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ABSTRACT

Flat regions of the neural network loss landscape have long been hypothesized
to correlate with better generalization properties. A closely related but distinct
problem is training models that are robust to internal perturbations to their weights,
which may be an important need for future low-power hardware platforms. Several
methods have been proposed to guide optimization toward improved generalization,
such as sharpness-aware minimization (SAM) and random-weight perturbation
(RWP), which rely on either adversarial or random perturbations, respectively. In
this paper, we explore how to adapt these approaches to find minima robust to a
wide variety of random corruptions to weights. First, we evaluate SAM/RWP across
a wide variety of noise settings, and in doing so establish that over-regularization
during training is key to finding optimally-robust minima. At the same time, we
also observe that large perturbations lead to a vanishing gradient effect caused
by unevenness in the loss landscape, an effect particularly pronounced in SAM.
Quantifying this effect, we map out a general performance trend of SAM and RWP,
determining that SAM works best for robustness to small perturbations, whereas
RWP works best for large perturbations. Lastly, to overcome the deleterious
vanishing gradient effect during training, we propose a dynamic perturbation
schedule which matches the natural evolution of the loss landscape and produces
minima more noise-robust than otherwise possible.

1 INTRODUCTION

Optimizing deep neural network models in order to locate flat minima in the loss landscape has long
been a problem of interest to researchers, driven by the theory that flat minima correlate with better
generalization on unseen data Nitish Shirish Keskar & Tang (2016); Dziugaite & Roy (2017); Jiang
et al. (2019). From this line of thought have emerged several modified methods for optimization
that are explicitly designed to locate flat minima. The most prominent of these, sharpness-aware
minimization (SAM), uses a one-step adversarial (i.e. worst-case) perturbation along the direction of
the gradient to ensure low loss over a finite volume of the loss landscape, and has been demonstrated
to successfully improve generalization in a wide array of settings Foret et al. (2021). A lesser-
known alternative, known as random-weight perturbation (RWP), has likewise been studied as a
potential mechanism for finding flat minima, but in contrast to SAM, has failed to show consistent
generalization benefit Bisla et al. (2022); Li et al. (2024a).

While flat minima are primarily studied to improve generalization, they are also relevant to finding
minima that are robust to weight-space perturbations. Although high-fidelity digital hardware has
minimized this issue, the growing demand for compute has driven interest in analog neural network
accelerators as energy-efficient alternatives to digital processors Sebastian et al. (2020). Of particular
concern to analog in-memory computing (AIMC) solutions are irreducible analog hardware errors,
which induce accuracy-degrading effects. These errors arise from many sources, such as quantization
errors, memory-cell programming errors, and conductance drift- of particular focus to this paper are
programming errors, which manifest as random perturbations to the model’s parameters. Previous
analog computing literature has identified this problem and proposed solutions for specific hardware
configurations, relying on empirically-measured device error profiles to induce robustness for an
exact deployment scenario Gokmen et al. (2019); Rasch et al. (2023). However, these works fail to
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experimentally investigate a key idea underpinning their approach to noise-aware training: namely
that the best test-time performance arises from faithfully emulating the expected test-time noise
distribution during training (i.e. RWP using a matched noise distributions). We pose two natural
questions in response: firstly, is the expected test-time noise distribution necessarily ideal when
applied randomly during training, or can this distribution be more cleverly engineered? Secondly, we
question whether or not random perturbations, in any form, are ideal for finding noise-robust minima,
or if a more deliberate perturbation (as in the case of SAM) is in fact superior?

Naively, one might assume that the same methods for finding flat minima should remain applicable
to the problem of weight perturbations. However, several subtle differences require us to consider
the problem with extra care. First, generalizability is associated with flatness in the training loss
landscape; in contrast, weight-noise robustness directly requires flatness in the test loss landscape.
Second, dependent on the size of applied perturbations, a minimum may require a significantly greater
degree of flatness over a larger volume than is needed for good generalization. As a result, these
methods need to be used well outside the operating point that is typically studied. Lastly, the nature
of the flat minimum should respect a known distribution of perturbations (i.e. the minimum should be
flat where perturbations are most likely to occur). As such, the ability to produce a general robustness
across a multitude of perturbation scenarios is another question of significant relevance.

In this paper, we investigate three key questions: first, is resilience to weight-space noise best
addressed through exactly matching the form of training and test perturbations experienced? Second,
can we infer an optimal training protocol based on the expected noise characteristics of inference?
Lastly, can we understand the mechanisms through which these perturbative training methods achieve
noise-robustness, and can we engineer improvements? Our initial experiments show that over-
regularization, i.e. using training perturbations larger than test-time noise, yields optimally robust
models, in contrast to the conventional wisdom on noise-robust training. Next, when comparing RWP
with SAM, we find that SAM actually produces more noise-robust models for test-time noise below a
certain strength threshold, even as it finds strictly sharper training minima. However, SAM is also
more sensitive to the scaling of its perturbation, resulting in less-optimal minima under high test-time
noise. We identify that increasing training perturbation strength causes a vanishing-gradient effect
due to the rapidly increasing loss, with SAM being more affected due to its sharper perturbation
direction. To mitigate this, we propose dynamic perturbation schedules for SAM and RWP, starting
with small perturbations early in training to better align with the loss landscape.

In summary, our key contributions are as follows:

• We empirically show that optimal noise-robustness is not achieved through matching
training/test perturbations, but rather through applying stronger perturbations (i.e. over-
regularization) during training.

• We chart the relative benefit of SAM and RWP based on the strength of the test noise,
showing that SAM is superior in weaker noise settings but poor in strong-noise settings.

• We identify a vanishing-gradient effect which arises from strong perturbations, degrading
training particularly for SAM.

• We demonstrate that perturbative training can be further enhanced through an appropriately-
selected dynamic perturbation schedule which increases as training proceeds produces
significantly more noise-robust models.

• We validate our results using simulations of analog hardware, demonstrating improvement
over the conventional approach in this domain.

2 RELATED WORK

2.1 CORRUPTION-ROBUST NEURAL NETWORKS

Many previous works have studied the robustness of neural networks to input corruptions, either
adversarial Goodfellow et al. (2015); Mustafa et al. (2019); Yan et al. (2018) or random (common
corruptions) Rusak et al. (2020); Fang et al. (2023); Kar et al. (2022); Mintun et al. (2021); Guo et al.
(2023); Modas et al. (2022). However, few works have previously considered the setting of random
noise corruptions to model weights. In the realm of AIMC, several prior works have examined
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the resiliency of neural network inference accuracy to various sources of device noise Yang et al.
(2022); Gokmen et al. (2019); Kariyappa et al. (2021); Rasch et al. (2023); Xiao et al. (2022b). The
most comprehensive of these, Rasch et. al., applies regularization through injecting hardware noise
emulating the target deployment platform during training. However, the methods these works propose
are either application-specific or focus on hardware mitigations, and neglect to connect these ideas to
the broader problem of finding flat minima.

