
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGOF: A GFLOWNET-GUIDED 2-OPT FRAMEWORK
FOR VEHICLE ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The 2-Opt algorithm is a widely used classical search method in vehicle rout-
ing problems (VRPs). However, existing learning-based approaches designed for
2-Opt rely on autoregressive (AR) architectures, which suffer from limited gener-
alization and high computational overhead. In this work, we propose the first non-
autoregressive (NAR) framework for 2-Opt, which addresses the generalization
and efficiency limitations of prior AR-based models by reducing the complexity
of the input space, smoothing the reward landscape, and eliminating the need for
repeated inference during optimization. To enable effective training within this
framework, we introduce A GFlowNet-guided 2-Opt Framework (AGOF), which
leverages the reward–edge alignment capabilities of Generative Flow Network
(GFlowNet) to provide accurate and generalizable edge evaluations for guiding
2-Opt swaps. Furthermore, we design Exploration beyond Local Optima (ELO)
to inject perturbations into the optimization process, helping the model escape
local optimal solutions. Extensive experiments demonstrate that AGOF not only
outperforms existing GFlowNet- and 2-Opt-based methods but also has favorable
generalization and computation efficiency.

1 INTRODUCTION

Vehicle routing problems (VRPs) are a class of combinatorial optimization problems that aim to
determine the most efficient routes for a fleet of vehicles to deliver goods or services to a set of cus-
tomers. VRPs occur in a wide range of real-world applications, including operations management
(Kim et al., 2025a; Konstantakopoulos et al., 2022; Feng & Ye, 2021), supply chain (Bai et al., 2022;
Hasani Goodarzi & Zegordi, 2020; Ancele et al., 2021), and infrastructure planning (Pan et al., 2024;
Li et al., 2018; Seo & Asakura, 2021), where optimized routing is crucial for minimizing operational
costs and enhancing overall efficiency. In recent years, learn-to-search has emerged as one of the
most promising paradigms for solving VRPs (Bengio et al., 2021b), motivating a series of studies
that leverage machine learning to enhance search algorithm (Cooray & Rupasinghe, 2017; Cao et al.,
2023; Chen et al., 2023; Sobhanan et al., 2025), among which the 2-Opt stands out as a prevalent
local search strategy.

As a classical improvement operator, 2-Opt iteratively refines a given route by removing two non-
adjacent edges and reconnecting the resulting segments in a reversed order, thereby reducing the
total tour length. Specifically, it removes the edges (vi−1, vi) and (vj , vj+1), and reconnects the
route through (vi−1, vj) and (vi, vj+1), while reversing the subpath between nodes vi and vj . The
performance of 2-Opt is highly sensitive to the choice of node pair (i, j), as different selections can
lead to dramatically different improvements. Traditionally, 2-Opt employs a greedy strategy that
exhaustively evaluates all pairs and selects the one yielding the largest immediate cost reduction.
Although simple and straightforward in practice, this myopic approach often traps the search in
local optima and fails to explore more promising regions of the solution space.

In light of these shortcomings, Wu et al. (2021) explored integrating Transformer architectures with
2-Opt to guide edge selection. Building on this, Ma et al. (2021) proposed DACT, a model with
network architectures specifically designed to align with the 2-Opt procedure, yielding improved
performance. Afterwards, Ma et al. (2023) introduced NeuOpt, which extends 2-Opt to more com-
plex k-Opt variants, thereby expanding the search space. Although these models achieve strong
empirical results, they share key limitations, i.e., most notably poor generalization and high compu-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

100 200 500 1000
Number of Nodes

0
250
500
750

1000
1250
1500
1750
2000

Ga
p

(%
)

Generalization on TSP ()
Wu et al.
DACT (*8)
NeuOpt
AGOF

100 200 500 1000
Number of Nodes

0

50

100

150

200

Ga
p

(%
)

Generalization on CVRP ()
Wu et al.
DACT (*8)
NeuOpt
AGOF

100 200 500 1000
Number of Nodes

0

50

100

150

200

250

Ti
m

e
(s

)

Efficiency on TSP ()
Wu et al.
DACT (*8)
NeuOpt
AGOF

100 200 500 1000
Number of Nodes

0

1000

2000

3000

4000

5000

Ti
m

e
(s

)

Efficiency on CVRP ()
Wu et al.
DACT (*8)
NeuOpt
AGOF

Figure 1: Generalization and Efficiency performance of different 2-Opt-based neural models on
TSP and CVRP benchmarks, where all models are trained only on 100-node instances (lower gap
and time indicates better performance). For CVRP, Wu et al. (2021) failed on 500- and 1000-node
instances, DACT and NeuOpt failed on 1000-node instances, due to memory limitations.

tational overhead. A primary cause lies in their reliance on autoregressive (AR) architectures, where
the model processes the entire route as input at each decision step. This design leads to a large and
complex input space for two main reasons: (i) there is an exponential number of possible routes for
a single instance, each of which can be an input at the decision step, and (ii) the relative ordering
of nodes within each route must be explicitly encoded, as it significantly influences AR-based in-
ference. Together, these factors inflate the input dimensionality, and create a highly discontinuous
reward landscape, which, as discussed in Sec. 3.1, hampers generalization to unseen instances, es-
pecially those of larger scale. Particularly, a comparison of the generalization performance of these
models (against our AGOF) is presented in the first two plots in Figure 1. Moreover, the sequen-
tial nature of AR models requires repeatedly invoking the neural network at every decision step of
swap process, leading to substantial computational overhead (against our AGOF) during inference,
as exhibited in the last two plots in Figure 1.

