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ABSTRACT

We study the relationship between the entropy of intermediate representations and
a model’s robustness to distributional shift. We train models consisting of two
feed-forward networks end-to-end separated by a discrete n-bit channel on an
unsupervised contrastive learning task. Different masking strategies are applied
after training that remove a proportion of low-entropy bits, high-entropy bits,
or randomly selected bits, and the effects on performance are compared to the
baseline accuracy with no mask. We hypothesize that the entropy of a bit serves
as a guide to its usefulness out-of-distribution (OOD). Through experiment on
three OOD datasets we demonstrate that the removal of low-entropy bits can
notably benefit OOD performance. Conversely, we find that top-entropy masking
disproportionately harms performance both in-distribution (InD) and OOD.

1 INTRODUCTION

The key challenge that we seek to address is that of identifying learned features in a model’s
intermediate representations that are more or less likely to be robust to distributional shift. Our
approach starts from the intuition that for high-entropy features in a model’s training distribution, it
will have learned a better understanding for when the feature is relevant. More precisely, it will be
better at distinguishing the presence or absence of the feature across different situations. Consider
a hypothetical data set containing photographs from two safari trips, where each trip contains the
same people on the same safari, but driving around in different trucks. Suppose that it is useful for
the given task to identify which of the two trips a given image corresponds to; we might expect the
model to be particularly good at distinguishing between the trucks. On the other hand, if a rare tree
appears in exactly one photograph, the model may have learned to recognise the specific pattern of
pixels in that photograph corresponding to the tree, but it might not have the capability to recognise
the tree in new situations.

As models have increased in performance within the bounds of the i.i.d. assumption, recent years have
seen growing interest in the OOD behaviour of machine learning systems. While many approaches
have studied OOD detection or the effects of external changes to a model’s training regime on OOD
behaviour (e.g. domain randomization or auxiliary loss functions), to the best of our knowledge our
proposal of the entropy of an intermediate representation as a guide to its effects OOD is a novel
approach. In this paper we demonstrate that the removal of low-entropy representations via the
masking of learned discrete bits can notably improve OOD performance.

2 TASK AND MODEL DESCRIPTION

To learn representations of a domain we train an encoder network to produce a representation r
of a given input x∗. This representation is given to a distinguisher network that is tasked with
identifying x∗ from a set of k images composed of x∗ and k - 1 distractor inputs arranged randomly.
We use the CIFAR-10 dataset (Krizhevsky, 2009) as the training distribution. The labels from the
dataset are discarded and an unsupervised k-contrast task is constructed by pairing each image with
k - 1 distractor images, shuffling, and giving the distinguisher k inputs to choose from. The same
preprocessing is later used when out-of-distribution datasets are introduced. See Figure 1for an
example of a contrastive task and Figure 4 in the Supplementary Material for the full architecture.

∗Equal contribution.
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Figure 1: An example of a contrastive task (k = 3). For a given dataset, the distinguisher is shown k
images, among which k-1 distractor images, and has to predict the correct image.

It is important to note that we use a ‘soft-discretization’ technique (Foerster et al., 2016) on the
intermediate representation r such that it can be learned with gradient-descent, but each dimension
can be mapped to a binary digit at test time with no loss in performance. While the use of a
communication channel to discretize representations poses optimization challenges, it also provides a
large benefit when it comes to computing the entropy values of each bit in the representation. The
computation is reduced from approximating an integral to the simple formula for the entropy of a
binary variable, as outlined in Section 3.1. This allows us to run a greater number of experiments
with higher precision than if we had used continuous representations.

This unsupervised contrastive learning task was chosen as it can be easily transferred to different
data distributions. A task such as image classification limits the available datasets as it requires the
out-of-distribution testing data to have the same (or at least overlapping) image labels.