2.2 SHARPNESS-AWARE MINIMIZATION

SAM has recently emerged as a popular approach for finding flat, well-generalizing minima in the
training landscape Foret et al. (2021). In contrast to standard SGD-based optimization methods, SAM
first perturbs the model using a gradient ascent step, approximating a local maximization, followed
by a descent step from the perturbed point. Since its inception, an array of modified variants aiming
to improve SAM’s generalization ability Liu et al. (2022b); Li et al. (2024b); Kwon et al. (2021);
Kim et al. (2022) or training efficiency Du et al. (2022); Jiang et al. (2023); Liu et al. (2022a); Mi
et al. (2022); Xie et al. (2024) have been proposed.

Several works have closely examined SAM’s properties to better understand its empirically observed
success. Andriushchenko et. al. studies the convergence of SAM through theoretically demonstrating
the implicit biases of SAM when applied to a diagonal linear network Andriushchenko & Flammarion
(2022). Wen et. al. more precisely demonstrates the measure of sharpness that the mini-batch
variation of SAM regularizes Wen et al. (2023). Khanh et. al. provide a more comprehensive analysis
of the convergence properties of SAM Khanh et al. (2024). Baek et. al. studies SAM’s ability to
induce robustness to label noise, demonstrating a positive effect from regularization of the network
Jacobian Baek et al. (2024).

2.3 RANDOM WEIGHT PERTURBATION

Randomly perturbing weights during optimization has long been known as a straightforward approach
to regularizing neural networks during training An (1996). Neelankantan et. al. demonstrate that
adding noise to gradients during training improves generalization, achieving a similar effect to
residual connections in deep networks Neelakantan et al. (2015). Zhou et. al. empirically show that
weight noise can guide the optimization route out from spurious local minima Zhou et al. (2019).
Bisla et. al. propose low-pass filtering the loss function (practically implemented through sampling
weight noise from a Gaussian distribution) as a means to smoothing the loss landscape and hence
improve generalization Bisla et al. (2022). Li et. al. propose a modified form of RWP which
introduces filter-wise perturbations based on the historical graident Li et al. (2024a). Möllenhoff
et. al. establish a theoretical connection between SAM and RWP in which SAM can be recovered
through an optimal relaxation of the randomly perturbed objective Möllenhoff & Khan (2023).

3 PRELIMINARIES

Consider a training dataset S = {(xi,yi)}ni=1 drawn i.i.d from a data distribution D. Let f(x,w)
be a neural network model with trainable parameters w ∈ Rd. Given some loss function on
individual samples l(f(xi,w),yi) ∈ R+, we define the empirical loss on the training dataset to be
LS(w) = 1

n

∑n
i=1 l(f(xi,w),yi). Our goal is to train a model f which minimizes the perturbed

distribution loss L∗
D(w) = E(x,y)∼D,p∼Q[l(f(x,w + p),y)], where Q is a known distribution of

possible weight perturbations. Although in principle Q can be arbitrary, for simplicity’s sake we
restrict Q to be a zero-mean isotropic Gaussian scaled by the maximum magnitude element in a
given weight filter w, defined as N (0,maxj |wj |σ2

q I) with variance σ2
q (hereafter referred to as

σtest). We argue that the zero-mean Gaussian assumption faithfully captures the dynamics of analog
programming errors: if the analog error distribution has a non-zero mean, it can be compensated
for with a constant shift in the weights, whereas even if the error distribution is non-Gaussian, the
sum is nonetheless Gaussian by means of the Central Limit Theorem. We directly scale the noise
variance by the weight magnitude to more closely emulate inference on analog in-memory computing
processors, in which the digital weights are mapped to a finite conductance range determined by the
limitations of the hardware. As a result, the noise applied to the weights is fixed to a given fraction of
the weight magnitude, and cannot be mitigated through simple re-scaling. We note that the perturbed
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distribution loss directly reflects the flatness of the minima in parameter-space, hence the interest in
applying both SAM and RWP.

SAM The modified SAM training loss can be expressed as follows:

LSAM
S (w) = max

||ϵ||22≤ρ
LS(w + ϵ) (1)

where ρ is a scalar hyperparameter corresponding to the radius of the l2 ball in which the maximization
is performed. In practice, the inner maximization within the SAM objective is not tractable, and
instead approximated using a single gradient ascent step of length ρ.

RWP The RWP training loss we adopt in this paper is described by the following:

LRWP
S (w) = Eϵ∼N (0,maxj |wj |σ2

pI)[LS(w + ϵ)] (2)

where σ2
p is the variance of the perturbation distribution (hereafter referred to as σtrain), left to our

choosing. In our implementation, we sample one ϵ per minibatch, noting that the expectation is taken
implicitly over the stochastic minibatches.

Sharpness Measures Given our problem setting, we use a simple measure for quantifying sharpness:
the difference in the loss value between the original point on the optimization path and a given
perturbed point. We use two varieties of this measure (originally defined in Wen et al. (2023)):
ascent-direction sharpness (Eq. 3), in which the perturbed point lies along the gradient, and average-
direction sharpness (Eq. 4), in which the perturbed point is sampled randomly, according to our
noise distribution of interest. We also define gradient sharpness to refer to the sharpness at the
point of perturbation (where the update gradient is computed) for SAM/RWP. In the case of SAM,
its gradient sharpness is equivalent to ascent-direction sharpness, whereas for RWP it is equivalent
to average-direction sharpness. For the sake of practicality, we use the approximate measure of
m-sharpness, in which the sharpness is calculated through averaging over mini-batches of size m.

Lasc(w) = L

(
w + ρ

∇L(w)

||∇L(w)||2

)
− L(w) (3)

Lavg(w) = Eϵ∼N (0,maxj |wj |σ2
pI)[L(w + ϵ)]− L(w) (4)

4 UNDERSTANDING THE MECHANISMS OF TRAINING-INDUCED NOISE
RESILIENCE

In this section, we study both SAM and RWP to understand how these methods arrive at minima
robust to noise. We evaluate both methods across a variety of test-time noise settings while studying
the dynamics they exhibit during training.

4.1 EXPERIMENTAL SETTING

We perform our experiments using the Cifar-100, Tiny-ImageNet and ImageNet-100 datasets
Krizhevsky & Hinton (2009); Deng et al. (2009); Le & Yang (2015) with a vareity of model
architectures. The results in the following sections are taken using a ResNet-18 backbone He et al.
(2015) trained on Cifar-100; additional experiments with more backbone models/datasets are included
in Appendix Sec. D and Sec. E. For each experimental result, we report two uncertainty measures:
noise uncertainty (first number in tables), the standard deviation calculated across different samples of
test-time noise, and weight uncertainty (second number in tables), the standard deviation calculated
across different sets of model weights trained using a varying random seed. We average our results
across 10 different weight-noise samples and 3 different trained model weights.

4.2 OBSERVING THE EVOLUTION OF NOISE-ROBUSTNESS DURING TRAINING

Before evaluating noise robustness on trained models, we first note that the perturbed distribution
loss L∗

D does not follow the same trends of convergence as the unperturbed loss. To illustrate this,
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(a) (b) (c)

Figure 1: (a) ResNet-18 test accuracy on Cifar-100 as a function of training epoch when both
perturbations (σtest = 0.05) and no perturbations are applied. Training is conducted using SGD. (b)
Comparison of perturbed test accuracy evolution for SAM with various ρ values. (c) Comparison of
perturbed test accuracy evolution for RWP with various σtrain values.

we plot the test accuracy, both perturbed and unperturbed, of a ResNet-18 trained with SGD in
Fig. 1a. Whereas the noiseless test accuracy continually increases until convergence, the perturbed
test accuracy peaks at an earlier epoch, before gradually declining as the optimization continues.
Intuitively, this matches with the hypothesis that in early training iterations, the loss landscape is
naturally flat, and as such the perturbed test accuracy improves over the early epochs. However,
without proper regularization, training will naturally begin to overfit as a sharper minimum is
approached.