To address these limitations, we propose a non-autoregressive (NAR) framework for 2-Opt that of-
fers improved generalization ability and lower computational burden. First, the NAR framework
takes only the graph as input, which reduces the complexity of the input space and eliminates the
need for explicit positional features. As analyzed in Sec. 3.1 and the results shown in Figure. 1, this
results in a smoother reward landscape and enhanced generalization performance. Moreover, the
NAR framework requires only a single forward pass for inference, which significantly reduces com-
putational overhead compared to autoregressive (AR) models. However, learning an effective NAR
model for 2-Opt remains challenging, as it demands accurate evaluation over all edge pairs rather
than optimizing a single solution trajectory. This requirement makes conventional reinforcement
learning ill-suited, as it typically aims at reward maximization along a single trajectory. In routing
problems, such a focus drives the model toward approximating the best route and often overlooks ac-
curate estimation of many alternative routes under limited interactions. To address this, we adopt the
Generative Flow Network (GFlowNet) (Bengio et al., 2021a), which instead learns to fit the entire
reward distribution, enabling more accurate estimation of rewards across all possible edge combi-
nations. Building on this insight, we introduce A GFlowNet-guided 2-Opt Framework (AGOF),
which leverages the reward–edge alignment capabilities of GFlowNet to facilitate the training of the
NAR model, and thus fully exploits its generalization capability and computational efficiency. To
further enhance search effectiveness, we introduce an exploration mechanism named Exploration
beyond Local Optima (ELO), which injects perturbations to help AGOF escape local minima. Our
contributions are summarized as follows:

• We present the first non-autoregressive (NAR) framework for 2-Opt, which significantly
improves generalization and notably reduces computational overhead through a smaller
input space, a smoother reward landscape, and single-pass inference.

• We introduce a Generative Flow Network (GFlowNet)-guided 2-Opt framework (AGOF),
which leverages the reward–edge alignment capability of GFlowNet to efficiently train
the NAR model. To further improve search performance, we propose Exploration beyond
Local Optima (ELO), which helps model to escape from local minima.

• We conduct extensive experiments on synthetic and real-world benchmarks (e.g., TSPLib
and CVRPLib), demonstrating that AGOF consistently outperforms GFlowNet-based and
2-Opt-based baselines and generalizes well to varying scales and more complex instances.

Note. Our goal is not to surpass SOTA neural VRP solvers in general, but to advance the specific line
of 2-Opt-based neural methods. By identifying their key limitations, we propose a strong alternative
that substantially improves both the generalization and efficiency of neural 2-Opt solvers. All code
and data will be made publicly available.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Learning to search. There has been growing interest in leveraging learning-based methods to en-
hance traditional search algorithms for combinatorial optimization problems (COPs) (Bengio et al.,
2021b; Zhao et al., 2022; Yao et al., 2025; Cheng et al., 2022; Ye et al., 2023). A number of recent
studies have particularly focused on applying such techniques to improve 2-Opt local search for
solving VRPs. Wu et al. (2021) made an early attempt to directly learn 2-Opt by proposing a deep
reinforcement learning framework based on a Transformer architecture, which autonomously learns
policies for selecting position pairs in 2-Opt. Building on this foundation, Ma et al. (2021) proposed
DACT, which replaces the vanilla attention mechanism with Dual-Aspect Collaborative Attention
(DAC-Att) and introduces cyclic positional encoding to enhance structural awareness. Subsequently,
NeuOpt (Ma et al., 2023) extended the traditional 2-Opt to k-Opt, which allows exploration of more
broader neighborhoods and yields better solution quality. In addition, it leveraged a dynamic data
augmentation to enhance search diversity. Although these works achieve favorable results, they all
suffer from limited generalization and computational inefficiency due to their reliance on AR archi-
tectures. Different from them, we propose an NAR model, i.e., GFlowNet-guided 2-Opt (AGOF)
that significantly enhances the generalization and efficiency.

GFlowNet for solving combinatorial optimization. Recent works have explored the application
of Generative Flow Network (GFlowNet) to solve COPs. Zhang et al. (2023) first proposed using
GFlowNet to solve classic COPs such as Maximum Independent Set, Maximum Clique, Minimum
Dominating Set, and Max-Cut, demonstrating their effectiveness in learning diverse high-quality
solutions. In the context of VRPs, GFACS (Chen et al., 2023) integrates GFlowNet with Ant
Colony Optimization (ACO) to enhance solution quality by guiding the pheromone initialization.
AGFN (Zhang et al., 2025) further advances this direction by using GFlowNet in an end-to-end
manner to directly construct complete routes. While these methods leverage GFlowNet to guide
or construct solutions, they primarily focus on route generation. In contrast, our work introduces a
novel use of GFlowNet for route refinement via edge swap. Specifically, we employ GFlowNet to
guide the 2-Opt swap process by learning reward-aligned edge evaluations.

3 METHODOLOGY

3.1 AR VS. NAR FOR 2-OPT IN VRP

Route τ’

Route τ

2-Opt
2-opt Position

Pair (i, j)

Score Matrix ηNeural Network θ

NAR Model with GFlowNet

Route τ’

Route τ

2-Opt
2-opt Position

Pair (i, j)

Score Matrix ηNeural Network θInstance 𝐺2

Instance 𝐺1

Node

Increase

2-opt Position

Pair (i, j)

Probability Matrix ηNeural Network θ

AR Model with Reinforcement Learning

Instance 𝐺2

Route τ’

Route τ

2-Opt
2-opt Position

Pair (i, j)

Probability Matrix ηNeural Network θ

Instance 𝐺1

Route τ’

Route τ

2-Opt

Node

Increase

rAR of a Single 2-opt Operation:

𝐺1 𝐺2

rNAR of a Sequence 2-opt Operation:

𝐺1 𝐺2

Figure 2: Comparison of AR and NAR models for 2-opt learning. Left: Non-autoregressive(NAR)
model with GFlowNet uses only the instance G as input. A neural network with parameters θ
predicts the score matrix η, which is repeatedly used to select a position pair (i, j) for 2-opt to
derive improved route τ ′. This one-shot inference mechanism avoids repeated forward passes, and
results in significantly higher computational efficiency. Right: Autoregressive (AR) models such
as Wu et al. (2021) and DACT (Ma et al., 2021) take both the instance G and the current route τ as
input. They generate the probability matrix η conditioned on τ via a neural network θ. This path-
dependent design introduces reward discontinuities and requires inference at every step, significantly
increasing computational cost.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We investigate the underlying causes of the differences in generalization ability and computational
efficiency between autoregressive (AR) and non-autoregressive (NAR) frameworks in learning 2-
Opt. An overview of these contributing factors is exhibited in Figure 2.

Generalization analysis. To better illustrate the generalization gap between AR and NAR frame-
works in learning 2-Opt, we highlight two key factors that fundamentally differentiate their behav-
iors: the complexity of their input spaces and the continuity of the reward landscape.

