maximization, followed
 119 by a descent step from the perturbed point. Since its inception, an array of modified variants aiming
 120 to improve SAM’s generalization ability Liu et al. (2022b); Li et al. (2024b); Kwon et al. (2021);
 121 Kim et al. (2022) or training efficiency Du et al. (2022); Jiang et al. (2023); Liu et al. (2022a); Mi
 122 et al. (2022); Xie et al. (2024) have been proposed.
 123

124 Several works have closely examined SAM’s properties to better understand its empirically observed
 125 success. Andriushchenko et. al. studies the convergence of SAM through theoretically demonstrating
 126 the implicit biases of SAM when applied to a diagonal linear network Andriushchenko & Flammarion
 127 (2022). Wen et. al. more precisely demonstrates the measure of sharpness that the mini-batch
 128 variation of SAM regularizes Wen et al. (2023). Khanh et. al. provide a more comprehensive analysis
 129 of the convergence properties of SAM Khanh et al. (2024). Baek et. al. studies SAM’s ability to
 130 induce robustness to label noise, demonstrating a positive effect from regularization of the network
 131 Jacobian Baek et al. (2024).
 132

133 2.3 RANDOM WEIGHT PERTURBATION

134 Randomly perturbing weights during optimization has long been known as a straightforward approach
 135 to regularizing neural networks during training An (1996). Neelakantan et. al. demonstrate that
 136 adding noise to gradients during training improves generalization, achieving a similar effect to
 137 residual connections in deep networks Neelakantan et al. (2015). Zhou et. al. empirically show that
 138 weight noise can guide the optimization route out from spurious local minima Zhou et al. (2019).
 139 Bisla et. al. propose low-pass filtering the loss function (practically implemented through sampling
 140 weight noise from a Gaussian distribution) as a means to smoothing the loss landscape and hence
 141 improve generalization Bisla et al. (2022). Li et. al. propose a modified form of RWP which
 142 introduces filter-wise perturbations based on the historical gradient Li et al. (2024a). Möllenhoff
 143 et. al. establish a theoretical connection between SAM and RWP in which SAM can be recovered
 144 through an optimal relaxation of the randomly perturbed objective Möllenhoff & Khan (2023).
 145

146 3 PRELIMINARIES

147 Consider a training dataset $\mathcal{S} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$ drawn i.i.d from a data distribution \mathcal{D} . Let $f(\mathbf{x}, \mathbf{w})$
 148 be a neural network model with trainable parameters $\mathbf{w} \in \mathbb{R}^d$. Given some loss function on
 149 individual samples $l(f(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i) \in \mathbb{R}^+$, we define the empirical loss on the training dataset to be
 150 $L_{\mathcal{S}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n l(f(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i)$. Our goal is to train a model f which minimizes the *perturbed*
 151 distribution loss $L_{\mathcal{D}}^*(\mathbf{w}) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}, \mathbf{p} \sim \mathbb{Q}}[l(f(\mathbf{x}, \mathbf{w} + \mathbf{p}), \mathbf{y})]$, where \mathbb{Q} is a known distribution of
 152 possible weight perturbations. Although in principle \mathbb{Q} can be arbitrary, for simplicity’s sake we
 153 restrict \mathbb{Q} to be a zero-mean isotropic Gaussian scaled by the maximum magnitude element in a
 154 given weight filter w , defined as $\mathcal{N}(0, \max_j |w_j| \sigma_q^2 \mathbb{I})$ with variance σ_q^2 (hereafter referred to as
 155 σ_{test}). We argue that the zero-mean Gaussian assumption faithfully captures the dynamics of analog
 156 programming errors: if the analog error distribution has a non-zero mean, it can be compensated
 157 for with a constant shift in the weights, whereas even if the error distribution is non-Gaussian, the
 158 sum is nonetheless Gaussian by means of the Central Limit Theorem. We directly scale the noise
 159 variance by the weight magnitude to more closely emulate inference on analog in-memory computing
 160 processors, in which the digital weights are mapped to a finite conductance range determined by the
 161 limitations of the hardware. As a result, the noise applied to the weights is fixed to a given fraction of
 the weight magnitude, and cannot be mitigated through simple re-scaling. We note that the perturbed

162 distribution loss *directly* reflects the flatness of the minima in parameter-space, hence the interest in
 163 applying both SAM and RWP.

164 **SAM** The modified SAM training loss can be expressed as follows:

$$166 \quad L_S^{SAM}(\mathbf{w}) = \max_{\|\epsilon\|_2^2 \leq \rho} L_S(\mathbf{w} + \epsilon) \quad (1)$$

169 where ρ is a scalar hyperparameter corresponding to the radius of the l_2 ball in which the maximization
 170 is performed. In practice, the inner maximization within the SAM objective is not tractable, and
 171 instead approximated using a single gradient ascent step of length ρ .

172 **RWP** The RWP training loss we adopt in this paper is described by the following:

$$174 \quad L_S^{RWP}(\mathbf{w}) = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \max_j |w_j| \sigma_p^2 \mathbb{I})} [L_S(\mathbf{w} + \epsilon)] \quad (2)$$

175 where σ_p^2 is the variance of the perturbation distribution (hereafter referred to as σ_{train}), left to our
 176 choosing. In our implementation, we sample one ϵ per minibatch, noting that the expectation is taken
 177 implicitly over the stochastic minibatches.

179 **Sharpness Measures** Given our problem setting, we use a simple measure for quantifying sharpness:
 180 the difference in the loss value between the original point on the optimization path and a given
 181 perturbed point. We use two varieties of this measure (originally defined in Wen et al. (2023)):
 182 *ascent-direction* sharpness (Eq. 3), in which the perturbed point lies along the gradient, and *average-
 183 direction* sharpness (Eq. 4), in which the perturbed point is sampled randomly, according to our
 184 noise distribution of interest. We also define *gradient sharpness* to refer to the sharpness at the
 185 point of perturbation (where the update gradient is computed) for SAM/RWP. In the case of SAM,
 186 its gradient sharpness is equivalent to ascent-direction sharpness, whereas for RWP it is equivalent
 187 to average-direction sharpness. For the sake of practicality, we use the approximate measure of
 188 *m*-sharpness, in which the sharpness is calculated through averaging over mini-batches of size m .

$$189 \quad L^{asc}(\mathbf{w}) = L \left(\mathbf{w} + \rho \frac{\nabla L(\mathbf{w})}{\|\nabla L(\mathbf{w})\|_2} \right) - L(\mathbf{w}) \quad (3)$$

$$192 \quad L^{avg}(\mathbf{w}) = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \max_j |w_j| \sigma_p^2 \mathbb{I})} [L(\mathbf{w} + \epsilon)] - L(\mathbf{w}) \quad (4)$$

194 4 UNDERSTANDING THE MECHANISMS OF TRAINING-INDUCED NOISE 195 RESILIENCE

198 In this section, we study both SAM and RWP to understand how these methods arrive at minima
 199 robust to noise. We evaluate both methods across a variety of test-time noise settings while studying
 200 the dynamics they exhibit during training.

202 4.1 EXPERIMENTAL SETTING

203 We perform our experiments using the Cifar-100, Tiny-ImageNet and ImageNet-100 datasets
 204 Krizhevsky & Hinton (2009); Deng et al. (2009); Le & Yang (2015) with a variety of model
 205 architectures. The results in the following sections are taken using a ResNet-18 backbone He et al.
 206 (2015) trained on Cifar-100; additional experiments with more backbone models/datasets are included
 207 in Appendix Sec. D and Sec. E. For each experimental result, we report two uncertainty measures:
 208 noise uncertainty (first number in tables), the standard deviation calculated across different samples of
 209 test-time noise, and weight uncertainty (second number in tables), the standard deviation calculated
 210 across different sets of model weights trained using a varying random seed. We average our results
 211 across 10 different weight-noise samples and 3 different trained model weights.

213 4.2 OBSERVING THE EVOLUTION OF NOISE-ROBUSTNESS DURING TRAINING

215 Before evaluating noise robustness on trained models, we first note that the perturbed distribution
 loss L_D^* does *not* follow the same trends of convergence as the unperturbed loss. To illustrate this,

Figure 1: (a) ResNet-18 test accuracy on Cifar-100 as a function of training epoch when both perturbations ($\sigma_{test} = 0.05$) and no perturbations are applied. Training is conducted using SGD. (b) Comparison of perturbed test accuracy evolution for SAM with various ρ values. (c) Comparison of perturbed test accuracy evolution for RWP with various σ_{train} values.

we plot the test accuracy, both perturbed and unperturbed, of a ResNet-18 trained with SGD in Fig. 1a. Whereas the noiseless test accuracy continually increases until convergence, the perturbed test accuracy peaks at an earlier epoch, before gradually declining as the optimization continues. Intuitively, this matches with the hypothesis that in early training iterations, the loss landscape is naturally flat, and as such the perturbed test accuracy improves over the early epochs. However, without proper regularization, training will naturally begin to overfit as a sharper minimum is approached.