Next, we compare this same convergence dynamic for both SAM and RWP, varying perturbation
strengths ρ and σ, respectively. We visualize this comparison in Fig. 1b and Fig. 1c. In the models
trained with SAM, we notice a similar dynamic to those trained with SGD: when trained for a
sufficiently long schedule, the models undergo the same phenomenon of reaching a peak perturbed
test accuracy, after which overfitting ensues. However, as ρ is increased, two trends emerge: the
epoch at which the peak perturbed accuracy is achieved at is pushed further back (i.e. the model can
be trained closer to convergence before the peak is reached), and the perturbed accuracy at the peak
is increased relative to that of SGD. After ρ exceeds a critical value, these trends reverse: overfitting
once again initiates at an earlier training epoch, and the peak accuracy is now reduced.

Meanwhile, the training dynamics observed in models trained with RWP stand in contrast to those
trained with SAM and SGD. We consider two regimes: small σtrain, and large σtrain. In the former
case, the optimization follows the same trend as in SGD and SAM: perturbed test accuracy peaks
before convergence, after which further training leads to a decline in noise-resilience. However, in
the latter case, the perturbed test accuracy does not peak, instead gradually increasing until the model
converges. Even when the model is trained for a greater number of iterations beyond convergence,
the perturbed test accuracy simply plateaus, and the model never enters an overfit regime. This
stands in particular contrast to SAM, which cannot prevent the convergence of the model to an overfit
solution, regardless of the selected perturbation radius. We defer a more detailed discussion of this
phenomenon to Appendix Sec. B.1.

4.3 SELECTING TRAINING PERTURBATION STRENGTH: OVER-REGULARIZATION IS OPTIMAL

Because RWP’s training objective matches the distribution loss we are seeking to minimize, it is a
natural choice to use it as regularization during training. Given a σtest applied to perturbations in the
distribution loss, it is intuitive to select training-time variance σtrain such that σtrain = σtest. To test
this hypothesis, we evaluate models trained using differing values of σtrain on the validation dataset
for selected values of σtest, with our results shown in Tab. 1. In doing so, we observe a surprising
effect: over-regularizing RWP training by selecting σtrain > σtest achieves better test accuracy on
the held-out data. This suggests that the perturbations sampled from the tail of the noise distribution
have a disproportionate effect on guiding the optimization to an optimally-flat minimum.

Next, we evaluate SAM training with a variety of ρ values as shown in Tab. 2. As is the case with
RWP, the SAM-trained models consistently outperform those trained with SGD on the perturbed
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Table 1: Comparison of RWP-trained ResNet-18 on Cifar-100 with varying perturbation strength at
both training and test time. Staircase indicates boundary between σtrain ≤ σtest and σtrain > σtest.

σtest = 0.0 σtest = 0.02 σtest = 0.03 σtest = 0.05 σtest = 0.07
σtrain = 0.0 79.31± 0.04 77.24± 0.51± 0.23 71.95± 3.05± 1.06 56.21± 2.34± 1.38 47.09± 2.54± 3.64
σtrain = 0.02 78.86± 0.41 77.64± 0.25± 0.36 75.77± 0.43± 0.33 67.11± 1.61± 0.69 50.12± 2.59± 2.89
σtrain = 0.03 78.96± 0.28 77.57± 0.23± 0.26 75.82± 0.47± 0.30 67.97± 1.38± 0.58 52.57± 2.43± 0.99
σtrain = 0.05 78.69± 0.12 77.65± 0.26± 0.05 76.26± 0.47± 0.11 70.43± 1.26± 0.16 56.55± 3.29± 0.35
σtrain = 0.06 78.04± 0.39 77.15± 0.27± 0.26 75.97± 0.42± 0.20 71.04± 0.91± 0.15 59.27± 2.50± 0.20
σtrain = 0.07 77.17± 0.34 76.32± 0.21± 0.20 75.18± 0.37± 0.23 70.51± 1.04± 0.25 59.39± 2.64± 0.10
σtrain = 0.08 77.05± 0.32 76.24± 0.26± 0.17 75.15± 0.45± 0.18 70.96± 1.20± 0.45 61.36± 2.85± 0.90

Table 2: Comparison of SAM-trained ResNet-18 on Cifar-100 with varying perturbation strength at
both training and test time.

σtest = 0.0 σtest = 0.02 σtest = 0.03 σtest = 0.05 σtest = 0.07
ρ = 0.0 79.31± 0.04 77.24± 0.51± 0.23 71.95± 3.05± 1.06 56.21± 2.34± 1.38 47.09± 2.54± 3.64
ρ = 0.2 81.15± 0.21 78.71± 0.33± 0.15 75.27± 1.89± 1.71 64.36± 1.94± 0.70 53.61± 2.61± 0.68
ρ = 0.3 80.27± 0.19 79.12± 0.23± 0.28 76.82± 1.13± 1.09 66.51± 2.57± 1.27 52.93± 3.51± 1.46
ρ = 0.5 78.34± 0.05 77.31± 0.25± 0.23 74.41± 2.00± 0.97 63.27± 2.57± 1.81 47.16± 4.19± 2.35
ρ = 0.8 72.34± 0.37 71.04± 0.30± 0.46 66.98± 1.67± 2.44 50.85± 3.26± 3.82 19.02± 3.39± 2.54

accuracy metric. Although less straightforward to judge, we posit that as in the case of RWP, strongly-
regularizing SAM through increasing ρ should produce optimally-robust models. Comparing these
experiments to the application of SAM in the standard setting of improving generalization without
noise, we indeed find that the optimal perturbation radius is increased (ρ = 0.2 vs. ρ = 0.3). However,
a surprising trend emerges when ramping test-time noise: the optimal value of ρ is consistent across
all of the test-time noise settings. Notably, models trained with ρ = 0.8, our most strongly perturbed
SAM models, exhibit no performance advantage over those trained with SGD across any of the
noise settings. For larger σtest, a small value of ρ cannot achieve the over-regularizing effect seen
to be beneficial in RWP. The fact that SAM with larger perturbation radii fails to produce more
noise-resilient models indicates that although stronger perturbations are needed for regularization,
large worst-case perturbations have a deleterious effect on the convergence of training.

