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ABSTRACT

Numerous benchmarks for Few-Shot Learning have been proposed in the last
decade. However all of these benchmarks focus on performance averaged over
many tasks, and the question of how to reliably evaluate and tune models trained
for individual few-shot tasks has not been addressed. This paper presents the
first investigation into task-level validation—a fundamental step when deploying
a model. We measure the accuracy of performance estimators in the few-shot
setting, consider strategies for model selection, and examine the reasons for the
failure of evaluators usually thought of as being robust. We conclude that cross-
validation with a low number of folds is the best choice for directly estimating
the performance of a model, whereas using bootstrapping or cross validation with
a large number of folds is better for model selection purposes. Overall, we find
that with current methods, benchmarks, and validation strategies, one can not get
a reliable picture of how effectively methods perform on individual tasks.
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Figure 1: Scatter plots of model accuracy on query set versus accuracy estimated using only the
support set. The ideal estimator would have the points almost co-linear and lying approximately on
the diagonal line (green). All estimators have very high bias (points are off diagonal) and variance
(no co-linearity), indicating they provide poor estimates of performance.

1 INTRODUCTION

Deep learning excels on many tasks where large-scale datasets are available for training (LeCun
et al., 2015). However, many standard deep learning techniques struggle to construct high accuracy
models when only a very small number of training examples are available. This is a serious impedi-
ment to the broader uptake of machine learning in domains where web-scale data are not available.
In many domains, such as medicine and security, it is common to suffer from data scarcity issues
due to a multitude of resource constraints and the rarity of the events being modelled. The Few
Shot-Learning (FSL) paradigm, which focuses on enabling models to generalise well with little data
through the use of transferred prior knowledge, has gained relevance in an attempt to overcome
these challenges. A significant amount of attention has been given to FSL and related meta-learning
research in the last decade (Wang et al., 2020; Hospedales et al., 2021), with a large number of
methods and benchmarks proposed in application domains ranging from visual recognition systems
for robots to identifying therapeutic properties of molecules (Xie et al., 2018; Stanley et al., 2021).

Even though many learning algorithms have been developed in this area, and great efforts have
been directed towards improving model performance in FSL scenarios (Finn et al., 2017; Snell
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et al., 2017; Hospedales et al., 2021), the best practices for how to evaluate models and design
benchmarks for this paradigm remain relatively unexplored. In typical academic benchmark setups,
performance estimation often relies on the existence of test (“query”) sets that are several times
larger than training (“support”) sets—a desideratum that is clearly not satisfied in realistic FSL
scenarios. Moreover, performance is averaged over a large number of learning problem, leading
to accuracy estimates that cannot be used as a validation score for a single problem (“episode”) of
interest. While these experimental design decisions make sense when assessing the general efficacy
of a learning algorithm, they are not helpful when considering how one might validate or select a
model for a real FSL problem with a single few-shot support set. Even in the case where a good
estimate of model performance is not required, little attention has been given to robust methods for
selecting the best model from some prospective pool of models when little data is available. The
shortage of model selection procedures for FSL settings means that one cannot reliably perform
hyperparameter optimisation or select which FSL algorithm to use.

We hypothesise that standard model evaluation procedures are not effective in the few-shot learning
regime—much like how standard learning algorithms are not well-suited to few-shot learning. We
experimentally investigate this hypothesis by analysing the behaviour of commonly used model
evaluation processes. In addition to studying the accuracy of the performance estimates, we also
consider how well these potentially noisy estimates can be slotted into model selection pipelines
where one cares only about the relative performance of different models. We analyse failure modes
of these methods and show that, should evaluation methods be improved, one could see both a risk
reduction for FSL deployments and also better models, due to the ability to do model selection
reliably.

We answer several concrete questions about the state of methods currently available for evaluating
models trained in a FSL setting:

Q1 How accurately can we estimate the performance of task-level models trained in the FSL
regime? There are no combinations of learning algorithms and evaluators that are able to produce
reliable performance estimates, but we find that 5-fold cross-validation is the best of the bad options.

Q2 Are rankings produced by existing evaluators well-correlated with the true performance rank-
ings of models? Current model evaluation procedures do not provide reliable rankings at the per-
episode level, but methods based on resampling with a large number of iterations are most reliable.