Next, we compare this same convergence dynamic for both SAM and RWP, varying perturbation strengths ρ and σ , respectively. We visualize this comparison in Fig. 1b and Fig. 1c. In the models trained with SAM, we notice a similar dynamic to those trained with SGD: when trained for a sufficiently long schedule, the models undergo the same phenomenon of reaching a peak perturbed test accuracy, after which overfitting ensues. However, as ρ is increased, two trends emerge: the epoch at which the peak perturbed accuracy is achieved is pushed further back (i.e. the model can be trained closer to convergence before the peak is reached), and the perturbed accuracy at the peak is increased relative to that of SGD. After ρ exceeds a critical value, these trends reverse: overfitting once again initiates at an earlier training epoch, and the peak accuracy is now reduced.

Meanwhile, the training dynamics observed in models trained with RWP stand in contrast to those trained with SAM and SGD. We consider two regimes: small σ_{train} , and large σ_{train} . In the former case, the optimization follows the same trend as in SGD and SAM: perturbed test accuracy peaks before convergence, after which further training leads to a decline in noise-resilience. However, in the latter case, the perturbed test accuracy does not peak, instead gradually increasing until the model converges. Even when the model is trained for a greater number of iterations beyond convergence, the perturbed test accuracy simply plateaus, and the model never enters an overfit regime. This stands in particular contrast to SAM, which *cannot* prevent the convergence of the model to an overfit solution, regardless of the selected perturbation radius. We defer a more detailed discussion of this phenomenon to Appendix Sec. B.1.

4.3 SELECTING TRAINING PERTURBATION STRENGTH: OVER-REGULARIZATION IS OPTIMAL

Because RWP’s training objective matches the distribution loss we are seeking to minimize, it is a natural choice to use it as regularization during training. Given a σ_{test} applied to perturbations in the distribution loss, it is intuitive to select training-time variance σ_{train} such that $\sigma_{train} = \sigma_{test}$. To test this hypothesis, we evaluate models trained using differing values of σ_{train} on the validation dataset for selected values of σ_{test} , with our results shown in Tab. 1. In doing so, we observe a surprising effect: *over-regularizing* RWP training by selecting $\sigma_{train} > \sigma_{test}$ achieves better test accuracy on the held-out data. This suggests that the perturbations sampled from the tail of the noise distribution have a disproportionate effect on guiding the optimization to an optimally-flat minimum.

Next, we evaluate SAM training with a variety of ρ values as shown in Tab. 2. As is the case with RWP, the SAM-trained models consistently outperform those trained with SGD on the perturbed

270
271
272
Table 1: Comparison of RWP-trained ResNet-18 on Cifar-100 with varying perturbation strength at
both training and test time. Staircase indicates boundary between $\sigma_{train} \leq \sigma_{test}$ and $\sigma_{train} > \sigma_{test}$.

	$\sigma_{test} = 0.0$	$\sigma_{test} = 0.02$	$\sigma_{test} = 0.03$	$\sigma_{test} = 0.05$	$\sigma_{test} = 0.07$
$\sigma_{train} = 0.0$	79.31 \pm 0.04	77.24 \pm 0.51 \pm 0.23	71.95 \pm 3.05 \pm 1.06	56.21 \pm 2.34 \pm 1.38	47.09 \pm 2.54 \pm 3.64
$\sigma_{train} = 0.02$	78.86 \pm 0.41	77.64 \pm 0.25 \pm 0.36	75.77 \pm 0.43 \pm 0.33	67.11 \pm 1.61 \pm 0.69	50.12 \pm 2.59 \pm 2.89
$\sigma_{train} = 0.03$	78.96 \pm 0.28	77.57 \pm 0.23 \pm 0.26	75.82 \pm 0.47 \pm 0.30	67.97 \pm 1.38 \pm 0.58	52.57 \pm 2.43 \pm 0.99
$\sigma_{train} = 0.05$	78.69 \pm 0.12	77.65 \pm 0.26 \pm 0.05	76.26 \pm 0.47 \pm 0.11	70.43 \pm 1.26 \pm 0.16	56.55 \pm 3.29 \pm 0.35
$\sigma_{train} = 0.06$	78.04 \pm 0.39	77.15 \pm 0.27 \pm 0.26	75.97 \pm 0.42 \pm 0.20	71.04 \pm 0.91 \pm 0.15	59.27 \pm 2.50 \pm 0.20
$\sigma_{train} = 0.07$	77.17 \pm 0.34	76.32 \pm 0.21 \pm 0.20	75.18 \pm 0.37 \pm 0.23	70.51 \pm 1.04 \pm 0.25	59.39 \pm 2.64 \pm 0.10
$\sigma_{train} = 0.08$	77.05 \pm 0.32	76.24 \pm 0.26 \pm 0.17	75.15 \pm 0.45 \pm 0.18	70.96 \pm 1.20 \pm 0.45	61.36 \pm 2.85 \pm 0.90

279
280
281
Table 2: Comparison of SAM-trained ResNet-18 on Cifar-100 with varying perturbation strength at
both training and test time.

	$\sigma_{test} = 0.0$	$\sigma_{test} = 0.02$	$\sigma_{test} = 0.03$	$\sigma_{test} = 0.05$	$\sigma_{test} = 0.07$
$\rho = 0.0$	79.31 \pm 0.04	77.24 \pm 0.51 \pm 0.23	71.95 \pm 3.05 \pm 1.06	56.21 \pm 2.34 \pm 1.38	47.09 \pm 2.54 \pm 3.64
$\rho = 0.2$	81.15 \pm 0.21	78.71 \pm 0.33 \pm 0.15	75.27 \pm 1.89 \pm 1.71	64.36 \pm 1.94 \pm 0.70	53.61 \pm 2.61 \pm 0.68
$\rho = 0.3$	80.27 \pm 0.19	79.12 \pm 0.23 \pm 0.28	76.82 \pm 1.13 \pm 1.09	66.51 \pm 2.57 \pm 1.27	52.93 \pm 3.51 \pm 1.46
$\rho = 0.5$	78.34 \pm 0.05	77.31 \pm 0.25 \pm 0.23	74.41 \pm 2.00 \pm 0.97	63.27 \pm 2.57 \pm 1.81	47.16 \pm 4.19 \pm 2.35
$\rho = 0.8$	72.34 \pm 0.37	71.04 \pm 0.30 \pm 0.46	66.98 \pm 1.67 \pm 2.44	50.85 \pm 3.26 \pm 3.82	19.02 \pm 3.39 \pm 2.54

288
289
290
291
292
293
294
295
296
297
298
accuracy metric. Although less straightforward to judge, we posit that as in the case of RWP, strongly-
regularizing SAM through increasing ρ should produce optimally-robust models. Comparing these
experiments to the application of SAM in the standard setting of improving generalization without
noise, we indeed find that the optimal perturbation radius is increased ($\rho = 0.2$ vs. $\rho = 0.3$). However,
a surprising trend emerges when ramping test-time noise: the optimal value of ρ is consistent across
all of the test-time noise settings. Notably, models trained with $\rho = 0.8$, our most strongly perturbed
SAM models, exhibit no performance advantage over those trained with SGD across any of the
noise settings. For larger σ_{test} , a small value of ρ cannot achieve the over-regularizing effect seen
to be beneficial in RWP. The fact that SAM with larger perturbation radii fails to produce more
noise-resilient models indicates that although stronger perturbations are needed for regularization,
large worst-case perturbations have a deleterious effect on the convergence of training.

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
To capture the trade-off between a deeper vs flatter minimum, we plot $\sigma_{test} = 0.07$ test accuracy
vs. unperturbed test accuracy for a variety of SGD, SAM and RWP models trained using varying
 σ_{train}/ρ (Fig. 2a). In the case of RWP, we see that both deep-but-sharp and flat-but-shallow (the right
and left regions respectively) perform non-ideally, with a modest region in the middle representing
the optimal trade-off. For SAM, we see that in contrast to RWP, the most noise-resilient model is
simultaneously the model with the largest unperturbed test accuracy, indicating that SAM *cannot*
effectively increase flatness at the cost of the loss value. Additionally, we plot a comparison of the
optimal SAM and RWP performance across a variety of test noise settings, shown in Fig. 2b. When
the model weights are unperturbed at test time, SAM outperforms RWP, in agreement with the current
understanding of SAM. For small-magnitude noise, SAM likewise maintains an advantage over RWP.
However, as the perturbation strength is increased, the performance of RWP quickly overtakes SAM,
with the performance gap further widening for greater noise. This result logically follows from our
previous observation: although small- ρ SAM is successful at inducing noise-robustness (and is in
fact preferable depending on the test noise strength), training with large ρ degrades the optimization,
preventing SAM from scaling to more heavily-perturbed settings. Therefore, even in large σ_{test} noise
settings, small ρ is optimal, but performs worse than optimal- σ_{train} RWP.