3 ENTROPY-BASED MASKING

3.1 ENTROPY OF REPRESENTATION BITS

Each representation r produced by an encoder network consists of a number of bits |r|, referred to as
the representation length. By considering each bit at index i as a random variable Bi we can compute
the binary entropy of the bit on a given dataset D:

H(Bi | D) = −p log2 p− (1− p) log2(1− p), where p = P (Bi = 1 | D). (1)

Entropy close to 1 means that the bit is 0 or 1 with roughly equal probability of p = 0.5. Very low
entropy means that the bit is either almost always 0 or almost always 1. We notice that for smaller
representation lengths and/or few distractors the distribution tends to skew towards higher entropy
bits. In separate experiments where we further varied representation lengths, we find that for smaller
|r| equal to 8, 16 or 32, all bits have entropy higher than 0.8, which makes studying bits based on
entropy variation uninteresting for these representation lengths. For a visualization of these entropy
values see Figure 5 in the Supplementary Material. Representation lengths of 64, 128, 256 and 512
all lead to a wide range of entropy values. A theoretical analysis of the optimal bit-entropy can be
found in Section B of the Supplementary Material.

3.2 BIT MASKING STRATEGIES

In this paper we are interested in the effects of strategically ‘removing’ parts of the model’s interme-
diate representation, i.e. obscuring bits in r. It is important to note that we are only applying masking
at test time. The masking is not used to train any of the models. The mask is defined by a set masking
variables mi ∈ {0, 1} for each bit ri in the representation. The masked bit r̂i is computed:

r̂i = miri + (1−mi)
1

2
. (2)

In other words, when the masking variable mi = 0 then r̂i = 0.5, and otherwise r̂i = ri. In this
paper we use three masking strategies; Random Masking, Top-Entropy Masking, and Bottom-Entropy
Masking. In order to construct a mask with any of these strategies, we define a masking proportion
pmask that represents the percentage of bits in r that should be masked.

2



Published as a workshop paper at ICLR 2023 Domain Generalization

To construct any mask M = {m1, . . . ,m|r|} we will need to choose lmask = ⌊ pmask · |r| ⌋ bits to
remove. For a random mask we draw lmask masking variables from M at random with uniform
probability and without replacement, and set them to 0, we set the remaining |r| − lmask variables
to 1. To construct a top-entropy mask we compute the entropy for each bit hi = H(Bi | D) and
sort these values in descending order. We then take the bits associated with the first lmask entropy
values (i.e. highest entropy) and set their corresponding masking variables to zero. Likewise, for the
bottom-entropy mask we take the last lmask bits and remove those instead.

4 EXPERIMENTAL RESULTS

Figure 2: Accuracy of CIFAR-10 pre-trained mod-
els on OOD datasets (on the y-axis) against accu-
racy on CIFAR-10 (on the x-axis). The dashed line
(which coincides with the green and blue lines) is
the y = x line.

We trained 54 encoder-distinguisher pairs1 on
CIFAR-10 and removed models that did not con-
verge, resulting in 51 trained models. Models
were trained with varying combinations of rep-
resentation lengths and number of distractors:
(|r|, k) ∈ {64, 128, 256, 512} × {3, 5, 10, 20}.
See Table 1 for the test accuracy statistics for
the models on the k-contrast CIFAR-10 training
distributions. See Section C in the Supplemen-
tary Material for a full description of the training
methodology.

To evaluate the effects of distributional shifts
we test our 51 trained models on the CIFAR-
100 Krizhevsky (2009), Stanford Online Prod-
ucts Song et al. (2016), Colorectal Histology
Kather et al. (2016), Plant Village Hughes &
Salathe (2015), and MNIST LeCun et al. (1999)
datasets.

In Figure 2 we demonstrate the shift in perfor-
mance that results from applying the models to
the new datasets. Following Taori et al. (Taori
et al., 2020), plotting the relationship between
InD and OOD performance in this manner allows us to study distributional shift while controlling
for the variations in initial accuracy. The y = x line is plotted with a black dashed line, however, it
is obscured by the regression lines for CIFAR-100 and Stanford Online Products. This tells us that
there is no distributional shift for these datasets, i.e. no loss in performance. For this reason, we drop
these datasets from all further out-of-distribution analysis. For the other datasets, we see in order of
increased degradation: Plant Village, Colorectal Histology, and MNIST.