Q3 By how much could performance in FSL be improved by incorporating accurate model se-
lection procedures? Our results show that there is still a lot of room for improvement in the case
of model selection, as evidenced by the large gap between performance obtained via current model
selection methods and performance from using an oracle evaluator to perform model selection.

2 RELATED WORK

Current practices for evaluating FSL arose from the work on developing new learning algorithms
(Lake et al., 2015; Ravi & Larochelle, 2017; Ren et al.; Triantafillou et al., 2020; Ullah et al., 2022),
and the aim has consistently been to determine the general efficacy of new learning algorithms. The
experimental setup used by these works employ a large number of downstream FSL tasks (drawn
from a so-called meta-test set), each of which has a test set several times larger than the associated
training set. The endpoint measured and compared when making conclusions is the average accu-
racy across the episodes in the meta-test set. While such an experimental setup is sensible when
assessing the “average-case” performance of a FSL method, in this work we address the more clas-
sic model validation and selection problem encountered when deploying machine learning models,
which is currently neglected in existing FSL benchmarks. I.e., Given a single specific few-shot learn-
ing task defined by a small training/support set, how can we estimate the performance on the unseen
test/query set? This is crucial in order to perform model selection, and to validate whether predic-
tions of the few-shot learner are safe to act upon or not. Recent work from application domains that
require few-shot learning indicate that the lack of reliable evaluation procedures is a major blocker
for deployment (Varoquaux & Cheplygina, 2022).

Some prior work on studying the failure modes of FSL has identified that the variance of accuracy
across episodes is typically very high (Dhillon et al., 2020; Agarwal et al., 2021; Basu et al., 2023).
Work in this area has focused on identifying “hard” episodes by constructing support sets that lead
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to pathological performance on a given query set. The focus of this existing work has been on
discovering trends in the types of downstream tasks where FSL methods do not work, whereas our
motivation is to explore: i) what processes can be followed to determine whether a particular model
will perform as required; and ii) how can we reliably select the best model from some set of potential
models. These specific questions are currently unaddressed by existing literature.

3 FEW-SHOT MODEL VALIDATION AND SELECTION

Modern few-shot learning research considers a two-level data generating process. The top level cor-
responds to a distribution over FSL tasks, and the bottom level represents the data generation process
for an individual task. More precisely, consider a top level environment distribution, E , from which
one can sample a distributions, Di, associated with a task indexed by i. One can then sample data
from Di to generate examples for task i. We first outline the existing assumptions about data avail-
ability and evaluation procedures used in the literature, which we refer to as Aggregated Evaluation
(AE). We then discuss how this can be augmented to better match real-world FSL scenarios, and
then outline the Task-Level Evaluation (TLE) and Task-Level Model Selection (TLMS) protocols
that we experimentally investigate.

Aggregated Evaluation (AE) In conventional Aggregated Evaluation, one samples a collec-
tion of distributions, D = {Di ∼ E}ti=1, and then for each of these distributions one constructs
a meta-test episode consisting of a support set, Si = {(xj , yj) ∼ Di}nj=1, and a query set,
Qi = {(xj , yj) ∼ Di}mj=1. It is typical for the size of the query set, m, to be several times
larger than the size of the support set, n. We observe that in a true FSL setting this is an unrealistic
assumption.

Current standard practice when evaluating FSL methods is to sample t episodes. For each episode, a
model is trained using the support set and then a performance estimate is computed using the query
set, µ̂Di =

1
m

∑
xj ,yj∈Qi

1(yj = hSi
(xj)), where hSi

denotes a model trained on Si and 1(·) is the
indicator function. Finally, the performance of the learning algorithm is summarised by aggregating
over all the meta-test episodes, µ̂E = 1

t

∑t
i=1 µ̂Di .

Using µ̂E to evaluate the performance of a FSL algorithm makes sense if the downstream application
involves a large number of different FSL problems, and the success of the overall system is depen-
dent on being accurate on average. Examples of such applications include recommender systems
and personalised content tagging, where each episode corresponds to a single user session. The suc-
cess of such personalisation systems depends on being accurate for most user sessions, but a poor
experience for a small number of sessions (i.e., episodes) is acceptable. In contrast, applications
of FSL in medicine or security are not well-suited to the aggregated evaluation provided by µ̂E . In
these settings, each episode might correspond to recognising the presence of a specific pathology
or security threat, and poor performance on such episodes would translate to systematic misdiagno-
sis and critical security vulnerabilities. Such outcomes would be considered a catastrophic system
failure.