In AR-based frameworks, the model takes as input a VRP instance G = (V, E) along with the
information of a complete route τ = (v0, . . . , vn), including the predecessor and successor of each
node, where V is the set of nodes, E is the set of edges, and each vi denotes a node in the instance.
The model then outputs a probability matrix η explicitly conditioned on the input path τ , where each
entry ηi,j denotes the likelihood of applying a 2-Opt move between positions i and j, with the most
probable pair selected for the swap. This mapping can be expressed as:

fAR
θ : (G, τ)→ (i∗, j∗) where (i∗, j∗) = argmax

(i,j)
ηi,j . (1)

Consequently, the input space X contains all feasible path:

XAR = T (G), (2)

where |T (G)| ∼ n! for each instance G. As a result, the model must generalize across an expo-
nentially large space of highly variable routes. In addition, since the model is based on 2-Opt, it
also requires encoding the detailed relative position information of each node within the route, in-
cluding features such as the spatial coordinates of its predecessor and successor nodes. This further
contributes to the overall complexity of the input.

Moreover, the output space induced by τ lacks inherent structure or continuity. Even when two input
paths τ1 and τ2 differ only slightly (e.g., by swapping two nodes or exhibiting minor variations in
node count), their corresponding 2-Opt predictions can differ significantly. This discrepancy arises
because even minor modifications in the route can substantially change the relative position feature
of nodes that are specifically required for AR 2-Opt model, leading to distinct input features and,
consequently, different decisions by the model. Formally, this discontinuity is characterized by:

∥τ1 − τ2∥ ≪ ϵ ⇏ ∥fAR
θ (τ1)− fAR

θ (τ2)∥ ≪ ϵ. (3)

And in the AR setting, the model only observes the outcome of its own prediction and lacks access
to preceding or subsequent swap. As a result, the reward signal is defined by the cost reduction
induced by a single 2-Opt operation:

rAR(τ) ∝ cost(τ)− cost(Opt2(τ, fAR
θ (τ)), (4)

where Opt2(τ, fAR
θ (τ1)) is the path obtained by applying a 2-Opt move on τ and cost(τ) is defined

as:

cost(τ) =
n∑

k=1

d(vk−1, vk), (5)

with d(vk−1, vk) representing the distance between consecutive nodes in the path. Moreover, the
reward signal rAR is highly sensitive to small changes in the scale of input graph G. This is because
even a slight increase in the scale of G may introduce minor variations in the node count of τ , which
can lead to significant differences in 2-Opt predictions (i, j) = fAR

θ (τ) as described in Eq. (3),
resulting in large reward fluctuations. Formally,

∥G1 − G2∥ ≪ ϵ ⇏ ∥rAR(τ1, f
AR
θ (τ1))− rAR(τ2, f

AR
θ (τ2))∥ ≪ ϵ. (6)

This discontinuity in the reward landscape encourages overfitting to the path-specific patterns and
impairs generalization ability across instances.

While for NAR framework, it directly conditions solely on the VRP instance G = (V, E) rather
than on the specific path, and learns a mapping:

fNAR
θ : G → η, (7)

where η ∈ Rn×n is a continuous score matrix that guides the 2-Opt move between each position
pair (i, j) for all routes through a series of comparative computations. This design shifts the focus

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

from memorizing path-level patterns to learning structure properties of instances that govern good
2-Opt regions across many possible solutions. Specifically, the input spaces XNAR and output spaces
YNAR are given by:

XNAR = {G}, YNAR = Rn×n
≥0 , (8)

where XNAR contains G as input, which represents a significant reduction in input space compared
to the factorial XAR = T (G) in the AR setting. This simplification reduces the learning complexity
and enhances model’s generalization ability across instances.

Meanwhile, YNAR defines a structured and continuous scoring matrix over all 2-Opt action pairs,
providing a smoother and structured output space in contract with AR models. This continuity
stems from the structural stability of the input graph G and the smoothness of the score matrix η,
which is generated by a continuous neural network. Specifically, the output η remains stable as the
scale of G increases, without significant changes in permutation. This is because the NAR model
operates directly on the graph structure rather than a solution trajectory, and its input representation
is typically based on node features and pairwise relations which is inherently robust encountering
changes in graph size and invariant to node permutations. As a result, adding more nodes to G
does not fundamentally alter the local feature patterns, allowing the model to produce stable and
generalizable score predictions. Therefore, unlike AR models, the NAR mapping is continuous:

∥G1 − G2∥ ≪ ϵ⇒ ∥fNAR
θ (G1)− fNAR

θ (G2)∥ ≪ ϵ. (9)

Finally, instead of relying on a single-step reward from a specific 2-Opt move in AR, NAR frame-
work defines a global reward based on the total cost of the final path obtained after applying a
sequence of 2-Opt moves to a given input path τ . This design avoids the use of local, stepwise
rewards, and the immediate gain from a single 2-Opt move does not necessarily reflect its long-
term contribution to the final solution quality. In contrast, a global reward provides a more holistic
learning signal that captures the cumulative effect of an entire sequence of decisions:

rNAR(τ
′) ∝ cost

Opt2 ◦ · · · ◦ Opt2︸ ︷︷ ︸
K times

(τ, η)

 , (10)

where τ ′ denotes the final path obtained after applying K successive 2-Opt moves guided by the
score matrix η. Since η = fNAR

θ (G) is a continuous function of the input graph G, small variations
in the scale of G lead to small changes in η as described in Eq. (9). As the final path τ ′ is generated
through a deterministic sequence of 2-Opt moves conditioned on η, these changes result in only
slight variations in τ ′. Given that the cost function is smooth over path permutations, the overall
reward defined as the cost of the final path, is therefore a continuous function of G.

∥G1 − G2∥ ≪ ϵ⇒ ||rNAR(τ
′
1)− rNAR(τ

′
2)|| ≪ ϵ. (11)

This reward continuity promotes robust learning and better generalization across VRP instances.

Computational efficiency analysis. Another important distinction between AR and NAR frame-
works lies in their computational efficiency. AR models generate solutions step by step, with each
decision based on the previously constructed solution. This decoding process involves repeated in-
ference steps, which result in high computational overhead. In contrast, NAR models generate the
entire decision structure in a single forward pass without relying on intermediate solutions. This
one-shot inference mechanism eliminates the need for step-by-step decoding, and substantially re-
duces inference time.

3.2 GFLOWNET-GUIDED NAR FOR 2-OPT

Learning an effective NAR model for 2-Opt is particularly challenging. Unlike constructive models,
which only need to maximize reward for a single route and accurately evaluate a limited set of
related edges, 2-Opt must reliably assess all possible edge pairs, as any of them may be selected and
compared during the swapping process. This limitation renders traditional reinforcement learning
paradigm widely used in VRP domain (Kwon et al., 2020; Ye et al., 2023), which focuses on deriving
single best trajectories and evaluates only related edges precisely, fundamentally ill-suited for NAR-
based 2-Opt that demands comprehensive edge assessment.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To address this limitation, we adopt Generative Flow Network (GFlowNet) (Bengio et al., 2021a)
as a more suitable learning approach for NAR-based 2-Opt. Rather than converging to one best tra-
jectory, GFlowNet aims to learn the entire reward distribution, enabling more accurate estimation of
rewards across all possible edge combinations, thereby achieving effective reward–edge alignment.
The training objective of GFlowNet is to ensure the sampling distribution satisfies:

PF (x) ∝ R(x). (12)

In VRP scenarios, x denotes a complete trajectory that derived after a sequence of 2-Opt moves,
and R(x) is its associated reward, defined by the quality of the final solution. To achieve this
objective, we adopt the Trajectory Balance (TB) objective (Malkin et al., 2022), a widely used
training strategy for GFlowNet. Unlike previous AR works (Wu et al., 2021; Ma et al., 2021) that
learn from individual steps, TB enables the model to learn from entire trajectories, allowing rewards
to be assigned to each edge along the path. The TB loss is defined as:

LTB(τ, θ) =

log

Zθ(G) ·
T−1∏
t=0

P θ
F (vt+1 | v≤t)

R(τ) ·
T−1∏
t=0

P θ
B(vt | v≥t+1)


2

, (13)

where θ denotes the parameters of a graph neural network (GNN) and Zθ(G) represents source
flow, which are described in Appendix A.1 and Appendix A.2, respectively. The reward of τ , R(τ),
measures the advancement of the solution over other routes, computed as:

− logR(τ) = cost(τ)− 1

T

T∑
t=1

cost(τt), (14)

where cost(τ) is defined in Eq. (5), and {τ1, τ2, · · · , τT } are routes obtained from the same instance
during training. P θ

B in Eq. (13) are backward probabilities, which are determined by the graph struc-
ture and the route τ . P θ

F in Eq. (13) denotes the forward transition probabilities in the GFlowNet.
Here, P θ

F is computed from the learned score matrix η ∈ Rn×n, where each entry ηij represents the
model’s predicted contribution of edge eij to the overall trajectory reward:

P θ
F (vt+1 | v≤t) =

ηt,t+1∑
ea,b∈E

ηa,b
. (15)

The composite gain value ∆(i, j) using the entries of η associated with the involved edges, is com-
puted as follows to determine which position pair (i, j) is selected for 2-Opt:

∆(i, j) = ηi−1,j + ηi,j+1 − ηi−1,i − ηj,j+1, (16)

where ∆(i, j) represents the predicted improvement in solution quality resulting from applying the
2-Opt move between positions i and j. At each step t, we compute ∆(i, j) for all valid 2-Opt
candidates, forming a matrix ∆(τ, η) that captures the potential improvement of each possible swap
given the route τ and score matrix η. The pair (i∗, j∗) with the maximum gain is selected:

(i∗, j∗) = argmax∆(τ, η). (17)

This selection strategy aligns with the GFlowNet objective PF (x) ∝ R(x) in Eq. (12), which en-
courages assigning higher forward probabilities to trajectories with greater rewards. By choosing the
edge pair that maximizes ∆(i, j) and thus contributes most to increasing PF , the model effectively
guides the search toward better solutions. Compared to traditional 2-Opt, this approach leverages
learned global structure to make more informed swap decisions, leading to faster convergence and
better solution quality.

3.3 EXPLORATION BEYOND LOCAL OPTIMA

While performing 2-Opt optimization, it is common for the model to quickly converge to a local
optimum from which no further improvement can be found using standard swap operations. Tra-
ditional approaches typically address this issue by restarting the search from a randomly initialized
route and reapplying 2-Opt, but this strategy can be computationally inefficient and redundant.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison between AGOF and baseline methods on the TSP and CVRP.

Task I Method 100 200 500 1000
Obj.↓ Gap(%)↓ Time(s)↓ Obj.↓ Gap(%)↓ Time(s)↓ Obj.↓ Gap(%)↓ Time(s)↓ Obj.↓ Gap(%)↓ Time(s)↓

T
SP

LKH 7.75 – 2.01 10.72 – 9.88 16.55 – 32.49 23.14 – 115.35
GFACS 8.78 12.85 0.59 13.02 21.46 1.83 22.86 38.13 9.82 41.60 79.78 21.69
AGFN 8.49 9.55 0.06 11.85 10.54 0.10 19.08 15.28 0.28 27.15 17.32 0.78
POMO(*8) 7.77 0.26 0.14 10.90 1.68 0.28 20.15 21.75 0.67 32.74 41.49 3.15

3000

Wu et al. 7.91 2.06 6.13 41.38 286.01 10.05 182.83 1004.71 16.31 480.03 1974.46 45.57
DACT(*8) 7.81 0.77 6.84 17.61 64.27 13.59 173.80 950.15 24.75 448.96 1840.19 66.48
NeuOpt 7.76 0.13 9.42 11.90 11.01 21.70 132.53 700.79 37.96 313.02 1252.72 74.99
AGOF 7.87 1.55 0.08 10.99 2.52 0.30 17.25 4.23 1.51 24.43 5.57 5.03

5000

Wu et al. 7.86 1.42 10.71 40.46 277.43 18.50 181.81 693.72 30.41 474.66 1951.25 61.25
DACT(*8) 7.79 0.52 11.80 16.70 55.78 22.15 166.04 903.27 43.93 438.88 1796.63 96.17
NeuOpt 7.75 0.03 15.70 11.77 9.79 36.17 131.20 692.75 64.02 310.58 1242.18 132.13
AGOF 7.85 1.29 0.11 10.96 2.24 0.54 17.21 3.98 2.04 24.24 4.74 6.77

