
Under review as a conference paper at ICLR 2023

PRETRAIN THEN FINETUNE:
GETTING THE MOST FROM YOUR LABELED DATASET
IN TABULAR DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Similarly to computer vision and NLP, deep learning models for tabular data can
benefit from pretraining, which is not the case for traditional ML models, such
as gradient boosted decision trees (GBDT). Although the pretraining techniques
for tabular data are actively studied, the existing works mostly focus on the unsu-
pervised pretraining, implying the access to a large amount of unlabeled data in
addition to the labeled target dataset. By contrast, pretraining in the fully super-
vised setting, when the available data is fully labeled and directly represents the
downstream tabular task, receives significantly less attention. Moreover, the exist-
ing works on pretraining typically consider only the simplest MLP architectures
and do not cover the recently proposed tabular models.
In this work, we aim to identify the best practices for pretraining in tabular DL
that can be universally applied to different datasets and architectures in the fully
supervised setting. Among our findings, we show that using the object target
labels during the pretraining stage is beneficial for the downstream performance
and advocate several target-aware pretraining objectives. Overall, our experiments
demonstrate that properly performed pretraining significantly increases the perfor-
mance of tabular DL models on fully supervised problems.

1 INTRODUCTION

Tabular problems are ubiquitous in industrial ML applications, which include data described by a
set of heterogeneous features, such as learning-to-rank, click-through rate prediction, credit scoring,
and many others. Despite the current dominance of deep learning models in the ML literature, for
tabular problems, the “old-school” decision tree ensembles (e.g., GBDT) are often the top choice
for practitioners. Only recently, several works have proposed the deep models that challenge the
supremacy of GBDT in the tabular domain (Arik & Pfister, 2020; Gorishniy et al., 2021; 2022) and
suggest that the question “tabular DL or GBDT” is yet to be answered.

An important advantage of deep models over GBDT is that they can potentially achieve higher
performance via pretraining their parameters with a properly designed objective. These pretrained
parameters, then, serve as a better than random initialization for subsequent finetuning for down-
stream tasks. For computer vision and NLP domains, pretraining is a de facto standard and is shown
to be necessary for the state-of-the-art performance (He et al., 2021; Devlin et al., 2019). For tabular
problems such a consensus is yet to be achieved as well as the best practices of tabular pretraining
are to be established. While a large number of prior works address the pretraining of tabular DL
models (Yoon et al., 2020; Bahri et al., 2022; Ucar et al., 2021; Darabi et al., 2021), it is challeng-
ing to make reliable conclusions about pretraining efficacy in tabular DL from the literature since
experimental setups vary significantly. Moreover, most evaluation protocols assume the unlabeled
data is abundant and only use a small subset of labels from each dataset during finetuning for eval-
uation – demonstrating pretraining efficacy, but somewhat limiting the performance of supervised
baselines on these datasets. Such protocols of “unsupervised pretraining” are common in vision or
NLP domains, where huge “extra” data is available on the Internet.

In contrast, in our work, we focus on the setup with fully labeled tabular datasets to understand
if pretraining helps tabular DL in a fully supervised setting and compare pretraining methods to

1

Under review as a conference paper at ICLR 2023

the strong supervised baselines. We argue that this setup is reasonable in practice, since for many
tabular problems there is no publicly available relevant data to pretrain on. In this setup, we perform
a systematic experimental evaluation of several pretraining objectives, identify the superior ones, and
describe the practical details of how to perform tabular pretraining optimally. Our main findings,
which are important for practitioners, are summarized below:

• Pretraining provides substantial gains over well-tuned supervised baselines in the fully su-
pervised setup.

• Simple self-prediction based pretraining objectives are comparable to the objective based
on contrastive learning. To the best of our knowledge, this behavior was not reported before
in tabular DL.

• The object labels can be exploited for more effective pretraining. In particular, we de-
scribe several “target-aware” objectives and demonstrate that they often outperform their
“unsupervised” counterparts.

• The pretraining provides the most noticeable improvements for the vanilla MLP architec-
ture. In particular, their performance after pretraining becomes comparable to the state-of-
the-art models trained from scratch, which is important for practitioners, who are interested
in simple and efficient solutions.

• The ensembling of pretrained models is beneficial. It indicates that the pretraining stage
does not significantly decrease the diversity of the models, despite the fact that all the
models are initialized by the same set of parameters.

Overall, our work provides a set of recipes for practitioners interested in tabular pretraining, which
results in higher performance for most of the tasks. The code of our experiments is available online.1

2 RELATED WORK

Here we briefly review the lines of research that are relevant to our study.