315
316
4.4 DRAWBACK OF LARGE PERTURBATIONS: SHARPNESS-INDUCED VANISHING GRADIENT

317
318
319
320
321
322
323
From the results earlier in this section, we can deduce that strong adversarial perturbations are
disruptive to the training process. To understand this effect, we plot the l_2 -norm of the update gradient
 $\|\nabla L\|_2$ (i.e. the gradient at the perturbed point) as a function of training epoch (averaged over
minibatches) for both techniques, shown in Fig. 3a. For fair comparison, we select SAM $\rho = 0.3$
and RWP $\sigma_{train} = 0.08$ as the representative trajectories to plot, as SAM $\rho = 0.3$ is optimal for
most of the test-time noise settings and $\sigma_{train} = 0.08$ is the most-perturbed RWP model we train. In
early epochs, we see the norm of the gradient increase as the training path enters into a steep valley
within the loss landscape. Later, as training begins to converge to a local minimum, the gradient

Figure 2: (a) Scatter plot of unperturbed test accuracy vs $\sigma_{test} = 0.07$ perturbed test accuracy for varying perturbation sizes of SAM, RWP and SGD. (b) Comparison between optimal RWP and SAM across a variety of noise settings.

Figure 3: (a) Plot of the update gradient norm $\|\nabla L\|_2$ as a function of training epoch for a ResNet-18 trained on Cifar-100 using SGD, SAM, and RWP. (b) Plot of the gradient sharpness (corresponding to ascent-direction for SAM or average-direction for RWP) of both SAM and RWP as a function of training loss. (c) Schematic visualization of a loss surface, demonstrating a *sharp* direction (along which the SAM perturbation lies), and a *flat* direction (along which the RWP perturbations lie). In sharpness plot, arrow indicate direction of increasing training epochs.

norm decreases again. Relative to SGD, all of the perturbative training methods reduce the gradient norm across the entire optimization path. However, we notice a stark contrast: the SAM-trained model produce gradient norms that are *significantly* more reduced in magnitude than those of the RWP training. Taking note that RWP's perturbation magnitude is two orders of magnitude larger than that of SAM (63 vs 0.3), this implies that the second directional derivative is *markedly* larger in magnitude along the direction of the gradient than in a randomly sampled direction. This issue of the vanishing gradient is further exacerbated for adversarial perturbations of greater ρ value; beyond a certain point, the gradient is too small in magnitude for learning to occur, and training fails to progress meaningfully beyond the initialized state.

Given this observation, we next build an intuitive interpretation to understand why SAM perturbations reduce the gradient norm to a greater degree than RWP perturbations. To aid in this understanding, we visualize the gradient sharpness during training to understand the loss topography at the perturbed point, shown in Fig. 3b. From this, we see that the sharpness encountered by the small SAM perturbations is much larger in magnitude than that encountered by the large RWP perturbations, a trend that holds true at every point within the loss landscape. This strong sharpness combined with the previously discussed diminishing gradient norm suggests that, along the gradient direction, the loss landscape contains a steep ridge in which both the loss and the loss gradient are rapidly changing and beyond which lies a largely-flat high-loss plateau. While small SAM perturbations produce gradients along the steeper incline of the ridge, scaling ρ beyond this point perturbs the weights onto the flat plateau, where gradients are vanishingly-small. On the other hand, random

Figure 4: (a) Plot of ResNet-18 Cifar-100 average-direction sharpness for $\sigma = 0.02$. as a function of training loss. (b) Plot of average-direction sharpness as a function of *test* loss for $\sigma = 0.02$. (c) Plot of *test* sharpness as a function of *training* for $\sigma = 0.02$.

perturbations, even of significant perturbation radii, encounter a drastically smaller increase in the loss value and a drastically smaller decrease in the gradient magnitude, in-line with empirical observations of flatness in most directions of the loss landscape Li et al. (2018). As a result, perturbations along these directions produce points still within the steep low-loss basin, and as such do not encounter vanishing gradients to the same degree as those along the gradient direction. To visually capture this intuitive understanding of the landscape, we include a diagram in Fig. 3c.

Combining our previous observation that over-regularization benefits training with the trend toward a vanishing gradient, we conclude that there exists a *critical perturbation length*, which we define informally as the perturbation length, present in both SAM and RWP, at which point the harm from the diminishing gradient overtakes the benefit of over-regularization, producing a minimum *less* optimally noise-robust.

4.5 DE-CORRELATING TRAINING AND TEST SHARPNESS

In adopting SAM and RWP as valid methods for improving noise-robustness, we implicitly make the assumption that a flat *training* loss landscape necessarily correlates with a flat *test* loss landscape. To empirically test this hypothesis, we plot average-direction training sharpness as a function of training loss, average direction test sharpness as a function of test loss, and test sharpness as a function of training sharpness ($\sigma = 0.02$) for several SAM and RWP training trajectories, displayed in Fig. 4. Doing so, we observe several unintuitive trends regarding the correlation between training and test sharpness. First, we note that a minimum's test sharpness is almost always greater than its training sharpness, made especially clear in Fig. 4c. Second, we note that, particularly toward the later training epochs, the evolution of training and test sharpness are in fact anti-correlated (i.e. test sharpness *increases* as training sharpness *decreases*). Lastly, we observe a surprising difference in the generalization of SAM and RWP's minima, respectively: although RWP $\sigma = 0.03$ locates a minimum both *deeper* and *flatter* in the training landscape than that of SAM, SAM's minimum generalizes to a lower test loss and as such is more noise-resilient. This result firmly establishes a new paradigm for training noise-robust models: locating a point displaying flatness in the test loss landscape should be considered independently of the same problem in the training loss landscape.

5 MITIGATING THE VANISHING GRADIENT: DYNAMIC PERTURBATION SCHEDULES

In Sec. 4, we hypothesize the existence of a critical perturbation length, denoting the maximal strength of perturbation before the vanishing gradient effect begins to dominate, reducing noise robustness. In this section, we examine the question of *how* this critical perturbation evolves as training progresses, and we develop dynamic SAM and RWP perturbation schedules to match this evolution.

432 Table 3: Comparison of our three proposed perturbation schedules for SAM/RWP on ResNet-18
 433 Cifar-100 training. The maximum perturbation strength/schedule length are determined through
 434 using a grid search.

	$\sigma_{test} = 0.02$	$\sigma_{test} = 0.03$	$\sigma_{test} = 0.05$	$\sigma_{test} = 0.07$
Constant- σ RWP	77.65 \pm 0.26 \pm 0.05	76.26 \pm 0.47 \pm 0.11	71.04 \pm 0.91 \pm 0.15	61.36 \pm 2.85 \pm 0.90
Linear- σ RWP	77.95 \pm 0.26 \pm 0.17	76.61 \pm 0.44 \pm 0.13	71.85 \pm 0.90 \pm 1.23	62.24 \pm 3.52 \pm 1.39
Quadratic- σ RWP	78.26 \pm 0.20 \pm 0.13	77.00 \pm 0.30 \pm 0.17	72.43 \pm 0.82 \pm 0.21	65.27 \pm 2.05 \pm 0.64
Off-to-On RWP	78.00 \pm 0.30 \pm 0.09	76.63 \pm 0.44 \pm 0.14	72.31 \pm 1.03 \pm 0.50	63.15 \pm 2.84 \pm 1.61
Constant- ρ SAM	79.12 \pm 0.23 \pm 0.28	76.82 \pm 1.13 \pm 1.09	66.51 \pm 2.57 \pm 1.27	53.61 \pm 2.61 \pm 0.68
Linear- ρ SAM	79.40 \pm 0.21 \pm 0.19	77.61 \pm 0.51 \pm 0.42	67.27 \pm 1.18 \pm 1.10	58.37 \pm 2.42 \pm 0.75
Quadratic- ρ SAM	79.49 \pm 0.34 \pm 0.14	77.13 \pm 1.52 \pm 0.56	68.11 \pm 1.10 \pm 0.29	60.24 \pm 1.98 \pm 0.83
Off-to-On SAM	79.16 \pm 0.27 \pm 0.14	76.86 \pm 0.82 \pm 0.44	65.12 \pm 1.28 \pm 0.87	56.10 \pm 3.08 \pm 1.96

445 5.1 BROADENING OF THE LOSS LANDSCAPE

446
 447 From our previous experiments, we know that the critical perturbation length is closely tied to the
 448 proximity of the perturbed point to the high-loss, flat plateau of the loss landscape. However, as
 449 training proceeds, the shape of the loss basin in the immediate neighborhood likewise changes,
 450 suggesting that this proximity will *not* remain constant for a given perturbation size. To visualize
 451 this effect, we track the evolution of the perturbed training loss (i.e. the training loss evaluated at
 452 the perturbed set of weights $L(w_p)$) in Appendix Fig. 12, allowing us to better localize where the
 453 update gradient is calculated at within the loss landscape relative to the high-loss plateau. For all
 454 but the largest-magnitude perturbations, we observe that the perturbed loss gradually decreases as
 455 a function of the training loss until convergence. This indicates a broadening of the loss basin: as
 456 training proceeds, a larger perturbation is required to enter the high-loss plateau, and as such the loss
 457 at a constant perturbation distance consistently decreases.