10000

Wu et al. 7.86 1.42 18.63 39.85 271.74 32.17 181.08 994.14 68.04 473.42 1945.89 136.09
DACT(*8) 7.76 0.13 22.77 15.40 43.66 44.57 155.21 837.82 84.50 423.24 1729.04 188.39
NeuOpt 7.75 0.03 40.95 11.67 8.86 66.60 130.08 685.98 116.26 308.21 1231.94 241.94
AGOF 7.83 1.03 0.17 11.05 1.96 0.94 17.14 3.56 5.15 24.23 4.71 13.01

C
V

R
P

LKH 15.57 – 60.25 28.04 – 157.94 63.32 – 834.80 120.53 – 4951.92
GFACS 19.26 23.70 1.96 34.55 23.22 4.18 78.34 23.72 12.93 150.47 24.84 26.10
AGFN 17.78 14.19 0.07 31.26 11.48 0.15 71.05 12.21 0.38 133.96 11.14 0.70
POMO(*8) 15.75 1.17 0.08 29.20 4.14 0.30 77.20 21.92 0.92 188.74 56.59 3.83

3000

Wu et al. 21.20 36.16 1.31 41.47 47.90 16.75 – – – – – –
DACT(*8) 16.86 8.29 1.17 30.92 10.27 14.98 72.81 14.99 521.1 – – –
NeuOpt 16.80 7.90 2.09 44.88 60.06 52.04 207.55 2277.80 1271.28 – – –
AGOF 16.53 6.17 0.43 29.86 6.49 0.70 68.05 7.47 2.44 131.70 9.27 5.49

5000

Wu et al. 20.28 30.25 2.70 40.08 42.94 25.01 – – – – – –
DACT(*8) 15.81 4.54 1.55 30.40 8.42 22.16 72.45 14.42 868.13 – – –
NeuOpt 15.79 1.41 4.94 43.58 55.42 83.03 207.24 272.29 2501.82 – – –
AGOF 16.46 5.72 0.75 29.72 5.99 1.17 67.77 7.03 4.31 127.40 5.70 9.56

10000

Wu et al. 19.75 26.85 4.88 39.41 40.51 51.57 – – – – – –
DACT(*8) 15.76 1.22 3.39 29.98 6.92 39.42 72.05 13.79 1631.73 – – –
NeuOpt 15.74 1.10 9.03 42.88 52.92 168.51 206.95 226.83 4930.95 – – –
AGOF 16.37 5.14 1.32 29.58 5.49 1.93 67.31 6.30 8.27 127.26 5.58 18.27

To address this limitation, we propose an exploration mechanism, Exploration beyond Local Optima
(ELO), which is triggered when the search process becomes trapped in a local optimum. Instead of
discarding the current solution, our approach temporarily replaces the learned score matrix η with
the original distance matrix to introduce mild perturbations. These perturbations allow the search
to gently deviate from the local optimum and continue exploring the solution space in a controlled
manner. Although the perturbation relies on the traditional distance matrix used in classical 2-Opt
methods, the primary contributor to performance improvement is still the learned score matrix η, as
the perturbation is intentionally subtle. We further demonstrate the effectiveness of this design and
our overall model through ablation studies in Sec. 4.2.

As shown in Algorithm 1 in Appendix, the procedure begins with a randomly initialized solution τ0
(Line 2) and iteratively applies 2-Opt moves guided by the learned score matrix η (Lines 4–6) until
a local optimum is reached. To escape from local optima, we introduce an exploration mechanism
(ELO), which temporarily replaces η with the original distance matrix D to perform mild pertur-
bations (Lines 11–14). The distance matrix D is computed based on Euclidean distances between
nodes. After perturbation, η-guided local search is resumed (Lines 15–18). If the perturbed solution
improves upon the best solution found so far, the perturbation level is reset; otherwise, it increases
gradually (Line 19). Once the perturbation limit is exceeded, a random restart is triggered (Line 22).
This procedure continues until the maximum number of iterations is reached.

4 EXPERIMENT

4.1 COMPARISON STUDIES

Baselines. To evaluate the effectiveness of AGOF, we compare it against a diverse set of base-
line methods, including: the classical heuristic solver LKH (Helsgaun, 2017) and the neural model
POMO (Kwon et al., 2020); GFlowNet-based approaches, including GFACS (Kim et al., 2025b)
and AGFN (Zhang et al., 2025); and Opt-based methods such as Wu et al. (2021), DACT (Ma et al.,
2021), and NeuOpt (Ma et al., 2023). We conduct experiments on both TSP and CVRP benchmarks,
and report the results in Table 1, where I denotes the number of 2-Opt iterations. More experiment
settings are presented in Appendix B.

TSP. Our model consistently delivers strong performance and robust generalization across all in-
stance sizes. While performance on 100- and 200-node instances is slightly inferior to POMO,
AGOF significantly outperforms POMO as the problem size increases, achieving much larger mar-
gins on 500- and 1000-node instances. Compared to GFlowNet-based models, our approach (with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on the effectiveness of each component in AGOF. The values reported in
the table represent gap (%) relative to LKH, with lower values indicating better performance.

I Method TSP CVRP
100 200 500 1000 100 200 500 1000

3000

Conventional 2-opt 2.97 5.88 8.82 10.03 9.18 10.02 9.82 10.80
AGOF w/o ELO 2.19 4.01 5.86 6.66 8.86 8.80 8.77 9.27
AGOF w/ Ran-ELO 1.81 3.36 5.20 5.70 7.65 7.31 7.68 9.27
AGOF w/ dis-ELO 1.55 2.52 4.23 5.57 6.17 6.49 7.47 9.27

5000

Conventional 2-opt 2.58 5.41 8.28 9.85 8.54 9.77 9.60 10.24
AGOF w/o ELO 1.94 3.54 5.50 6.35 8.29 8.45 8.29 7.69
AGOF w/ Ran-ELO 1.42 2.99 4.89 6.70 7.13 6.99 7.34 6.21
AGOF w/ dis-ELO 1.29 2.24 3.98 4.74 5.72 5.99 7.03 5.70

10000

Conventional 2-opt 2.19 5.03 7.98 9.29 7.84 9.13 9.33 9.96
AGOF w/o ELO 1.55 3.17 5.20 5.92 7.58 7.92 7.66 7.49
AGOF w/ Ran-ELO 1.16 2.80 4.53 5.23 6.55 6.31 6.66 6.16
AGOF w/ dis-ELO 1.03 1.96 3.56 4.71 5.14 5.49 6.30 5.58

*”w/” and ”w/o” denote ”with” and ”without”, respectively. ”Dis-ELO” and ”Ran-ELO” refer to distance-
based and random-based perturbation strategies within the ELO module.

I = 3000) consistently achieves better results than GFACS across all problem sizes while achieving
significantly shorter runtime. For fairness, we disable auxiliary modules in GFACS that are unre-
lated to its core ACO mechanism. AGOF also surpasses AGFN in terms of solution quality. When
compared to Opt-based methods, although our model does not always outperform all of them on
100-node instances, AGOF demonstrates greater advantages on larger-scale instances. Specifically,
it achieves superior performance on 200-, 500-, and 1000-node instances with substantially lower
runtime. This efficiency is largely attributed to our model’s NAR framework, which significantly
reduces computational burden.

CVRP. On the CVRP benchmark, AGOF consistently achieves remarkable performance, reflect-
ing both high solution quality and effective generalization in more complex, constraint-rich routing
scenarios. Similar to the TSP case, AGOF performs comparably to POMO on 100- and 200-node
instances, and exhibits markedly improved performance on larger-scale problems. Compared to
GFlowNet-based models, AGOF yields lower objective values. Against Opt-based baseline meth-
ods such as DACT, Wu et al., and NeuOpt, our model consistently delivers competitive results.
While AGOF may not always surpass these methods on 100-node instances, it shows strong overall
performance. Moreover, the improvements in gap over Opt-based baselines on large-scale instances
(such as 200-, 500-, 1000-node) underline AGOF’s generalization ability. Notably, DACT, Wu et al.,
and NeuOpt fail to run on large instances due to out-of-memory errors, whereas AGOF maintains
robust performance, demonstrating its superior computational efficiency.

Larger instances. Additional results on further larger instances (3000- and 5000-node TSP and
CVRP) are reported in Table 4 and Appendix C for completeness.

4.2 ABLATION STUDIES

To validate the effectiveness of our model, we conduct a series of ablation studies. We first compare
AGOF (without the proposed exploration mechanism, ELO) against the conventional distance-based
2-Opt algorithm to demonstrate the effectiveness of our learned model. We then evaluate the impact
of the ELO module by comparing AGOF with and without ELO, and further analyze different per-
turbation strategies by testing distance-based and random-based variants of ELO. All experiments
are conducted on TSP and CVRP instances of size 100, 200, 500, and 1000, with 3000, 5000, and
10000 training iterations. Finally, to assess the benefit of using GFlowNet for training 2-Opt model,
we compare it against a reinforcement learning (RL) baseline under the same training protocol.

Compassion with conventional 2-Opt. We compare AGOF without ELO to the conventional 2-Opt
algorithm to evaluate the effectiveness of the learned model, using identical settings. As shown in
the first and second rows of Table 2, AGOF without ELO consistently outperforms the conventional
2-Opt on both TSP and CVRP across all instance sizes and iteration counts.

Comparison of AGOF with and without ELO. To evaluate the contribution of the ELO module,
we compare AGOF with and without ELO. The results, shown in the second, third, and fourth rows

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

of Table 2, indicate that incorporating ELO consistently improves performance across all problem
sizes and iteration settings on both TSP and CVRP.

Comparison of ELO variants. We compare the performance of AGOF using random-based ELO
(Ran-ELO) and distance-based ELO (Dis-ELO). The results are shown in the third and fourth rows
of Table 2. In the Ran-ELO setting, the perturbation matrix is randomly generated, with entries sam-
pled uniformly from the interval [0,1] and subsequently normalized. In contrast, Dis-ELO leverages
the inverse of pairwise distances between nodes to guide perturbation. As shown in Table 2, Dis-
ELO consistently outperforms Ran-ELO across all instance sizes and training iterations on both TSP
and CVRP, highlighting the advantage of Dis-ELO.

Comparison of distance based ELO’s effect. Although Dis-ELO uses a distance-based perturba-
tion matrix, the performance gain primarily comes from the learning-based nature of AGOF. This
is evidenced by the fact that the conventional distance-based 2-Opt algorithm (first row of Table 2)
performs worse than the distance-based AGOF with Dis-ELO (fourth row of Table 2).

Comparison of GFlowNet training and reinforcement learning. Figure 3 in Appendix compares
the training performance of GFlowNet and reinforcement learning (RL) method which is widely
used in VRP domain (Kwon et al., 2020; Ye et al., 2023), on TSP and CVRP under identical ex-
perimental settings. Following the same training protocol, GFlowNet consistently achieves lower
objective values across both tasks. This performance gain can be attributed to GFlowNet’s inherent
suitability for the 2-Opt optimization within the NAR framework.

4.3 GENERALIZATION TO REAL-WORLD BENCHMARK DATASETS

Table 3: Generalization on TSPLib and CVRPLib. The values reported in the table represent the
gap (%) relative to current best-known solutions, with lower values indicating better performance.

Model/Node AGOF POMO GFACS AGFN Wu et al. DACT NeuOpt

TSPLib
<200 0.44 4.70 29.60 19.41 18.68 1.46 0.52
200–500 9.25 20.55 28.57 24.63 234.08 1555.80 1568.63
>500 5.29 41.55 35.09 31.07 257.75 3481.57 2736.49

CVRPLib
<200 12.65 8.38 49.63 17.13 14.25 3.61 3.22
200–500 11.00 31.15 65.50 13.60 – 22.38 65.59
>500 11.47 38.17 30.02 13.32 – – –

We evaluate the generalization ability of AGOF on two widely-used real-world benchmarks: TSPLib
(Reinelt, 1991) and CVRPLib (Uchoa et al., 2017). For TSPLib, we use the standard 50 test in-
stances ranging in size from 50 to over 1000 nodes. For CVRPLib, we evaluate on 100 instances
covering a variety of problem sizes, from small (<200 nodes) to large (>500 nodes). All neural
models, including our AGOF and the 2-Opt-based baselines, DACT, Wu et al., and NeuOpt, run
10000 iterations for Opt. Performance is measured by the optimality gap relative to the known best
solutions provided by the datasets. As shown in Table 3, our model (AGOF) achieves the best gener-
alization performance on TSPLib across all instance sizes, consistently outperforming all baselines.

5 CONCLUSION

In this work, we propose AGOF, the first framework to successfully apply a non-autoregressive
(NAR) architecture to 2-Opt for vehicle routing problems. By leveraging Generative Flow Network
(GFlowNet) to provide reward–edge aligned training, AGOF fully exploits the generalization capa-
bility and computational efficiency of NAR inference. To further enhance search effectiveness, we
introduce Exploration beyond Local Optima (ELO), which helps the model escape local minima.
Extensive experiments on both synthetic datasets and real-world benchmarks (TSPLib and CVR-
PLib) demonstrate that AGOF not only outperforms existing GFlowNet-based and 2-Opt-based neu-
ral methods but also exhibits strong generalization ability across problem scales and distributions.
An exciting future direction is to extend AGOF beyond 2-Opt to more general k-Opt operations.
While the primary focus of this work is to advance neural 2-Opt solvers, we will also include com-
parisons with SOTA neural VRP solvers beyond the GFlowNet- and Opt-based categories.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yannis Ancele, Minh Hoàng Hà, Charly Lersteau, Dante Ben Matellini, and Trung Thanh Nguyen.
Toward a more flexible vrp with pickup and delivery allowing consolidations. Transportation
Research Part C: Emerging Technologies, 128:103077, 2021.

Qinyang Bai, Xaioqin Yin, Ming K Lim, and Chenchen Dong. Low-carbon vrp for cold chain
logistics considering real-time traffic conditions in the road network. Industrial management &
data systems, 122(2):521–543, 2022.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
neural information processing systems, 34:27381–27394, 2021a.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021b.

Pei Cao, Yang Zhang, Kai Zhou, and Jiong Tang. A reinforcement learning hyper-heuristic in
multi-objective optimization with application to structural damage identification. Structural and
Multidisciplinary Optimization, 66(1):16, 2023.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta
neural heuristic for multi-objective combinatorial optimization. Advances in Neural Information
Processing Systems, 36:56825–56837, 2023.

Lixin Cheng, Qiuhua Tang, Liping Zhang, and Zikai Zhang. Multi-objective q-learning-based hyper-
heuristic with bi-criteria selection for energy-aware mixed shop scheduling. Swarm and Evolu-
tionary Computation, 69:100985, 2022.

PLNU Cooray and Thashika D Rupasinghe. Machine learning-based parameter tuned genetic algo-
rithm for energy minimizing vehicle routing problem. Journal of Industrial Engineering, 2017
(1):3019523, 2017.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Bo Feng and Qiwen Ye. Operations management of smart logistics: A literature review and future
research. Frontiers of Engineering Management, 8(3):344–355, 2021.

Asefeh Hasani Goodarzi and Seyed Hessameddin Zegordi. Vehicle routing problem in a kanban
controlled supply chain system considering cross-docking strategy. Operational Research, 20(4):
2397–2425, 2020.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

Jungmin Kim, Apurba Manna, Arindam Roy, and Ilkyeong Moon. Clustered vehicle routing prob-
lem for waste collection with smart operational management approaches. International Transac-
tions in Operational Research, 32(2):863–887, 2025a.

Minsu Kim, Sanghyeok Choi, Hyeonah Kim, Jiwoo Son, Jinkyoo Park, and Yoshua Bengio. Ant
colony sampling with gflownets for combinatorial optimization. In The 28th International Con-
ference on Artificial Intelligence and Statistics, 2025b.

Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
problem and related algorithms for logistics distribution: A literature review and classification.
Operational research, 22(3):2033–2062, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ying Li, Pengwei Zhang, and Yifan Wu. Public recharging infrastructure location strategy for pro-
moting electric vehicles: A bi-level programming approach. Journal of cleaner production, 172:
2720–2734, 2018.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Ad-
vances in Neural Information Processing Systems, 34:11096–11107, 2021.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible re-
gions of routing problems with flexible neural k-opt. Advances in Neural Information Processing
Systems, 36:49555–49578, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022.

Yue Pan, Linfeng Li, Jianjun Qin, Jin-Jian Chen, and Paolo Gardoni. Unmanned aerial vehicle–
human collaboration route planning for intelligent infrastructure inspection. Computer-Aided
Civil and Infrastructure Engineering, 39(14):2074–2104, 2024.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Toru Seo and Yasuo Asakura. Multi-objective linear optimization problem for strategic planning of
shared autonomous vehicle operation and infrastructure design. IEEE Transactions on Intelligent
Transportation Systems, 23(4):3816–3828, 2021.

Abhay Sobhanan, Junyoung Park, Jinkyoo Park, and Changhyun Kwon. Genetic algorithms with
neural cost predictor for solving hierarchical vehicle routing problems. Transportation Science,
59(2):322–339, 2025.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. Multi-objective
evolution of heuristic using large language model. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 27144–27152, 2025.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. Advances in neural information processing systems, 36:
43706–43728, 2023.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in neural
information processing systems, 36:11952–11969, 2023.

Ni Zhang, Jingfeng Yang, Zhiguang Cao, and Xu Chi. Adversarial generative flow network for
solving vehicle routing problems. In The Thirteenth International Conference on Learning Rep-
resentations, 2025.

Fuqing Zhao, Tao Jiang, and Ling Wang. A reinforcement learning driven cooperative meta-heuristic
algorithm for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent
setup time. IEEE Transactions on Industrial Informatics, 19(7):8427–8440, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A SUPPLEMENTARY METHODOLOGY

A.1 GRAPH NEURAL NETWORK

Graph Neural Network (GNN) encodes raw node information V and edge distances E into initial
features h0

i and e0ij ∈ Rd, and updates them as following:

hl+1
i = hl

i +ACT
(
BN

(
Wl

1h
l
i +A

(
σ(elij)⊙Wl

2h
l
j

)))
, (18)

el+1
ij = elij +ACT

(
BN

(
Wl

3e
l
ij +Wl

4h
l
i +Wl

5h
l
j

))
, (19)

where Wl
1, Wl

2, Wl
3, Wl

4, and Wl
5 are learnable weight matrices at layer l; hl

i and elij are node
and edge features at layer l; σ is the sigmoid function; ⊙ is element-wise multiplication; A is mean
pooling over neighbors; BN denotes batch normalization; and ACT is the activation function (e.g.,
SiLU (Elfwing et al., 2018)).