Status quo in tabular DL. A plethora of recent works have proposed a large number of deep mod-
els for tabular data (Klambauer et al., 2017; Popov et al., 2020; Arik & Pfister, 2020; Song et al.,
2019; Wang et al., 2017; Badirli et al., 2020; Hazimeh et al., 2020; Huang et al., 2020; Gorishniy
et al., 2021; Kossen et al., 2021). Several systematic studies, however, reveal that these models typi-
cally do not consistently outperform the decision tree ensembles, such as GBDT (Gradient Boosting
Decision Tree) (Chen & Guestrin, 2016; Prokhorenkova et al., 2018; Ke et al., 2017), which are
typically the top-choice in various ML competitions (Gorishniy et al., 2021; Shwartz-Ziv & Armon,
2021). Additionally, several works have shown that the existing sophisticated architectures are not
consistently superior to properly tuned simple models, such as MLP and ResNet (Gorishniy et al.,
2021; Kadra et al., 2021). Finally, the recent work (Gorishniy et al., 2022) has highlighted that the
appropriate embeddings of numerical features in the high-dimensional space are universally ben-
eficial for different architectures. In our work, we experiment with pretraining of both traditional
MLP-like models and advanced embedding-based models proposed in Gorishniy et al. (2022).

Pretraining in deep learning. For domains with structured data, like natural images or texts, pre-
training is currently an established stage in the typical pipelines, which leads to higher general
performance and better model robustness (He et al., 2021; Devlin et al., 2019). Pretraining with
the auto-encoding objective was also previously studied as a regularization strategy helping in the
optimization process without large scale pretraining datasets (Erhan et al., 2010; El-Nouby et al.,
2021; Krishna et al., 2022). During the last years, several families of successful pretraining meth-
ods have been developed. An impactful line of research on pretraining is based on the paradigm of
contrastive learning, which effectively enforces the invariance of the learned representations to the
human-specified augmentations (Chen et al., 2020; He et al., 2020). Another line of methods ex-
ploits the idea of self-prediction, i.e., these methods require the model to predict certain parts of the
input given the remaining parts (He et al., 2021; Devlin et al., 2019). In the vision community, the
self-prediction based methods are shown to be superior to the methods that use contrastive learning

1Code: https://anonymous.4open.science/r/pretrains-DD02

2

https://anonymous.4open.science/r/pretrains-DD02

Under review as a conference paper at ICLR 2023

objectives (He et al., 2021). In our experiments, we demonstrate that self-prediction based objectives
are comparable to the contrastive learning ones on tabular data, while being much simpler.

Pretraining for the tabular domain. Numerous pretraining methods were recently proposed in
several recent works on tabular DL (Arik & Pfister, 2020; Yoon et al., 2020; Darabi et al., 2021;
Ucar et al., 2021; Somepalli et al., 2021; Kossen et al., 2021; Padhi et al., 2021). However, most
of these works do not focus on the pretraining objective per se and typically introduce it as a com-
ponent of their tabular DL pipeline. Moreover, the experimental setup varies significantly between
methods. Therefore, it is difficult to extract conclusive evidence about pretraining effectiveness
from the literature. To the best of our knowledge, there is only one systematic study on the tabular
pretraining (Bahri et al., 2022), but its experimental evaluation is performed only with the simplest
MLP models, and we found that the superiority of the contrastive pretraining, reported in Bahri et al.
(2022), does not hold for tuned models in our setup, where contrastive objective is comparable to
the simpler self-prediction objectives.

3 REVISITING PRETRAINING OBJECTIVES

In this section, we evaluate the typical pretraining objectives under the unified experimental setup on
the number of datasets from the literature on tabular DL. Our goal is to answer whether pretraining
generally provides significant benefits over tuned models trained from scratch and to identify the
pretraining objectives that lead to the best downstream task performance.

3.1 EXPERIMENTAL SETUP

We mostly follow the experimental setup from Gorishniy et al. (2021) and describe its main details
here for completeness.

Notation. Each tabular dataset (X,Y) is represented by a set of pairs {(xi, yi)}ni=1, where xi =
(x1

i , . . . , x
m
i) ∈ X are the object’s features (both numerical and categorical) and yi ∈ Y is the target

variable. The downstream task is either regression Y = R or classification Y = {1, . . . , k}. Each
model has the backbone f(x|θ) that is followed by two separate heads: a pretraining head h(z|µ)
and a downstream task head g(z|λ), with learnable parameters θ, µ, λ respectively, and z = f(x|θ)
denotes the output of the backbone for an input object x.