4.1 ANALYSIS OF MASKING EFFECTS IN-DISTRIBUTION

Before moving onto the out-of-distribution case, we first examine the effects of applying the different
masking strategies to the models that we trained on CIFAR-10, with the CIFAR-10 test data. For each
of the 51 successfully trained models we evaluated the accuracy without any masking, and with each

1A sweep of 3 runs for each pair of (|r|, k) plus 6 initial separate runs.

Representation Length

Training k 64 128 256 512

3 0.909± 0.029 0.869± 0.015 0.870± 0.052 0.887± 0.015
5 0.797± 0.026 0.688± 0.077 0.759± 0.131 0.820± 0.166

10 0.866± 0.103 0.579± 0.018 0.643± 0.231 0.736± 0.171
20 0.662± 0.170 0.538± 0.230 0.532± 0.380 0.481± 0.337

Table 1: Accuracy on CIFAR-10 test set of trained models with different k and |r| values.
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Figure 3: Effective robustness plots for low-k models. y = x shown as black dashed line.

of the different masking strategies for masking proportions between 0.15 and 0.5 at 0.05 intervals. We
found that for any masking proportion, removing the top-entropy bits is more damaging to accuracy
than masking out bottom-entropy bits. In light of general insights from information theory, this result
is not too surprising. The highest entropy bits necessarily convey the most information, and so it
follows that their removal should lead to the largest drop in performance.

In general, we did not expect any of the masking strategies to provide a benefit when applied within
the training distribution. Yet, we saw that with a small masking proportion (around pmask < 0.3) we
see an increase in accuracy for low-entropy and random masks. Our initial hypothesis was that the
masking may be ‘undoing’ overfitting to the training set. But for each of the trained models we have
verified that there is no overfitting (see Section D.1 in the Supplementary Material for a visualization).

4.2 ANALYSIS OF MASKING EFFECTS OUT-OF-DISTRIBUTION (OOD)

In order to understand the effects of masking on accuracy in the OOD setting we measure the mean
change in accuracy of a masking strategy under various circumstances. We also report the standard
deviations associated with these estimates. As in the case of in-distribution masking we evaluated
the masking strategies for a sweep of masking proportions between 0.15 and 0.5 at 0.05 intervals.
We cut-off the maximum masking proportion pmask ≤ 0.25 for all further analysis as beyond that
threshold masking has an almost universally negative effect. The overall mean accuracy changes can
be seen in Table 2. We see that masking the bottom-entropy or random bits produces the highest
increase, albeit with a large variance.

This variance can be understood and disentangled by separating the low-k models from the high-k
models. What we see is that the benefits of bottom-entropy masking are more prevalent for low-k
models. This is visualized in Figure 3 where we illustrate the effective robustness of each of the
masking strategies on the three OOD datasets. In the Supplementary Material Section D.2 we include
plots for all values of k and pmask that we tested. Effective robustness is a concept introduced by
Taori et al. (2020) as a way to understand the efficacy of a method for increasing robustness to
distributional shift. By plotting the baseline regression line for unaltered models with differing
in-distribution accuracy values on the diagram we can observe whether a proposed robustness method
moves towards the y = x line (i.e. no degradation). Crucially, with these plots, we are able to account
for each model’s performance on the training distribution. Hence, despite the large variance in the
performance of models trained across various k and |r| values2, we are able to discern the effects of
the masking interventions.

In our case, we see that – as is consistent with previous results – for each dataset the top-entropy
masking moves below the dashed green line showing the baseline unmasked models. On the other
hand, the random masking and bottom-entropy masking lines move closer to y = x (as compared
to the no masking lines). For Plant Village we see that almost all of the in-distribution accuracy is
recovered. For MNIST we find the most substantial jump, and the largest benefit of bottom-entropy
over random masking.