A.2 SOURCE FLOW

The source flow Zθ(G) serves as the initial flow value in GFlowNet, indicating the total probability
mass emitted from the source state. And it is computed from the final-layer edge embeddings of the
GNN ed as follows:

Zθ(G) = W1 · ReLU(W2 · ed + b1) + b2, (20)

where W1, W2, b1, and b1 are learnable parameters, and ReLU is the activation function.

A.3 ALGORITHM

Algorithm 1 GFlowNet-guided 2-opt with exploration beyond local optimal

1: Input: random initial solution τ0, score matrix η, distance matrix D, max isterationps I , max
perturbation Z, initial perturbation z0, increased perturbation ξ

2: τ ← τ0, τ∗ ← τ0, z ← z0, s← 0
3: while s < N do
4: while max∆(τ, η) > 0 and s < I do ▷ Step 1: η-guided 2-opt
5: (i∗, j∗)← argmax∆(τ, η)
6: τ ← 2-opt(τ , i∗, j∗), s← s+1
7: end while
8: τ∗ ← τ if cost(τ) < cost(τ∗) ▷ update best solution
9: while z ≤ Z and s < I do

10: i← 1
11: while i < min(z, I−s) and max∆(τ,D) > 0 do ▷ Step 2: Exploration beyond local

optima
12: (i∗, j∗)← argmax∆(τ,D)
13: τ ← 2-opt(τ , i∗, j∗), i← i+ 1, s← s+1
14: end while
15: while max∆(i, j) > 0 and s < I do ▷ Step 3: Resume η-guided 2-opt
16: (i∗, j∗)← argmax∆(i, j)
17: τ ← 2-opt(τ , i∗, j∗), s← s+1
18: end while
19: z ← z0 if cost(τ) < cost(τ∗), else z ← z+ξ ▷ adjust perturbation level
20: τ∗ ← τ if cost(τ) < cost(τ∗)
21: end while
22: τ ← random solution, z ← z0 ▷ restart if perturbation failed
23: end while
24: return best solution τ∗

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B SUPPLEMENTARY EXPERIMENTS

Hyperparameter. The GNN dimension is set to 32, and the network depth is set to 12. We use
a batch size of 5 and run the training for 1000 steps. Training on 100-node TSP instances takes
approximately 20 minutes, while training on 100-node CVRP instances takes about 2 hours. All
experiments are run for 5 times to test the model’s stability. During training, AGOF optimizes 10
routes per instance to encourage route diversity, whereas only one route is optimized during testing.
The perturbation mechanism is governed by three hyperparameters: the initial perturbation strength
z0 = 20, the perturbation increment ξ = 20, and a maximum perturbation threshold Z = 100. The
hyperparameter settings for all baseline methods follow their respective original papers.

Dataset and Experimental Setting. Following prior works (Kwon et al., 2020; Wu et al., 2021; Ma
et al., 2021; Kim et al., 2025b; Zhang et al., 2025), we conduct experiments on both the TSP and
CVRP. Training and test instances are generated using a uniform distribution, as in (Kwon et al.,
2020). For our AGOF, all initial routes are randomly generated. All experiments are conducted on
a machine equipped with an NVIDIA RTX 3090 GPU and an AMD EPYC 7702P CPU. To ensure
fairness, all models used for comparison are trained on 100-node instances. The evaluation includes
10,000 randomly sampled 100-node instances and additional test sets consisting of 128 instances for
each of the 200-, 500-, and 1000-node cases. More experiment details are presented in Appendix.

Random Seed Initialization.

To ensure robustness and reproducibility, we employed five fixed seed values, i.e., 0, 10, 100, 1000,
and 10000, consistently across all components, including data loading, model initialization, and
random initialization.

200 400 600 800 1000
Step

7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

Ob
j.

Training on TSP
GFlowNet
Reinforcement Learning

200 400 600 800 1000
Step

16

18

20

22

24

26

28

Ob
j.

Training on CVRP
GFlowNet
Reinforcement Learning

Figure 3: Comparison of training performance between RL and GFlowNet on TSP and CVRP.
GFlowNet demonstrates better final performance in both tasks.

C EVALUATION ON FURTHER LARGER INSTANCES.

Table 4: Comparison gap (%) on TSP (left) and CVRP (right).

TSP CVRP
Nodes AGOF POMO GFACS AGFN Wu et al. DACT NeuOpt AGOF POMO GFACS AGFN Wu et al. DACT NeuOpt

3000 4.89 62.25 70.84 37.41 – 3525.16 3062.73 -4.58 84.15 3.38 -3.00 – – –
5000 5.27 71.39 *86.26 58.04 – – – -6.47 111.79 1.24 -5.26 – – –

*The gap is measured against LKH (10000) for TSP and LKH (1000) for CVRP on those further larger in-
stances, as running 10,000 iterations on CVRP would be prohibitively time-consuming. ’-’ indicates Out-of-
Memory issues for those neural baselines.

To evaluate the scalability of our method on further larger instances, we report results on both 3000-
and 5000-node problems for TSP and CVRP, as shown in Table 4. All Opt-based neural mod-
els, including AGOF, Wu et al., DACT, and NeuOpt, run with 20,000 iterations to ensure high-
quality reference solutions. Across both TSP and CVRP, our AGOF achieves superior performance
with consistently low optimality gaps, significantly outperforming all learning-based baselines and
even other optimization-based methods. Notably, several methods including Wu et al., DACT, and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

NeuOpt failed to complete on certain problem sizes due to out-of-memory (OOM) issues, highlight-
ing the computational challenges posed by these large-scale benchmarks. In contrast, our AGOF
maintains robust performance and runtime stability across all instance sizes, further demonstrating
its scalability and efficiency.

D STATEMENT ON USAGE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were engaged only for
stylistic editing and refinement of the written text. Their involvement was confined to enhancing
readability and fluency, without influencing the study’s design, methodology, data analysis, or sci-
entific conclusions. All intellectual content and final interpretations remain solely the responsibility
of the authors.

14

	Introduction
	Related Work
	Methodology
	AR vs. NAR for 2-Opt in VRP
	GFlowNet-Guided NAR for 2-Opt
	Exploration Beyond Local Optima

	Experiment
	Comparison Studies
	Ablation Studies
	Generalization to Real-World Benchmark Datasets

	Conclusion
	Supplementary Methodology
	Graph Neural Network
	Source Flow
	Algorithm

	Supplementary Experiments
	Evaluation on Further Larger Instances.
	Statement on Usage of Large Language Models