Datasets. We evaluate the pretraining methods on a curated set of eleven middle to large scale
datasets used in prior literature on tabular deep learning. The benchmark is biased towards tasks,
where tuned MLP models were shown to be inferior to GBDT (Gorishniy et al., 2021) since we
aim to understand if pretraining can help the deep models to beat the “shallow” ones. The datasets
represent a diverse set of tabular data problems with classification and regression targets. The main
dataset properties are summarized in Table 1.

We report ROC-AUC for all binary classification datasets, accuracy for multi-class classification
datasets and RMSE for regression datasets, with OT being the one exception, where we report log-
loss, as it was used as a default metric in the corresponding Kaggle competition. We use the quantile-
transform from the Scikit-learn library (Pedregosa et al., 2011) to preprocess the numerical features
for all datasets except OT, where the absence of such transformation was shown to be superior
(Gorishniy et al., 2022). Additional information about the datasets is provided in Appendix A.

GE CH CA HO OT HI FB AD WE CO MI

#objects 9873 10000 20640 22784 61878 98049 197080 48842 397099 581012 1200192
#num.features 32 10 8 16 93 28 50 6 123 54 136
#cat.features 0 1 0 0 0 0 1 8 0 0 0
metric Acc. AUC RMSE RMSE Log. Loss AUC RMSE AUC RMSE Acc. RMSE
#classes 5 2 – – 9 2 – 2 – 7 –

Table 1: Datasets used for the experiments.

3

Under review as a conference paper at ICLR 2023

Models. We use MLP as a simple deep baseline to compare and ablate the methods. Our imple-
mentation of MLP exactly follows Gorishniy et al. (2021), the model is regularized by dropout and
weight decay. As more advanced deep models, we evaluate MLP equipped with numerical feature
embeddings, specifically, target-aware piecewise linear encoding (MLP-T-LR) and embeddings with
periodic activations (MLP-PLR) from Gorishniy et al. (2022). These models represent the current
state-of-the-art solution for tabular DL (Gorishniy et al., 2022), and are of interest as most prior
work on pretraining in tabular DL focus on pretraining with the simplest MLP models in evaluation.
The implementation of models with numerical embeddings follows Gorishniy et al. (2022). We use
AdamW (Loshchilov & Hutter, 2019) optimizer, do not use learning rate schedules and fix batch
sizes for each dataset based on the dataset size (see Appendix A).

Pretraining is always performed directly on the target dataset and does not exploit additional data.
The learning process thus comprises two stages. On the first stage, the model parameters are op-
timized w.r.t. the pretraining objective. On the second stage, the model is initialized with the pre-
trained weights and finetuned on the downstream classification or regression task. We focus on the
fully-supervised setup, i.e., assume that target labels are provided for all dataset objects. Typically,
pretraining stage involves the input corruption: for instance, to generate positive pairs in contrastive-
like objectives or to corrupt the input for reconstruction in self-prediction based objectives. We use
random feature resampling as a proven simple baseline for input corruption in tabular data (Bahri
et al., 2022; Yoon et al., 2020), we tune the corruption probability in all experiments. Learning rate
and weight decay are shared between the two stages (see Table 15 for the ablation). We fix the
maximum number of pretraining iterations for each dataset at 100k. On every 10k-th iteration, we
compute the value of the pretraining loss using the hold-out validation objects for early-stopping on
large-scale WE, CO and MI datasets. On other datasets we directly finetune the current model every
10k-th iteration and perform early-stopping based on the target metric after finetuning (we do not
observe much difference between early stopping by loss or by target metric, see Table 16).

Hyperparameters & Evaluation. Hyperparameter tuning is crucial for a fair comparison, therefore,
we use Optuna (Akiba et al., 2019) to optimize the model and pretraining hyperparameters for each
method on each dataset. We use the validation subset of each dataset for hyperparameter tuning.
The exact search spaces for the hyperparameters of each method are provided in Appendix B.

We run the tuned configuration of each pretraining method with 15 random seeds and report the av-
erage metric on the test splits. When comparing to GBDT, we obtain three ensembles by splitting the
fifteen single model predictions into three disjoint subsets of five models and averaging predictions
within each subset. Then, we report the average metric over the three ensembles.

