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ABSTRACT
Facial Expressions induce a variety of high-level details on the 3D face geometry.
For example, a smile causes the wrinkling of cheeks or the formation of dimples,
while being angry often causes wrinkling of the forehead. Morphable Models
(3DMMs) of the human face fail to capture such fine details in their PCA-based
representations and consequently cannot generate such details when used to edit
expressions. In this work, we introduce FaceDet3D, a method that generates - from
a single image - geometric facial details that are consistent with any desired target
expression. The facial details are represented as a vertex displacement map and
used then by a Neural Renderer to photo-realistically render novel images of any
single image in any desired expression and view.
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Figure 1: Facial detail hallucination and rendering. Given a single input image, a target expression
(in this case ‘Happy’), and an initial detailed geometry extracted using FDS (Chen et al., 2019) (shown
in column ‘Reconstruction’ and row ‘Detailed Shading’) as input, our method hallucinates facial
geometric details consistent with the target expression. The hallucinated details are added to the
smooth proxy geometry (marked as ‘Proxy Shading’, also extracted using FDS (Chen et al., 2019)), to
give a detailed geometry with facial details consistent with the target expression (in column ‘Happy’
and row ‘Detailed Shading’). The detailed geometry is then rendered using Neural Rendering to give
the final image (first row of the column labelled ‘Happy’). A zoom-in of one of the predicted facial
details and its render is shown in column ‘Predicted Facial Detail’ and ‘Render of Predicted Facial
Detail’ respectively. (Electronic zoom recommended)

1 INTRODUCTION

Modelling the geometry of the human face continues to attract great interest in the computer vision
and computer graphics communities. Strong PCA-based priors make 3D morphable models (3DMMs)
(Blanz et al., 1999) robust, but at the same time over-regularize them. Thus, they fail to capture fine
facial details, such as the wrinkles on the forehead when the eyebrows are raised or bumps on the
cheeks when one smiles. Additionally, the lack of diversity in the texture space of most available
3DMMs makes it very hard to generate realistic renderings that capture the large variations of color
and texture we observe in human faces. Recent methods (Tewari et al., 2019; 2018; Tran & Liu,
2018; Tran et al., 2019; Zhu et al., 2020; Booth et al., 2017; Dou et al., 2017; Jackson et al., 2017;
Kim et al., 2018; Genova et al., 2018) address this by learning richer shape and expression spaces
using a variety of data modalities such as in-the-wild images (Tewari et al., 2018; Tran & Liu, 2018;
Tran et al., 2019; Zhu et al., 2020) and videos (Tewari et al., 2019). However, despite using more
expressive shape and expression spaces, these models still fail to capture fine details in geometry.
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Recent methods that accurately estimate facial geometric details from single images (Chen et al.,
2019; Tun Trn et al., 2018; Feng et al., 2021), while being unable to hallucinate and photo-realistically
render novel details under expression change, have nonetheless enabled the large scale annotation
of unpaired image data with facial geometric details. Thus, it is now possible to train facial detail
hallucination methods using unsupervised adversarial losses (Choi et al., 2018; Pumarola et al., 2020).
Similarly, Neural Rendering (Thies et al., 2019) has made it possible to render 3D geometries with
photo-realism via the use of high-dimensional Neural Texture Maps (NTMs). However, NTMs
are able to store fine details of the output image, causing the rendered details to be completely
independent of the geometric details. They do not change even if the geometric details do, making
neural rendering unsuitable for rendering facial geometric details.
In this paper we introduce FaceDet3D, a generative model that hallucinates facial geometric details
for any target expression and renders them realistically. The model is made up of two components:
1) A detail hallucination network that infers plausible geometric facial details of a person as their
expression changes, from a single image of that person. 2) A rendering network that overcomes
the aforementioned shortcoming of neural rendering and explicitly conditions the rendered facial
details on the details of the 3D face geometry. Thus, the rendered details change only when the facial
geometric details change. This conditioning is achieved through the use of the novel Augmented
Wrinkle Loss and the Detailed Shading Loss during training.
Our method is trained using only a large scale in-the-wild image dataset and a much smaller video
dataset captured in controlled conditions, without any 3D data as supervision for the target expression
geometry. An exhaustive evaluation shows that once trained, our method is able to generate plausible
facial details for any desired anatomically consistent facial expression and render it photo-realistically.