Task-Level Evaluation (TLE) We investigate Task-Level Evaluation, which serves a purpose
distinct from AE. While AE is typically undertaken to assess the general efficacy of a FSL algorithm,
the purpose of TLE is to determine the performance of a model trained for a particular episode.
In many real-world applications of FSL, one must have accurate estimates of the performance of
models trained for each episode. Moreover, in realistic situations there is no labelled query set for
evaluating a model, so both the model fitting and model evaluation must be done with the support set.
Just as FSL requires specialised learning algorithms, we argue that TLE of FSL requires specialised
performance estimators.

We investigate three common approaches to evaluating machine learning models, which we sum-
marise below.

Hold-out (Witten et al., 2016) The Hold-out evaluation method, which is commonly used in the deep
learning literature, requires a portion of the data to be set aside so it can be used to test the model.
In particular, one sets aside n samples from the support set, trains a model on the m− n remaining
samples, and uses the n held-out data points to estimate performance.
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Table 1: 5-way/5-shot few-shot learning accuracy considering a 95% confidence interval: Actual
(Oracle) vs as predicted by various estimators. Most methods under-estimate accuracy compared to
Oracle.

Model Oracle Hold-Out CV 5 Fold CV LOO Bootstrapping

C
IF

A
R

-F
S Baseline 71.17± 0.727 64.50± 2.235 69.28± 1.040 62.47± 1.122 54.09± 0.895

Baseline++ 71.38± 0.755 66.28± 2.262 70.41± 1.017 63.80± 1.145 56.91± 0.969
ProtoNet 71.65± 0.755 70.30± 1.717 70.09± 1.006 65.43± 1.089 57.31± 0.941
MAML 69.51± 0.762 69.93± 1.819 71.41± 1.119 16.79± 0.667 42.39± 0.666
R2D2 72.06± 0.751 71.37± 1.609 70.22± 1.021 62.24± 1.172 55.12± 0.905

m
in

iI
m

ag
eN

et Baseline 59.36± 0.646 57.17± 1.765 57.15± 1.040 44.80± 1.094 38.34± 0.723
Baseline++ 64.07± 0.632 63.30± 1.683 63.31± 0.978 21.28± 0.957 23.97± 0.452
ProtoNet 66.12± 0.676 63.73± 1.699 63.98± 1.000 51.69± 1.177 37.67± 0.740
MAML 59.76± 0.717 48.11± 2.286 59.81± 1.135 17.39± 0.684 16.28± 0.350
R2D2 63.58± 0.658 62.67± 1.682 62.33± 1.001 48.58± 1.126 40.54± 0.734

M
et

aA
lb

um

Baseline 59.36± 1.688 54.39± 2.658 57.43± 1.792 51.58± 1.919 45.68± 1.695
Baseline++ 57.99± 1.724 53.11± 2.616 56.78± 1.837 48.84± 2.005 43.85± 1.701
ProtoNet 47.74± 1.689 46.73± 2.233 46.30± 1.813 44.07± 1.849 39.44± 1.665
MAML 47.10± 1.736 42.78± 2.603 47.50± 1.921 15.24± 0.819 28.68± 1.088
R2D2 52.91± 1.670 51.30± 2.242 51.39± 1.779 44.70± 1.890 39.39± 1.599

Cross-validation (CV) (Stone, 1974) The cross-validation method splits the support set in k folds and
repeats model training k time. For each repetition, a different fold is used for testing the performance
of the model, and the other k − 1 folds are used to train the model. The mean performance across
all iterations is used as a performance estimate for a model trained on all the data. When k is set to
the number of data points this method is referred to as cross-validation leave-one-out (CV-LOO).

Bootstrapping (Efron, 1979) Bootstrap sampling is a technique which consists of randomly drawing
sample data with replacement from a given set, resulting in a new sample with the same size as
the original set, and an out-of-bag set composed of the data points that where not chosen during the
sampling process. This method is used in our bootstrapping evaluator to create a new support sample
from the support set and a new query set composed by the out-of-bag data points. The process is
repeated and the result of each repetition averaged to give a final performance estimate.