To capture the trade-off between a deeper vs flatter minimum, we plot σtest = 0.07 test accuracy
vs. unperturbed test accuracy for a variety of SGD, SAM and RWP models trained using varying
σtrain/ρ (Fig. 2a). In the case of RWP, we see that both deep-but-sharp and flat-but-shallow (the right
and left regions respectively) perform non-ideally, with a modest region in the middle representing
the optimal trade-off. For SAM, we see that in contrast to RWP, the most noise-resilient model is
simultaneously the model with the largest unperturbed test accuracy, indicating that SAM cannot
effectively increase flatness at the cost of the loss value. Additionally, we plot a comparison of the
optimal SAM and RWP performance across a variety of test noise settings, shown in Fig. 2b. When
the model weights are unperturbed at test time, SAM outperforms RWP, in agreement with the current
understanding of SAM. For small-magnitude noise, SAM likewise maintains an advantage over RWP.
However, as the perturbation strength is increased, the performance of RWP quickly overtakes SAM,
with the performance gap further widening for greater noise. This result logically follows from our
previous observation: although small-ρ SAM is successful at inducing noise-robustness (and is in
fact preferable depending on the test noise strength), training with large ρ degrades the optimization,
preventing SAM from scaling to more heavily-perturbed settings. Therefore, even in large σtest noise
settings, small ρ is optimal, but performs worse than optimal-σtrain RWP.

4.4 DRAWBACK OF LARGE PERTURBATIONS: SHARPNESS-INDUCED VANISHING GRADIENT

From the results earlier in this section, we can deduce that strong adversarial perturbations are
disruptive to the training process. To understand this effect, we plot the l2-norm of the update gradient
||∇L||2 (i.e. the gradient at the perturbed point) as a function of training epoch (averaged over
minibatches) for both techniques, shown in Fig. 3a. For fair comparison, we select SAM ρ = 0.3
and RWP σtrain = 0.08 as the representative trajectories to plot, as SAM ρ = 0.3 is optimal for
most of the test-time noise settings and σtrain = 0.08 is the most-perturbed RWP model we train. In
early epochs, we see the norm of the gradient increase as the training path enters into a steep valley
within the loss landscape. Later, as training begins to converge to a local minimum, the gradient
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(a) (b)

Figure 2: (a) Scatter plot of unperturbed test accuracy vs σtest = 0.07 perturbed test accuracy for
varying perturbation sizes of SAM, RWP and SGD. (b) Comparison between optimal RWP and SAM
across a variety of noise settings.

(a) (b) (c)

Figure 3: (a) Plot of the update gradient norm ||∇L||2 as a function of training epoch for a ResNet-18
trained on Cifar-100 using SGD, SAM, and RWP. (b) Plot of the gradient sharpness (corresponding
to ascent-direction for SAM or average-direction for RWP) of both SAM and RWP as a function of
training loss. (c) Schematic visualization of a loss surface, demonstrating a sharp direction (along
which the SAM perturbation lies), and a flat direction (along which the RWP perturbations lie). In
sharpness plot, arrow indicate direction of increasing training epochs.

norm decreases again. Relative to SGD, all of the perturbative training methods reduce the gradient
norm across the entire optimization path. However, we notice a stark contrast: the SAM-trained
model produce gradient norms that are significantly more reduced in magnitude than those of the
RWP training. Taking note that RWP’s perturbation magnitude is two orders of magnitude larger
than that of SAM (63 vs 0.3), this implies that the second directional derivative is markedly larger in
magnitude along the direction of the gradient than in a randomly sampled direction. This issue of
the vanishing gradient is further exacerbated for adversarial perturbations of greater ρ value; beyond
a certain point, the gradient is too small in magnitude for learning to occur, and training fails to
progress meaningfully beyond the initialized state.

Given this observation, we next build an intuitive interpretation to understand why SAM perturbations
reduce the gradient norm to a greater degree than RWP perturbations. To aid in this understanding,
we visualize the gradient sharpness during training to understand the loss topography at the perturbed
point, shown in Fig. 3b. From this, we see that the sharpness encountered by the small SAM
perturbations is much larger in magnitude than that encountered by the large RWP perturbations,
a trend that holds true at every point within the loss landscape. This strong sharpness combined
with the previously discussed diminishing gradient norm suggests that, along the gradient direction,
the loss landscape contains a steep ridge in which both the loss and the loss gradient are rapidly
changing and beyond which lies a largely-flat high-loss plateau. While small SAM perturbations
produce gradients along the steeper incline of the ridge, scaling ρ beyond this point perturbs the
weights onto the flat plateau, where gradients are vanishingly-small. On the other hand, random
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(a) (b) (c)

Figure 4: (a) Plot of ResNet-18 Cifar-100 average-direction sharpness for σ = 0.02. as a function of
training loss. (b) Plot of average-direction sharpness as a function of test loss for σ = 0.02. (c) Plot
of test sharpness as a function of training for σ = 0.02.

perturbations, even of significant perturbation radii, encounter a drastically smaller increase in the loss
value and a drastically smaller decrease in the gradient magnitude, in-line with empirical observations
of flatness in most directions of the loss landscape Li et al. (2018). As a result, perturbations along
these directions produce points still within the steep low-loss basin, and as such do not encounter
vanishing gradients to the same degree as those along the gradient direction. To visually capture this
intuitive understanding of the landscape, we include a diagram in Fig. 3c.

Combining our previous observation that over-regularization benefits training with the trend toward
a vanishing gradient, we conclude that there exists a critical perturbation length, which we define
informally as the perturbation length, present in both SAM and RWP, at which point the harm from
the diminishing gradient overtakes the benefit of over-regularization, producing a minimum less
optimally noise-robust.

4.5 DE-CORRELATING TRAINING AND TEST SHARPNESS

In adopting SAM and RWP as valid methods for improving noise-robustness, we implicitly make the
assumption that a flat training loss landscape necessarily correlates with a flat test loss landscape. To
empirically test this hypothesis, we plot average-direction training sharpness as a function of training
loss, average direction test sharpness as a function of test loss, and test sharpness as a function of
training sharpness (σ = 0.02) for several SAM and RWP training trajectories, displayed in Fig. 4.
Doing so, we observe several unintuitive trends regarding the correlation between training and test
sharpness. First, we note that a mininum’s test sharpness is almost always greater than its training
sharpness, made especially clear in Fig. 4c. Second, we note that, particularly toward the later
training epochs, the evolution of training and test sharpness are in fact anti-correlated (i.e. test
sharpness increases as training sharpness decreases). Lastly, we observe a surprising difference
in the generalization of SAM and RWP’s minima, respectively: although RWP σ = 0.03 locates
a minimum both deeper and flatter in the training landscape than that of SAM, SAM’s minimum
generalizes to a lower test loss and as such is more noise-resilient. This result firmly establishes a
new paradigm for training noise-robust models: locating a point displaying flatness in the test loss
landscape should be considered independently of the same problem in the training loss landscape.

5 MITIGATING THE VANISHING GRADIENT: DYNAMIC PERTURBATION
SCHEDULES

In Sec. 4, we hypothesize the existence of a critical perturbation length, denoting the maximal
strength of perturbation before the vanishing gradient effect begins to dominate, reducing noise
robustness. In this section, we examine the question of how this critical perturbation evolves as
training progresses, and we develop dynamic SAM and RWP perturbation schedules to match this
evolution.
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Table 3: Comparison of our three proposed perturbation schedules for SAM/RWP on ResNet-18
Cifar-100 training. The maximum perturbation strength/schedule length are determined through
using a grid search.