2 RELATED WORK

We next describe the most related methods in facial geometry estimation, geometric facial detail
estimation and facial expression editing and reanimation.

Geometric Facial Details Estimation. Over the past few years there has been significant improve-
ment in the realism of 3D face geometries estimated from single images. In Richardson et al. (2017),
a CNN (CoarseNet) first regresses a rough geometry of the face, facial details are then estimated
using another CNN (FineNet) using the coarse depth map and input images. In Sela et al. (2017),
the regressed correspondence and depth maps are registered onto a template mesh, which is further
refined to generate the detailed facial geometry. In Tun Trn et al. (2018) facial details are modelled
with bump maps on top of a 3DMM base. Similarly, in Facial Details Synthesis (FDS)(Chen et al.,
2019), details are represented as vertex displacements of an underlying 3DMM, trained using a
combination of 3D data and in-the-wild images. These methods, however, can only estimate the
facial details of the expression manifested in an image, but cannot predict novel facial details for a
different expression, which is the motivation of our method. Geometric Facial Details Animation.
In DECA (Feng et al., 2021), the authors train a network to regress the detailed geometry using a
latent detail code. This code enables transfer of details from a target image to the source image. In
contrast, the details generated by our method are directly conditioned on expression parameters and
action units (Ekman & Friesen, 1978). Further, unlike our method, DECA (Feng et al., 2021) is
unable photorealistically render the geometric details, leading to sub-par animation.

Facial Expression Editing. The success of image-to-image translation networks (Isola et al., 2017),
adversarial training (Goodfellow et al., 2014) and cycle-consistency losses (Zhu et al., 2017) have led
to novel expression editing methods that use large-scale in-the-wild training datasets. In (Shu et al.,
2017), an unsupervised face model disentangles the input face into albedo, normals and shading.
Expressions are then edited by traversals in the disentangled latent space. In Choi et al. (2018),
expressions are edited via adversarial losses coupled with cycle consistency. In (Pumarola et al.,
2020), a network edits input images to target expressions, represented as Action Units (Ekman &
Friesen, 1978). Athar et al. (2020) extends this work by explicitly modeling skin motion followed
by texture hallucination. In Choi et al. (2020), template images are used for editing. While these
methods give photo-realistic results, they are restricted to the 2D image space and cannot be used to
manipulate 3D viewpoint.
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3 FACEDET3D

3.1 PROBLEM FORMULATION
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Figure 2: Detail Hallucination Network. Given a tar-
get expression y, DetH outputs a detail hallucination
D(Iy)

H and a detail mask D(Iy)
M . The detail hallu-

cination is combined with the input detail map D(Ix)
using the detail mask to give the final hallucinated facial
geometric detail map D̃(Iy).

Let Ix ∈ RH×W×3 be a face image with an
expression x represented by Action Units (Ek-
man & Friesen, 1978). Its shape and expres-
sion parameters in the Basel Face Model (BFM)
(Gerig et al., 2018) space are {αs,αe}. A vertex
displacement UV map D(Ix) ∈ RHD×WD×3

encodes the facial details of the person shown
in Ix with the expression x. We want to: (1)
Generate facial details, represented by a vertex
displacement map D(Iy), of the same person
with expression y; (2) Render an image of the
geometry with the generated facial geometric
details.
We use FDS (Chen et al., 2019) to extract the
texture map, initial detail map and geometry of
the input image Ix:

T (Ix),D(Ix),αs,αe ← FDS(Ix) , (1)
where T (Ix) ∈ RHT ×WT×3 is the texture map.
Next, we use the detail hallucination network, DetH (·), to hallucinate the plausible facial detail
map of the person in Ix for expression y, conditioned on D(Ix), as follows:

D̃(Iy) = DetH (D(Ix),x,y,Age(Ix),FaceID(Ix)) , (2)

where y is the target AU, x is the input AU, Age(Ix) are features extracted from an age prediction
network and FaceID(Ix) is the facial embedding of Ix extracted using (Schroff et al., 2015). Note
that we do not have access to the ground truth image Iy, thus we hallucinate a plausible detail map
of Iy (i.e D̃(Iy)) using DetH . Once we have D̃(Iy), we use it to displace the vertices along their
normal direction giving us the detailed geometry. Finally, we render this detailed face geometry using
a rendering network R (·):

Ĩy = R
(
T (Ix), D̃(Iy),αs, α̂e,y, c, l, γγγ

)
, (3)

where α̂e are the target expression parameters, c are the desired camera parameters, γγγ is the albedo
PCA-space parameters of BFM(Gerig et al., 2018), and l are the lighting parameters.

