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Abstract—Point cloud semantic segmentation is important
for road scene perception, a task for driverless vehicles to
achieve full fledged autonomy. In this work, we introduce Mask
Point Transformer Network (MPT-Net), a novel architecture for
point cloud segmentation that is simple to implement. MPT-Net
consists of a local and global feature encoder and a transformer
based decoder; a 3D Point-Voxel Convolution encoder backbone
with voxel self attention to encode features and a Mask Point
Transformer module to decode point features and segment the
point cloud. Firstly, we introduce the novel MPT designed to
specifically handle point cloud segmentation. MPT offers two
benefits. It attends to every point in the point cloud using
mask tokens to extract class specific features globally with cross
attention, and provide inter-class feature information exchange
using self attention on the learned mask tokens. Secondly, we
design a backbone to use sparse point voxel convolutional blocks
and a self attention block using transformers to learn local and
global contextual features. We evaluate MPT-Net on large scale
outdoor driving scene point cloud datasets, SemanticKITTI and
nuScenes. Our experiments show that by replacing the standard
segmentation head with MPT, MPT-Net achieves a state-of-
the-art performance over our baseline approach by 3.8% in
SemanticKITTI and is highly effective in detecting ’stuffs’ in
point cloud.

I. INTRODUCTION

Road scene understanding is a critical task for driver-
less vehicles to achieve full autonomy that is paramount
to passengers’ safety. In recent years, many autonomous
vehicles are equipped with laser range sensors called ‘Li-
DAR’. These sensors capture a 3D point cloud of the
surrounding environment with details exceeding conventional
images based systems in range and precision. To achieve
better road perception, research in point cloud semantic
segmentation has gained interest. The task of point cloud
semantic segmentation is to map individual points to their
predefined classes e.g. roads, pedestrians, and trees etc.

Advances in deep learning for point cloud has resulted in
several new architectures that pushed the state-of-the-art re-
sults in semantic segmentation. Notably, many architectures
are reliant on converting points to voxels for processing via a
3D Convolutional Neural Network (CNN). While converting
points in voxels is an effective way to process point cloud,
a key parameter which influences segmentation results is
voxel resolution. Increasing voxel resolution improves seg-
mentation performance. However the downside is the cost of
more computation. Addressing this large computation cost,

1Zhe Jun Tang is with SenseTime Research and with School of Computer
Science and Engineering, Nanyang Technological University, Singapore
zhejunO0l@e.ntu.edu.sg

>Tat-Jen Cham with the School of Computer Science and Nanyang
Technological University, Singapore ast jcham@ntu.edu.sg

Ground Truth Buildings
——
Road
\

= v 1 éé?'{‘ : = —
b os > ==
:éffj) Z //%
Fig. 1.  We design a segmentation head called Mask Point Transformer

which leverages on cross attention and self attention mechanisms. By
introducing a set of mask tokens that corresponds to the number of classes
in the point cloud, each mask token attend to every single point in the point
cloud to learn class specific features. In the figure above, we show attention
maps of what the ’car’, "buildings’, and 'road’ mask tokens focuses on in
the entire point cloud scene.

networks like [1] utilize a sparse voxel convolution which
skips non-activate regions to reduce memory consumption.
Other architectures like SPVCNN [2] include a Sparse Point-
Voxel Convolution (SPVC) branch to retain fine grained
point details by mapping voxel features to points and process
these individual points using Multi Layer Perceptron (MLP).
Leveraging on the use of sparse point voxel convolution
technique, we utilize SPVCNN’s SPVC module to learn
voxel and point level features which we adopt as a baseline.
We dispose the transposed convolution blocks and only
extract features at the last downsampled layer. In doing so,
we observe little discrepancies in the segmentation results.
As the SPVC blocks seek to learn local features based
on the local convolutional kernels, we introduce a Voxel
Transformer Module to learn features at a global scale. This
improves the network’s capabilities in detecting large ‘stuffs’
[3] (amorphous background regions) in the point cloud.
Unlike previous works that rely on a simple linear clas-
sifier or a convolutional layer to segment the point cloud
from point features, we are keen to extract class features on
a global scale by examining every point in the point cloud.
As such, we designed Mask Point Transformer (MPT). MPT



is simple and highly flexible which can replace the linear
classifier head in most networks. It consists of a combination
of cross attention and self attention blocks. In MPT, we
define K class numbers of mask tokens’. These mask tokens
query from the keys and values of all point features via cross
attention. Hence, every point in the point cloud is attended
to. By querying from the point feature key and value sets,
MPT seeks to extract relevant point features specific to the
individual mask tokens. By this approach, we attend to every
point without suffering from the huge quadratic computation
involved in point to point attention of transformers. After
which, MPT adopts a sequential series of self attention
blocks to process these mask tokens. In particular, applying
self attention on mask tokens allows learning of inter-class
level features to compute an overall scenic understanding of
the point cloud.

Combining the backbone network with MPT forms Mask
Point Transformer Net (MPT-Net). We evaluate MPT-Net
on SemanticKitti, a large scale outdoor dataset. Experiments
show that MPT-Net achieves a 3.8% performance improve-
ment over the baseline SPVCNN network and is effective
in detecting ’stuffs’ in point cloud. Following, we conduct a
detailed ablation study on the different components of MPT-
Net.

The contribution of this work is threefold: (1) We design
an encoder network to learn global and local features of the
point cloud with sparse point convolutional blocks and a self
attention block with a transformer encoder. (2) We design a
Mask Point Transformer module to attend to every point in
the point cloud and extract specific point features related
to the respective classes, while averting massive quadratic
computation in transformers using mask tokens. (3) The
proposed MPT-Net achieves significant performance gain
over the baseline in point cloud semantic segmentation on
the SemanticKITTI dataset and performs well on nuScenes.
To our knowledge, this is the first work on applying masked
token classes on point cloud.

II. RELATED WORK
A. Point Based Methods

In Point Based architectures, the common approach is to
directly feed raw points into the network without a structured
or ordered representation. PointNet [4], consists of several
Multi Layer Perceptron (MLP) layer, directly takes in raw
points for point cloud learning. To address the unstructured
and unordered-ness of point cloud, a max pooling symmetric
function is embedded in the network. However, this network
is unable to model local geometry in point clouds and
the relations between points. PointNet++ [5] builds upon
[4] by dividing the point cloud into different regions us-
ing a hierarchical approach. Furthest point sampling (FPS)
divides the point cloud and an individual mini PointNet
processes these sub regions before upsampling to form an
entire point cloud representation. PointSift [6] adopts an
orientation encoding and scale awareness to further encode
local information by stacking several orientation-encoding
units. To leverage on spatially-local correlation in the data,

PointCNN [7] applies a convolutional layer by weighing
individual point features before permuting the points into
a latent and canonical order. Furthermore, PointWeb [8]
applies a series of locally linked web to encode region
information using a push-pulling feature approach. As former
approaches such as [4] [5] are unable to scale to large point
clouds, that often consist over 100,000 points and are bottle-
necked by the FPS operation, RandLA-Net [9] uses a more
memory efficient random sampling method and local feature
aggregation module which consists of attention modules to
progressively increase the receptive field of 3D points.

B. Projection Methods

Compared to Point Based architectures, projection based
methods aim to provide a regular grid like structure for
point clouds. This provides several advantages over point
methods methods as the two main characteristics of un-
orderedness and unstructured are addressed. PolarNet [10]
transforms point clouds in cartesian coordinates into polar
bird eye view (BEV) coordinates and then apply a 2D ring
CNN. This method provides a natural way to process points
from the lidar.RangeNet++ [11] follows a more traditional
image based approach by applying a spherical projection of
the point cloud onto a 2D plane and use a DarkNet53 [12]
backbone network. However by projecting the 3D points di-
rectly onto a 2D plane causes ambiguities and discretization
errors. SqueezeSegV?2 [13] improves upon [14] by introduc-
ing a Context Aggregation Module to mitigate the effects
of dropout noise. Beyond this, SqueezeSegV?2 also utilizes
a synthetic GTA-Lidar data to pretrain the network before
applying to real world datasets via domain adaptation. Fur-
thermore, SqueezeSegV3 [15] included a Spatially-Adaptive
Convolution to apply adaptively apply different filters to
different regions due to features only active in different
point cloud regions. Similarly, SalsaNext [16] projects the
points onto a BEV and Spherical Front View (SFV) and use
a 2D CNN backbone to process point cloud segmentation.
Unlike aforementioned methods, Cylinder3D [1] transforms
the point cloud into a cylinder shape format and apply a 3D
CNN to retain the 3D nature of the points. Although it is
highly successful in the task of point cloud segmentation,
the added 3D CNN comes with a high computational cost.
An increase in the number of voxels causes a cubic increase
in computational cost. Nevertheless, these projection based
methods suffer from a similar issue - A high resolution
point cloud rasterized into voxels results in a spatial loss
of information. A small object in the point cloud is being
represented by a few voxels results in a high difficulty for
the model to differentiate objects.

C. Fusion Based Methods

To tackle the deficiency of projection based methods
which results in information loss caused by discretizing a
high resolution point cloud into a finite number of voxels,
fusion based methods are developed. In Point-Voxel CNN
[17], two branches are developed - one for individual points
and another for voxels. In the voxel branch, points are



first rasterized into voxels with individual voxel features
computed by averaging features of all points belonging to
the same voxels. These voxels are then processed by a 3D
convolution kernel.In the point branch, a multi-layer percep-
tron layer takes in raw points and output point wise features.
Subsequently, voxel features are devoxelized and mapped
back to individual points using trilinear interpolation. Finally,
features processed from the voxels and point branched are
merged, retaining both high resolution point-wise feature and
regularly structured voxel features. Voxelizing point cloud
into voxels often result in empty voxels as these voxels
do not contain any points due to the irregular and sparse
nature of point cloud. To avoid unnecessary convolution
operations on empty voxels, SPVCNN [2] is developed. The
key difference between PVCNN and SPVCNN is the use
of sparse convolution. Only active input sites are processed
with a 3D convolution kernel which speeds up computation.
An iterative approach to voxelize and devoxelize points is
attempted in DRI-Net [18]. Points are first voxelized and
processed with convolution. The voxels features are then
devoxelized into point features and processed with a point
branch. This is done for 3 consecutive times. Besides the
two point and voxel branches seen in previous networks,
RPV-Net [19] added a third branch. This branch includes
the spherical projection of 3D points onto a 2D plane seen
in the previous section; projection methods. With a hash
code, features from the 3 branches are exchanged at every
stage before merging back to point level features and then
processed with a MLP layer for dense prediction.

D. Attention Based Methods

In RandLA-Net [9] attentive pooling is applied to select
important features from a set of neighbouring point. This is
required is propagate useful features from shallow to deeper
layer. Other than outdoor driving scene datasets, attention
methods are employed in smaller scale datasets like S3DIS.
Point Transformer [20] applies self attention on individual
points in the downsampling and upsampling. However due
to the quadratic computation involved in the transformer
encoder module, it is difficult to scale to large outdoor
driving scene datasets. Other transformer based methods such
as YOGO [21] groups the point cloud into smaller subset
once before applying self attention. In later stages, cross
attention is between the overall point cloud and the grouped
subsets.

III. MASK POINT TRANSFORMER NETWORK

An outdoor driving scene dataset consists of points span-
ning more than hundreds of thousands of points. In addition,
given the sparsity of points in the dataset, it is difficult to ex-
tract spatial information unlike an indoor dataset with regular
and fixed number of points. Rather than relying on heuristic
sampling methods like Further Point Sampling or Inverse
Density Important Sampling, Mask Point Transformer Net-
work relies on a fixed voxelization method to provide a fixed
regular grid structure for processing. To extract features from
the voxelized point cloud, we utilise an encoder branch based

on Sparse Point Voxel Convolution Neural Network and a
self attention block on voxel scale. For the decoder, we apply
a Mask Point Transformer Segmentation Head (MPT-H) for
class based segmentation.

Our general network architecture is illustrated in Figure 2.

A. Encoder

MPT-Net backbone consists two branches, point and voxel
branch, in the encoder segment. Given that the input point
cloud is unstructured and unordered, it is useful to map points
to voxels to provide a regular 3D grid to extract spatial in-
formation. Hence, we rely on the voxelization method based
on SPVCNN. An input point cloud P = [py, ..., py] € RV*din
contains N number of points. Each point p, = (x,y,z,i)
consists of positional information of the point in Cartesian
coordinate system with i representing the intensity of the
reflected laser. For every p,, there exists /, that represents
the class label.

We voxelize P into a sparse tensor S = [sy, ..., s3] € RE*din
where s; = (vi, fr). v represents the voxel coordinate in
3D space and f; equates to voxel feature. Each point p,
is gathered into v; voxel based on a gather operation v, =
(x,y,2)/r with r set as a voxel resolution of 0.05m. f is
the averaged feature of the points containing in the same
voxel. The inverse devoxelization operation to convert S to
P is based on tri-linear interpolation where each point p,
feature is interpolate based on the neighbouring voxels. We
encourage readers to refer to SPVCNN [2] for more details.
The input sparse tensor S is processed by a downsampling
only decoder based on Sparse Point Voxel Convolution as
shown in Figure 2.

1) Context Block: To extract voxel features, we pass the
network through a Context Block (CB). CB contains three
parallel convolution branch of different kernel size of small,
medium, and large. Each branch extracts different features
based on the respective kernel receptive field size. CB greatly
enhances spatial feature extraction. We then concatenate the
features from the three different branches and devoxelize the
feature map to project features back to point form.

2) Local Feature Extractor: The main encoder branch
consists of 4 down-sampling convolutional stages. Each stage
contains a pooling stage and two residual block. In the
pooling stage, we apply a 2 by 2 by 2 convolution process
with stride 2 to down-sample the feature maps at voxel level.
After the down-sampling operation, we apply two residual
blocks to further extract voxel features. At the point feature
scale, we apply an MLP layer to pass point features from
the previous scale to the downsampled scale. We then merge
point features and voxel features by devoxelization and an
addition operation.

3) Global Feature Extractor: Feature extraction based on
3D voxel convolution results in only local features being
extracted based on the convolution kernels lacks global
context understanding. Yet global context understanding of
the point cloud is essential. For instance, in an outdoor
driving scene, the positions of ’stuff’ like vegetation, fence,
and, buildings requires a global level understanding. An
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Fig. 2. (1) Top: Overall architecture of MPT-Net. The input point cloud is first fed into a context block to extract voxel-wise features based on the
local kernel size and passed into a series of sparse point voxel convolution blocks and a self attention block before the Mask Point Transformer module.
(2) Bottom left: Input point cloud is first voxelized before applying a 3D CNN (Kernel Size, Stride). (3) Bottom right: Sparse Point Convolution block is
applied to both extract voxel-wise and point-wise features.

understanding that road occupying a fixed width would allow  that C, € RE*Daec The keys P, and values P, are obtained
the network to focus on other flat surfaces like vegetation and  from the encoded point cloud P,,. in the same way. The
terrain in the overall scene. We also note that fixed ’stuff’  dimensions of Dy, and D, are set equal. Here, we allow
like buildings and fence often appear next to each other and  class tokens to query from the entire encoded point cloud.
near roads. The multi-head cross attention between the class tokens and
To enhance global feature understanding of the overall the encoded point cloud is computed as follows:
scene, we adopt a transformer encoder to attend to voxel T
features only. We pla}ced this transformer encc?der after the MCA(C, P) = softmax (Cq P > P, 1)
last SPVC block, with an added downsampling stage, to Vdgec

reduce the total features passed into self attention layer. Only We set the dimensions of individual attention head to 64

non-empty voxels are used to. compute the .Self attention Subsequently, a transformer based multi-head self attention
features. Each voxel feature is encoded with the voxel Lo .
operation is applied solely on the class tokens.

positional information. By allowing self attention on voxel

features, global contextual features are learned. The global -G
feature extract proves important in extracting placement of MSA(C, C) = softmax <q) -Gy (2)
large components in the point cloud like ’stuff’ and has dec
improved performance as shown in the ablation studies. This allows class features to attend to each other providing
B. Decoder class contextual understanding. We repeat the above process

for a total of L times. In each L; process, we apply L., cross

1) Mask Point Transformer: The aim of the decoder  jention layers followed by series of self Ly, attention layer
branch, illustrated in Figure 3, is to decode the encoded point o the mask tokens.

cloud P, enc © RY*Perc to segmented point cloud ¥y, € RY*K Finally, a set of N masked points Yy.eq = [y1,...,yn] is

where K is the number of classes. The decoder learns to map  optained by:

pomt—levellencodmg into point-level c.lass: ThI.S is done via Yored = Pone - CcT 3)

a Mask Point Transformer module which is mixed attention

based architecture. It consists of a set of learnable class A softmax function is applied to Y, to obtained point

specific tokens that attends to every point on a global scale. ~ wise class score.

The encoded point features passed into MPT are from the The attention maps of individual class tokens is depicted

concatenated point features extracted from the Local Feature  in Figure 1 where we show how each class token attends to

Extractor and the Global Feature Extractor branches. every point of the point cloud. The advantage of MPT lies
We randomly initialize K learnable class tokens C = in its simplicity for implementation which can replace most

[clsy,...,cls;] € RE*Ddec and assign each cls; to a single  segmentation heads in other networks with high performance
semantic class. Shown in Figure 3, the class tokens learns  gains. It provides the benefit of attending to every point
class specific features via multi-head cross attention. A linear ~ without the quadratic computation involved in methods like
layer first generates the queries from the class tokens such  Point Transformer. Our Mask Point Transformer is largely



Mask Point Transformer

N[512]
Point Feature Vector

(Self Attention)

8
<
2
[K asses 512] 8
Mask Tokens
Fig. 3.

Cross Attention

(Self Attention)

N [K
[K [ cla.vses]

classes >

512)

Layout of Mask Point Transformer Head. We define K number of mask tokens which correspond to the number of classes within the dataset. In

this process, the mask tokens first queries from the entire point cloud using cross attention. Subsequently, self attention is applied to the set of mask tokens.
We repeat the sequences of cross and self attention layers for a total of 2 times before multiplying the tokens and the point features for class scores.

inspired by the Segmenter [22] and Perceiver [23]. Unlike
the Segmemter which is an architecture only used in image
domains, our method relies on a hybrid CNN and transformer
based approach and we maintain two distinct feature em-
beddings; one for points and another for class tokens. It is
highlighted in the Segmenter the size of patch embedding is
critical in the overall segmentation result where smaller patch
size relates to better results. Our attempt in mixing a large
voxelized point cloud and mask tokens like the Segmenter
results in poor performance as large voxelization causes
small objects in the point cloud to be missed. We note that
Max-DeepLab [24] which utilises a hybrid transformer, a
CNN based approach, only operates in the image domain on
a patch based level which is highly different from the point
cloud domain. None of the above methods operate on a fine
scale e.g pixel level. Our approach is nevertheless different in
that our method operates on a fine scale, point level, features
whereas their method rely on augmenting latent features at
several layers passing the augmented features back to the
convolutional layers. Max-Deeplab also maintains a dual
path information exchange between CNN and transformer
for images whereas our network maintains a singular path
and rely on transformer to perform point feature decoding;
features learned using the attention mechanism does not
augment features from SPVC blocks. In the Perceiver, a
general architecture used for images, audio, and point cloud,
the network only performs point cloud classification task on
small datasets and relies on a MLP head and only used in
classification tasks. With the Perceiver being similar to the
Segmenter, both are end-to-end transformer based network
which is different from our single path hybrid approach.
Besides, the Perceiver utilises a latent array to learn general
point cloud features whereas our approach focuses on class
specific features (K;jqss << djarens) With mask tokens. To our
knowledge, this is the first work which applies mask tokens
on a full scale point cloud to extract class level features for
segmentation.

IV. EXPERIMENTS

We report the detailed experimental setups and the respec-
tive results evaluated on two outdoor large scale datasets;
SemanticKITTI and nuScenes. Following, we conduct ex-
tensive ablation studies to examine the effectiveness of the
individual network components.

A. Dataset and Metric

Dataset:SemanticKITTI. SemanticKITTI [29] is an out-
door large scale driving-scene point cloud dataset. With
this dataset, we evaluate MPT-Net with the point cloud
semantic segmentation task. This dataset is derived from the
KITTT Vision Odometry benchmark which is obtained from a
Velodyne-HDLE64 LiDAR equipped on a car driving on the
streets of Germany. Sequences 00 to 10 are used as training
set, with the exclusion of sequence 08 used for validation.
Sequences 11-21 are used as test set. Each scan contains a
maximum of 28 classes and about 120,000 points. Of the 28,
only 19 classes are utilized for the official evaluation task.
The 19 classes are shown in Table 1.

Dataset: nuScenes. The nuScenes [30] dataset is recently
released with point annotated semantic segmented classes.
The dataset contains 1000 scenes with 850 scenes split
for training and 150 scenes for validation. It contains an
outdoor driving scene which data is collected in Boston and
Singapore. nuScenes is collected using a Velodyne HDL-
32E sensor. Each point in the dataset is marked as one of
32 unique classes. However, only 16 classes are used for
official evaluation. As nuScenes contains driving scenes of
two different countries, it is similarly challenging. Moreover,
compared to SemanticKITTI, it is less dense due to the
difference in sensor used.

Metric. We utilize the mean Intersection over Union
(mloU) as an evaluation metric to assess the performance
of our method. mloU is calculated as

C
TPc
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TABLE I
SEMANTIC SEGMENTATION IOU % RESULTS ON SEMANTICKITTI TEST DATASET. THE METHODS ARE GROUPED ACCORDING TO: POINT-BASED
NETWORKS, RANGE VIEW NETWORKS, BIRD’S EYE VIEW NETWORK, AND VOXELIZATION BASED METHODS.

g % K]
[5) 9 ] 5 o
ot 3 = 5 s &
Method = 9] o = = ) & o = [~ & a e) a i = = & = =
RandLA-Net [9] 539 942 260 258 40.1 389 492 482 72 90.7 603 737 204 869 563 8l.4 61.3  66.8 492 477
KPConv [25] 588 96.0 32.0 425 334 443 615 61.6 11.8 88.8 613 727 31,6 905 642 8438 69.2 69.1 564 474
RangeNet++ [11] 522 914 257 344 257 230 383 38.8 4.8 91.8 650 752 278 874 586 80.5 55.1 64.6 479 559
Salsanext [16] 59.5 919 483 38,6 389 319 602 590 194 91.7 637 758 29.1 90.2 642 81.8 63.6 665 543 62.1
KPRNet [26] 63.1 955 541 479 236 426 659 650 165 932 739 806 302 91.7 684 857 69.8 712 587 64.1
SqueezeSegv3 [15] | 559 925 387 36,5 29.6 330 456 462 20.1 91.7 634 748 264 89.0 594 820 587 654 496 589
PolarNet [10] 543 938 403 30.1 229 285 432 402 56 90.8 61.7 744 217 90.0 613 84.0 655 678 51.8 575
TornadoNet [27] 63.1 942 557 48.1 400 382 636 60.1 349 89.7 663 745 287 913 656 85.6 670 71.5 58.0 659
SPVCNN [2] 644 - - - - - - - - - - - - - - - - - - -
SPVNAS [2] 67.0 972 50.6 504 566 580 674 67.1 503 902 676 754 218 916 669 86.1 734 710 643 673
DRI-Net [18] 67.5 969 570 56.0 433 545 694 751 589 90.7 650 752 262 915 673 85.2 726 68.8 635 660
Cylinder3D [1] 67.8 97.1 676 640 59.0 586 739 679 360 914 651 755 323 91.0 66.5 85.4 71.8 685 626 65.6
AF2S3 [28] 69.7 945 654 868 392 41.1 80.7 804 743 913 688 725 535 879 632 702 68.5 537 615 710
MPT-Net (Ours)? 682 97.0 498 516 S5l1.1 592 679 768 699 904 634 744 277 922 685 86.0 734 705 627 635

2We compare across architectures that do not utilise any tricks. Bold font denotes top in compared categories. Blue text denotes second in place.

TABLE I
SEMANTIC SEGMENTATION IOU % RESULTS ON NUSCENES VALIDATION DATASET BASED ON VOXELIZATION.

g %) ]
g 3 & 3 2 2 g 8
- |5 B E B B £ 5 L § . £ 5 £ B
2 |8 5 2 s £ £ 3 % 3 & £ £ 2 E § &
Methods E M A /A O O = & = = & a S % & = =
AF2S3 [28] 62.2 | 60.3 12.6 823 80.0 20.1 62.0 590 49.0 422 674 942 68.0 64.1 68.6 829 824
Cylinder3D [1] 761 | 764 403 912 938 513 780 789 649 0621 844 968 716 764 754 905 874
MPT-Net (Ours) | 75.7 | 753 422 923 879 475 83. 760 60.6 682 823 964 727 743 742 894 874

TP, FP, FN represent the number of True Positive, False
Positive, and False Negative of classified points. C refers to
the number of classes in the dataset.

B. Training Details

We optimize our model with SGD Optimizer with mo-
mentum of 0.9 trained at a initial learning rate of 0.08
and a weight decay of 0.0005. We set L =2 process with
L., =1 cross attention layer and L, = 4 self attention layers
in the Mask Point Transformer Module which yield the
best results. A further increase in self attention and cross
attention layers yield higher computational cost and does not
benefit the segmentation results. Subsequently, we decrease
the learning by half every 5 epochs for a total of 40 epochs
for the SemanticKITTI dataset and 60 epochs for nuScenes.
Experiments are conducted 8 Nvidia Tesla V100 GPUs and
trained for 1.5 days. We set the number of attention heads
in MPT as 8, each head dimension as 64 with 4 layers of
self attention on the mask tokens.

The objective of our network is point wise loss which
is the sum of Cross Entropy, for point wise accuracy max-
imization, and Lovasz Loss [31] ,for mloU maximization,
with equal weightage.

During training, we adopt the commonly used data aug-
mentation techniques by randomly rotating the point cloud
along the z — axis and scale each point between a range of
0.95, 1.05. We emphasize that unlike RPV-Net [19] we do
not employ any further data augmentation techniques nor

manually craft additional data for training (e.g. Instance Cut-
Mix).

Ltolal (yay,\) :Lce (yay)'i_Llov (ya)?) (5)

C. Semantic Segmentation Benchmarks

SemanticKITTI official test benchmark. We compare
the results of MPT-Net and existing state-of-the-art methods
on the SemanticKITTI test set and report the results shown
in Table I. MPT-Net is competitive with prior methods and
exceed the previous SOTAs on a few categories. Figures
reported in the table are retrieved from the published papers.
Our MPT-Net outperforms the baseline approach (SPVCNN)
by a large margin of 3.8%. MPT-Net achieves top competi-
tive results on 4 categories, despite achieving the second best
overall mlIoU score in training without any tricks. MPT-Net
also ranks comparable with the top performers on 3 other
classes and in total, matches AF2S3-Net. Notably, MPT-Net
performs well on detecting ’stuffs’ over AFS2S3-Net which
focuses on things. Perceiving stuff well is highly critical for
understanding the surrounding environment which would be
useful for mapping technologies.

nuScenes validation benchmark. We compare the val-
idation results on nuScenes utilizing voxelization based
methods. As the point cloud in nuScenes is less dense than
SemanticKITTI, we set the voxelization size to 0.1m. MPT-
Net outperforms AF2S3-Net by a huge margin. Overall,
MPT-Net performs well in distinguishing large objects such
as trailers and buses. MPT-net also excels in detecting rare
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(1) Top: Red highlighted points denote segmentation error for SPVCNN Network. (2) Bottom: Red highlighted points denote segmentation error

for MPT-Net. Observe how MPT reduces sparse point errors that lie further away from the LiDAR.

classes like bicycle and motorcycle.

D. Ablation Studies

Effects of different components. We illustrate the effects
of the different components in Table III. The removal of the
transposed convolution layer has little effect on the overall
mloU score. We believe that the upsampling transposed
convolution layer is not necessary due to devoxelization
where point features are interpolated from surrounding vox-
els which has a similar upsampling effect and a MLP
processed these point features in the SPVC Block. Adding a
larger context block at the front allows better voxel features
to be extracted due to the large receptive fields. As shown,
just by replacing the linear classifier in SPVCNN with MPT
boosts huge performance gain. Our MPT Head further refines
features decoded from the last SPVC block where each point
is being attended to by the individual mask tokens. Lastly, we
experiment with adding another down convolution operation
and passed these voxels into a transformer and concatenate
the features from the last SPVC block before passing through
the MPT Head. We observe that the combination of all
proposed components achieves the best validation results on
the SemanticKITTI validation dataset.

Effects of attention layers. We observed that setting
a total L =2 processes with L., =1 and Ly, = 4 yields
the optimal results in our experimental settings. The higher
number of processes and respective attention layers yield
better segmentation performance. An increase in the number
of cross and self attention layers beyond the above-mentioned
parameters causes a slight decrease in performance.

MPT Qualitative Results. We compare the baseline
method SPVCNN with our network, MPT-Net shown in
Figure 4. Red highlighted points in the figure denotes error in
the segmentation tasks. As observed, MPT-Net outperforms
the baseline in classifying class such as vegetation and trunk.
The results are consistent in many scenes and MPT is still

TABLE III
EFFECTS OF NETWORK COMPONENTS. TESTED ON SEMANTICKITTI
VALIDATION SET.

g

Q

g
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g 2z 2 =

=) = 3 0 =

2 5 E & 3

Architecture S Z O = O mlU

Baseline (SPVCNN) [2] 63.7
Proposed Components v 66.2
v v 66.0
v v v 66.3
v v v v 67.9
v v v v v 690

20ptimized refers to training the network according to section IV-B

TABLE IV
ABLATION STUDY OF DIFFERENT MPT-NET CONFIGURATIONS

Model mloU
U-Net structure 66.9
Access all SPVC Block features | 67.8
Our Model 69.0

able to segment points that lie far off from the point cloud
center.

In Figure 4 (d) and (e), it is shown that MPT-Net is
able to segment buildings and partially obscured "things; like
buildings and cars better.

Further studies on low level features From Table I, we
observe that MPT-net fails to identify smaller objects such
as bicycle and motorcycle which heavily affected the score
of the overall mloU. To verify whether this is due to the
lack of access to low level features using U-Net structure
like Cylinder3D and AF2S3-net, we conduct 2 experimental
settings shown in Table IV. Even with a U-Net like structure



or a direct point wise concatenation of features across all
down-sampled SPVC blocks does not improve the overall
mloU score. Lastly, concatenating all point features from the
individual SPVC blocks and pass into MPT-head to ’access
all SPVC block features’ does not improve performance as
much as our final model.

V. CONCLUSION

In this paper, we proposed a simple attention mechanism,
namely MPT, to attend to every point in the point cloud
without the massive quadratic computation of points involved
in transformers for point cloud semantic segmentation. MPT
is designed to be easy and neat for implementation to replace
most segmentation head in other networks. Specifically,
generate a set of class tokens, query the encoded point cloud,
and multiply the tokens with the point cloud for segmentation
score. The benefit of using mask tokens and cross attention
allows the network to examine the overall point cloud and
extract class related features globally and with self attention
on class tokens, it provides inter-class feature learning. The
overall backbone in MPT-Net provides both local and global
feature extraction. We conduct extensive experiments to
illustrate the effectiveness of MPT-Net and achieved a huge
performance gain over the baseline approach on two large
scale outdoor point cloud datasets.
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