3.2 COMPARING PRETRAINING OBJECTIVES

Here we compare the contrastive learning and self-prediction objectives from prior work in the de-
scribed setup. For contrastive learning, we follow the method described in Bahri et al. (2022): use
InfoNCE loss, consider corrupted inputs x̂ as positives for x and the rest of the batch as negatives.
For self-prediction methods, we evaluate two objectives: the first one is the reconstruction of the
original x, given the corrupted input x̂ (the reconstruction loss is computed for all columns), the sec-
ond one is the binary mask prediction, where the objective is to predict the mask vector m indicating
the corrupted columns from the corrupted input x̂. The results of the comparison are in Table 2. We
summarize our key findings below.

Contrastive is not superior. Both the reconstruction and the mask prediction objectives are prefer-
able to the contrastive objective. The two self-prediction objectives have the advantage of being
conceptually simpler, and easier to implement, while also being less resource-intensive (no need for
the second view of augmented examples in each batch, simpler loss function). We thus recommend
the self-prediction based objectives as a practical solution for pretraining in tabular DL.

Pretraining is beneficial for the state-of-the-art models. Models with the numerical feature em-
beddings also benefit from pretraining with either reconstruction or mask prediction demonstrating
the top performance on the downstream task. However, the improvement is typically less noticeable
compared to the vanilla MLPs.

There is no universal solution between self-prediction objectives. We observe that for some
datasets the reconstruction objective outperforms the mask prediction (OT, WE, CO, MI), while

4

Under review as a conference paper at ICLR 2023

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑ WE ↓ CO ↑ MI ↓

MLP

no pretraining 0.635 0.849 0.506 3.156 0.479 0.801 5.737 0.908 1.909 0.963 0.749
contrastive 0.672 0.855 0.455 3.056 0.469 0.813 5.697 0.910 1.881 0.960 0.748
rec 0.662 0.853 0.445 3.044 0.466 0.805 5.641 0.910 1.875 0.965 0.746
mask 0.691 0.857 0.454 3.113 0.472 0.814 5.681 0.912 1.883 0.964 0.748

MLP-PLR

no pretraining 0.668 0.858 0.469 3.008 0.483 0.809 5.608 0.926 1.890 0.969 0.746
rec 0.667 0.852 0.439 3.031 0.472 0.808 5.571 0.926 1.877 0.971 0.745
mask 0.685 0.863 0.434 3.007 0.477 0.818 5.586 0.927 1.911 0.970 0.748

MLP-T-LR

no pretraining 0.634 0.866 0.444 3.113 0.482 0.805 5.520 0.925 1.897 0.968 0.749
rec 0.652 0.857 0.424 3.109 0.472 0.808 5.363 0.924 1.861 0.969 0.746
mask 0.654 0.868 0.424 3.045 0.472 0.818 5.544 0.926 1.916 0.969 0.748

Table 2: Results for pretraining deep models with different objectives. We report metrics averaged
over 15 seeds, bold entries correspond to results that are statistically significantly better (we use
Tukey HSD test). The comparisons are separate for different models. ↑ corresponds to accuracy
and ROC-AUC metrics, ↓ corresponds to RMSE and log-loss for OT. ”no pretraining” stands for the
supervised baseline, initialized with random weights.

on others the mask prediction is better (GE, CH, HI, AD). We also note that the mask prediction
objective sometimes leads to unexpected performance drops for models with numerical embeddings
(WE, MI), we do not observe significant performance drops for the reconstruction objective.

The main takeaway: simple pretraining strategies based on self-prediction lead to significant im-
provements in the downstream accuracy compared to the tuned supervised baselines learned from
scratch across different tabular DL models and datasets. In practice, we recommend trying both re-
construction and mask prediction as tabular pretraining baselines, as either one might show superior
performance depending on the dataset being used.

4 TARGET-AWARE PRETRAINING OBJECTIVES

In this section, we show that exploiting the target variables during the pretraining stage can further
increase the downstream performance. Specifically, we evaluate several strategies to leverage infor-
mation about targets during pretraining, identify the best ones and compare them to GBDT. Below
we describe a list of target-aware pretraining objectives that we investigate.

Supervised loss with augmentations. A straightforward way to incorporate the target variable
into the pretraining is by using the input corruption as an augmentation for the standard supervised
learning objective. An important difference of this baseline in our setup to the one in Bahri et al.
(2022) is that we treat learning on corrupted samples as a pretraining stage and finetune the entire
model on the full uncorrupted dataset afterwards (we ablate this in subsection 5.3).

Supervised loss with augmentations + self-prediction. We evaluate a natural extension to the
above baseline: a combination of the supervised objective with the unsupervised self-prediction.
Note, that during the pretraining stage both losses are calculated on corrupted inputs, while the
finetuning is performed on the non-corrupted dataset. For the self-prediction objectives we evaluate
both the reconstruction and the mask prediction. We use different prediction heads for supervised
and self-prediction objectives. We sum supervised and self-prediction losses with equal weights.