σtest = 0.02 σtest = 0.03 σtest = 0.05 σtest = 0.07
Constant-σ RWP 77.65± 0.26± 0.05 76.26± 0.47± 0.11 71.04± 0.91± 0.15 61.36± 2.85± 0.90
Linear-σ RWP 77.95± 0.26± 0.17 76.61± 0.44± 0.13 71.85± 0.90± 1.23 62.24± 3.52± 1.39

Quadratic-σ RWP 78.26± 0.20± 0.13 77.00± 0.30± 0.17 72.43± 0.82± 0.21 65.27± 2.05± 0.64
Off-to-On RWP 78.00± 0.30± 0.09 76.63± 0.44± 0.14 72.31± 1.03± 0.50 63.15± 2.84± 1.61
Constant-ρ SAM 79.12± 0.23± 0.28 76.82± 1.13± 1.09 66.51± 2.57± 1.27 53.61± 2.61± 0.68
Linear-ρ SAM 79.40± 0.21± 0.19 77.61± 0.51± 0.42 67.27± 1.18± 1.10 58.37± 2.42± 0.75

Quadratic-ρ SAM 79.49± 0.34± 0.14 77.13± 1.52± 0.56 68.11± 1.10± 0.29 60.24± 1.98± 0.83
Off-to-On SAM 79.16± 0.27± 0.14 76.86± 0.82± 0.44 65.12± 1.28± 0.87 56.10± 3.08± 1.96

5.1 BROADENING OF THE LOSS LANDSCAPE

From our previous experiments, we know that the critical perturbation length is closely tied to the
proximity of the perturbed point to the high-loss, flat plateau of the loss landscape. However, as
training proceeds, the shape of the loss basin in the immediate neighborhood likewise changes,
suggesting that this proximity will not remain constant for a given perturbation size. To visualize
this effect, we track the evolution of the perturbed training loss (i.e. the training loss evaluated at
the perturbed set of weights L(wp)) in Appendix Fig. 12, allowing us to better localize where the
update gradient is calculated at within the loss landscape relative to the high-loss plateau. For all
but the largest-magnitude perturbations, we observe that the perturbed loss gradually decreases as
a function of the training loss until convergence. This indicates a broadening of the loss basin: as
training proceeds, a larger perturbation is required to enter the high-loss plateau, and as such the loss
at a constant perturbation distance consistently decreases.

Based on this observation, we contend that the critical perturbation length should also increase
alongside the width of the loss basin, suggesting that the optimal perturbation strength selected at the
initial stage of training should not remain constant. This insight leads us to develop modified training
schedules for SAM and RWP, which we introduce in the following subsection.

5.2 MATCHING THE OBSERVED LANDSCAPE EVOLUTION: EMPIRICALLY-SELECTED
PERTURBATION SCHEDULES

With an established understanding that the critical perturbation length increases during training,
this opens the path to more-strategic over-regularization: instead of statically selecting a training
perturbation magnitude that need be stable for the entire duration of training, instead we aim to
engineer the training perturbations to match the evolution of the dynamic loss landscape. From our
observations, we know that this perturbation magnitude should continually increase in magnitude
throughout training, however the exact manner in which the critical perturbation length evolves is
not clear. As such, we propose exploring a variety of differing perturbation schedules, empirically
selecting the optimal strategy based on noise-robustness. Specifically, we propose three varieties
of modified training schedules: a linear ramp, quadratic ramp, and a hard off-to-on. All three
schedules initialize perturbation strength at 0, and increase to a terminal value over the course of a
warm-up cycle.

We perform experiments using all three schedule variations with a ResNet-18 model and compare
across a variety of noise settings, shown in Tab. 3. From these results, we see that across all of the
test-time noise settings, the ramped perturbation schedules outperform the constant-perturbations
baselines of both SAM and RWP. Of the three schedule varieties, the quadratic ramp schedule
performs best across most of the scenarios, suggesting the true evolution of the critical perturbation
length follows a similar trajectory. We also observe that the accuracy gain achieved by applying the
dynamic perturbation schedule increases as σtest (and hence σtrain or ρ) is increased. This aligns
with our understanding of the critical perturbation length: for larger σtest, larger perturbations are
required to achieve an over-regularizing effect, but are also further inhibited by proximity to the
critical perturbation length. By applying an increasing ramp schedule, far larger perturbations than
otherwise possible can be tolerated, producing the most benefit in the large σtest scenario.
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Table 4: Comparison of SGD, SAM and RWP-trained ResNet-18 when performing simulated
inference on analog accelerators.

RRAM SONOS
SGD 65.61± 2.68± 0.51 79.31± 0.03± 0.02

SAM ρ = 0.4 68.42± 1.25± 0.89 80.07± 0.03± 0.22
SAM + Quadratic Schedule 66.16± 1.52± 2.58 80.84± 0.03± 0.09

RWP σ = 0.05 73.96± 0.90± 0.38 78.69± 0.02± 0.12
RWP + Quadratic Schedule 74.33± 0.88± 0.12 78.89± 0.03± 0.17

Device-Aware Training (RRAM) 69.35± 1.29± 0.35 -
Device-Aware Training (SONOS) - 72.51± 0.03± 0.29

To confirm that increased perturbation strength is now feasible, we perform ablations on two hy-
perparameters of our adjustable schedules: the maximal perturbation strength after ramping and
the ramping duration. Using a grid search (Appendix Tab. 11, 12), we find that the optimal max
perturbations are higher than those in constant perturbation experiments (Tab. 1, 2). Notably, SAM’s
optimal ρ increases significantly from 0.3 to 1.0, aligning better with the dynamic loss landscape and
supporting our hypothesis of an increasing critical perturbation length. This demonstrates that greater
over-regularization is achievable when introduced at the appropriate training stage, and opens a path
toward perturbative training which is engineered around the evolution of the loss landscape.

6 VALIDATION THROUGH ANALOG HARDWARE SIMULATION

In this section, we demonstrate our results for a practical use-case by simulating model inference
on analog hardware accelerators. To perform these experiments, we leverage CrossSim Feinberg
et al., an open-source python-based simulator that models AIMC in the context of applications reliant
on matrix multiplication (e.g. neural networks). We select two well-known memory devices (both
supported in CrossSim) for our inference modeling: RRAM (resistive random-access memory) Milo
et al. (2021) and SONOS (silicon-oxide- nitride-oxide-silicon) Xiao et al. (2022a). Both devices
exhibit programming error profiles that are approximately state-independent, as is the case in our
perturbation experiments. Whereas the error of SONOS empirically follows a small-σ distribution,
RRAM produces significantly larger magnitude errors; to quantify this, we calculate the RMSE
between the totality of the perturbed/unperturbed model weights, which we find to be 23.936± 0.004
for RRAM, and 2.371±0.0005 for SONOS. In addition to evaluating several of the ResNet-18 models
trained in the previous sections, we also train models using CrossSim to directly inject perturbations
matching the hardware’s noise profile during training, allowing us to test the hypothesis of unmatched
training/test distributions. We compare these results in Tab. 4. From the table, we see that the general
trends observed previously hold true: both SAM and RWP improve noise-robustness relative to
standard SGD on the simulated hardware. On the small-noise SONOS hardware, SAM outperforms
RWP, while on the large-noise RRAM, RWP outperforms SAM. In both cases, a further performance
improvement is achieved through the adoption of a quadratic perturbation schedule. Additionally,
optimal RWP/SAM produce better-performing models than directly applying the hardware noise
during training, emphasizing again that simply matching training and test-time regularization does
not produce optimal noise-robustness.