Estimators are typically evaluated in terms of bias and variance, defined respectively as

Bias(µ̂) = E[µ̂]− E[µ], Var(µ̂) = E
[
(µ̂− E[µ̂])2

]
,

where µ̂ is a performance estimate and µ is the true performance. To provide a more directly inter-
pretable metric than variance for measuring the expected deviation from the true performance of a
model, we consider the Mean Absolute Error (MAE) between a performance estimator and the true
quantity,

MAE(µ̂) = E [|µ̂− E[µ]|] .
In practice, the Bias and MAE are estimated using episodes from the meta-test set.

Task-Level Model Selection One of the common use-cases for performance estimators is in the
model selection process, where they are used to rank the relative performance of a set of candidate
models, either for deployment or as part of the hyperparameter optimisation process. We observe
that accurate estimates of the performance of models may not be needed for model selection, as
long as similar types of errors as made for all the prospective models. For example, if a performance
estimator is systematically biased, but does not exhibit much variance, then the resulting rankings
should be reliable, even though the estimate of the performance is not.

4 EXPERIMENTS

We conduct experiments to determine which evaluation techniques are most reliable for: i) estimat-
ing the performance of a model; and ii) selecting the best performing model from some pool of
prospective models. We consider both the standard in-domain setting, and the more realistic cross-
domain setting. Following these experiments, we investigate the underlying reasons why evaluators
traditionally thought of as being quite robust can fail in the FSL setting.

We conduct experiments on datasets and learners popular in both the meta-learning (Hospedales
et al., 2021) and vision & language transfer learning (Radford et al., 2021) family of approaches to
few-shot learning. Specifically, we use:
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Table 2: Per episode accuracy MAE between accuracy of oracle and accuracy of each estimator
(5-way 5-shot setting)

Model Hold-Out CV 5 Fold CV LOO Bootstrapping

C
IF

A
R

-F
S Baseline 24.06 12.38 14.41 18.65

Baseline++ 23.75 12.49 14.59 17.27
ProtoNet 16.75 8.67 10.16 15.00
MAML 19.74 14.00 52.72 27.25
R2D2 7.27 4.70 9.94 16.94

m
in

iI
m

ag
eN

et Baseline 19.14 13.01 17.90 21.65
Baseline++ 18.18 11.51 42.82 40.10
ProtoNet 16.55 8.95 16.14 26.46
MAML 26.14 13.61 42.38 43.48
R2D2 16.83 8.96 16.36 23.06

M
et

aA
lb

um

Baseline 21.50 9.39 11.32 14.50
Baseline++ 20.29 9.32 12.22 14.91
ProtoNet 15.78 9.06 9.77 10.58
MAML 27.38 9.75 35.50 17.67
R2D2 16.73 9.50 11.66 14.32

miniImageNet This is a scaled down version of ImageNet consisting of 100 classes, each with
600 total examples and image scaled down to 84 × 84 pixels. We make use of the standard meta-
train/validaiton/test split proposed by (Ravi & Larochelle, 2017).

CIFAR-FS Uses the CIFAR-100 dataset (Krizhevsky, 2009), with 64, 16 and 20 classes for meta-
training, meta-validation, and meta-testing, respectively.

Meta-Album This is a recently proposed (Ullah et al., 2022) dataset that has a focus on providing
data from a broad range of application domains, accomplished by pooling data from 30 different
existing datasets. We use the Mini version of the dataset, which provides 10 different domains (three
source datasets per domain) and 40 examples per class. Three splits are present, each containing one
source dataset from each domain. Each split is used once each as meta-train, meta-validation, and
meta-test, and the final evaluation results are obtained by computing the mean of these three runs.

CLIP Few-Shot For experiments with CLIP-like few-shot learners, we also use three datasets
(EuroSat, Flowers, and Food101) selected from the CLIP few-shot suite (Radford et al., 2021). In
this case we follow the CLIP few-shot learning protocol, drawing from 1-16 shots from all categories
in each dataset, and evaluating on the full test sets.