458 Based on this observation, we contend that the critical perturbation length should also increase
 459 alongside the width of the loss basin, suggesting that the optimal perturbation strength selected at the
 460 initial stage of training should not remain constant. This insight leads us to develop modified training
 461 schedules for SAM and RWP, which we introduce in the following subsection.

463 5.2 MATCHING THE OBSERVED LANDSCAPE EVOLUTION: EMPIRICALLY-SELECTED 464 PERTURBATION SCHEDULES

465 With an established understanding that the critical perturbation length increases during training,
 466 this opens the path to more-strategic over-regularization: instead of statically selecting a training
 467 perturbation magnitude that need be stable for the entire duration of training, instead we aim to
 468 engineer the training perturbations to match the evolution of the dynamic loss landscape. From our
 469 observations, we know that this perturbation magnitude should continually increase in magnitude
 470 throughout training, however the exact manner in which the critical perturbation length evolves is
 471 not clear. As such, we propose exploring a variety of differing perturbation schedules, empirically
 472 selecting the optimal strategy based on noise-robustness. Specifically, we propose three varieties
 473 of modified training schedules: a **linear** ramp, **quadratic** ramp, and a hard **off-to-on**. All three
 474 schedules initialize perturbation strength at 0, and increase to a terminal value over the course of a
 475 warm-up cycle.

476 We perform experiments using all three schedule variations with a ResNet-18 model and compare
 477 across a variety of noise settings, shown in Tab. 3. From these results, we see that across all of the
 478 test-time noise settings, the ramped perturbation schedules outperform the constant-perturbations
 479 baselines of both SAM and RWP. Of the three schedule varieties, the quadratic ramp schedule
 480 performs best across most of the scenarios, suggesting the true evolution of the critical perturbation
 481 length follows a similar trajectory. We also observe that the accuracy gain achieved by applying the
 482 dynamic perturbation schedule *increases* as σ_{test} (and hence σ_{train} or ρ) is increased. This aligns
 483 with our understanding of the critical perturbation length: for larger σ_{test} , larger perturbations are
 484 required to achieve an over-regularizing effect, but are also further inhibited by proximity to the
 485 critical perturbation length. By applying an increasing ramp schedule, far larger perturbations than
 otherwise possible can be tolerated, producing the most benefit in the large σ_{test} scenario.

486 Table 4: Comparison of SGD, SAM and RWP-trained ResNet-18 when performing simulated
 487 inference on analog accelerators.

	RRAM	SONOS
SGD	$65.61 \pm 2.68 \pm 0.51$	$79.31 \pm 0.03 \pm 0.02$
SAM $\rho = 0.4$	$68.42 \pm 1.25 \pm 0.89$	$80.07 \pm 0.03 \pm 0.22$
SAM + Quadratic Schedule	$66.16 \pm 1.52 \pm 2.58$	$80.84 \pm 0.03 \pm 0.09$
RWP $\sigma = 0.05$	$73.96 \pm 0.90 \pm 0.38$	$78.69 \pm 0.02 \pm 0.12$
RWP + Quadratic Schedule	$74.33 \pm 0.88 \pm 0.12$	$78.89 \pm 0.03 \pm 0.17$
Device-Aware Training (RRAM)	$69.35 \pm 1.29 \pm 0.35$	-
Device-Aware Training (SONOS)	-	$72.51 \pm 0.03 \pm 0.29$

498 To confirm that increased perturbation strength is now feasible, we perform ablations on two hy-
 499 perparameters of our adjustable schedules: the maximal perturbation strength after ramping and
 500 the ramping duration. Using a grid search (Appendix Tab. 11, 12), we find that the optimal max
 501 perturbations are higher than those in constant perturbation experiments (Tab. 1, 2). Notably, SAM’s
 502 optimal ρ increases significantly from 0.3 to 1.0, aligning better with the dynamic loss landscape and
 503 supporting our hypothesis of an increasing critical perturbation length. This demonstrates that greater
 504 over-regularization is achievable when introduced at the appropriate training stage, and opens a path
 505 toward perturbative training which is engineered around the evolution of the loss landscape.

506 6 VALIDATION THROUGH ANALOG HARDWARE SIMULATION

509 In this section, we demonstrate our results for a practical use-case by simulating model inference
 510 on analog hardware accelerators. To perform these experiments, we leverage CrossSim Feinberg
 511 et al., an open-source python-based simulator that models AIMC in the context of applications reliant
 512 on matrix multiplication (e.g. neural networks). We select two well-known memory devices (both
 513 supported in CrossSim) for our inference modeling: RRAM (resistive random-access memory) Milo
 514 et al. (2021) and SONOS (silicon-oxide- nitride-oxide-silicon) Xiao et al. (2022a). Both devices
 515 exhibit programming error profiles that are approximately state-independent, as is the case in our
 516 perturbation experiments. Whereas the error of SONOS empirically follows a small- σ distribution,
 517 RRAM produces significantly larger magnitude errors; to quantify this, we calculate the RMSE
 518 between the totality of the perturbed/unperturbed model weights, which we find to be 23.936 ± 0.004
 519 for RRAM, and 2.371 ± 0.0005 for SONOS. In addition to evaluating several of the ResNet-18 models
 520 trained in the previous sections, we also train models using CrossSim to directly inject perturbations
 521 matching the hardware’s noise profile during training, allowing us to test the hypothesis of unmatched
 522 training/test distributions. We compare these results in Tab. 4. From the table, we see that the general
 523 trends observed previously hold true: both SAM and RWP improve noise-robustness relative to
 524 standard SGD on the simulated hardware. On the small-noise SONOS hardware, SAM outperforms
 525 RWP, while on the large-noise RRAM, RWP outperforms SAM. In both cases, a further performance
 526 improvement is achieved through the adoption of a quadratic perturbation schedule. Additionally,
 527 optimal RWP/SAM produce better-performing models than directly applying the hardware noise
 528 during training, emphasizing again that simply matching training and test-time regularization *does not*
 529 produce optimal noise-robustness.

530 7 CONCLUSION

531 In this paper, we conduct a comprehensive study on the use of flatness-finding optimization methods,
 532 namely SAM and RWP, for finding neural network minima robust to perturbations in weight-space.
 533 First, we identify general trends in the application of these techniques to finding noise-robust minima,
 534 and discover that over-regularized training in the form of strong perturbations produces the most
 535 robust weights. At the same time, we identify a deleterious effect of strong perturbations: a vanishing-
 536 gradient effect induced by sharpness in the loss landscape, particularly pronounced in SAM. To
 537 curtail this effect, we introduce a ramped perturbation schedule, in which perturbation magnitude is
 538 gradually increased as training progresses, allowing for perturbations to evolve naturally with the
 539 widening loss basin. We hope that this extensive investigation of training neural networks robust to
 weight noise spurs future research of this under-explored problem.

540 REFERENCES

542 Guozhong An. The effects of adding noise during backpropagation training on a generalization
543 performance. *Neural Computation*, 8(3):643–674, 1996. doi: 10.1162/neco.1996.8.3.643.

544 Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware min-
545 imization. In *International Conference on Machine Learning (ICML)*, 2022. URL <https://arxiv.org/abs/2206.06232>.

546 Christina Baek, Zico Kolter, and Aditi Raghunathan. Why is sam robust to label noise? In
547 *International Conference on Learning Representations*, 2024. URL <https://arxiv.org/abs/2405.03676>.

548 Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering flat optima
549 in the deep learning optimization landscape, 2022. URL <https://arxiv.org/abs/2201.08025>.

550 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
551 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
552 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

553 Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
554 Vincent Y. F. Tan. Efficient sharpness-aware minimization for improved training of neural networks.
555 In *International Conference on Learning Representations*, 2022. URL <https://arxiv.org/abs/2110.03141>.

556 Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
557 deep (stochastic) neural networks with many more parameters than training data. In *Proceedings
558 of the 33rd Annual Conference on Uncertainty in Artificial Intelligence (UAI)*, 2017.

559 Xiuwen Fang, Mang Ye, and Xiyuan Yang. Robust heterogeneous federated learning under data
560 corruption. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4997–
561 5007, 2023. doi: 10.1109/ICCV51070.2023.00463.