2Accuracy ranging between 0.65 and 0.95 for even the high-performing low-k models, as shown in the
x-axes of Figure 3.
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CIFAR-10 Colorectal Histology MNIST Plant Village

Masked Bottom Entropy 1.6± 8.0 −2.0± 14.3 9.4± 15.6 3.0± 23.7
Masked Top Entropy −4.3± 21.4 −7.8± 19.0 −16.6± 5.3 −18.5± 21.8
Random Mask 2.5± 12.3 3.4± 10.9 4.2± 13.7 2.1± 19.6

Table 2: Mean accuracy shift (in percentage points) after masking with each strategy. After running
paired t-tests we find that all of these accuracy shifts are statistically significant (with p = 0.05).

5 RELATED WORK

Our work adds to the toolkit of methods to aid in understanding and improving robustness to
distributional shift, which for example includes forms of data augmentation Hendrycks et al. (2021)
and abstaining from making a prediction in the face of uncertainty Thulasidasan et al. (2021). For a
general overview of problems and methods in OOD robustness see Shen et al. (2015).

Below we reference some notable entropy-based methods that have a different purpose than improving
OOD robustness. Chatterjee & Mishchenko (2019) use low entropy (or “rare”) signals to analyze
the extent to which a model is overfitted to the training distribution. Entropy-based methods have
also been used widely in the adjacent problem of OOD detection. For example, predictive entropy
measures the uncertainty of the prediction of a sample given a training distribution and is used to
calculate the extent to which a sample is OOD Kirsch & Gal (2021). However, we apply entropy in
an entirely different context, namely, we calculate the entropy of latent variables to estimate how
robust they will be to distributional shift. Relative entropy (KL-divergence) is a popular measure
and is notably used in the Bits-Back method Hinton & van Camp (1993), Flamich et al. (2020) to
calculate the optimal compression rate in latent variables. Images that are traditionally compressed
by a variational auto-encoder have now been compressed with code-length close to this theoretical
optimum Flamich et al. (2020).

Contrastive representation learning takes many forms; in computer vision alone there are many
approaches for applying deep learning to multiple inputs and producing representations to distinguish
between them; see Jaiswal et al. (2020) for a review. To our knowledge, there are no existing
suitable state-of-the-art (SOTA) methods for OOD robustness in contrastive learning to benchmark
our proposals against.

6 CONCLUSION

In this paper we have investigated the out-of-distribution effects of using different post-hoc strategies
to remove bits from discrete intermediate representations in an unsupervised contrastive learning task.
We have studied how the difficulty of the task (more distractors) impacts the entropy distribution of
the learned representations and shown that removing low-entropy bits can improve the performance of
models out-of-distribution (Section 4.2), notably almost entirely restoring in-distribution performance
for one of our datasets (see Figure 3). However, the results also present mysteries that prompt further
experiments and analysis. At the time of writing, we do not have a clear understanding of why the
removal of bits within the training distribution should increase performance, as we would expect the
encoder to learn an optimal protocol.

Next, there is a need for a deeper understanding of the conditions in which our results hold. Within
our experimentation, we found that the effect (of harm from low-entropy features OOD) was less
pronounced for models trained on the more difficult tasks (higher numbers of distractors). From our
data, it is unclear if this relationship represents something fundamental or if it is a side-effect of these
models generally performing to a lower standard. One of the most important avenues of further work
is in testing if other systems built on top of the learned representations in this paper inherit the same
OOD robustness under low-entropy masking.
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A NETWORK ARCHITECTURES

Figure 4: Architecture diagram (k = 5). The encoder
is shown as the purple and green components, and the
distinguisher is the orange and red.

The encoder network is composed of a
convolutional network (CNN) that takes
a 32 × 32 × 3 dimensional tensor as in-
put (CNNA in Figure 4), followed by: a
3 × 3 convolutional layer with 64 filters
and ReLU activation; two 3 × 3 convolu-
tional layers with 64 filters, ReLU activa-
tion, and a stride-length of 2; a flatten layer;
and finally a dense layer without any ac-
tivation that projects into R|r|, where |r|
is a hyperparameter controlling the ‘repre-
sentation length’ of r. Next, between the
encoder and the distinguisher, there is a
discretize/regularize unit (Foerster et al.,
2016). Following the literature in which
this component was developed, we will re-
fer to this as a communication channel (see
in green in Figure 4). The channel is a dif-
ferentiable unit that, during training, ‘soft
discretizes’ activations passed through it by
applying Gaussian white noise (GWN) and
a sigmoid function. Then at test time we
‘hard discretize’ the activations by passing
through a sigmoid function and emitting 0 if the result is less than 0.5 and 1 otherwise. This enables
the end-to-end learning of a discrete representation via backpropagation from the output of the
distinguisher. We configure the channel with a fixed GWN standard deviation of 0.5 during training.