Target-aware pretraining. An alternative to the approaches described above is the modification of
the pretraining task itself. An example of this approach is supervised contrastive learning (Khosla
et al., 2020), where the target variable is used to sample positive and negative examples. We intro-
duce the target variable into the self-prediction based objectives with two modifications.

First, we condition the mask prediction or the reconstruction head on the original input’s target
by concatenating the hidden representation from the backbone network z = f(x̂) with the tar-
get variable representation before passing it to the pretraining head to obtain predictions p =

5

Under review as a conference paper at ICLR 2023

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑ WE ↓ CO ↑ MI ↓ Avg. Rank

MLP

no pretraining 0.635 0.849 0.506 3.156 0.479 0.801 5.737 0.908 1.909 0.963 0.749 5.5± 1.4
mask 0.691 0.857 0.454 3.113 0.472 0.814 5.681 0.912 1.883 0.964 0.748 3.8± 1.4
rec 0.662 0.853 0.445 3.044 0.466 0.805 5.641 0.910 1.875 0.965 0.746 3.6± 1.5
sup 0.693 0.856 0.441 3.077 0.459 0.814 5.689 0.914 1.883 0.968 0.748 3.0± 1.0
mask + target 0.683 0.857 0.434 3.056 0.468 0.819 5.633 0.914 1.876 0.965 0.748 2.9± 1.3
rec + target 0.659 0.853 0.454 3.044 0.463 0.806 5.636 0.909 1.884 0.965 0.745 3.7± 1.9
mask + sup 0.693 0.857 0.436 3.099 0.458 0.817 5.685 0.915 1.873 0.967 0.748 2.7± 1.2
rec + sup 0.684 0.854 0.436 3.012 0.456 0.815 5.672 0.911 1.862 0.967 0.747 2.6± 1.5

MLP-PLR

no pretraining 0.668 0.858 0.469 3.008 0.483 0.809 5.608 0.926 1.890 0.969 0.746 3.5± 1.7
mask 0.685 0.863 0.434 3.007 0.477 0.818 5.586 0.927 1.911 0.970 0.748 2.8± 1.7
rec 0.667 0.852 0.439 3.031 0.472 0.808 5.571 0.926 1.877 0.971 0.745 2.6± 1.2
sup 0.710 0.859 0.433 3.136 0.479 0.811 5.521 0.924 1.873 0.971 0.748 2.5± 1.2
mask + target 0.694 0.862 0.425 3.023 0.474 0.821 5.537 0.929 1.911 0.969 0.749 2.5± 1.9
rec + target 0.688 0.860 0.445 3.064 0.475 0.812 5.507 0.927 1.887 0.971 0.748 2.7± 1.3
mask + sup 0.711 0.866 0.441 3.129 0.480 0.813 5.480 0.925 1.875 0.969 0.745 2.5± 1.4
rec + sup 0.709 0.858 0.433 3.059 0.465 0.807 5.571 0.927 1.865 0.971 0.745 1.9± 1.2

MLP-T-LR

no pretraining 0.634 0.866 0.444 3.113 0.482 0.805 5.520 0.925 1.897 0.968 0.749 3.9± 1.7
mask 0.654 0.868 0.424 3.045 0.472 0.818 5.544 0.926 1.916 0.969 0.748 2.8± 1.7
rec 0.652 0.857 0.424 3.109 0.472 0.808 5.363 0.924 1.861 0.969 0.746 2.5± 1.4
sup 0.682 0.860 0.430 3.135 0.471 0.807 5.525 0.927 1.893 0.971 0.747 2.8± 1.5
mask + target 0.649 0.865 0.421 3.058 0.474 0.820 5.644 0.929 1.924 0.969 0.749 2.8± 2.1
rec + target 0.668 0.864 0.440 3.113 0.473 0.806 5.493 0.927 1.862 0.969 0.746 2.5± 1.4
mask + sup 0.676 0.858 0.429 3.199 0.468 0.814 5.510 0.926 1.869 0.971 0.748 2.5± 0.8
rec + sup 0.678 0.865 0.437 3.112 0.462 0.807 5.516 0.927 1.862 0.970 0.748 2.4± 1.2

Table 3: Variations of the target-aware pretraining schemes. Notation follows Table 2. Bold results
indicate statistically significant winners across all models and methods. ”+ target” denotes target-
conditioned pretraining, ”+ sup” denotes auxiliary supervised head.

h(concat[z, y]). For classification datasets we encode y with one-hot-encoding, for regression
targets we use the standard scaling.