3.2 DETAIL HALLUCINATION

DetH takes the input detail map,D(Ix), the input expression AU x, the shape parameters αs, the face
embedding FaceID(Ix), and the age features Age(Ix) and extracts features from each of them. There
features are concatenated in the channel dimension and passed though the Decoder which receives
the target action unit y via Adaptive Instance Normalization (Huang & Belongie, 2017) layers. The
Decoder gives as output a hallucination D(Iy)H and a mask D(Iy)M which are combined together
with the input detail map, D(Ix), to give D̃(Iy) as follows:

D̃(Iy)=D(Iy)M�D(Iy)H+(19D(Iy)M )�D(Ix) . (4)

The masking mechanism ensures the preservation of the details that are not meant to be changed with
the expression. A schematic of the network is shown in Fig 2.

3.2.1 TRAINING LOSSES

Due to the lack of a large scale in-the-wild dataset of paired data with expression change or 3D
data, we cannot perform regression using ground-truth geometric facial details, D(Iy) of the image
Iy. Therefore, we instead use an adversarial training paradigm along with cycle-consistency losses
similar to (Athar et al., 2020; Pumarola et al., 2020) to hallucinate the plausible facial geometric
details D̃(Iy) and to ensure the hallucination’s fidelity to the target expression and input features. In
order to speed up convergence, we weakly supervise the adversarial training using randomly sampled
frames from videos of the MUG (Aifanti et al., 2010) and the ADFES datasets (Van Der Schalk et al.,
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Figure 3: The Rendering Network. The Rendering Network, R first predicts a Neural Texture Map NTM
from the given input texture map T using NTex φ. The NTM is then rasterized using both the proxy (geometry
w/o details) and the detailed geometry and input into an image rendering network Tex2Im . Tex2Im generates a
rendering of the details ÎDy and a low-resolution image ÎLRy containing only detail-invariant image texture. They
are added together in the final rendered image Îy.

2011), ensuring that the sampling is sparse enough such that there is significant change in expression
with frames sampled from each video. We leave the full exposition of all the standard losses and
regularizations to the supplementary.

Expression Adversarial Loss. In order to ensure the hallucinated facial geometric details, D̃(Iy),
are consistent with the target expression y, as encoded by AUs, we use an expression discriminator
DExp. Given D(Ix) of some image Ix manifesting expression x, DExp, outputs the following

DExp(D(Ix)) = {r, x̂} , (5)

where r is a realism score and x̂ is the predicted AU. For brevity, we will use DExp(D(Ix)) and
DExp(D) interchangeably. We use the Non-Saturating adversarial loss (Goodfellow et al., 2014)
along with the R1 gradient penalty (Mescheder et al., 2018) to train DExp. We use a UNet based
discriminator (Schonfeld et al., 2020) in order to discriminate on pixel level. In addition, DExp is
trained to minimize the error of the predicted AU

LDExp
AU = ED∼PD

[
||[DAU

Exp(D) 9 x||22
]
, (6)

where DAU
Exp is the AU output head of DExp. The Details Hallucination Network, DetH , in addition to

be trained to minimize adversarial loss, is also trained to minimize the expression loss:

LDetH
AU = E

Ix,{y}
||DAU

Exp(DetH (·)) 9 y||22 (7)

where DetH (·) is to be read as in Eq. (2) and y is the target AU.
Superresolution Losses. The detail maps generated by FDS (Chen et al., 2019) are of resolution
4096× 4096 and thus cannot be used directly for training due to GPU-memory constraints. To get
around this, we train DetH on detail maps downsampled to 256× 256. Simultaneously, we finetune
a superresolution network, RCAN (Zhang et al., 2018), to super-resolve downsampled 256 × 256
patches of D(Ix) by a factor of 4