The distinguisher network is composed of another convolutional network (CNNB in Figure 1) with
exactly the same input and layers as the CNN in the encoder (initialized separately and no parameter
sharing), except projecting to a fixed embedding size of 128. This CNN is shared for each of the
‘possible answer’ images, producing embeddings that are each concatenated with the representation r
from the encoder (i.e. the output of the communication channel) and fed into a transformer network
(Vaswani et al., 2017) as tokens. The transformer is composed of two self-attention encoder layers
with 3 heads of dimension 64, and a dropout rate of 0.1. After the transformer layers each token
is projected onto a single dimension without activation. This is then taken as the log-probability
(logit) that the corresponding possible answer is correct. The networks are trained together with a
sparse categorical crossentropy loss on these logits and the index of the correct answer. The use of a
transformer and a shared encoder for the input images means that a model trained, for example, on a
3-contrast dataset (k = 3) can be tested on a 5-contrast dataset without any modification.

B THEORETICAL RESULT

Consider the following abstracted and idealized version of the contrastive learning game. An encoder
receives an input, and communicates features in that input via bits. A distinguisher has to identify
the original input from a set of k (distractor) inputs, based on the communicated features. The
encoder and distinguisher win if the distinguisher correctly identifies the original input. The encoder
and distinguisher need to decide on a communication protocol before playing the game. Each bit
corresponds to one feature. The encoder sends a 1 if a given feature is present and a 0 otherwise.

The question we’re answering in this section is: what is the optimal feature occurrence (or bit entropy)
for a feature when the encoder can choose b bits, and the distinguisher has to choose between k
inputs.

Below we calculate that the optimal strategy is to use l independent features that are each present in
exactly half of the images. The chance of the receiver picking out the right image depends on k.
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For this calculation we will assume the encoder can choose b = 2 bits, i.e. can communicate two
features x and y. Let fx and fy be the frequency of respectively feature x and feature y in the dataset.
To answer the question we will calculate the values of fx and fy that maximize the chance of winning.

Let cx be the random variable that represents: the correct input has feature x, and cy the variable that
represents: the correct input has feature y. We assume that these variables are independent. Let v be
the random variable that represents the number of inputs in the set of k inputs that the distinguisher
gets to see, that have both feature x and feature y.

P (win) = P (win|cx, cy) · P (cx, cy)

+P (win|cx, c¬y) · P (cx, c¬y)

+P (win|c¬x, cy) · P (c¬x, cy)

+P (win|c¬x, c¬y) · P (c¬x, c¬y)

Note that P (cx, cy) = fx · fy . Below we calculate that

P (win|cx, cy) = Σk
v=1

1

v
· (fxfy)v−1 · (1− fxfy)

k−v ·
(
k − 1

v − 1

)
.

To do so we introduce one more helper variable ṽ which represents the number of inputs in the set of
k inputs that the distinguisher gets to see, that have both feature x and feature y, but excluding the
correct input.

We now calculate
P (win|cx, cy) = Σk

v=1P (win|cx, cy, V = v) · P (Ṽ = v − 1|cx, cy)
= Σk

v=1P (win|cx, cy, V = v) · P (Ṽ = v − 1)

Note that P (win|cx, cy, V = v) = 1
v and

P (Ṽ = v − 1) = (fxfy)
v−1 · (1− fxfy)

k−1−(v−1) ·
(
k − 1

v − 1

)
Hence

P (win|cx, cy) = Σk
v=1

1

v
· (fxfy)v−1 · (1− fxfy)

k−v ·
(
k − 1

v − 1

)
.