Second, we change the input corruption scheme by sampling the replacement from the feature target
conditional distribution where a target is different to the original. Intuitively, corrupting the input
object x in the direction of the target different to the original makes the pretraining task more cor-
related with the downstream target prediction. Concretely, given an object-target pair (xi, yi), we
sample a new target ŷi from a uniform distribution over the set {y | y ̸= yi} 2, then each feature xj

is replaced with a sample from the p(xj |ŷi) distribution, instead of p(xj).

4.1 COMPARING TARGET-AWARE OBJECTIVES

Here we compare the strategies of incorporating the target variable into pretraining. The results of
the comparison are in Table 3. Our key findings are formulated below.

Supervised loss with augmentations is another strong baseline for MLP. Pretraining with the
supervised loss on corrupted data consistently improves over supervised training from scratch for the
MLP. This objective is a strong baseline along with the self-prediction based objectives. However,
for models with numerical embeddings the supervised objective with corruptions is less consistent
and sometimes is inferior to training from scratch, thus for these models we recommend the self-
prediction objectives alone as baselines.

2For regression problems, when the target variable is continuous, we preliminarily discretize it into n uni-
form bins, where n is chosen according to the Freedman–Diaconis rule (Freedman & Diaconis, 1981).

6

Under review as a conference paper at ICLR 2023

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑ WE ↓ CO ↑ MI ↓ Avg. Rank

CatBoost 0.692 0.864 0.430 3.093 0.450 0.807 5.226 0.928 1.801 0.967 0.741 2.6± 1.4
XGBoost 0.683 0.860 0.434 3.152 0.454 0.805 5.338 0.927 1.782 0.969 0.742 3.0± 1.5

MLP

no pretraining 0.656 0.852 0.482 3.055 0.467 0.805 5.666 0.910 1.850 0.968 0.747 4.8± 1.1
mask + target 0.709 0.860 0.414 2.949 0.457 0.828 5.551 0.916 1.809 0.969 0.746 2.8± 1.2
rec + sup 0.709 0.859 0.419 2.951 0.442 0.817 5.531 0.913 1.801 0.973 0.745 2.5± 1.2

MLP-PLR

no pretraining 0.695 0.864 0.454 2.953 0.470 0.814 5.324 0.928 1.835 0.974 0.744 2.6± 1.2
mask + target 0.719 0.866 0.407 2.952 0.458 0.828 5.373 0.930 1.849 0.973 0.745 2.1± 1.2
rec + sup 0.737 0.862 0.424 2.964 0.449 0.811 5.124 0.929 1.813 0.974 0.744 2.0± 1.0

MLP-T-LR

no pretraining 0.662 0.868 0.437 3.028 0.472 0.808 5.424 0.927 1.850 0.972 0.747 3.7± 1.1
mask + target 0.673 0.868 0.410 2.894 0.460 0.827 5.458 0.930 1.849 0.972 0.746 2.4± 1.4
rec + sup 0.705 0.866 0.425 3.057 0.444 0.814 5.422 0.927 1.811 0.974 0.746 2.5± 1.1

Table 4: Comparison of pretrained models to GBDT. Notation follows Table 2. Results represent
ensembles of models. Bold entries correspond to the overall statistically significant best entries.

Target-aware objectives demonstrate the best performance. Both the supervised loss with self-
prediction and modified self-prediction objectives improve over the unsupervised pretraining base-
lines across datasets and model architectures. For the objective with the combination of supervised
and self-prediction losses the variation with the reconstruction loss is the most consistent across
models and dataset with no performance drops below the pretraining-free baseline. The variant with
mask prediction shows similar performance and stability for the MLP, but is not as good as recon-
struction for models with numerical embeddings. For the target-aware self-prediction objectives,
the modified mask prediction delivers significant improvements over its unsupervised counterpart.
Modified reconstruction objective, however, does not improve over its unsupervised counterpart.

Main takeaways: Target-aware objectives help further increase the downstream performance, im-
proving upon their unsupervised counterparts. For the reconstruction based self-prediction baseline
the addition of the supervised loss is most beneficial (”rec + sup” from Table 4), for the mask pre-
diction objective it’s target-aware modification provides more improvements (”mask + target” from
Table 4). A simple MLP model pretrained with those ”target-aware” objectives often reaches or
surpasses complex models with numerical embeddings trained from scratch. In practice, we recom-
mend first trying the baseline pretraining objectives (”rec”, ”mask”, ”sup” from Table 4), choosing
the suitable baseline for the dataset and improving it accordingly: supervised loss for the reconstruc-
tion and target-aware modification for the mask prediction.