LRCAN
SR = L1

(
RCAN

(
D(Ix)P256

)
,D(Ix)P1024

)
, (8)

where D(Ix)P1024 is a randomly sampled patch of resolution 1024 × 1024 from the full-resolution
detail map D(Ix) and D(Ix)P256 is its downsampled version. During inference, we use RCAN twice
on the predicted detail map D̃(Iy) to upsample it to 4096× 4096:

D̃(Iy)HR = RCAN
(

RCAN
(
D̃(Iy)

))
. (9)

In the interest of brevity, we will use D̃(Iy) in lieu of D̃(Iy)HR in the remainder of this text.
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Figure 4: Expression Change. Here we show the results of detail hallucination and rendering as the expression
changes. The first column is the input image, the second column is the reconstruction (the detailed shading
under column ‘Recons’ is generated by (Chen et al., 2019)) and the subsequent columns are the results of the
hallucinated details and their renders by our method under different expressions. The first image row is the
output rendering and the second is the shading of the detailed geometry. As one can see DetH is able to generate
realistic details depending on the expression being manifested and R is able to faithfully render them to the
image space. We zoom-in on a subset of details in the final column for greater clarity. (Please view in high
resolution)

3.3 RENDERING NETWORK

The rendering network, R , consists of two subnetworks: (1) The Neural Texture prediction network
NTex φ and (2) The image rendering network Tex2Im .

Neural Texture Prediction. NTex φ predicts the Neural Textures given the texture map T (Ix) of
image Ix:

NTM = NTex φ(T (Ix)); NTM ∈ RF×H×W , (10)

where NTM is the predicted neural texture map with F channels. Unlike in (Thies et al., 2019), where
the NTM is identity specific, NTex φ can be used on any T (Ix), regardless of identitym to generate
its corresponding neural texture map. Through training, NTex φ learns to extract the appropriate
high-dimensional texture features from T (Ix) such that NTM can be used to generate a realistic
render of the person in Ix in any desired expression and view.
Image rendering. The image rendering network, Tex2Im , consists of two branches, the low-res
image renderer gθ and the detail renderer gω . The low-res image renderer generates identity-specific
image textures that are invariant to the predicted geometric details, such as the skin-tone or eye color.
The detail renderer gω renders the facial geometric details obtained from the detail hallucination
network, DetH , and adds them to the low-res image generated by gθ. The separation of the image
rendering network into two branches allows each branch to focus on its respective task and leads to
high-quality renderings.
The low-res image renderer, gθ, takes as input the NTM sampled using the UV map rasterized by the
proxy geometry, GP = {0 × D̃(Iy),αs, α̂e}, i.e the geometry without any details, along with the
shaded albedo also rasterized by GP :

ÎLRy = gθ (Sample(NTM,UV-Raster(GP , c)),y,γγγ, l) (11)

where c are the camera parameters, y is the target AU, γγγ is a vector of the coefficients of the albedo
PCA-space of the BFM (Gerig et al., 2018), and l are the lighting parameters. Since gθ only uses
inputs dependent on GP it generates the image textures that are invariant to details predicted by
DetH .

5



Under review as a conference paper at ICLR 2022

The detail renderer, gω , takes as input the NTM sampled using the UV map rasterized by the detailed
geometry, GD = {D̃(Iy),αs, α̂e} along with the shaded albedo also rasterized by GD:

ÎDy = gθ(Sample(NTM,UV-Raster(GD, c)),y, γγγ, l) (12)

where c are the camera parameters, y is the target AU, γγγ is a vector of the coefficients of the albedo
PCA-space of the BFM (Gerig et al., 2018), and l are the lighting parameters. The final output image
is calculated as:

Îy = ÎLRy + ÎDy . (13)

Since all of the detail invariant textures are already generated by gθ in ˆILRy , the detail renderer, gω,
can solely focus on realistically rendering the details hallucinated by the details hallucination network
DetH .

3.3.1 TRAINING LOSSES

The renderings generated by R must: 1) faithfully render the geometric details onto the RGB space
and 2) be realistic. Neural Rendering (Thies et al., 2019) is designed to address 2) as the high-
dimensional neural texture map is able store the fine details of the output texture. Consequently,
the details on the rendered image become entirely conditional on the input texture map, T (Ix), and
ignore the detailed geometryGD. This significantly hurts 1) causing the details on the rendered image
to remain unchanged even if the facial geometric details change due to changes in facial expression.
In order to ensure the output renderings satisfy 2) we use, along with the branched architecture
discussed in Sect 3.3, an Augmented Wrinkle Loss (AugW) and the Detailed Shading Loss (DSL)
to ensure the geometric details are faithfully rendered onto the output image. Additionally, R is also
trained with a photometric loss and an Expression Adversarial Loss in order to maintain photometric
and expression consistency. We leave the full exposition of all the standard losses and regularizations
to the supplementary.
Augmented Wrinkle Loss (AugW). In order to enforce the rendering of geometric details onto
the rendered image we add ‘fake’ wrinkles to an image Ix and force R to generate the same.
Given the the detailed geometry of Ix, GD = {D(Ix),αs,αe}, a geometry with ‘fake’ details
G∗D = {D(I∗z),αs,αe} using the geometric details from some random image I∗z and the lighting l of
Ix, the ‘fake’ wrinkles are added as follows:

Shading(Ix) = LSph(GD, l);Shading
∗(Ix) = LSph(G

∗
D, l)

I∗
x
= Shading∗(Ix)×

(
Ix

Shading(Ix)

)
(14)

where LSph is the spherical harmonic lighting function and l are the coefficients of the first 9 spherical
harmonics. The artificially wrinkled image I∗

x
is now re-rendered using R

Î∗x = R (T (Ix), G∗D,x, c, l)
LAugW = LapLoss(Î∗x, I

∗
x
) .

(15)

where, LapLoss is the Laplacian Loss (Ling & Okada, 2006). In order to faithfully reconstruct I∗
x

, R
is forced to rely on the detailed geometry G∗D, since the input texture map T (Ix), and consequently
the neural texture map, contain no information about the ‘fake’ wrinkles.
Detailed Shading Loss (DSL). In addition to the Augmented Wrinkle Loss, we also try to predict
the shading of the detailed facial geometry from the output rendering Îx

ˆShading(Îx) = fθ(Îx)

LDSL = LapLoss( ˆShading(Îx),Shading
∗(Ix)) ,

(16)

where fθ is a small convolutional network (CNN) with only two layers and the shading
Shading∗(Ix) is calculated as in Eq. (14). We calculate this loss only over the skin region.
Since, fθ is a small CNN with limited representational capacity, the details must be quite visible
on the rendered image Îx in order for them to be picked up by fθ to generate an accurate shading

ˆShading(Îx).
Expression Adversarial Loss. In order to ensure that the rendered output conforms to the target ex-
pression we use an expression adversarial loss. Given a rendered image, Îx = R (T (Ix), GD,x, c, l),
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Method Name FID (↓) FaceID (↓)
FaceDet3D 25.47 1.02e−3 ± 4.14e−4

DECA 192.21 3.04e−3 ± 6.6e−4

Table 1: Quantitative Comparison with DECA based on FID Score and FaceID distance.

manifesting the expression encoded by AU x an expression discriminator, DRGB
Exp , outputs

DRGB
Exp (Îx) = {r, x̂} , (17)

where r is a realism score and x̂ is the predicted AU. We use the Non-Saturating adversarial loss
(Goodfellow et al., 2014) along with the R1 gradient penalty (Mescheder et al., 2018) to train DExp.
In addition, DRGB

Exp is trained to minimize the predicted AU error

LDRGB
Exp

AU = EIx∼PI

[
||[DRGB,AU

Exp (Ix) 9 x||22
]
, (18)

where DRGB,AU
Exp is the AU output head of DRGB

Exp . The Rendering Network, R , in addition to be trained
to minimize adversarial loss, is also trained to minimize the AU loss

LR
AU = EIx ||D

RGB,AU
Exp (R (·)) 9 y||22 , (19)

where R (·) is to be read as in Eq. (3).