562 Ben Feinberg, T. Patrick Xiao, Curtis J. Brinker, Christopher H. Bennett, Matthew J. Marinella,
563 and Sapan Agarwal. Crosssim: accuracy simulation of analog in-memory computing. URL
564 <https://github.com/sandialabs/cross-sim>.

565 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
566 for efficiently improving generalization. In *International Conference on Learning Representations*,
567 2021. URL <https://openreview.net/forum?id=6Tm1mpos1rM>.

568 Tayfun Gokmen, Malte J. Rasch, and Wilfried Haensch. The marriage of training and inference
569 for scaled deep learning analog hardware. In *2019 IEEE International Electron Devices Meeting
570 (IEDM)*, pp. 22.3.1–22.3.4, 2019. doi: 10.1109/IEDM19573.2019.8993573.

571 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
572 examples. In *International Conference on Learning Representations*, 2015. URL <https://arxiv.org/abs/1412.6572>.

573 Yong Guo, David Stutz, and Bernt Schiele. Improving robustness of vision transformers by reducing
574 sensitivity to patch corruptions. In *Proceedings of the IEEE/CVF Conference on Computer Vision
575 and Pattern Recognition (CVPR)*, pp. 4108–4118, June 2023.

576 Dongyo Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. *IEEE CVPR*,
577 2017.

578 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
579 recognition. *arXiv preprint arXiv:1512.03385*, 2015.

580 Weisen Jiang, Hansi Yang, Yu Zhang, and James Kwok. An adaptive policy to employ sharpness-
581 aware minimization. In *International Conference on Learning Representations*, 2023. URL
582 <https://arxiv.org/abs/2304.14647>.

594 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
 595 tic generalization measures and where to find them. In *International Conference on Learning*
 596 *Representations*, 2019. URL <https://arxiv.org/abs/1912.02178>.

597
 598 Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir Zamir. 3d common corruptions and data
 599 augmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 600 *Recognition*, pp. 18963–18974, 2022.

601 Sanjay Kariyappa, Hsinyu Tsai, Katie Spoon, Stefano Ambrogio, Pritish Narayanan, Charles Mackin,
 602 An Chen, Moinuddin Qureshi, and Geoffrey W. Burr. Noise-resilient dnn: Tolerating noise in
 603 pcm-based ai accelerators via noise-aware training. *IEEE Transactions on Electron Devices*, 68(9):
 604 4356–4362, 2021. doi: 10.1109/TED.2021.3089987.

605 Pham Duy Khanh, Hoang-Chau Luong, Boris S. Mordukhovich, and Dat Ba Tran. Fundamental
 606 convergence analysis of sharpness-aware minimization. In A. Globerson, L. Mackey,
 607 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-*
 608 *ral Information Processing Systems*, volume 37, pp. 13149–13182. Curran Associates, Inc.,
 609 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/17b08a9de93e2accf13429643e7eafdc-Paper-Conference.pdf.

610
 611 Minyoung Kim, Da Li, Shell Xu Hu, and Timothy M. Hospedales. Fisher sam: Information geometry
 612 and sharpness aware minimisation. In *Proceedings of Machine Learning Research*, 2022. URL
 613 <https://arxiv.org/abs/2206.04920>.

614
 615 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 616 Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

617
 618 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
 619 aware minimization for scale-invariant learning of deep neural networks. *arXiv preprint*
 620 *arXiv:2102.11600*, 2021.

621
 622 Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL <https://api.semanticscholar.org/CorpusID:16664790>.

623
 624 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
 625 of neural nets. In *Neural Information Processing Systems*, 2018.

626
 627 Tao Li, Qinghua Tao, Weihao Yan, Zehao Lei, Yingwen Wu, Kun Fang, Mingzhen He, and Xi-
 628 aolin Huang. Revisiting random weight perturbation for efficiently improving generalization.
 629 *Transactions on Machine Learning Research (TMLR)*, 2024a.

630
 631 Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
 632 minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 633 *Recognition (CVPR)*, 2024b.

634
 635 Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
 636 sharpness-aware minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 637 *and Pattern Recognition (CVPR)*, 2022a. URL <https://arxiv.org/abs/2203.02714>.

638
 639 Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random
 640 sharpness-aware minimization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Process-*
 641 *ing Systems*, volume 35, pp. 24543–24556. Curran Associates, Inc., 2022b. URL
 642 https://proceedings.neurips.cc/paper_files/paper/2022/file/9b79416c0dc4b09fea169ed5cdd63d4-Paper-Conference.pdf.

643
 644 Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng
 645 Tao. Make sharpness-aware minimization stronger: A sparsified perturbation approach. In
 646 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances*
 647 *in Neural Information Processing Systems*, volume 35, pp. 30950–30962. Curran Asso-
 648 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/c859b99b5d717c9035e79d43dfd69435-Paper-Conference.pdf.

648 Valerio Milo, Francesco Anzalone, Cristian Zambelli, Eduardo Pérez, Mamathamba K. Mahadevaiah,
 649 Óscar G. Ossorio, Piero Olivo, Christian Wenger, and Daniele Ielmini. Optimized programming
 650 algorithms for multilevel rram in hardware neural networks. In *2021 IEEE International Reliability
 651 Physics Symposium (IRPS)*, pp. 1–6, 2021. doi: 10.1109/IRPS46558.2021.9405119.

652 Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmenta-
 653 tions and corruptions in natural corruption robustness. In M. Ranzato, A. Beygelz-
 654 imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural
 655 Information Processing Systems*, volume 34, pp. 3571–3583. Curran Associates, Inc.,
 656 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/1d49780520898fe37f0cd6b41c5311bf-Paper.pdf.

657 Apostolos Modas, Rahul Rade, Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and
 658 Pascal Frossard. Prime: A few primitives can boost robustness to common corruptions. In
 659 *European Conference on Computer Vision (ECCV)*, 2022.

660 Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen, and Ling Shao.
 661 Adversarial defense by restricting the hidden space of deep neural networks. In *Proceedings of the
 662 IEEE/CVF International Conference on Computer Vision (ICCV)*, October 2019.

663 Thomas Möllenhoff and Mohammad Emtiyaz Khan. Sam as an optimal relaxation of bayes. In
 664 *International Conference on Learning Representations*, 2023. URL <https://arxiv.org/abs/2210.01620>.

665 Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
 666 James Martens. Adding gradient noise improves learning for very deep networks, 2015. URL
 667 <https://arxiv.org/abs/1511.06807>.

668 Jorge Nocedal, Mikhail Smelyanskiy, Nitish Shirish Keskar, Dheevatsa Mudigere and Ping Tak Peter
 669 Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv
 670 preprint arXiv:1609.04836*, 2016.

671 Malte J. Rasch, Charles Mackin, Manuel Le Gallo, An Chen, Andrea Fasoli, Frédéric Odermatt, Ning
 672 Li, S. R. Nandakumar, Pritish Narayanan, Hsinyu Tsai, Geoffrey W. Burr, Abu Sebastian, and
 673 Vijay Narayanan. Hardware-aware training for large-scale and diverse deep learning inference
 674 workloads using in-memory computing-based accelerators. *Nature Communications*, 14(1):5282,
 675 August 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-40770-4. URL <https://doi.org/10.1038/s41467-023-40770-4>.

676 Evgenia Rusak, Lukas Schott, Roland S. Zimmermann, Julian Bitterwolf, Oliver Bringmann, Matthias
 677 Bethge, and Wieland Brendel. A simple way to make neural networks robust against diverse image
 678 corruptions. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.),
 679 *Computer Vision – ECCV 2020*, pp. 53–69, Cham, 2020. Springer International Publishing. ISBN
 680 978-3-030-58580-8.

681 Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evangelos Eleftheriou. Memory
 682 devices and applications for in-memory computing. *Nature Nanotechnology*, 15(7):529–544, July
 683 2020. ISSN 1748-3395. doi: 10.1038/s41565-020-0655-z. URL <https://doi.org/10.1038/s41565-020-0655-z>.

684 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
 685 sharpness? In *International Conference on Learning Representations*, 2023. URL <https://arxiv.org/abs/2211.05729>.

686 T. Patrick Xiao, Ben Feinberg, Christopher H. Bennett, Vineet Agrawal, Prashant Saxena, Venkatraman
 687 Prabhakar, Krishnaswamy Ramkumar, Harsha Medu, Vijay Raghavan, Ramesh Chettuvetty,
 688 Sapan Agarwal, and Matthew J. Marinella. An accurate, error-tolerant, and energy-efficient neural
 689 network inference engine based on sonos analog memory. *IEEE Transactions on Circuits and
 690 Systems I: Regular Papers*, 69(4):1480–1493, 2022a. doi: 10.1109/TCSI.2021.3134313.

691 T. Patrick Xiao, Ben Feinberg, Christopher H. Bennett, Venkatraman Prabhakar, Prashant Saxena,
 692 Vineet Agrawal, Sapan Agarwal, and Matthew J. Marinella. On the accuracy of analog neural
 693 network inference accelerators. *IEEE Circuits and Systems Magazine*, 22(4):26–48, 2022b. doi:
 694 10.1109/MCAS.2022.3214409.

702 Wanyun Xie, Thomas Pethick, and Volkan Cevher. Sampa: Sharpness-aware mini-
 703 mization parallelized. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
 704 quet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Process-
 705 ing Systems*, volume 37, pp. 51333–51357. Curran Associates, Inc., 2024. URL
 706 https://proceedings.neurips.cc/paper_files/paper/2024/file/5bf2b802e24106064dc547ae9283bb0c-Paper-Conference.pdf.
 707

708 Ziang Yan, Yiwen Guo, and Changshui Zhang. Deep defense: Training dnns with improved adver-
 709 sarial robustness. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
 710 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Asso-
 711 ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/8f121ce07d74717e0b1f21d122e04521-Paper.pdf.
 712

713 Xiaoxuan Yang, Changming Wu, Mo Li, and Yiran Chen. Tolerating noise effects in processing-in-
 714 memory systems for neural networks: A hardware–software codesign perspective. *Advanced Intelli-
 715 gent Systems*, 4(8):2200029, 2022. doi: <https://doi.org/10.1002/aisy.202200029>. URL <https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200029>.
 716

717 Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou, and Tuo Zhao. Toward understanding the
 718 importance of noise in training neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
 719 (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of
 720 *Proceedings of Machine Learning Research*, pp. 7594–7602. PMLR, 09–15 Jun 2019. URL
 721 <https://proceedings.mlr.press/v97/zhou19d.html>.
 722

724 A IMPLEMENTATION DETAILS

725 All Cifar-100/Tiny-ImageNet models are trained for 200 epochs using SGD as the base optimizer.
 726 We use an initial learning rate of 0.05 with a cosine learning rate schedule. We use a weight decay
 727 of 5×10^{-4} and momentum of 0.9. We apply the standard data augmentations of random cropping,
 728 flipping, and normalization. In addition, we train using label smoothing of 0.1. For the ImageNet-100
 729 models, we train for 100 epochs using an initial learning rate of 1 and weight decay of 1×10^{-4} . In
 730 all experiments, early stopping is applied to select the training epoch which achieves the highest
 731 perturbed test accuracy.
 732

734 B DETAILING THE DYNAMICS OF PERTURBED TRAINING

735 B.1 UNDERSTANDING SAM’s OVERTFITTING

736 To empirically investigate the evolution of SAM’s noise robustness during training, we plot the
 737 cosine similarity between the original loss gradient $\nabla L(\mathbf{w})$ and the perturbed gradient $\nabla L(\mathbf{w} + \epsilon)$
 738 for both SAM and RWP, shown in Fig. 5. From this, we see that for RWP, the cosine similarity
 739 between the gradients gradually diverges as training progresses and the optimization path enters a
 740 deeper loss valley with more rapidly-changing gradients. As such, the gradients are, on average,
 741 nearly orthogonal by the end of training. On the other hand, in the SAM-trained models, the cosine
 742 similarity drops sharply after the early training iterations, but thereafter roughly plateaus for the rest
 743 of the training schedule. As a result, even as the training converges to a sharper minimum, the SAM
 744 gradient still contains a *significant* component along the direction of the original gradient. Hence,
 745 further training will continue to push the model toward a minimum more characteristic of the one
 746 found by SGD, although at an attenuated rate. For the strongly perturbed SAM using $\rho = 1$, the
 747 gradients do diverge at later training epochs; however the strong perturbations in early iterations
 748 prevent the optimization from progressing meaningfully, as will be shown in the following section.
 749

750 B.2 CHARTING SAM/RWP PERFORMANCE IN LOW-NOISE REGIME

751 In addition to Fig. 2a, we also plot the $\sigma_{test} = 0.02$ perturbed accuracy as a function of unperturbed
 752 accuracy, shown in Fig. 6. In this case, we observe that SAM and RWP follow a similar linear trend,
 753 with the exception that the lower-loss SAM minima achieve greater noise-resiliency than the best
 754 RWP minima.
 755

Figure 5: Plot of cosine similarity between perturbed/unperturbed gradients for various (a) SAM and (b) RWP configurations on a ResNet-18 as a function of training epoch.

Figure 6: Scatter plot of unperturbed test accuracy vs $\sigma_{test} = 0.02$ perturbed test accuracy for a variety of ResNet-18 models trained using SAM, RWP and SGD on Cifar-100.

810 B.3 VISUALIZING THE LOSS LANDSCAPE
811

812 To visually analyze the training loss minima found through perturbative training, we produce plots
813 visualizing the loss landscape (both training and test) of several different minima (using the method
814 proposed in Li et al. (2018)), shown in Fig. 7. In the top row of the figure, (e.g. Figs. 7a, 7b, 7c),
815 we visualize models trained with RWP with increasing σ_{train} . As expected, the model trained using
816 the larger value of σ_{train} produces a visually much flatter minimum, confirming the straightforward
817 correlation we expect. This same pattern holds true for the test landscape minima of RWP, plotted
818 in Figs. 7g, 7h, 7i. Comparing SAM’s training minima amongst each other, we see that $\rho = 0.3$
819 appears the flattest, in agreement with our quantitative results. However, comparing the SAM minima
820 against RWP minima breaks the straightforward correlation between training/test loss flatness. For
821 example, the RWP $\sigma_{train} = 0.05$ training minimum (Fig. 7b) is flatter than all of the SAM minima
822 (Fig. 7d, 7e, 7f); however the test landscape minima for SAM $\rho = 0.2$ and $\rho = 0.3$ (Fig. 7j, 7k) are
823 both flatter than the corresponding test minimum for RWP (Fig. 7h). This agrees with our previous
824 experimental results: although sharper from the perspective of the training landscape, SAM models
825 outperform RWP in the small σ_{test} noise settings. These visualizations provide further evidence that
826 the relative training loss flatness and test loss flatness need not correlate.

827 B.4 QUANTIFYING ATTENUATED TRAINING
828

829 To confirm the effect of the sharpness-induced vanishing gradient during training, we plot the gradient
830 norm during training alongside the total distance traveled in the parameter space as training unfolds
831 $\sum_{t=1}^N ||w_{t+1} - w_t||$ (where t corresponds to epoch number), shown in Fig. 8b. Compared to SGD,
832 we see that all of the perturbed training trajectories display both a smaller gradient norm and smaller
833 distance traveled. For the case of SAM, we see a dramatically smaller distance traveled as compared
834 to the RWP models, demonstrating that the diminished gradient magnitude indeed attenuates training.

835 B.5 COMPARING TRAINING AND TEST SHARPNESS DURING TRAINING
836

837 In addition to the plots in Fig. 4, we also compare the average-direction training/test sharpness for
838 $\sigma = 0.07$, plotted in Fig. 9. As was previously shown, we find a notable divergence between a
839 minimum’s training loss sharpness and test loss sharpness. For example, we see in the plot of training
840 sharpness (Fig. 9a) that SAM exhibits virtually the same degree of flatness as SGD over its entire
841 trajectory. However, when plotting the test sharpness of the same trajectories, we see that in the
842 earlier epochs SAM traverses a test loss basin that is significantly less sharp than that of SGD; it is
843 within this basin that SAM (with early stopping) finds weights with improved noise-resilience.

844 C DOES NOISE DISTRIBUTION MATTER?
845

846 In all of our previous analysis, we have made the assumption of matching RWP’s training noise
847 distribution class with that of our test noise distribution \mathbb{Q} , in this case a normal distribution. We note
848 that this assumption grants RWP with knowledge at training time of the shape of the test distribution,
849 an advantage that SAM does not benefit from. To decouple the flatness-finding capability of RWP
850 from its a priori knowledge of the test distribution, we perform experiments in which we define
851 $\mathbb{Q} \sim Laplace(0, b \max_i |w_i|)$, allowing us to evaluate noise-robustness in an unbiased manner. We
852 present these results in Tab. 5. Even in the case of Laplace noise, we observe a similar trend as in
853 Gaussian noise at test time: SAM outperforms RWP for lower-strength noise, but cannot compensate
854 when the noise magnitude is increased. From these results, we conclude that RWP is indeed locating
855 broadly-flat minima which are generally robust against random corruptions.

857 D EXPERIMENTS ON DIFFERING BACKBONE MODELS
858859 D.1 EVALUATING GENERALITY OF SAM/RWP PERFORMANCE
860

861 To confirm that our observations of SAM/RWP hold true generally, we perform similar experiments
862 as in Sec. 4.3 on a variety of ResNets and WRNs, shown in Tab. 6 and Tab. 7. For a fair comparison,
863 we replace the bottleneck block in the ResNet-50 with the same basic block architecture used in

Figure 7: 2D visualization along filter-normalized directions of the (unperturbed) Cifar-100 loss landscape of minima found using RWP $\sigma_{train} = 0.02$, $\sigma_{train} = 0.05$, $\sigma_{train} = 0.07$ ((a)-(c) for training landscape visualization, (g)-(i) for test landscape visualization), and SAM $\rho = 0.2$, $\rho = 0.3$, $\rho = 0.5$ ((d)-(f) for training landscape visualization, (j)-(l) for test landscape visualization).

Table 5: Comparison on Cifar-100 of SGD, SAM and RWP-trained ResNet-18 when test-time noise follows a Laplace distribution $Laplace(0, b \max_i |w_i|)$.

	$b = 0.01$	$b = 0.02$	$b = 0.03$	$b = 0.04$
SGD	$78.49 \pm 0.18 \pm 0.07$	$73.42 \pm 2.59 \pm 0.39$	$59.66 \pm 1.74 \pm 1.22$	$54.08 \pm 2.05 \pm 1.54$
SAM $\rho = 0.2$	$79.52 \pm 0.15 \pm 0.14$	$77.05 \pm 0.38 \pm 0.16$	$67.85 \pm 2.76 \pm 0.55$	$61.11 \pm 1.63 \pm 1.40$
SAM $\rho = 0.3$	$79.75 \pm 0.14 \pm 0.23$	$77.66 \pm 0.78 \pm 0.59$	$69.47 \pm 1.60 \pm 0.97$	$62.25 \pm 2.40 \pm 0.82$
SAM $\rho = 0.5$	$77.95 \pm 0.16 \pm 0.08$	$75.41 \pm 2.02 \pm 0.78$	$66.72 \pm 1.58 \pm 0.43$	$58.35 \pm 5.19 \pm 2.01$
RWP $\sigma = 0.03$	$78.30 \pm 0.15 \pm 0.25$	$76.32 \pm 0.42 \pm 0.27$	$72.05 \pm 1.07 \pm 0.41$	$63.18 \pm 2.71 \pm 1.18$
RWP $\sigma = 0.05$	$78.28 \pm 0.14 \pm 0.08$	$76.66 \pm 0.35 \pm 0.05$	$73.53 \pm 0.72 \pm 0.14$	$67.40 \pm 1.66 \pm 0.34$
RWP $\sigma = 0.07$	$76.82 \pm 0.14 \pm 0.17$	$75.56 \pm 0.34 \pm 0.13$	$72.95 \pm 0.66 \pm 0.23$	$68.00 \pm 1.53 \pm 0.64$

Figure 8: (a) Plot of the ResNet-18 update gradient norm $\|\nabla L\|_2$ as a function of training epoch for SGD, SAM, and RWP on Cifar-100. (b) Plot of the total distance traversed during training, $\sum_{i=1}^N \|w_{t+1} - w_t\|$

Figure 9: (a) Plot of average-direction sharpness for $\sigma_{test} = 0.02$ for a ResNet-18 training on Cifar-100. (b) Plot of average-direction sharpness as a function of test loss for $\sigma_{test} = 0.02$.

Figure 10: Plots of (a) gradient norm and (b) gradient sharpness for ResNet-50 during Cifar-100 training.

Table 6: Comparison of RWP and SAM for ResNets of varying depths. The best-performing optimizer for a given architecture is bolded, whereas the best-performing architecture for a given optimizer is underlined.

	$\sigma_{test} = 0.02$		$\sigma_{test} = 0.07$	
	SAM	RWP	SAM	RWP
ResNet-9	74.14 $\pm 0.94 \pm 1.67$	$72.70 \pm 0.31 \pm 0.07$	$39.58 \pm 5.03 \pm 0.97$	51.10 $\pm 3.14 \pm 1.70$
ResNet-18	79.12 $\pm 0.23 \pm 0.28$	$77.65 \pm 0.26 \pm 0.05$	$53.61 \pm 2.61 \pm 0.68$	61.36 $\pm 2.85 \pm 0.90$
ResNet-34	80.82 $\pm 0.24 \pm 0.18$	$79.19 \pm 0.21 \pm 0.19$	$55.38 \pm 3.23 \pm 1.67$	64.67 $\pm 2.54 \pm 0.54$
ResNet-50	81.29 $\pm 0.17 \pm 0.17$	$79.81 \pm 0.19 \pm 0.17$	$54.22 \pm 3.39 \pm 2.85$	64.87 $\pm 2.28 \pm 1.23$

the shallower ResNets. As is the case with ResNet-18, we find that for $\sigma_{test} = 0.02$, SAM-trained models achieve higher accuracy, whereas for $\sigma_{test} = 0.07$, RWP-trained models dominate. We additionally recreate Fig. 3 for training with a ResNet-50, demonstrating the same vanishing gradient effect observed in the ResNet-18.

D.2 DYNAMIC PERTURBATION SCHEDULES

To verify the generality of our dynamic perturbation schedules, we also perform experiments using different backbone models, specifically ResNet-50, WRN-16-10, and PyramidNet-50 Han et al. (2017) shown in Tab. 8. Here, we note a contrast between the WRN and the ResNet-50/PyramidNet-50: while the perturbation schedule enhances noise-robustness for both network architectures, the improvement is markedly larger for the latter two networks. We conclude that ResNet-50 and PyramidNet-50 naturally exhibit a sharper loss landscape that is a significant factor in the degraded performance of SAM/RWP; as a result, the ramped perturbations improve performance by a large amount. Meanwhile, the naturally smooth loss landscape of the WRN leads to a fairly stable training process, even without the perturbation schedules. As a result, the improvement from applying the

Table 7: Comparison of RWP and SAM for ResNets of varying widths. The best-performing optimizer for a given architecture is bolded, whereas the best-performing architecture for a given optimizer is underlined.

	$\sigma_{test} = 0.02$		$\sigma_{test} = 0.07$	
	SAM	RWP	SAM	RWP
ResNet-18	79.12 $\pm 0.23 \pm 0.28$	$77.65 \pm 0.26 \pm 0.05$	$53.61 \pm 2.61 \pm 0.68$	61.36 $\pm 2.85 \pm 0.90$
WRN-16-5	80.75 $\pm 0.31 \pm 0.11$	$79.36 \pm 0.27 \pm 0.06$	$51.92 \pm 4.79 \pm 0.69$	59.11 $\pm 3.48 \pm 0.18$
WRN-16-10	83.13 $\pm 0.23 \pm 0.32$	$81.08 \pm 0.21 \pm 0.28$	$60.11 \pm 3.04 \pm 2.31$	66.23 $\pm 2.26 \pm 0.75$
WRN-16-15	83.53 $\pm 0.18 \pm 0.09$	$81.24 \pm 0.21 \pm 0.08$	$59.55 \pm 3.78 \pm 2.38$	64.63 $\pm 3.96 \pm 0.83$

1026 Table 8: Comparison of perturbed test accuracy when perturbation schedules are applied during
 1027 training for differing backbone architectures.

		$\sigma_{test} = 0.07$	
		Schedule	
ResNet-50	Constant	$54.22 \pm 3.39 \pm 2.85$	$64.87 \pm 2.28 \pm 1.23$
	Quadratic	$59.18 \pm 3.23 \pm 2.69$	$69.35 \pm 1.29 \pm 0.35$
WRN-16-10	Constant	$60.11 \pm 3.04 \pm 2.31$	$66.23 \pm 2.26 \pm 0.75$
	Quadratic	$61.60 \pm 3.19 \pm 0.49$	$67.19 \pm 2.28 \pm 0.90$
PyramidNet-50	Constant	$47.40 \pm 3.49 \pm 1.25$	$58.89 \pm 3.23 \pm 2.71$
	Quadratic	$52.95 \pm 3.48 \pm 2.69$	$63.88 \pm 1.73 \pm 1.22$

1037 Table 9: Comparison of SGD, SAM and RWP-trained ResNet-18 on Tiny-Imagenet.
 1038

		$\sigma_{test} = 0.02$	$\sigma_{test} = 0.05$
SGD		$62.89 \pm 0.65 \pm 0.37$	$36.99 \pm 2.64 \pm 2.06$
SAM		$64.50 \pm 1.03 \pm 0.56$	$45.93 \pm 1.48 \pm 0.86$
SAM + Quadratic Schedule		$66.01 \pm 1.84 \pm 1.56$	$41.41 \pm 1.82 \pm 0.91$
RWP		$64.17 \pm 0.44 \pm 0.46$	$54.26 \pm 1.95 \pm 1.24$
RWP + Quadratic Schedule		$65.73 \pm 0.40 \pm 0.18$	$56.26 \pm 1.75 \pm 0.15$

1046 schedule is much more modest, in-line with performance gains in the small-noise setting applied to
 1047 the narrower networks.

1049 E TINY-IMAGENET AND IMAGENET-100 EXPERIMENTS

1052 As further evidence for the generality of our results, we perform additional experiments on both the
 1053 intermediate-scale Tiny-ImageNet dataset and the large-scale ImageNet-100 dataset. First, we plot
 1054 the gradient norm of and gradient sharpness evolution during training on both Tiny-ImageNet and
 1055 ImageNet-100, shown in Fig. 11, observing similar evidence for the sharpness-induced vanishing
 1056 gradient as was seen in the Cifar-100 experiments. Next, we compare the noise-robust performance
 1057 of SGD, SAM and RWP across a variety of noise settings on Tiny-ImageNet, shown in Tab. 9 and
 1058 Tab. 10, where we again observe similar trends in regards to the noise-robustness of SAM and RWP
 1059 as in the case of Cifar-100.

1060 F DYNAMIC SCHEDULE DETAILS

1062 F.1 MOTIVATING DYNAMIC SCHEDULES: PERTURBED LOSS EVOLUTION

1064 To illustrate the evolution of the critical perturbation length, we plot the perturbed point loss for
 1065 several SAM and RWP training trajectories, shown in Fig. 12. In the case of extreme perturbation
 1066 magnitude beyond the critical perturbation length, the perturbed point consistently lies on the high-
 1067 loss plateau, preventing the perturbed loss from decreasing as is shown in the yellow lines. Otherwise,
 1068 we see that for a consistent perturbation strength, the perturbed point loss decreases as training
 1069 proceeds, indicating that for a consistent perturbation radii, the perturbed point’s distance from the
 1070

1071 Table 10: Comparison of ResNet-18 trained with various perturbation strengths of SAM and RWP
 1072 for several test noise settings on Tiny-ImageNet.
 1073

	$\sigma_{test} = 0.0$	$\sigma_{test} = 0.02$	$\sigma_{test} = 0.03$	$\sigma_{test} = 0.04$	$\sigma_{test} = 0.05$
$\sigma_{train} = 0.0$	66.21 ± 0.30	$62.89 \pm 0.65 \pm 0.37$	$54.26 \pm 3.07 \pm 1.30$	$41.59 \pm 1.90 \pm 2.23$	$36.99 \pm 2.64 \pm 2.06$
$\sigma_{train} = 0.02$	65.76 ± 0.34	$63.27 \pm 0.29 \pm 0.15$	$59.67 \pm 0.52 \pm 0.19$	$53.54 \pm 1.21 \pm 0.31$	$43.65 \pm 2.32 \pm 0.65$
$\sigma_{train} = 0.03$	65.73 ± 0.32	$63.52 \pm 0.34 \pm 0.28$	$60.14 \pm 0.68 \pm 0.42$	$54.44 \pm 1.24 \pm 0.76$	$45.28 \pm 2.31 \pm 1.45$
$\sigma_{train} = 0.06$	65.90 ± 0.10	$64.09 \pm 0.36 \pm 0.13$	$61.42 \pm 0.63 \pm 0.16$	$57.2 \pm 1.08 \pm 0.37$	$50.68 \pm 1.91 \pm 0.82$
$\sigma_{train} = 0.08$	65.67 ± 0.39	$64.17 \pm 0.44 \pm 0.46$	$62.19 \pm 0.70 \pm 0.58$	$59.01 \pm 1.16 \pm 0.79$	$54.26 \pm 1.95 \pm 1.24$
$\rho = 0.2$	68.32 ± 0.09	$64.5 \pm 1.03 \pm 0.56$	$54.02 \pm 1.15 \pm 1.26$	$49.37 \pm 0.99 \pm 0.55$	$45.93 \pm 1.48 \pm 0.86$
$\rho = 0.3$	68.87 ± 0.25	$61.86 \pm 4.16 \pm 1.80$	$53.15 \pm 2.30 \pm 1.60$	$47.93 \pm 1.16 \pm 0.57$	$44.67 \pm 1.79 \pm 0.49$
$\rho = 0.4$	69.42 ± 0.12	$64.89 \pm 2.55 \pm 3.27$	$52.98 \pm 2.62 \pm 2.26$	$44.41 \pm 1.03 \pm 2.10$	$41.34 \pm 1.50 \pm 2.44$

Figure 11: Plots of (a), (c) gradient norm and (b), (d) gradient sharpness for ResNet-18 during Tiny-Imagenet and ImageNet-100 training, respectively.

Figure 12: Plot of the perturbed loss $L(w_p)$ on Cifar-100 for (a) SAM and (b) RWP.Table 11: Comparison of ResNet-18 models on $\sigma_{test} = 0.07$ trained using RWP for varying perturbation strength σ_{train} when a quadratic ramp schedule is applied.

	$iter = 35000$	$iter = 45000$	$iter = 55000$
$\sigma_{max} = 0.08$	$61.74 \pm 3.08 \pm 0.52$	$63.32 \pm 2.25 \pm 0.74$	$62.55 \pm 2.71 \pm 1.61$
$\sigma_{max} = 0.1$	$63.03 \pm 2.41 \pm 0.93$	$65.57 \pm 2.05 \pm 0.64$	$64.93 \pm 1.96 \pm 1.00$
$\sigma_{max} = 0.12$	$59.37 \pm 2.16 \pm 1.89$	$62.50 \pm 1.87 \pm 0.96$	$63.41 \pm 2.25 \pm 1.78$

high loss plateau is increasing. Based on this logic, we conclude that the critical perturbation length does in fact increase during training.

F.2 ABLATIONS

To determine the optimal schedule hyperparameters (namely the maximal perturbation strength and number of warm-up iterations), we perform a grid search, shown in Tab. 11 and Tab. 12 for RWP and SAM, respectively.

F.3 VISUALIZING RAMPED PERTURBATION SHARPNESS

To understand the effect perturbation schedules have on sharpness evolution during training, we plot both gradient sharpness and average-direction sharpness of the quadratic schedule SAM and RWP, comparing against the constant-perturbation versions (Fig. 13). Here, we observe a coherent trend: in the early stages of training, the use of the ramp schedules reduces gradient sharpness significantly, after which the growing perturbations cause the gradient sharpness to surge. In the case of average-direction sharpness, shown in Fig. 13b, we see that while training using the schedules increases the training loss at convergence, sharpness is reduced compared to the constant perturbation baselines. This is especially noticeable in the case of SAM: we recall from Fig. ?? that increasing constant-perturbation ρ from 0.2 to 0.5 *has no effect on reducing average-direction sharpness*. However, when using the quadratic perturbation schedule, a drastic reduction in sharpness can now be achieved through large perturbations.

Table 12: Comparison of ResNet-18 models on $\sigma_{test} = 0.07$ trained using SAM for varying perturbation strength ρ when a quadratic ramp schedule is applied.

	$iter = 15000$	$iter = 20000$	$iter = 25000$
$\rho_{max} = 0.8$	$57.64 \pm 3.01 \pm 1.80$	$59.71 \pm 1.93 \pm 1.66$	$58.35 \pm 3.81 \pm 0.74$
$\rho_{max} = 1.0$	$57.54 \pm 2.34 \pm 0.52$	$60.24 \pm 1.98 \pm 0.83$	$59.13 \pm 2.40 \pm 0.68$
$\rho_{max} = 1.2$	$57.07 \pm 1.92 \pm 0.33$	$58.83 \pm 1.78 \pm 1.14$	$56.97 \pm 1.92 \pm 1.87$

Figure 13: Plots of (a) gradient sharpness and (b) ascent-direction sharpness as a function of Cifar-100 training loss for a ResNet-18 trained using quadratic schedule SAM and RWP.

Figure 14: Comparison of the perturbed loss $L(w_p)$ for ramped/constant schedules of (a) SAM and (b) RWP on Cifar-100. The perturbed loss is calculated at a constant perturbation distance (equal to the maximum perturbation), including for the dynamic schedules. Dotted black line denotes epoch at which ramped perturbation strength reaches strength equal to constant perturbation.

F.4 ALTERNATIVE VIEW OF LANDSCAPE BROADENING

To provide another view of how the dynamic perturbation schedule affects the training dynamics, we again plot the perturbed training loss as a function of epoch comparing the quadratically-ramped/constant schedules with equivalent terminal perturbation strengths for both RWP and SAM, shown in Fig. 14. In these plots, we observe that for the dynamic perturbation schedules, even after the initial warm-up period (meaning the size of the perturbation has reached the terminal value), the perturbed training loss is *lower* than that of the constant schedule. This difference is particularly stark for SAM: at the final epoch of the ramp, there is $\tilde{0.75}$ difference in perturbed loss between the two trajectories. This clearly illustrates the contrast in evolution of the two trajectories: on top of the natural decline of the critical perturbation length, the dynamic schedules guide the optimization towards a flatter basin than would otherwise be encountered, further reducing the critical perturbation length.