4.2 COMPARISON TO GBDT

Here we compare MLPs and MLPs with numerical feature embeddings pretrained with the super-
vised loss with reconstruction and the target-aware mask prediction objectives to the GBDTs. Ta-
ble 4 shows the results of the comparison.

We observe that both pretraining with target aware objectives and using numerical feature embed-
dings consistently improve the performance of the simple MLP backbone. In particular, MLP cou-
pled with target aware pretraining starts to outperform GBDT on 4 datasets (GE, CA, OT, HI). Com-
bined with numerical feature embeddings, pretraining improves MLP performance further, making
it superior to GBDT on the majority of the datasets, with two exceptions in WE and MI.

5 ANALYSIS

5.1 INVESTIGATING THE PROPERTIES OF PRETRAINED MODELS

In this section, we provide a possible explanation of why the incorporation of the target variable into
pretraining can lead to better downstream task performance. We do this through the experiments on

7

Under review as a conference paper at ICLR 2023

87654321
Importance rank

10−1

6×10−2

2×10−1

3×10−1

4×10−1

R
M

SE

MLP
MLP (mask)
MLP (mask + target)

Figure 1: The decodability of ob-
ject feature from the intermedi-
ate representations computed by the
pretrained models and the models
trained from scratch. The pre-
trained models decently capture the
information about all the features,
while the randomly initialized mod-
els capture the most informative
features and suppress the others.

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑ WE ↓ CO ↑ MI ↓

single 0.683 0.857 0.434 3.056 0.468 0.819 5.633 0.914 1.876 0.965 0.748
standard ensemble 0.709 0.860 0.414 2.949 0.457 0.828 5.551 0.916 1.809 0.969 0.746
efficient ensemble 0.702 0.861 0.411 2.967 0.461 0.825 5.590 0.917 1.820 0.969 0.746

Table 5: Efficient ensembling for MLP mask + target. Efficient ensemble consists of models finetuned
from one pretrained checkpoint, standard ensemble consists of models from different pretraining
runs (random seeds).

the controllable synthetic data. Here we describe the properties and the generation process of the
data and our observations on the differences of the pretraining schemes.

We follow the synthetics generation protocol described in Gorishniy et al. (2021) with a modifi-
cation that allows for the manual control of the feature importance for the particular prediction
task. Concretely, we generate the objects features {xi}ni=1 as samples from the multivariate Gaus-
sian distribution with zero mean and covariance matrix Σ with identical diagonal and a constant
c = 0.5 everywhere else. Additionally, we sample a vector p ∈ Rm from the Dirichlet distribution
p ∼ Dir(1m) and let p define the influence of the objects features on the target by sampling features
for tree splits with probabilities defined by this vector. Intuitively if a particular feature is often used
for splitting in the nodes of a decision tree, it would have more influence on the target variable. In-
deed, we find the feature importances3 correlate well with the predefined vector p. For more details
on the synthetic dataset construction see Appendix C.

For each generated dataset, we then check whether the finetuned models capture the information
about object features in their representations. Specifically, we train an MLP to predict the value of
the i-th object feature given the frozen embeddings produced by a finetuned network initialized from
(a) random initialization, (b) mask prediction pretraining, (c) target-aware mask prediction pretrain-
ing. The separate MLP is used for each feature and the RMSE learning objective is used. Then we
report the RMSE on the test set for all features i ∈ [0,m] along with their importance rank in the
dataset on Figure 1 (we use CatBoost feature importances). Here, the lower ranks correspond to
the more important features. Figure 1 reveals that the target-aware pretraining enables the model to
capture more information about the informative features compared to the “unsupervised” pretraining
and, especially, to the learning from scratch. The latter one successfully captures the most informa-
tive feature from the training data, while suppressing the less important, but still significant features.
We conjecture that this is the source of superiority of the target-aware pretraining.

5.2 EFFICIENT ENSEMBLING

Here we show, that it is possible to construct ensembles from one pretraining checkpoint (pretrained
with the target conditioned mask prediction objective). To this end, we run finetuning with 15
different random seeds starting from the one pretrained checkpoint. Table 5 shows the results.

Both ensembling the models from a shared pretrain checkpoint and ensembling multiple independent
pretraining runs produces strong ensembles, which shows that it is sufficient to pretrain once and
create ensembles by several independent finetuning processes. This is important in practice since
finetuninig is typically cheaper (i.e. requires fewer iterations), and still is able to produce diverse
models from the one pretraining checkpoint for ensembles of comparable quality.