Implementation Details We primarily study the classic FSL methods from the meta-learning
community ProtoNet (Snell et al., 2017), MAML (Finn et al., 2017), R2D2 (Bertinetto et al., 2019),
and Baseline(++) (Chen et al., 2019), using the implementations provided by the LibFewShot pack-
age.1. We use the meta-training hyperparameters suggested in the documentation of this implemen-
tation, which were tuned using the meta-validation set of miniImageNet. We use the standard Conv4
architecture for miniImageNet and CIFAR-FS, ResNet18 for meta-album. From the vision & lan-
guage community, we also study CLIP (Radford et al., 2021) , using the VIT-B32 vision encoder
architecture.

4.1 PERFORMANCE ESTIMATION

Experimental Setup For each meta-test episode, all evaluators are given only the support set and
required to produce an estimate of the generalisation error for models trained using each of the FSL
algorithms we consider. We additionally construct a query set that is several times larger than the
support set, and is used as an oracle estimate for the performance of each model. For each evaluator
we construct a sample of performance estimates, where each data point corresponds to a meta-test
episode. We report the mean of the accuracy across episodes, and also the mean absolute difference
in accuracy between each estimator and the oracle accuracy.

Results For the 5-way 5-shot setting, Table 1 compares FSL accuracy as observed by the oracle
with the four standard estimators considered. We can see that the estimators tend to under-estimate
the actual accuracy of the oracle, to varying degrees. This is due to the performance estimators

1https://github.com/rl-vig/libfewshot
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Figure 2: Box plots showing the distribution of absolute differences between the estimated accuracy
and oracle accuracy on the meta-test episodes of miniImagenet. Distributions should be ideally
concentrated as close to zero as possible, but we can see that a substantial proportion of the mass is
far away from zero. This indicates that many of the performance estimates are unreliable.
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Figure 3: Dependence of estimator-oracle error on shot number. Estimator error is substantial in the
few-shot regime.

having to sacrifice some of the training data in order to estimate performance, meaning the model
fit is poorer than a model that is trained on all available data. This issue also exists in the many-shot
setting, but the effect is usually negligible in that case because of the diminishing returns of training
on more data.

Table 2 presents the mean absolute difference between each estimator and the oracle. We can see
that 5-fold CV tends to have the lowest difference, i.e., it provides the best estimate of the oracle
accuracy. We note, however, that it is still likely to be too high to be practically useful in many
applications. To investigate this on a more fine-grained level, we visualise the distribution of absolute
differences in Figure 2. From this figure we can see that the distribution of errors is quite dispersed
for all combinations of learning algorithm and evaluator: for all potential choices there is at least
a 50% chance the validation accuracy would be wrong by more than 10%, in absolute terms. This
means that there is no pipeline that one can use to reliably train and validate models to ensure they
are safe to deploy in situations where one must take into account the risks involved in deploying
their models.

We next analyse how the error between oracle and estimator varies with number of shots. From the
results in Figure 3, we can see that the error of the estimator decreases with shot number as expected,
but tends to be substantial in the ≤ 20 shot regime typically considered by FSL. Together, Table 2,
Figure 2, and Figure 3 illustrate our point that there is no good existing solution to task-level FSL
performance estimation.

4.1.1 FSL WITH VISION & LANGUAGE FOUNDATION MODELS

In Figure 5 we plot the number of shots versus the MAE and accuracy, measured on CLIP FSL
problems. The issues seen in the meta-learning setting are less pronounced here—particularly in
the Food101 and Flower102 datasets. This is because the FSL protocol in the CLIP setting uses all
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Figure 4: Mean Spearman correlation between the rankings produced by the oracle and the different
performance estimators, computed across all the meta-test episodes in each dataset. A correlation
coefficient of 1 indicates the same rankings, -1 indicates the opposite rankings, and 0 indicates that
the rankings are unrelated.

2 4 8 16
Shot Number

0
5

10
15
20
25
30
35

M
AE

EuroSAT
Hold Out
4-Fold CV
Bootstrapping

2 4 8 16
Shot Number

0
5

10
15
20
25
30
35

M
AE

Flowers102
Hold Out
4-Fold CV
Bootstrapping

2 4 8 16
Shot Number

0
5

10
15
20
25
30
35

M
AE

food-101
Hold Out
4-Fold CV
Bootstrapping

2 4 8 16
Shot Number

0

20

40

60

80

100

Ac
cu

ra
cy

EuroSAT

Hold Out
4-Fold CV
Bootstrapping
Oracle

2 4 8 16
Shot Number

0

20

40

60

80

100

Ac
cu

ra
cy

Flowers102

Hold Out
4-Fold CV
Bootstrapping
Oracle

2 4 8 16
Shot Number

0

20

40

60

80

100

Ac
cu

ra
cy

food-101

Hold Out
4-Fold CV
Bootstrapping
Oracle

Figure 5: Few-Shot CLIP MAE (top) and accuracy (bottom) of different performance estimators
averaged over 10 runs.