Applying the Bionomial theorem gives us the following equality

P (win|cx, cy)P (cx, cy) = fxfy · Σk
v=1

1

v
· (fxfy)v−1 · (1− fxfy)

k−v ·
(
k − 1

v − 1

)
= Σk

v=1

1

v
· (fxfy)v · (1− fxfy)

k−v ·
(
k − 1

v − 1

)
=

1

k
Σk

v=1(fxfy)
v · (1− fxfy)

k−v ·
(
k

v

)
=

1

k

(
(fxfy + 1− fxfy)

k − (1− fxfy)
k
)

=
1

k

(
1− (1− fxfy)

k
)

=
1

k
− 1

k
(1− fxfy)

k

We can write similar equations for c¬x and c¬y and combining them results in

P (win) =
4

k
− 1

k

(
(1− fx · fy)k

+(1− fx · (1− fy))
k

+(1− (1− fx) · fy)k

+(1− (1− fx) · (1− fy))
k
)
.
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More generally, for arbitrary number of bits b and feature frequencies f1, . . . , fb we find

P (win) =
2b

k
−1

k

(
(1− f1 · · · fb)k + (1− (1− f1)f2 · · · fb)k + . . .+ (1− (1− f1) · · · (1− fb))

k
)

The derivative of P (win) with respect to f1 is

∂P (win)
∂f1

= f2 · · · fb(1− f1 · · · fb)k−1

−f2 · · · fb(1− (1− f1)f2 · · · fb)k−1

+ . . .

−(1− f2) · · · (1− fb)(1− (1− f1) · · · (1− fb))
k−1

When f1 = 0.5 the components with a factor of f1 compensate for the ones with a factor of (1− f1),
and so the derivative is 0 for f1 = 0.5. Deriving with respect to other feature values gives analogues
results. That is, one optimal feature occurrence value for maximizing P (win) is 0.5.

C TRAINING METHODOLOGY

In order to prevent overfitting and the representation of ‘trivial features’ (e.g. specific pixel values)
in the representations, during training we use a stack of image augmentation layers independently
applied prior to each image encoder. This involves a random rotation of up to 0.1 radians, a random
contrast shift of up to 10%, a random translation of up to 10% along both axes, and a random zoom
of up to 10% (all with a nearest-neighbour filling of blank pixels).

The models were optimized using Adam (Kingma & Ba, 2015) with a learning rate of 0.001. The
batch size used for training was dependent on the number of distractors, and each epoch iterated
through the entire training dataset. See Table 1 for the full breakdown of test accuracy values for
trained models, i.e. the mean and standard deviations for the proportion of occasions where the
distinguisher was correctly able to identifier x∗ by using r.

All of the code was implemented with Tensorflow 2 (Abadi et al., 2015) and datasets were pulled
from Tensorflow Datasets3 (TFDS) (TF Devs, 2022). CIFAR-10 was split into the default TFDS
training and test sets (50,000 training images and 10,000 test images). Training and analysis were
performed with an NVIDIA RTX 3090 GPU.

We trained 54 independent encoder-distinguisher pairs4 for 10 epochs on CIFAR-10 and removed
models that did not converge (as defined by not reaching an 80% drop in loss), resulting in 51 trained
models (taken as the best performing checkpoint). Models were trained with varying combinations of
representation lengths and number of distractors: (|r|, k) ∈ {64, 128, 256, 512} × {3, 5, 10, 20}. We
also trained models with representation lengths 8, 16 and 32, visualizations of which can be found
in Figure 5, which we discarded because their bit entropies were too homogeneous to meaningfully
study the effect of masking out low versus high entropy bits.

3The license for these datasets can be found at: https://github.com/tensorflow/datasets/
blob/master/LICENSE

4A sweep of 3 runs for each pair of (|r|, k) plus 6 initial separate runs.
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Figure 5: The x-axis represents entropy percentile of bits in the representation. The y-axis shows
the entropy values of bits (measured on CIFAR-10). In other words, we take the list of bits and sort
them by entropy, and then plot the sorted line as percentiles in order to compare the distributions of
different lengths. The translucent regions show the error bars from various training runs. We can see
that for lower |r| values, the entropy distributions do not tend to go below 0.8.