3Computed with the CatBoost method “get feature importance()”

8

Under review as a conference paper at ICLR 2023

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑ WE ↓ CO ↑ MI ↓

no pretraining 0.635 0.849 0.506 3.156 0.479 0.801 5.737 0.908 1.909 0.963 0.749

aug 0.693 0.856 0.441 3.077 0.459 0.814 5.689 0.914 1.883 0.968 0.748
aug | no finetune 0.674 0.853 0.464 3.251 0.461 0.808 6.167 0.910 1.938 0.958 0.752

rec + sup 0.684 0.854 0.436 3.012 0.456 0.815 5.672 0.911 1.862 0.967 0.747
rec + sup | no finetune 0.683 0.853 0.467 3.232 0.474 0.811 6.044 0.907 1.901 0.956 0.752

Table 6: Finetuning MLP on clean data versus using the model trained on corrupted inputs only.

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑ WE ↓ CO ↑ MI ↓

CatBoost 0.683 0.864 0.433 3.115 0.457 0.806 5.324 0.927 1.837 0.966 0.743
54s 3s 6s 6s 494s 34s 214s 32s 169s 1869s 1317s

MLP (no pretraining) 0.635 0.849 0.506 3.156 0.479 0.801 5.737 0.908 1.909 0.963 0.749
29s 10s 25s 26s 38s 29s 159s 12s 57s 352s 211s

MLP (rec + sup | 50k) 0.679 0.857 0.441 3.064 0.462 0.813 5.650 0.910 1.879 0.966 0.747
327s 227s 280s 277s 355s 256s 624s 403s 242s 593s 292s

MLP (rec + sup | 150k) 0.692 0.859 0.435 3.012 0.456 0.816 5.629 0.910 1.866 0.968 0.746
891s 338s 758s 509s 712s 862s 916s 1069s 663s 927s 665s

Table 7: Training times for CatBoost and MLP. Second row in each group reports average time spent
training one model in seconds on an A100 GPU for MLPs and on a CPU for CatBoost.

5.3 ON IMPORTANCE OF FINETUNING ON CLEAN DATA

Here we show, that the second stage of finetuning the model on the entire dataset without input cor-
ruption is often necessary for the best downstream performance. To this end we compare finetuning
the models on clean data with using models right after pretraining for two objectives: supervised
loss and supervised loss with the reconstruction objective.

Results are shown in Table 6. Across all datasets for both methods finetuning on uncorrupted data
with the supervised loss proves to be essential for the best performance. Sometimes excluding the
second finetuning stage degrades the performance below the tuned supervised baseline of training
from scratch.

5.4 DOES PRETRAINING REQUIRE MORE COMPUTE?

In this section we investigate how much more time is spent on pretraining, compared to training the
models from scratch. We run pretraining with ”rec + sup” objective with 50k and 150k pretraining
iterations thresholds (early-stopping, in theory, could make 150k iterations equivalent to the 50k, but
in practice it was not the case). We report downstream performance along with average time spent
to pretrain and finetune a model in Table 7 (we also add CatBoost training times to the table).

Pretraining often requires by an order of magnitude more compute, it is especially apparent on
smaller scale datasets like GE, CH, CA, HO, OT, HI, AD. However, the absolute time spent on
pretraining is still acceptable, as the original training from scratch takes seconds on small datasets.
Generally, the more iterations you use for pretraining, the better downstream quality you get.

6 CONCLUSION

In this work, we have systematically evaluated typical pretraining objectives for tabular deep learn-
ing. We have revealed several important recipes for optimal pretraining performance that can be
universally beneficial across various problems and models. Our findings confirm that pretraining
can significantly improve the performance of tabular deep models and provide additional evidence
that tabular DL can become a strong alternative to GBDT.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. In KDD, 2019.

Sercan O. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. arXiv,
1908.07442v5, 2020.

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, Khoa Doan, and Sathiya S.
Keerthi. Gradient boosting neural networks: Grownet. arXiv, 2002.07971v2, 2020.

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. Scarf: Self-supervised contrastive learning
using random feature corruption. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=CuV_qYkmKb3.

P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with
deep learning. Nature Communications, 5, 2014.

Jock A. Blackard and Denis J. Dean. Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables. Computers
and Electronics in Agriculture, 24(3):131–151, 2000.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In SIGKDD, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Sajad Darabi, Shayan Fazeli, Ali Pazoki, Sriram Sankararaman, and Majid Sarrafzadeh. