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ABSTRACT

Stochastic gradient descent with momentum (SGD+M) is widely used to empir-
ically improve the convergence behavior and the generalization performance of
plain stochastic gradient descent (SGD) in the training of deep learning models,
but our theoretical understanding for SGD+M is still very limited. Contrary to
the conventional wisdom that sees the momentum in SGD+M as a way to ex-
trapolate the iterates, this work provides an alternative view that interprets the
momentum in SGD+M as a (biased) variance-reduced stochastic gradient. We
rigorously prove that the momentum in SGD+M converges to the real gradient,
with the variance vanishing asymptotically. This reduced variance in gradient es-
timation thus provides better convergence behavior and opens up a different path
for future analyses of momentum methods. Because the reduction of the variance
in the momentum requires neither a finite-sum structure in the objective function
nor complicated hyperparameters to tune, SGD+M works on complicated deep
learning models with possible involvement of data augmentation and dropout, on
which many other variance reduction methods fail.

1 INTRODUCTION

Stochastic gradient descent (SGD) has become one of the most popular algorithms for training ma-
chine learning models due to its low per-iteration cost and astonishing practical performance, espe-
cially when large-scale data are involved (Bottou, 2010; Shalev-Shwartz et al., 2011; Bottou et al.,
2018). When applied to training deep learning models, SGD is often combined with momentum
that extrapolates the previous update step to obtain better practical performance in both the gener-
alization accuracy and the empirical convergence behavior (Sutskever et al., 2013). On the other
hand, current theoretical understanding for SGD with momentum (SGD+M) is incommensurate to
its popularity in practice. Although some studies have analyzed the convergence of SGD+M under
various schemes, their results do not reflect why momentum is applied by default to SGD especially
when training deep learning models. This leads to the open question:

For SGD+M, can we show a convergence behavior better than that of SGD to corroborate its
empirical superiority?

In this work, we affirmatively answer this question in part by utilizing the recently established result
of iterate convergence of SGD+M under the scenario of the stochastic heavy-ball method. The diffi-
culty in analyzing SGD+M mainly arises from the stochastic nature of the algorithm that complicates
the accumulated error in the momentum in comparison to the analyses for their deterministic coun-
terparts. Our analysis shows that, surprisingly, this accumulated error of in the momentum actually
vanishes asymptotically when the iterates converge. The cancellation of the accumulated error can
therefore be used to improve the local convergence speed analogous to variance-reduction stochastic
methods popular for finite-sum problems, such as SAG (Schmidt et al., 2017), SVRG (Johnson &
Zhang, 2013), SAGA (Defazio et al., 2014), just to name a few. This not only explains the prominent
practical performance of SGD+M, but also justifies the success of the recently popular cyclical step
size scheduling that adopts larger step sizes at later stages (Smith, 2017), as reduced step sizes and
the accompanied slower convergence in the original SGD was a consequence of the non-vanishing
variance in the stochastic gradients.
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Convergence of the iterates of SGD+M was unknown for a long period of time. Past study focused on
the non-convergence to saddle points under suitable assumptions, but whether the iterates converge
remained an open problem. Recently, Gadat et al. (2018) have shown that the iterates generated by
the stochastic version of heavy-ball, which can be seen as a form of SGD+M, generates iterates that
converge almost surely to a critical point without the need of convexity, but convergence rates are
established only under the additional assumption of strong convexity. Sebbouh et al. (2021) proved
that when the optimization problem is convex, stochastic heavy-ball generates iterates that converge
almost surely to a solution, but contrary to the deterministic case, the obtained convergence speed
of the objective value is not faster than that of SGD alone.

When the real gradient without noise is used as in the deterministic case, SGD+M reduces to the
well-known heavy-ball method of Polyak (1964). When the underlying problem is strongly convex,
Polyak (1964) showed that as the iterates converge to the optimal solution, the heavy-ball method
exhibits an accelerated local linear convergence rate of 1− κ−1/2, which is significantly faster than
the 1−κ−1 rate of gradient descent. We notice that the accelerated speed of the heavy-ball method is
asymptotic, meaning that it happens only when the iterates are close enough to the optimal solution.
This result ignites our motivation to follow the traditional optimization viewpoint to study the local
behavior of SGD+M, instead of the more conservative and pessimistic global complexity.

In the stochastic setting where the objective function to minimize is the expectation over a given
distribution of some parameterized loss function, we observe that convergent iterates provide a local
acceleration for heavy-ball, or equivalently SGD+M, over vanilla SGD with an equally prominent
improvement but through a much different perspective. Unlike the deterministic heavy-ball method
that relies on the problem being strongly convex locally around the limit point, our analysis does
not require convexity even locally. Our main observation is that together with a mild smoothness
assumption on the parameterized loss function, a converging sequence of iterates implies that the
sampled stochastic gradients can also be viewed as stochastic gradients at the limit point plus a
bias term converging to zero. Therefore, the momentum that accumulates the previous stochastic
gradients can then be treated as an estimator for the real gradient at the limit point with improving
precision. This then leads to our main contribution of showing that the variance in the momentum
term vanishes asymptotically albeit the persistent presence of the noise in the individual stochastic
gradient even at the point of convergence. Therefore, although popular variance reduction methods
that rely on the finite-sum structure of the underlying problem is not applicable to deep learning
tasks that often incorporate data augmentation and dropout (Defazio & Bottou, 2019), SGD+M can
be viewed as a different means for variance reduction in this stochastic approximation scenario.1