classes in these datasets, which increases the support set size compared to the meta-learning setting.
E.g., with k = 4 the support set of a FSL problem from Flowers102 will have 408 instances, which
is considerably larger than the support set sizes typically considered in few-shot learning.

4.2 MODEL SELECTION

An alternative to accurate performance estimates that is acceptable in some situations is to instead
rank a set of prospective models and select the one that performs the best according to some perfor-
mance estimator. In this setting, the estimator can exhibit some types of biases without having an
impact on the final rankings. For example, the performance underestimation bias of the estimators
may not have a significant impact on the final rankings, as long as all models are similarly affected
by this bias. However, the ranking procedure is still sensitive to variance of the estimators.

To this end, we investigate how well the rankings produced by the different estimators are correlated
(in the Spearman Rank correlation sense) with the rankings produced by the oracle estimator. Rank-
ings are produced for each episode in the meta-test sets, and the mean Spearman rank correlation
(w.r.t. the oracle) is computed for each performance estimator.

Results The results of this experiment are shown in Figure 4. It is evident from these plots that
no evaluator produces rankings that are highly correlated with the oracle rankings, with a maxi-
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Figure 6: Further analysis of the estimation accuracy of cross validation performed on the miniIm-
ageNet dataset. Left: MAE between k-fold CV estimates and the oracle estimates, as a function
of k. Right: MAE of LOO-CV, relative to the oracle, as the number of ways (and therefore class
imbalance) is increased.

mum achieved correlation of around only 0.4 for bootstrapping on the meta-album benchmark, and
resampling methods with a large number of iterations generally being the most reliable approach.
However, these results indicate that we are unlikely to be able to do effective model selection using
currently available evaluation procedures.

4.3 FURTHER ANALYSIS OF CROSS-VALIDATION

In the previous section showed 5-fold CV is the least bad existing estimator for task-level FSL
performance estimation. This might seem surprising, as LOO-CV is generally considered preferred
from a statistical bias and variance point of view (Witten et al., 2016). To analyse this in more detail,
we plot the error as a function of folds in Figure 6 (left). The results of this show that increasing
the number of folds—and therefore reducing the bias introduced by fitting each fold on a smaller
training dataset—is counteracted by another phenomenon that causes LOO-CV to have low quality
performance estimates. We find that 5-fold CV presents the ideal trade-off between these two effects.

We hypothesise that the negative effect that causes CV with a large number of folds to become less
accurate is related to the class imbalance. Consider the standard balanced few-shot learning experi-
mental evaluation setting. In the case of LOO-CV, the consequence of holding out one example for
evaluation will mean that the training data contains one class with fewer examples than the other
classes. Moreover, the test example will come from this minority class, which will result in LOO-
CV evaluating the model in the pathological case where all test examples belong to the minority
class encountered during training.

To investigate this hypothesis, we vary the number of ways while keeping the size of the support set
fixed. As the number of classes is reduced, the number of training examples per class is increased,
and class imbalance is less prevalent. Figure 6 (right) shows the result. Using the number of ways
as a proxy for class imbalance in the LOO-CV setting, we see there is an association between class
imbalance and MAE of LOO-CV performance estimation.

4.4 HOW CAN WE IMPROVE FSL IN PRACTICE?

We further investigate how existing model selection methods applied at the task-level can be used to
improve performance. Experiments are conducting on both types of model selection seen in machine
learning: hyperparameter optimisation, and algorithm selection.

Hyperparameter Optimisation As a compromise between computational cost and model rank
correlation, we propose a new baseline for FSL that uses 5-fold cross validation to tune the ridge
regularisation parameter of a Baseline (i.e., logistic regression) model (Chen et al., 2019). The
results for this experiment are shown in Table 3. From these results we can see that using 5-fold CV
can provide a noticeable improvement over the aggregated accuracy of the standard Baseline.
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Table 3: Aggregated Accuracy of the different
baseline models. BaselineCV indicates that the
ridge regularisation hyperparameter is tuned on a
task-level basis using 5-fold cross validation.