7 CONCLUSION

In this paper, we conduct a comprehensive study on the use of flatness-finding optimization methods,
namely SAM and RWP, for finding neural network minima robust to perturbations in weight-space.
First, we identify general trends in the application of these techniques to finding noise-robust minima,
and discover that over-regularized training in the form of strong perturbations produces the most
robust weights. At the same time, we identify a deleterious effect of strong perturbations: a vanishing-
gradient effect induced by sharpness in the loss landscape, particularly pronounced in SAM. To
curtail this effect, we introduce a ramped perturbation schedule, in which perturbation magnitude is
gradually increased as training progresses, allowing for perturbations to evolve naturally with the
widening loss basin. We hope that this extensive investigation of training neural networks robust to
weight noise spurs future research of this under-explored problem.
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A IMPLEMENTATION DETAILS

All Cifar-100/Tiny-ImageNet models are trained for 200 epochs using SGD as the base optimizer.
We use an initial learning rate of 0.05 with a cosine learning rate schedule. We use a weight decay
of 5 ∗ 10−4 and momentum of 0.9. We apply the standard data augmentations of random cropping,
flipping, and normalization. In addition, we train using label smoothing of 0.1. For the ImageNet-100
models, we train for 100 epochs using an initial learning rate of 1 and weight decay of 1 ∗ 10−4. In
all experiments, early stopping is applied to select the training epoch which achieves the highest
perturbed test accuracy.

B DETAILING THE DYNAMICS OF PERTURBED TRAINING

B.1 UNDERSTANDING SAM’S OVERFITTING

To empirically investigate the evolution of SAM’s noise robustness during training, we plot the
cosine similarity between the original loss gradient ∇L(w) and the perturbed gradient ∇L(w + ϵ)
for both SAM and RWP, shown in Fig. 5. From this, we see that for RWP, the cosine similarity
between the gradients gradually diverges as training progresses and the optimization path enters a
deeper loss valley with more rapidly-changing gradients. As such, the gradients are, on average,
nearly orthogonal by the end of training. On the other hand, in the SAM-trained models, the cosine
similarity drops sharply after the early training iterations, but thereafter roughly plateaus for the rest
of the training schedule. As a result, even as the training converges to a sharper minimum, the SAM
gradient still contains a significant component along the direction of the original gradient. Hence,
further training will continue to push the model toward a minimum more characteristic of the one
found by SGD, although at an attenuated rate. For the strongly perturbed SAM using ρ = 1, the
gradients do diverge at later training epochs; however the strong perturbations in early iterations
prevent the optimization from progressing meaningfully, as will be shown in the following section.

B.2 CHARTING SAM/RWP PERFORMANCE IN LOW-NOISE REGIME

In addition to Fig. 2a, we also plot the σtest = 0.02 perturbed accuracy as a function of unperturbed
accuracy, shown in Fig. 6. In this case, we observe that SAM and RWP follow a similar linear trend,
with the exception that the lower-loss SAM minima achieve greater noise-resiliency than the best
RWP minima.
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(a) (b)

Figure 5: Plot of cosine similarity between perturbed/unperturbed gradients for various (a) SAM and
(b) RWP configurations on a ResNet-18 as a function of training epoch.

Figure 6: Scatter plot of unperturbed test accuracy vs σtest = 0.02 perturbed test accuracy for a
variety of ResNet-18 models trained using SAM, RWP and SGD on Cifar-100.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.3 VISUALIZING THE LOSS LANDSCAPE

To visually analyze the training loss minima found through perturbative training, we produce plots
visualizing the loss landscape (both training and test) of several different minima (using the method
proposed in Li et al. (2018)), shown in Fig. 7. In the top row of the figure, (e.g. Figs. 7a, 7b, 7c),
we visualize models trained with RWP with increasing σtrain. As expected, the model trained using
the larger value of σtrain produces a visually much flatter minimum, confirming the straightforward
correlation we expect. This same pattern holds true for the test landscape minima of RWP, plotted
in Figs. 7g, 7h, 7i. Comparing SAM’s training minima amongst each other, we see that ρ = 0.3
appears the flattest, in agreement with our quantitative results. However, comparing the SAM minima
against RWP minima breaks the straightforward correlation between training/test loss flatness. For
example, the RWP σtrain = 0.05 training minimum (Fig. 7b) is flatter than all of the SAM minima
(Fig. 7d,7e,7f); however the test landscape minima for SAM ρ = 0.2 and ρ = 0.3 (Fig. 7j, 7k) are
both flatter than the corresponding test minimum for RWP (Fig. 7h). This agrees with our previous
experimental results: although sharper from the perspective of the training landscape, SAM models
outperform RWP in the small σtest noise settings. These visualizations provide further evidence that
the relative training loss flatness and test loss flatness need not correlate.

B.4 QUANTIFYING ATTENUATED TRAINING

To confirm the effect of the sharpness-induced vanishing gradient during training, we plot the gradient
norm during training alongside the total distance traveled in the parameter space as training unfolds∑N

t=1 ||wt+1 − wt|| (where t corresponds to epoch number), shown in Fig. 8b. Compared to SGD,
we see that all of the perturbed training trajectories display both a smaller gradient norm and smaller
distance traveled. For the case of SAM, we see a dramatically smaller distance traveled as compared
to the RWP models, demonstrating that the diminished gradient magnitude indeed attenuates training.

B.5 COMPARING TRAINING AND TEST SHARPNESS DURING TRAINING

In addition to the plots in Fig. 4, we also compare the average-direction training/test sharpness for
σ = 0.07, plotted in Fig. 9. As was previously shown, we find a notable divergence between a
minimum’s training loss sharpness and test loss sharpness. For example, we see in the plot of training
sharpness (Fig. 9a) that SAM exhibits virtually the same degree of flatness as SGD over its entire
trajectory. However, when plotting the test sharpness of the same trajectories, we see that in the
earlier epochs SAM traverses a test loss basin that is significantly less sharp than that of SGD; it is
within this basin that SAM (with early stopping) finds weights with improved noise-resilience.

C DOES NOISE DISTRIBUTION MATTER?

In all of our previous analysis, we have made the assumption of matching RWP’s training noise
distribution class with that of our test noise distribution Q, in this case a normal distribution. We note
that this assumption grants RWP with knowledge at training time of the shape of the test distribution,
an advantage that SAM does not benefit from. To decouple the flatness-finding capability of RWP
from its a priori knowledge of the test distribution, we perform experiments in which we define
Q ∼ Laplace(0, bmaxi |wi|), allowing us to evaluate noise-robustness in an unbiased manner. We
present these results in Tab. 5. Even in the case of Laplace noise, we observe a similar trend as in
Gaussian noise at test time: SAM outperforms RWP for lower-strength noise, but cannot compensate
when the noise magnitude is increased. From these results, we conclude that RWP is indeed locating
broadly-flat minima which are generally robust against random corruptions.