D EXPERIMENTS

The code for the experiments can be found at the following repository: [URL removed to preserve
anonymity]

D.1 OVERFITTING ANALYSIS

In Figure 6 we see that the test and training accuracies are very similar (with the test accuracy even
being slightly higher) and so no overfitting has happened.

Figure 6: For different values of k the blue line shows the training accuracy and the orange line shows
the test accuracy.

D.2 OOD ACCURACY CHANGE FOR ALL MASKING PROPORTIONS AND ALL VALUES OF k
AND |r|

Figure 7 shows the OOD accuracies for each dataset (using the data of all the values of k and all the
analysed representation lengths). Figure 8 shows the accuracies for each dataset and each value of k.
Figure 9 shows the accuracies for each dataset and each representation length |r|.

11



Published as a workshop paper at ICLR 2023 Domain Generalization

Figure 7: The y-axis represents the accuracy and the x-axis the masking proportion. Different
masking strategies are represented by different colors.

Figure 8: The y-axis shows the accuracy and the x-axis shows different masking proportions. Masking
strategies are indicated by color.
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Figure 9: The y-axis shows the accuracy and the x-axis shows different masking proportions. Masking
strategies are indicated by color.

13



Published as a workshop paper at ICLR 2023 Domain Generalization

D.3 OOD MEAN ACCURACY CHANGE FROM MASKS

The tables in this section are the same as Table 2 in Section ??, except separated by different values
of k. Figure 10 is a visualisation of the data along with the ‘distance out-of-distribution’ for each k
value.

Figure 10: Mean change in accuracy when apply each masking strategy to each model varying by k
on the OOD datasets. Standard deviations denoted with error bars.

Table 3: Mean change in accuracy (in percentage points) (k = 3, pmask ≈ 0.25)

Dataset CIFAR-10 Colorectal Histology MNIST Plant Village
Strategy

Masked Bottom Entropy 2.8± 1.4 2.8± 2.3 16.6± 7.5 8.1± 5.5
Masked Top Entropy 4.0± 1.4 −0.4± 4.3 −12.7± 5.2 −2.9± 1.5
Random Mask 4.0± 1.4 5.8± 3.0 6.5± 3.9 6.2± 2.5

Table 4: Mean change in accuracy (in percentage points) (k = 5, pmask ≈ 0.25)

Dataset CIFAR-10 Colorectal Histology MNIST Plant Village
Strategy

Masked Bottom Entropy 4.5± 3.5 0.7± 7.6 22.2± 8.0 13.8± 9.1
Masked Top Entropy 2.7± 6.3 −3.4± 8.5 −12.3± 4.6 −13.3± 15.0
Random Mask 5.8± 3.0 5.1± 4.9 9.5± 7.4 9.8± 4.9

Table 5: Mean change in accuracy (in percentage points) (k = 10, pmask ≈ 0.25)

Dataset CIFAR-10 Colorectal Histology MNIST Plant Village
Strategy

Masked Bottom Entropy 2.2± 5.8 −4.0± 12.2 −3.3± 9.2 −3.0± 24.0
Masked Top Entropy −3.9± 19.0 −4.8± 17.3 −15.4± 7.4 −21.3± 26.5
Random Mask 3.5± 9.1 3.9± 5.8 −1.1± 5.5 −3.1± 20.7
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Table 6: Mean change in accuracy (in percentage points) (k = 20, pmask ≈ 0.25)

Dataset CIFAR-10 Colorectal Histology MNIST Plant Village
Strategy

Masked Bottom Entropy −0.6± 5.7 −7.3± 17.5 0.7± 4.9 −2.4± 17.2
Masked Top Entropy −8.6± 20.7 −13.6± 22.2 −12.9± 6.4 −12.0± 12.4
Random Mask −0.5± 12.0 −2.6± 10.3 −0.6± 6.1 −0.8± 8.2
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