Input Original View View 1 View 2 View 3 View 4 View 5Reconstruction
Happy

Input Original View View 1 View 2 View 3 View 4 View 5Reconstruction
Angry

Detailed  
Shading

Detailed  
Shading

Figure 5: View Consistency. In this figure we demonstrate the consistency of the details rendered by R . A
subset of the hallucinated details from DetH are marked with blue rectangles. As can be seen, R renders the
details in a consistent manner across views. (Please view in high resolution)

4 RESULTS

We train the detail hallucination network, DetH , and the rendering network R , on 9,000 images
from the FFHQ dataset (Karras et al., 2019). Additionally, 3,000 frames were sampled from the MUG
(Aifanti et al., 2010) and the ADFES (Van Der Schalk et al., 2011) datasets to speed-up training
of the detail hallucination network DetH . Due to memory constraints, DetH and R are trained
independently. Upon publication we will release the code. Below, we show the FaceDet3D’s results
on expression change, results on view consistency, a comparison with DECA (Feng et al., 2021) and
Ablation studies.
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Figure 6: Qualitative Comparison with DECA
(Feng et al., 2021) The row label shows the expres-
sion being animated, the first column is the input im-
age, the second is the detailed geometry hallucinated
by FaceDet3D for the expression being animated, the
3rd column is the render generated by FaceDet3D of its
hallucinated detailed geometry, the 4th column is the de-
tailed geometry generated by DECA for the expression
being animated and the 5th column is render generated
by DECA. As can be seen by comparing columns 2 and
4, the details generated by FaceDet3D are significantly
more consistent with the expression than those gener-
ated by DECA, whose details are more generic (see text
for details). Further, a comparison between the 3rd and
the fifth column of the figure show that the renders of
FaceDet3D are significnatly more realistic than those of
DECA. (Please view in high resolution)

Expression change. We first demonstrate the
detail hallucination and rendering results with
expression change. Fig 4 shows the result of
changing the expression of some input image
to a variety of expressions. The first column of
Fig 4 is the input image, the second column
shows the image reconstructed using the de-
tail map D(Ix) predicted by FDS (Chen et al.,
2019). In the subsequent columns D(Ix) is
used as input to generate D̃(Iy) where y =
{Anger,Disgust,Happy,Surprise}. The first
row shows the final rendered image, i.e the out-
put of R and the second row shows the shaded
geometry with the hallucinated details, i.e GD.
The hallucinated details and their corresponding
rendering are marked out with dashed red and
blue rectangles. We zoom in the red rectangles
of the last column. As seen in the second row of
Fig 4, the details hallucinated are consistent with
the manifested expression. For example, ‘Anger’
and ‘Disgust’ (3rd and 4th column of Fig 4 re-
spectively) show consistent wrinkling around
the forehead and the nose while ‘Happy’ (col-
umn 6 Fig 4) shows consistent wrinkling around
the cheeks. Zooming in the last column of Fig 4
highlights the realism of the hallucinated details
produced by the rendering network, R .
Further, in Fig 7 we show the utility of halluci-
nating details as the expression changes. The
first row of Fig 7 shows the image rendered with
the hallucinated details from DetH as the expression changes. The second row of images shows
the images rendered without details, this is done by setting the hallucinated detail map to zero. As
seen by comparing the skin appearance marked with the red rectangles, in the first row the skin
changes realistically as the expression of the person changes due to the changing facial geometric
details, while the skin in the second row remains unchanged, significantly hurting realism. In the
supplementary we show further results on expression animation and encourage the reader to inspect
them.

Reconstruction Fear Happy

Render  
without  
details

Detailed 
Shading 

DisgustInput

Figure 7: Details vs. No Details. We com-
pare the results of changing the expression
both with and without hallucinating details.
The text in the input image (on the chin) is a
watermark. (Please view in high resolution)

View Consistency. In Fig 5 we show the consistency of
the details rendered by R across various views in novel
expressions. While the underlying face model ensures that
the detailed geometry is consistent in any view, there is no
guarantee its rendering generated by R would be too. The
first column of Fig 5 is the input image, the second column
is the reconstruction of the input in the original expression
and view and the third column shows the input image
manifesting a novel expression in the view of the input
image. The subsequent columns show the input image
rendered with the target expression in novel views. The
blue rectangles around the details in the rendered image
show they are rendered with high fidelity to the shaded
geometry and therefore look consistent across a variety
of views. Fig 5 shows that R is able to maintain a close
to one-to-one correspondence while rendering geometric
details to the image space.
Comparison with DECA (Feng et al., 2021): In Fig 6
we provide a qualitative comparison of FaceDet3D and