D EXPERIMENTS ON DIFFERING BACKBONE MODELS

D.1 EVALUATING GENERALTIY OF SAM/RWP PERFORMANCE

To confirm that our observations of SAM/RWP hold true generally, we perform similar experiments
as in Sec. 4.3 on a variety of ResNets and WRNs, shown in Tab. 6 and Tab. 7. For a fair comparison,
we replace the bottleneck block in the ResNet-50 with the same basic block architecture used in
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Figure 7: 2D visualization along filter-normalized directions of the (unperturbed) Cifar-100 loss
landscape of minima found using RWP σtrain = 0.02, σtrain = 0.05, σtrain = 0.07 ((a)-(c) for
training landscape visualization, (g)-(i) for test landscape visualization), and SAM ρ = 0.2, ρ = 0.3,
ρ = 0.5 ((d)-(f) for training landscape visualization, (j)-(l) for test landscape visualization).

Table 5: Comparison on Cifar-100 of SGD, SAM and RWP-trained ResNet-18 when test-time noise
follows a Laplace distribution Laplace(0, bmaxi |wi|).

b = 0.01 b = 0.02 b = 0.03 b = 0.04
SGD 78.49± 0.18± 0.07 73.42± 2.59± 0.39 59.66± 1.74± 1.22 54.08± 2.05± 1.54

SAM ρ = 0.2 79.52± 0.15± 0.14 77.05± 0.38± 0.16 67.85± 2.76± 0.55 61.11± 1.63± 1.40
SAM ρ = 0.3 79.75± 0.14± 0.23 77.66± 0.78± 0.59 69.47± 1.60± 0.97 62.25± 2.40± 0.82
SAM ρ = 0.5 77.95± 0.16± 0.08 75.41± 2.02± 0.78 66.72± 1.58± 0.43 58.35± 5.19± 2.01

RWP σ = 0.03 78.30± 0.15± 0.25 76.32± 0.42± 0.27 72.05± 1.07± 0.41 63.18± 2.71± 1.18
RWP σ = 0.05 78.28± 0.14± 0.08 76.66± 0.35± 0.05 73.53± 0.72± 0.14 67.40± 1.66± 0.34
RWP σ = 0.07 76.82± 0.14± 0.17 75.56± 0.34± 0.13 72.95± 0.66± 0.23 68.00± 1.53± 0.64
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(a) (b)

Figure 8: (a) Plot of the ResNet-18 update gradient norm ||∇L||2 as a function of training epoch
for SGD, SAM, and RWP on Cifar-100. (b)Plot of the total distance traversed during training,∑N

i=1 ||wt+1 − wt||

(a) (b)

Figure 9: (a) Plot of average-direction sharpness for σtest = 0.02 for a ResNet-18 training on
Cifar-100. (b) Plot of average-direction sharpness as a function of test loss for σtest = 0.02.
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(a) (b)

Figure 10: Plots of (a) gradient norm and (b) gradient sharpness for ResNet-50 during Cifar-100
training.

Table 6: Comparison of RWP and SAM for ResNets of varying depths. The best-performing optimizer
for a given architecture is bolded, whereas the best-performing architecture for a given optimizer is
underlined.

σtest = 0.02 σtest = 0.07
SAM RWP SAM RWP

ResNet-9 74.14± 0.94± 1.67 72.70± 0.31± 0.07 39.58± 5.03± 0.97 51.10± 3.14± 1.70
ResNet-18 79.12± 0.23± 0.28 77.65± 0.26± 0.05 53.61± 2.61± 0.68 61.36± 2.85± 0.90
ResNet-34 80.82± 0.24± 0.18 79.19± 0.21± 0.19 55.38± 3.23± 1.67 64.67± 2.54± 0.54
ResNet-50 81.29± 0.17± 0.17 79.81± 0.19± 0.17 54.22± 3.39± 2.85 64.87± 2.28± 1.23

the shallower ResNets. As is the case with ResNet-18, we find that for σtest = 0.02, SAM-trained
models achieve higher accuracy, whereas for σtest = 0.07, RWP-trained models dominate. We
additionally recreate Fig. 3 for training with a ResNet-50, demonstrating the same vanishing gradient
effect observed in the ResNet-18.

D.2 DYNAMIC PERTURBATION SCHEDULES

To verify the generality of our dynamic perturbation schedules, we also perform experiments using
different backbone models, specifically ResNet-50, WRN-16-10, and PyramidNet-50 Han et al.
(2017) shown in Tab. 8. Here, we note a contrast between the WRN and the ResNet-50/PyramidNet-
50: while the perturbation schedule enhances noise-robustness for both network architectures, the
improvement is markedly larger for the latter two networks. We conclude that ResNet-50 and
PyramidNet-50 naturally exhibit a sharper loss landscape that is a significant factor in the degraded
performance of SAM/RWP; as a result, the ramped perturbations improve performance by a large
amount. Meanwhile, the naturally smooth loss landscape of the WRN leads to a fairly stable training
process, even without the perturbation schedules. As a result, the improvement from applying the

Table 7: Comparison of RWP and SAM for ResNets of varying widths. The best-performing optimizer
for a given architecture is bolded, whereas the best-performing architecture for a given optimizer is
underlined.

σtest = 0.02 σtest = 0.07
SAM RWP SAM RWP

ResNet-18 79.12± 0.23± 0.28 77.65± 0.26± 0.05 53.61± 2.61± 0.68 61.36± 2.85± 0.90
WRN-16-5 80.75± 0.31± 0.11 79.36± 0.27± 0.06 51.92± 4.79± 0.69 59.11± 3.48± 0.18
WRN-16-10 83.13± 0.23± 0.32 81.08± 0.21± 0.28 60.11± 3.04± 2.31 66.23± 2.26± 0.75
WRN-16-15 83.53± 0.18± 0.09 81.24± 0.21± 0.08 59.55± 3.78± 2.38 64.63± 3.96± 0.83
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Table 8: Comparison of perturbed test accuracy when perturbation schedules are applied during
training for differing backbone architectures.

σtest = 0.07
Schedule SAM RWP

ResNet-50 Constant 54.22± 3.39± 2.85 64.87± 2.28± 1.23
ResNet-50 Quadratic 59.18± 3.23± 2.69 69.35± 1.29± 0.35

WRN-16-10 Constant 60.11± 3.04± 2.31 66.23± 2.26± 0.75
WRN-16-10 Quadratic 61.60± 3.19± 0.49 67.19± 2.28± 0.90

PyramidNet-50 Constant 47.40± 3.49± 1.25 58.89± 3.23± 2.71
PyramidNet-50 Quadratic 52.95± 3.48± 2.69 63.88± 1.73± 1.22

Table 9: Comparison of SGD, SAM and RWP-trained ResNet-18 on Tiny-Imagenet.

σtest = 0.02 σtest = 0.05
SGD 62.89± 0.65± 0.37 36.99± 2.64± 2.06
SAM 64.50± 1.03± 0.56 45.93± 1.48± 0.86

SAM + Quadratic Schedule 66.01± 1.84± 1.56 41.41± 1.82± 0.91
RWP 64.17± 0.44± 0.46 54.26± 1.95± 1.24

RWP + Quadratic Schedule 65.73± 0.40± 0.18 56.26± 1.75± 0.15

schedule is much more modest, in-line with performance gains in the small-noise setting applied to
the narrower networks.

E TINY-IMAGENET AND IMAGENET-100 EXPERIMENTS

As further evidence for the generality of our results, we perform additional experiments on both the
intermediate-scale Tiny-ImageNet dataset and the large-scale ImageNet-100 dataset. First, we plot
the gradient norm of and gradient sharpness evolution during training on both Tiny-ImageNet and
ImageNet-100, shown in Fig. 11, observing similar evidence for the sharpness-induced vanishing
gradient as was seen in the Cifar-100 experiments. Next, we compare the noise-robust performance
of SGD, SAM and RWP across a variety of noise settings on Tiny-ImageNet, shown in Tab. 9 and
Tab. 10, where we again observe similar trends in regards to the noise-robustness of SAM and RWP
as in the case of Cifar-100.

F DYNAMIC SCHEDULE DETAILS

F.1 MOTIVATING DYNAMIC SCHEDULES: PERTURBED LOSS EVOLUTION

To illustrate the evolution of the critical perturbation length, we plot the perturbed point loss for
several SAM and RWP training trajectories, shown in Fig. 12. In the case of extreme perturbation
magnitude beyond the critical perturbation length, the perturbed point consistently lies on the high-
loss plateau, preventing the perturbed loss from decreasing as is shown in the yellow lines. Otherwise,
we see that for a consistent perturbation strength, the perturbed point loss decreases as training
proceeds, indicating that for a consistent perturbation radii, the perturbed point’s distance from the

Table 10: Comparison of ResNet-18 trained with various perturbation strengths of SAM and RWP
for several test noise settings on Tiny-ImageNet.

σtest = 0.0 σtest = 0.02 σtest = 0.03 σtest = 0.04 σtest = 0.05
σtrain = 0.0 66.21± 0.30 62.89± 0.65± 0.37 54.26± 3.07± 1.30 41.59± 1.90± 2.23 36.99± 2.64± 2.06
σtrain = 0.02 65.76± 0.34 63.27± 0.29± 0.15 59.67± 0.52± 0.19 53.54± 1.21± 0.31 43.65± 2.32± 0.65
σtrain = 0.03 65.73± 0.32 63.52± 0.34± 0.28 60.14± 0.68± 0.42 54.44± 1.24± 0.76 45.28± 2.31± 1.45
σtrain = 0.06 65.90± 0.10 64.09± 0.36± 0.13 61.42± 0.63± 0.16 57.2± 1.08± 0.37 50.68± 1.91± 0.82
σtrain = 0.08 65.67± 0.39 64.17± 0.44± 0.46 62.19± 0.70± 0.58 59.01± 1.16± 0.79 54.26± 1.95± 1.24

ρ = 0.2 68.32± 0.09 64.5± 1.03± 0.56 54.02± 1.15± 1.26 49.37± 0.99± 0.55 45.93± 1.48± 0.86
ρ = 0.3 68.87± 0.25 61.86± 4.16± 1.80 53.15± 2.30± 1.60 47.93± 1.16± 0.57 44.67± 1.79± 0.49
ρ = 0.4 69.42± 0.12 64.89± 2.55± 3.27 52.98± 2.62± 2.26 44.41± 1.03± 2.10 41.34± 1.50± 2.44
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(a) (b)

(c) (d)

Figure 11: Plots of (a), (c) gradient norm and (b), (d) gradient sharpness for ResNet-18 during
Tiny-Imagenet and ImageNet-100 training, respectively.
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(a) (b)

Figure 12: Plot of the perturbed loss L(wp) on Cifar-100 for (a) SAM and (b) RWP.

Table 11: Comparison of ResNet-18 models on σtest = 0.07 trained using RWP for varying
perturbation strength σtrain when a quadratic ramp schedule is applied.

iter = 35000 iter = 45000 iter = 55000
σmax = 0.08 61.74± 3.08± 0.52 63.32± 2.25± 0.74 62.55± 2.71± 1.61
σmax = 0.1 63.03± 2.41± 0.93 65.57± 2.05± 0.64 64.93± 1.96± 1.00
σmax = 0.12 59.37± 2.16± 1.89 62.50± 1.87± 0.96 63.41± 2.25± 1.78

high loss plateau is increasing. Based on this logic, we conclude that the critical perturbation length
does in fact increase during training.

F.2 ABLATIONS

To determine the optimal schedule hyperparameters (namely the maximal perturbation strength and
number of warm-up iterations), we perform a grid search, shown in Tab. 11 and Tab. 12 for RWP and
SAM, respectively.

F.3 VISUALIZING RAMPED PERTURBATION SHARPNESS

To understand the effect perturbation schedules have on sharpness evolution during training, we plot
both gradient sharpness and average-direction sharpness of the quadratic schedule SAM and RWP,
comparing against the constant-perturbation versions (Fig. 13). Here, we observe a coherent trend: in
the early stages of training, the use of the ramp schedules reduces gradient sharpness significantly,
after which the growing perturbations cause the gradient sharpness to surge. In the case of average-
direction sharpness, shown in Fig. 13b, we see that while training using the schedules increases the
training loss at convergence, sharpness is reduced compared to the constant perturbation baselines.
This is especially noticeable in the case of SAM: we recall from Fig. ?? that increasing constant-
perturbation ρ from 0.2 to 0.5 has no effect on reducing average-direction sharpness. However,
when using the quadratic perturbation schedule, a drastic reduction in sharpness can now be achieved
through large perturbations.

Table 12: Comparison of ResNet-18 models on σtest = 0.07 trained using SAM for varying
perturbation strength ρ when a quadratic ramp schedule is applied.

iter = 15000 iter = 20000 iter = 25000
ρmax = 0.8 57.64± 3.01± 1.80 59.71± 1.93± 1.66 58.35± 3.81± 0.74
ρmax = 1.0 57.54± 2.34± 0.52 60.24± 1.98± 0.83 59.13± 2.40± 0.68
ρmax = 1.2 57.07± 1.92± 0.33 58.83± 1.78± 1.14 56.97± 1.92± 1.87
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(a) (b)

Figure 13: Plots of (a) gradient sharpness and (b) ascent-direction sharpness as a function of Cifar-100
training loss for a ResNet-18 trained using quadratic schedule SAM and RWP.

(a) (b)

Figure 14: Comparison of the perturbed loss L(wp) for ramped/constant schedules of (a) SAM and
(b) RWP on Cifar-100. The perturbed loss is calculated at a constant perturbation distance (equal to
the maximum perturbation), including for the dynamic schedules. Dotted black line denotes epoch at
which ramped perturbation strength reaches strength equal to constant perturbation.

F.4 ALTERNATIVE VIEW OF LANDSCAPE BROADENING

To provide another view of how the dynamic perturbation schedule affects the training dynam-
ics, we again plot the perturbed training loss as a function of epoch comparing the quadratically-
ramped/constant schedules with equivalent terminal perturbation strengths for both RWP and SAM,
shown in Fig. 14. In these plots, we observe that for the dynamic perturbation schedules, even after
the initial warm-up period (meaning the size of the perturbation has reached the terminal value), the
perturbed training loss is lower than that of the constant schedule. This difference is particularly
stark for SAM: at the final epoch of the ramp, there is 0̃.75 difference in perturbed loss between the
two trajectories. This clearly illustrates the contrast in evolution of the two trajectories: on top of
the natural decline of the critical perturbation length, the dynamic schedules guide the optimization
towards a flatter basin than would otherwise be encountered, further reducing the critical perturbation
length.
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