Model CIFAR-FS miniImageNet Meta-Album
Baseline 71.17± 0.727 59.36± 0.646 59.36± 1.688
BaselineCV 72.89± 0.737 62.11± 0.698 58.46± 1.745
MAML 69.51± 0.762 59.76± 0.717 47.10± 1.736
MAMLCV 40.24± 0.840 55.06± 0.849 52.77± 1.308

Table 4: Aggregated Accuracy of Task-Level
Model Selection using each of the performance
estimators.

Model CIFAR-FS miniImageNet Meta-Album
Oracle 80.11± 0.495 71.40± 0.464 63.53± 0.932
Hold-Out 71.65± 0.749 62.79± 0.710 56.30± 1.048
5-Fold CV 72.38± 0.726 63.73± 0.734 58.58± 1.005
LOO-CV 73.29± 0.738 64.34± 0.717 58.53± 1.014
Bootstrapping 73.44± 0.724 64.05± 0.737 58.62± 1.011

Algorithm Selection By using each estimator to rank the performance of each FSL algorithm
on a per-episode basis, we can try to select which algorithm should be used in each episode to
maximise performance. E.g., MAML might perform best in one episode and Prototypical Networks
in another. Table 4 shows aggregated accuracy results when using each estimator to do this type of
model selection. These results demonstrate that LOO-CV and Bootstrapping are the best approaches
to use for model selection, which is consistent with the rank correlation results from Figure 4.

5 DISCUSSION

This paper investigates the effectiveness of methods available for evaluating and selecting models
on a task-level basis in few-shot learning. The experiments conducted in Section 4 provide several
concrete takeaway points that can be used to inform best practices and show the limitations of the
current state-of-the-art. Revisiting the questions asked in Section 1, we provide three main insights.

Performance Estimation It is demonstrated that existing evaluation approaches are not able to
provide accurate estimates of the performance of models in the few-shot learning setting. For most
combinations of learning algorithm and evaluation method, the performance estimates obtained for
individual episodes are more than 10% away from the true accuracy, in absolute terms, for the
majority of the episodes we generate. Even the best combination is only below this threshold ap-
proximately 50% of the time. Such unreliable estimates mean few-shot learning can not be validated
for use in practical applications due to the unacceptable risk of performance being substantially dif-
ferent than estimated by any validation procedure. However, this risk can be mitigated by noting
that some performance estimators such as LOO-CV and Bootstrapping consistently underestimate
the accuracy. Such pessimistic estimators may be acceptable in some scenarios.

Model Selection We investigate how well these inaccurate performance estimates can be used to
rank models, rather than provide precise estimates of performance. Such rankings would at least
allow practitioners to select the best possible model, even if the exact performance is not known.
It would also enable a better degree of hyperparameter optimisation than is currently employed in
many FSL settings. Our findings in this area show that there is only a mild correlation between the
best model ranking approaches and the oracle rankings provided by larger held-out datasets that are
not typically available in the few-shot setting. Despite the only mild correlation, we do achieve a
small degree of success in using these rankings for hyperparameter tuning.

What makes a good performance estimator? We argue that the stability of the underlying learn-
ing algorithm is an important factor when estimating performance. Many of the existing estimators
rely on constructing a model using different subsets of the available training data and then aggre-
gating several different performance estimates. Algorithmic stability has been shown to reduce the
dependence on data when fitting models (Bousquet & Elisseeff, 2002), and more stable algorithms
have also been shown to provide more reliable performance estimates when used in conjunction
with cross validation (Aghbalou et al., 2022). This line of reasoning is congruent with our empirical
results, where we see that the most stable algorithm (Prototypical Networks) consistently has low
MAE (relative to other approaches) when coupled with CV estimator.

Recommendations for Future Work Just as few-shot learning requires specialised algorithms
that take advantage of learned prior knowledge, we propose that future work should design spe-
cialised evaluation procedures. This could take the form of Bayesian estimation procedures that are
informed by performance on the meta-training and meta-validation episodes, or they could leverage
other side-information to reduce variance in estimates.
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