DECA. The row label is the expression being animated, the first column is the input image, the
second is the detailed geometry hallucinated by FaceDet3D for the expression being animated, the

8



Under review as a conference paper at ICLR 2022

Rendering Type FID (↓) FaceID (↓)
NR Double Branch (Ours) 25.47 1.02e−3 ± 4.14e−4

NR Single Branch (ablation) 40.78 2.2e−3 ± 3.8e−4

Ordinary Rendering 48.18 2.7e−3 ± 6.5e−4

Table 2: FID Score and FaceID distance.

3rd column is the render generated by FaceDet3D of its hallucinated detailed geometry, the fourth
column is the detailed geometry generated by DECA for the expression being animated and the fifth
column is render generated by DECA. Note that DECA’s results have the full head because they use
the FLAME 3DMM while we use the BFM 3DMM.
By comparing the details in the second and the fourth column of Fig 6 one can see that FaceDet3D
generates more concentrated and higher quality details. For example, DECA always generates
wrinkles on the forehead regardless of the expression being animated, thus the details generated
for ‘Happy’ (row 1) are inconsistent with the expression. Similarly, a comparison between the
third and fifth column of Fig 6 shows that the renders of FaceDet3D are significantly more realistic
than those of DECA. In Table 1, we see that the FaceID distance (using FaceNet (Schroff et al.,
2015)) and the FID score, across a variety of expression edits, of the renders of FaceDet3D is
significantly lower than the renders of DECA. Further, the blue boxes shown in columns 2 and 3 of
Fig 6 show that the hallucinated details are faithfully and photo-realistically reproduced in the render.

Reconstruction

with AugW  
and DSL

Input

w/o AugW  
and DSL

Detailed  
Shading

Disgust Happy

Figure 8: Ablating AugW and DSL. We
show that without AugW and DSL details
are not rendered to the image space. (Please
view in high resolution)

Ablation Studies. We examine the utility of the Aug-
mented Wrinkle Loss (AugW) and the Detailed Shad-
ing Loss (DSL) in rendering the facial geometric details to
the image space. Fig 8 shows the results of training R with
and without the AugW and DP losses. As seen by compar-
ing the results in rows 2 and 3 of Fig 8, without those losses
R fails to render the hallucinated geometric facial details.
Next, we ablate using a single network in Tex2Im (‘NR
Single Branch’) versus using two networks as described
in Sect 3.3 (‘NR Double Branch’) versus using Ordinary
Rendering using the provided texture space of BFM(Gerig
et al., 2018). We calculate the FID score (Heusel et al.,
2017), and the FaceID distance using FaceNet (Schroff
et al., 2015) across a variety of expression edits. As can
be seen in Table 2, using two networks, one that outputs
the detail-invariant textures and the other that renders the
details, gives better results as compared to using a single
network. It not only produces more realistic images (as
measured by the FID score) but also more closely pre-
serves the identity across a variety of expression edits. As
it is expected, ordinary rendering performs the worst as its
PCA space cannot capture the rich details of the human face across a variety of input identities and
expression edits.

5 CONCLUSION AND FUTURE WORK

We have presented FaceDet3D, a method for hallucinating, from a single image, plausible facial geo-
metric details as the expression changes and render them photo-realistically. The details hallucination
network is trained using adversarial losses and weak supervision without any ground-truth 3D data.
The rendering network is constrained using the Augmented Wrinkle Loss and Detailed Shading
Loss, forcing it to use cues from the detailed geometry to render the details, ensuring their fidelity
and consistency across a variety of expressions and views. The detail hallucination network relies
on the detail map estimated by FDS (Chen et al., 2019) as input to predict the plausible details of
the target expression, therefore it cannot handle occlusions such as glasses or make-up very well
as FDS (Chen et al., 2019) fails in those conditions. In future work, we plan to incorporate explicit
disentanglement of lighting in order to enable greater control over the final rendering along with
explicit modelling occlusions and joint training of DetH and R .
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