In existing analyses for SGD and SGD+M, a scenario that is particularly of interest is the so-called
overparameterized or interpolation case such that the individual stochastic gradient estimations all
become zero at the point of convergence (Vaswani et al., 2019a;b). The obtained convergence speed
of SGD and SGD+M in such a scenario can be much faster than the normal case in which the vari-
ance of the stochastic gradient is only assumed to be upper-bounded. Moreover, when the objective
function is a finite sum of losses, even in the presence of variance in the stochastic gradient, variance
reduction methods are able to generate estimators of the real gradient with the variance decreasing
to zero as the iterates converge to a point. Through the vanishing gradient, these methods thus pro-
vide convergence rates matching that of SGD in the interpolation scenario, which is much faster
than SGD’s convergence speed in this normal setting. This suggests that even just locally, the reduc-
tion of the variance in the stochastic gradient estimation can lead to remarkable improvement in the
convergence speed. Our analysis thus suggests that even if the variance in the individual stochastic
gradient does not change, the variance in the momentum can reduce to zero and therefore provide
faster local convergence behavior mimicking that observed in both the noiseless interpolation case
and the variance reduction methods. This work thus serves as the initial step of a different angle to
justify the astonishing practical performance of SGD+M, and we hope that it can open up a new path
and inspire future research that focuses not only on the global complexity bound but also other per-
spectives like the local or asymptotic behaviors of SGD+M, which might also turn out to be useful
for global analysis just like what we have observed in the interpolation case and variance reduction
methods.

1There are also recent developments for variance reduction in such an online or streaming setting, but those
methods either require the knowledge of the variance upper bound of plain SGD at a stationary point, or have
complicated parameters to tune; see our discussion in Section 4.
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The remainder of this work is organized as follows. We present the problem setting and the algorithm
in Section 2. The main analysis is given in Section 3. Section 4 then review existing works relevant
to our results. Finally, numerical results in Section 5 verity our analysis, and Section 6 discusses
limitations and future directions of this work.

2 PRELIMINARIES

We consider the following general optimization problem:

min
x∈Rd

F (x) := Eξ∼D [fξ (x)] , (1)

where d > 0 is the dimension of the problem, D is a distribution over an arbitrary space Ω, Eξ∼D is
the expectation with respect to the random variable ξ distributed as D, fξ(x) is differentiable almost
everywhere for all ξ ∈ Ω. We further assume that (1) is bounded below, that the set of stationary
points Z := {x | ∇F (x) = 0} is nonempty, and there exist global solutions to (1) inside Z . In this
work, ‖·‖ denotes the Euclidean norm for vectors and the corresponding operator norm for matrices,
and the inner product is denoted by 〈·, ·〉.
In most machine learning problems, instead of (1), the finite-sum structure such that Ω consists of
finitely many points is often assumed, and an abundant amount of study for such a scenario under the
name empirical risk minimization is available. We do not consider this scenario because as discussed
by Defazio & Bottou (2019), in the practice of deep learning, data augmentation (Van Dyk & Meng,
2001; Kobayashi, 2018; Shorten & Khoshgoftaar, 2019) and dropout (Srivastava et al., 2014) are
pervasive and the amount of possible random data points they can generate from a finite population
is intractable for any utilization of the finite-sum structure.

The algorithm SGD+M being considered takes the following simple iterative form with m0 =
0, α0 = 1, and some given initialization x0:{

mt+1 ← (1− αt)mt + αt∇fξt+1
(xt)

xt+1 = xt − ηtmt+1 , t ≥ 0. (2)

where ξt for all t ≥ 1 are random variables that independently and identically distributed (i.i.d.) as
D,mt is the momentum term that accumulates previous gradients, αt ∈ [0, 1], ηt ≥ 0 are algorithm-
defining parameters decided in advance. The special case of αt ≡ 1 in (2) reduces to the ordinary
SGD without momentum and its convergence is well-established.

In our analysis, we use {Ft}t≥0 to denote the natural filtration of {(mt, xt)}t≥0. Namely,Ft records
the information of x0, {αi}t−1i=0 , {ηi}t−1i=0 , and {ξi}ti=1. The standard assumption for SGD is that it
is an unbiased estimator for the real gradient

Eξ∼D
[
∇fξ(xt) | Ft

]
= ∇F (xt), ∀t ≥ 0,

which is already incorporated into our problem formulation. When there is no ambiguity, we use E
with no subscript to denote expectation either over ξ ∼ D or over ξ1, . . . , ξt

i.i.d.∼ D. To relate the
gradient change with the iterate convergence, we further make the following assumption.
Assumption 1. For all ξ ∼ D, fξ(x) is differentiable almost everywhere, and there exists Lξ such
that

‖∇fξ(x)−∇fξ(y)‖ ≤ Lξ‖x− y‖, ∀x, y ∈ Rd (3)
almost surely. Moreover, let L := supξ∼D Lξ, we have L <∞.

The almost surely part in our assumption above helps to tackle a broader class of problems that
contain a measure zero set of nondifferentiability for each ξ. This happens often in machine learning
applications such as the hinge loss in support vector machines and the ReLU activation function in
neural networks.

To quantify the variance of the stochastic gradient, the following assumption is standard for SGD.
Assumption 2. There exists σ2 ≥ 0 such that

E‖∇fξ (x∗)‖2 ≤ σ2, ∀x∗ ∈ Z. (4)
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Assumption 2 together with Assumption 1 provides a global upper bound for the variance of the
gradient that grows with the distance between the iterate and Z . If we restrict the iterates to a
compact set, we can also replace such a global bound function with a constant.

When σ2 = 0, this is the so-called interpolation case that implies ∇fξ(x∗) = 0, and therefore
fξ(x

∗) = infx fξ(x) almost surely under the distribution of D. When σ2 > 0, this assumption
accords with empirical observations and is the fundamental reason that SGD requires a diminishing
step size to converge. On the other hand, we will show that under suitable parameter settings, even
if σ2 > 0, E

∥∥mt+1 −∇F (xt)
∥∥2 −→ 0, and therefore a faster asymptotic convergence can be

expected.

3 ANALYSIS

We first state existing convergence results of the iterates generated by SGD+M. The main result of
reduced variance is then built upon the assumption that the iterates are convergent.
Proposition 1 (Gadat et al., 2018, Theorem 2.1). Consider applying (2) to optimize (1). If F is a
C2 and coercive function with infx F (x) = 0, there is cf ≥ 0 such that

sup
x∈Rd

∥∥∇2F (x)
∥∥ <∞, ‖∇F (x)‖ ≤ cfF (x),

there is σ2 > 0 such that

E
[∥∥∇fξ (xt)∥∥2 | Ft] ≤ σ2

(
1 + F

(
xt
))
, ∀t ≥ 0,

there are η > 0 and p ∈ (0, 1] such that αt and ηt satisfy

ηt = t−pη,
∑
t≥1

αt =∞,
∑
t≥1

αtηt−1 <∞, lim sup
t→∞

α−1t+1 − η
−1
t ηt−1α

−1
t < 1,

and for any z, {x | F (x) = z} ∩ Z is locally finite, then {xt} converges almost surely to a critical
point x∗ ∈ Z .

Proposition 2 (Sebbouh et al., 2021, Theorem 13). Consider applying (2) to optimize (1). Assume
Assumption 1 holds and in addition for all ξ ∼ D, fξ is convex almost surely. If there is a decreasing
positive sequence {η̂t} such that∑

η̂t =∞,
∑

η̂2t <∞,
∑
t

η̂t∑
j η̂j

=∞,

we define

λ0 := 0, λt :=

∑t−1
k=0 η̂k
4η̂t

, α̂t :=
η̂t

1 + λt+1
, β̂t :=

λk
1 + λt+1

, ∀t ≥ 0,

and the parameters setting for αt and ηt in (2) satisfies

η−1 = 0, ηt = α̂t + β̂tηt−1, ∀t ≥ 0, αt =
α̂t

α̂t + β̂tηt−1
,∀t ≥ 0,

then {xt} converges almost surely to some global solution x∗ ∈ Z .

The assumption of infx F (x) = 0 is simply for the ease of description and can be substituted by
any finite constant, and the results still hold after straightforward modifications. We also note that
the constraints related to the (stochastic) gradient is implied by Assumptions 1 and 2 together with
a mild assumption that the iterates stay within a bounded domain. The coerciveness of F is also
a common scheme in machine learning when a certain regularization or weight decay is applied in
model training.

The above results rely on specific parameters selection and do not directly imply that (2) generates
convergent iterates in general. However, in the practice of deep learning, grid parameter search is
conducted to select only those parameters that lead to convergent objective, and the variables are
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usually restricted to a bounded region (through the help of weight decay or `2-norm regularization),
so even beyond the above parameter choices, it is often observed in practice that at least convergent
subsequences of the iterates exist. Therefore, in our following analysis, we assume convergence of
the iterates with probability one without applying the specific parameter setting required by Propo-
sitions 1 and 2.

The following is our main result that states that the momentum mt+1 converges to the real gradient
∇F (xt), which verifies the variance reduction claim we made in the paper title.
Theorem 1. Consider applying (2) to solve (1) with Assumptions 1 and 2 hold. Assume that there
is x∗ ∈ Z such that xt −→ x∗ almost surely, then if∑

t≥0

αt =∞, lim
t→∞

αt = 0,

∥∥xt+1 − xt
∥∥

αt

a.s.−−→ 0, (5)

where a.s.−−→ denotes converging almost surely, we have that

E
∥∥mt+1 −∇F

(
xt
)∥∥2 −→ 0.

Moreover, the covariance matrix also converges to 0.

E
(
mt+1 −∇F

(
xt
)) (

mt+1 −∇F
(
xt
))> −→ 0.

Proof sketch. First, Assumption 2 together with the convergence of the iterates will be used to pro-
vide an upper bound for the noise level of each individual stochastic gradient as well as a bound for
the size of ∇F (xt). The relative change in xt and the smoothness assumption will then ensure that
the change in the expected value of the stochastic gradient does not move too fast, somt+1−∇F (xt)
can be expressed as a weighted sum of mt −∇F (xt−1), a noise term related to the change in ∇F ,
and a term related to the variance of the stochastic gradient. The conditions for αt then ensure that
the noise terms will be asymptotically negligible.

The last requirement of the relatively decreasing update length in (5) seems hard to verify, as con-
vergence of the iterates does not imply any information about the convergence speed in the iterate
difference. Fortunately, in most practical schemes of SGD+M, the (periodically) exponentially de-
creasing step size scheduling together with the smoothness assumption can ensure the fulfillment of
such a requirement.
Remark 1. 1. The conditions in (5) does not require the square of αt to be summable, which

is an often-seen requirement in stochastic algorithms, thus our result allows for much
slower decrease in αt, which is closer to the practice of momentum usage. Indeed, if
we assume summability of α2

t , a stronger result of almost sure convergence of mt can be
proven. However, this does not provide much further insights in the algorithm, so we opted
for weaker assumptions.

2. Theorem 1 indicates that although SGD+M reduces the variance of the gradient estimator
to zero. This suggests that the momentum is a biased but in a sense consistent estimator
for the real gradient. On the other hand, the stochastic gradient in SGD is an unbiased
estimator but it is not consistent in the limit of time. Therefore, SGD+M outperforms SGD
asymptotically because the stochastic gradient estimation from the momentum eventually
becomes the real gradient and the algorithm behaves similar to gradient descent, so it can
achieve convergence rates similar to what we have seen in variance reduction methods.

3. The function of momentum in variance reduction also explained why in the interpolation
case, plain SGD without momentum is preferred and instead Nesterov’s acceleration is
considered by Vaswani et al. (2019a;b), as in this situation, variance reduction is automat-
ically achieved in SGD, and the role of momentum becomes redundant.

4. Theorem 1 also provides an explanation for why cyclical step size scheduling (Smith, 2017)
works. When the variance reduces to a small enough amount, the momentum becomes a
high-quality approximation of the real gradient, and we can therefore afford to use a larger
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step size to improve the convergence speed. The followed-up decrease of the step size then
serves to improve the approximation precision of the momentum by keeping the iterates
moving slowly.

The variance reduction aspect of the momentum we observed in Theorem 1 also suggests reason-
ing for why Nesterov’s acceleration (Nesterov, 1983) is sometimes used together with SGD+M in
practice, as such an acceleration technique has already been proven to provide better convergence
speed for plain variance reduction methods. See, for example, (Nitanda, 2014; Allen-Zhu, 2017;
Zhou et al., 2019).

4 RELATED WORKS

Understanding SGD+M is an ongoing active research topic recent years thanks to the great suc-
cess of training deep learning models using SGD+M. Works that considered special settings such
as quadratic or (strongly) convex problems and provided non-asymptotic convergence analyses are
abundant. Representative works include Flammarion & Bach (2015); Yuan et al. (2016); Can et al.
(2019); Needell et al. (2014). These works provide some insights and intuitions for why SGD+M
works well, but the settings are still too restrictive as deep learning models are highly noncon-
vex. Non-asymptotic convergence rates of SGD+M (on the minimum of the expected norm of the
stochastic gradients) are recently discussed in Yan et al. (2018); Defazio (2020); Liu et al. (2020);
Mai & Johansson (2020), but the rates are only of the same order as vanilla SGD and therefore
provide only limited insight on the success of SGD+M.

Another path for analyzing SGD+M considers its asymptotic convergence, which focuses on the
iterates instead of the objective value or the gradient. Liu et al. (2018) used a diffusion argument
to analyze the asymptotic behavior of SGD+M and argued that SGD+M is more likely than plain
SGD to escape saddle points. This is further confirmed by Wang et al. (2020), who showed that
under the additional assumption of correlated negative curvature, SGD+M escapes saddle points
faster than SGD by a constant factor. These results help to explain the better generalization ability
of the models trained by SGD+M, but is from an angle complementary to the convergence speed.
Our work is inspired by the almost sure convergence of the iterates of SGD+M to a stationary point
shown by Gadat et al. (2018). In addition to Proposition 1, they further showed that when the
noise of the stochastic gradient satisfies an elliptic assumption, the iterates escape saddle points and
converge almost surely to a local minimum, although no rate is shown in the nonconvex setting.
When the problem is further assumed to be convex or even strongly convex, convergence rates are
proven in Gadat et al. (2018); Sebbouh et al. (2021) but the rates are no better than that of plain
SGD. We notice that the only local acceleration of SGD+M shown by Sebbouh et al. (2021) is the
improvement from O(t−p) to o(t−p) where t is the iteration count and p ∈ (0, 1/2) depends on the
step size selection.

When the underlying problem is convex and randomness is not involved in the algorithm, such
locally accelerated from big-O to small-o due to the convergence of the iterates is prevalent in first-
order optimization algorithms, as evidenced by, for example, (Bertsekas, 2016; Attouch & Peypou-
quet, 2016; Peng et al., 2020; Lee & Wright, 2019). Moreover, examples in Attouch & Peypouquet
(2016); Lee & Wright (2019) have shown that further improvement is impossible without additional
assumptions on the problem class, so such an incremental improvement in SGD+M seems reason-
able. On the other hand, as mentioned in Section 1, the heavy-ball method (Polyak, 1964) has
significant convergence speed improvement locally when the iterates get close enough to the point
of convergence in comparison to gradient descent, and this is in stark contrast to the stochastic case
in which the known rates of SGD and SGD+M are equivalent and the amount of local acceleration is
negligible. This work partially fills this gap to demonstrate that the local convergence improvement
of SGD+M over vanilla SGD can be much greater than expected, although it can be hard to quantify.

Variance reduction methods that decrease the variance of the stochastic gradient to zero as the it-
erates converge to a stationary point have been an extremely powerful tool to accelerate SGD. The
most widely-considered algorithms in this category, including SAG (Schmidt et al., 2017), SVRG
(Johnson & Zhang, 2013), and SAGA (Defazio et al., 2014), require the objective function to possess
a finite-sum structure so that stale versions of the (stochastic) gradients can be incorporated in the
algorithm design. A major improvement of these methods from SGD is that with the vanishing vari-
ance, a decreasing step size is unnecessary, and a fixed step size can thus help to achieve significantly
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faster convergence rates that track the speed of gradient descent. Similar speed improvement of SGD
is also observed in the interpolation scheme where the variance of the stochastic gradient vanishes
when approaching a stationary point (Vaswani et al., 2019a;b; Sebbouh et al., 2021). Furthermore,
for both variance reduction methods and SGD in the interpolation case, Nesterov’s acceleration is
shown to be effective in further improving the convergence speed (Vaswani et al., 2019a; Nitanda,
2014; Allen-Zhu, 2017; Zhou et al., 2019) by another order, but this technique is not useful for plain
SGD in the bounded-variance scenario. These results suggest that vanishing variance is indeed the
key to accelerating stochastic algorithms, and our main result in Theorem 1 shows that the momen-
tum term has a similar effect in reducing the variance without the need of the finite-sum structure
in the objective function or additional gradient evaluations. This provides a different view point for
explaining the improved practical performance of SGD+M over SGD. Another implication of our
result is the justification of the recently popular cyclical step size setting proposed by Smith (2017).
This scheme periodically increases the step size to a certain value and then gradually reduces it. Our
result in Theorem 1 indicates that the momentum term eventually gets close to the real gradient, and
therefore larger step sizes can be applied to improve the convergence. However, a large and fixed
step size violates the assumptions in Theorem 1, and therefore one needs to subsequently gradually
decrease the step size again to improve the quality of approximation to the real gradient, which
accords with the setting in cyclical step size scheduling.

Another line of research devises variance reduction algorithms beyond the finite-sum setting in or-
der to improve convergence speed for (1), mostly with the motivation being the online or streaming
scenario instead of the time-consuming training of deep learning models. The earliest work is prob-
ably the regularized dual averaging algorithm (Xiao, 2010), although its role as a variance-reduction
algorithm is shown much later by Lee & Wright (2012) and it has no known convergence guarantee
in the nonconvex case. Other works including Allen-Zhu (2018); Fang et al. (2018); Wang et al.
(2019); Nguyen et al. (2021); Pham et al. (2020) apply multiple loops with periodical checkpoints
for computing a stochastic gradient with a relatively large batch size to attain variance reduction.
These algorithms either require knowledge of the hard-to-estimate σ2 in Assumption 2 and the Lip-
schitz constant, or otherwise have multiple hyperparameters to tune. In average, these algorithms
also require a computational cost at least thrice of plain SGD, making hyperparameter tuning even
more daunting. Therefore, these algorithms are mainly of theoretical interests without much popu-
larity in practice. The most relevant works are Cutkosky & Orabona (2019); Tran-Dinh et al. (2019)
that do not require multiple loops and their algorithms mainly just replace the momentum update in
(2) with

mt+1 = (1− αt)mt + αt∇fξt
(
xt
)

+ (1− αt)
(
∇fξt

(
xt
)
−∇fξt

(
xt−1

))
(6)

and provide specific choices for αt and ηt. Cutkosky & Orabona (2019) showed that thismt achieves
variance reduction, and with properly chosen αt and ηt together with some additional assumptions,
a global convergence rate matching the optimal speed of other variance reduction methods can be
obtained, although in practice there are still three hyperparameters to tune. As argued by the authors,
when {xt} converges, the last term in (6) becomes very small, and thus their new update becomes
almost the same as the ordinary momentum update in SGD+M. Our result and their argument can be
seen to complement each other in confirming the function in variance reduction of the momentum
term. Tran-Dinh et al. (2019) requires an initial large batch to start the first iterate from a place close
enough to a stationary point to obtain the same optimal convergence rate as Cutkosky & Orabona
(2019), and the remaining algorithm fits in (6). However, their hyperparameters need to change with
the pre-specified epoch number, meaning that early stopping and other practices cannot be combined
with the algorithm easily.

5 EXPERIMENTS

In this section, we provide preliminary numerical experiments to exemplify our theoretical results
that the variance of the momentum term vanishes asymptotically. Although in the analysis we
considered the general case in which the objective is the expectation over a possibly infinite sample
size so that data augmentation and dropout are possible, to make the computation of the variance
tractable, we have to restrict our setting to finite data points in the experiments. Therefore, the
problem in (1) simplifies to

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi (x) (7)
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for some individual functions fi, i = 1, . . . , n, that depends on the data points, and obtaining a
stochastic gradient amounts to deciding an index set I ⊂ {1, . . . , n} and compute

∇fξt+1

(
xt
)

=
1

|I|
∑
i∈I
∇fi

(
xt
)
.

In modern deep learning platforms, the setting is further simplified such that the index set at an
iteration of the t-th epoch is selected uniformly and randomly from a pre-defined partition {Ijt }Nj=1

of {1, . . . , n} such that
N⋃
j=1

Ijt = {1, . . . , n}, Ij1t ∩ I
j2
t = ∅, ∀j1 6= j2,

where the partition can change with the epochs if reshuffling is conducted. We also note that the
computational and spatial cost of the covariance matrix of either the stochastic gradient or the mo-
mentum is quadratic to the number of variables in the optimization problem, which is prohibitively
large in modern machine learning tasks. Therefore, we consider the variance in the norm of the
difference between the stochastic estimation and the real gradient only. This variance in the norm at
the t-th epoch given the iterate x is thus calculated by either of the following.

σ2
G :=

1

N

N∑
j=1

∥∥∥∥∥∥ 1

|Ijt |

∑
i∈Ijt

∇fi (x)−∇F (x)

∥∥∥∥∥∥
2

,

σ2
M :=

1

N

N∑
j=1

∥∥∥∥∥∥(1− αt)mt + αt
1

|Ijt |

∑
i∈Ijt

∇fi (x)−∇F (x)

∥∥∥∥∥∥
2

.

The second equation is for computing the variance in the momentum term mt+1, while the first one
is for the variance of the stochastic gradient.

As our purpose is not to propose a new algorithm nor to showcase the performance of a certain
algorithm, we do not spend much effort on tuning hyperparameters of the algorithm or the model to
achieve the best performance. Instead, we use rather simple settings in the algorithm and consider
smaller neural network models that allow for traversing all data points to compute the in-sample
variance in an acceptable amount of time. Moreover, to avoid the interpolation case in which σ2

G
is guaranteed to decrease to zero, so that we can still simulate the situation in the presence of data
augmentation and dropout, we have to let the number of parameters in the model be smaller than the
number of data points. This requirement is another reason for us to select smaller neural networks. In
particular, we consider a simple linear logistic regression model, a fully-connected neural network
with one hidden layer, and a convolutional neural network (CNN) model (LeNet-5 LeCun et al.,
1998). We also experiment with a modern CNN network (VGG-11 Simonyan & Zisserman, 2015)
and run it with fewer epochs before interpolation kicks in, so that we can observe how the variance
changes in a neural network closer to what are empirically used. For the first model, we use the
MNIST dataset (LeCun et al., 1998). For the second one, we use the CIFAR-10 data (Krizhevsky,
2009) with horizontal flips to double the data size to train the model. When training LeNet-5, we
experiment with the FashionMNIST dataset (Xiao et al., 2017) and apply both horizontal and vertical
flips to it to obtain a dataset of 240, 000 instances so that we can avoid interpolation. For VGG-11,
we use the original CIFAR-10 without any data augmentation.

In the experiments, we compare plain SGD and the following schemes of SGD+M.

• Stochastic heavy-ball (SHB): Setting αt = ηt−(1/2+ε) for some given η, ε > 0 as suggested
by Sebbouh et al. (2021, Corollary 17). We fix η = 1 and ε = 10−2.
• Fixed momentum (FM): We follow the default setting of SGD in PyTorch to use a fixed

value αt ≡ α. In particular, we use α = 10−2.

Notice that the first scheme satisfies the requirements of Theorem 1 but the second one does not, but
we will see in the experiments that in practice this still works well in reducing the momentum. For all
algorithms, we follow common practice to apply the same multi-step scheduling that exponentially
decreases the step size periodically.
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The results are shown in Fig. 1. We can clearly see that for all methods, σ2
G remains at a constant

level even at the later stage where the training objective has converged and the step size has decreased
to nearly zero. This means that as expected, even if the iterates barely move, the variance of the
stochastic gradient does not vanish. On the other hand, we see that for the SHB scheme satisfying
the requirements of Theorem 1, σ2

M indeed soon decreases to very close to zero, confirming the
theory. Moreover, even for the FM scheme not supported by our theory, we see that the variance of
its momentum also vanishes. This shows that this popular practical setting for momentum indeed
exhibits a similar effect of variance reduction. It thus explains from another angle both the practical
performance of SGD+M over plain SGD and the effectiveness of cyclical step sizes.
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Figure 1: Change of σ2
G and σ2

M with epochs on different problems.

6 DISCUSSIONS

In this work, we have shown that when the iterates are convergent, SGD+M provides a means for
variance reduction in the stochastic gradient estimation, and the variance vanishes asymptotically.
This explains the practical superiority of SGD+M over vanilla SGD and the popularity of cyclical
step sizes in the training of deep learning models. The major limitation of the proposed work is that
the reduction speed in the variance cannot be directly quantified as it depends on the convergence
speed of the iterates, and thus additional assumptions might be needed to obtain an explicit rate.
However, we hope that this work serves as the first step towards a different but equally important
perspective for analyzing and understanding SGD+M beyond the pessimistic worst-case guarantee
and global complexity. In the near future, we plan to further extend the results to show faster lo-
cal convergence rates of SGD+M and propose principled parameters scheduling by incorporating
techniques used in analyzing the interpolation case and the variance reduction methods, which also
reduce the variance of the gradient estimation only locally. This work is also far from being compre-
hensive in terms of the algorithms covered. Instead of considering the more sophisticated adaptive
algorithms like Adagrad and Adam, we focused on the simpler case of SGD+M to illustrate our
main observation, and it will also be an interesting direction to extend our analysis to such adaptive
algorithms.
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REPRODUCIBILITY STATEMENT

The assumptions and the theoretical result are stated in Section 3, with the proofs in Appendix A.
For the experiments, our source code will be made available in the supplementary materials and the
detailed experiment setting for data preprocessing is described in Appendix B.
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A PROOFS

In this section, we provide proofs for the theoretical results in Section 3 for completeness.

We first provide a lemma showing that the variance of∇fξ(xt) is bounded.

Lemma 1. Under Assumptions 1 and 2, if xt a.s.−−→ x∗, there exits C > 0 such that

E
∥∥∇fξt+1

(xt)−∇F (xt)
∥∥2 ≤ C, ∀t ≥ 0. (8)

Proof. From the convergence of xt to x∗ we know that {xt} is bounded. Therefore, we can find a
compact set S such that {xt} ⊂ S almost surely, with

sup
x∈S
‖x‖ =: RS <∞. (9)

From (3) and (9), we then get∥∥∇F (xt)−∇F (x∗)
∥∥ ≤ L∥∥xt − x∗∥∥ ≤ 2LRS , ∀t ≥ 0 (10)

almost surely. Moreover, ∇F (x∗) = 0 as x∗ ∈ Z , so the bound above suggests that ‖∇F (xt)‖ ≤
2LRS for all t almost surely.

On the other hand, from the Cauchy-Schwarz inequality, Assumptions 1 and 2 and (9), we get

E
∥∥∇fξt+1

(
xt
)∥∥2

= E
∥∥∇fξt+1

(
xt
)
−∇fξt+1

(x∗) +∇fξt+1
(x∗)

∥∥2
≤ 2

(
E
∥∥∇fξt+1

(
xt
)
−∇fξt+1

(x∗)
∥∥2 + E

∥∥∇fξt+1
(x∗)

∥∥2)
≤ 2

(
(2LRS)

2
+ σ2

)
. (11)

We can then bound the distance between ∇fξt+1(xt) and ∇F (xt) again by the Cauchy-Schwarz
inequality: ∥∥∇fξt+1(xt)−∇F (xt)

∥∥2 ≤ 2
(∥∥∇fξt+1(xt)

∥∥2 +
∥∥∇F (xt)

∥∥2) .
By further taking expectation on both sides and using (10) and (11), we obtain

E
∥∥∇fξt+1

(xt)−∇F (xt)
∥∥2 ≤ 2

(
(2LRS)

2
+ 2σ2 + (2LRS)

2
)
<∞,

proving (8) with C = 2
(

(2LRS)
2

+ 2σ2 + (2LRS)
2
)

.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Consider
∥∥mt+1 −∇F (xt)

∥∥2, we have from (2) that∥∥mt+1 −∇F (xt)
∥∥2

=
∥∥(1− αt)mt + αt∇fξt+1(xt)−∇F (xt)

∥∥2
=
∥∥(1− αt)

(
mt −∇F (xt)

)
+ αt

(
∇fξt+1

(xt)−∇F (xt)
)∥∥2

= (1− αt)2
∥∥mt −∇F (xt)

∥∥2 + α2
t

∥∥∇fξt+1
(xt)−∇F (xt)

∥∥2
+ 2αt(1− αt)〈mt −∇F (xt), ∇fξt+1

(xt)−∇F (xt)〉

= (1− αt)2
∥∥(mt −∇F

(
xt−1

))
+
(
∇F

(
xt−1

)
−∇F

(
xt
))∥∥2 + α2

t

∥∥∇fξt+1
(xt)−∇F (xt)

∥∥2
+ 2αt(1− αt)〈mt −∇F (xt), ∇fξt+1

(xt)−∇F (xt)〉. (12)
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By defining Vt :=
∥∥mt −∇F (xt−1)

∥∥2 and taking expectation over (12) conditional on Ft, we
obtain from E

[
∇fξt+1

(xt) | Ft
]

= ∇F (xt) that

E [Vt+1 | Ft]

= (1− αt)2
∥∥(mt −∇F

(
xt−1

))
+
(
∇F

(
xt−1

)
−∇F

(
xt
))∥∥2

+ α2
tE
[∥∥∇fξt(xt)−∇F (xt)

∥∥2 | Ft] . (13)

From the assumed conditions in (5) and the Lipschitz continuity of ∇F , there are random variables
{εt} and {ut} such that ‖ut‖ = 1, εt ≥ 0, and ∇F (xt−1) −∇F (xt) = αtεtut for all t > 0, with
εt ↓ 0 almost surely. We thus obtain that∥∥mt −∇F (xt−1) +∇F (xt−1)−∇F (xt)

∥∥2
=
∥∥mt −∇F (xt−1) + αtεtut

∥∥2
= (1 + αt)

2

∥∥∥∥ 1

1 + αt

(
mt −∇F

(
xt−1

))
+

αt
1 + αt

εtut

∥∥∥∥2
≤ (1 + αt)

2

(
1

1 + αt
Vt +

αt
1 + αt

εt
2

)
, (14)

where we used Jensen’s inequality and the convexity of ‖·‖2 in the last inequality. By substituting
(14) back into (13), we obtain

E [Vt+1|Ft]

≤ (1− αt)2(1 + αt)Vt + (1− αt)2(1 + αt)αtεt
2 + αt

2E
[∥∥∇fξt(xt)−∇F (xt)

∥∥2 | Ft]
≤ (1− αt)(Vt + αtεt

2) + αt
2E
[∥∥∇fξt(xt)−∇F (xt)

∥∥2 | Ft]
≤ (1− αt)Vt + αtεt

2 + αt
2E
[∥∥∇fξt(xt)−∇F (xt)

∥∥2 | Ft] . (15)

Now we further take expectation on (15) and apply Lemma 1 to obtain

EVt+1 ≤ (1− αt)EVt + αtεt
2 + αt

2C = (1− αt)EVt + αt
(
ε2t + αtC

)
. (16)

Note that the third implies εt ↓ 0, so this together with the second condition that αt ↓ 0 means
ε2t + αtC ↓ 0 as well, and thus for any δ > 0, we can find Tδ ≥ 0 such that ε2t + αtC ≤ δ for all
t ≥ Tδ . Thus, (16) further leads to

EVt+1 − δ ≤ (1− αt)EVt + αtδ − δ = (1− αt) (EVt − δ) ,∀t ≥ Tδ. (17)

This implies that (EVt − δ) becomes a decreasing sequence starting from t ≥ Tδ , and since Vt ≥ 0,
this sequence is lower bounded by −δ, and hence it converges to a certain value. By recursion of
(17), we have that

EVt − δ ≤
t∏

i=Tδ

(1− αi) (EVTδ − δ) ,

and from the well-known inequality (1 + x) ≤ expx for all x ∈ R, the above result leads to

EVt − δ ≤ exp
(
−
∑

i = Tδ
tαi

)
(EVTδ − δ) .

By letting t approach infinity and noting that (5) indicates
∞∑
t=k

αt =∞

for any k ≥ 0, we see that

−δ ≤ lim
t→∞

EVt − δ ≤ exp

(
−
∞∑
i=Tδ

αi

)
(EVTδ − δ) = 0. (18)
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Data set MNIST
Data augmentation None
Data points 60, 000
Model Linear logistic regression
Number of parameters 7, 840
Weight decay 0
Loss function Cross entropy
Batch size 128
Step size 10−(1+bepoch/50c)

total epochs 150
Final training accuracy 93.9%
Final validation accuracy SGD & SHB: 92.6%; FM: 92.7%

Table 1: Details of the experimental setting of training logistic regression on MNIST.

As δ is arbitrary, by taking δ ↓ 0 in (18) and noting the nonnegativity of Vt, we conclude that
limEVt = 0, as desired.

Finally, we note that

E
∥∥mt+1 −∇F

(
xt
)∥∥2 = trace

(
Σt
)
, Σt := E

(
mt+1 −∇F

(
xt
)) (

mt+1 −∇F
(
xt
))>

,

and we also know that the covariance matrix Σt is always positive semidefinite and symmetric,
which means that all principal minors should be nonnegative. By taking any i, j that satisfy 1 ≤
i, j ≤ d, i 6= j, we have from the above argument that

Σti,i ≥ 0, Σtj,j ≥ 0, Σti,iΣ
t
j,j ≥

(
Σti,j

)2
. (19)

Moreover, since
d∑
i=1

Σti,i = trace
(
Σt
)
−→ 0,

we have from the nonnegativity of Σti,i that

Σti,i −→ 0, i = 1, . . . , d.

Therefore, from (19) and the bound above, we conclude that Σti,j −→ 0 for all i, j. This proves the
last result in Theorem 1.

B EXPERIMENT DETAILS

In this section, we provide the detailed model, data, and algorithm settings. The setting for the
linear model, the multi-layer fully-connected neural network, LeNet-5, and VGG-11 are shown
respectively in Tables 1 to 4.
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Data set CIFAR-10
Data augmentation Horizontal flip
Data points 100, 000
Model Fully-connected neural network
Number of hidden layers 1
Number of neurons in the hidden layers 10
Number of parameters 30, 820
Weight decay 10−5

Activation ReLU
Loss function Cross entropy
Batch size 256
Step size 10−(1+bepoch/150c)

total epochs 600
Final training accuracy SHB: 49.6%; FM: 49.5%; SGD: 49.1%
Final validation accuracy SHB: 42.5%; FM: 42.4%; SGD: 42.4%

Table 2: Details of the experimental setting of training the multi-layer fully-connected neural net-
work on CIFAR-10.

Data set FashionMNIST
Data augmentation Horizontal flip, vertical flip, horizontal & vertical flip
Data points 240, 000
Model LeNet-5
Number of parameters 60, 850
Weight decay 10−3

Activation ReLU
Loss function Cross entropy
Batch size 256
Step size 10−(1+bepoch/75c)

total epochs 400
Final training accuracy SHB: 98.0%; FM: 97.7%; SGD: 97.8%
Final validation accuracy SHB: 91.3%; FM: 91.5%; SGD: 91.2%

Table 3: Details of the experimental setting of training LeNet-5 on augmented FashionMNIST.

Data set CIFAR-10
Data points 50, 000
Model VGG-11
Number of parameters 133 millions
Weight decay 10−3

Activation ReLU
Loss function Cross entropy
Batch size 128
Step size 10−(1+bepoch/150c)

total epochs 900
Final training accuracy 100%
Final validation accuracy SHB: 78.6%; FM: 78.1%; SGD: 77.8%

Table 4: Details of the experimental setting of training VGG-11 on CIFAR-10.
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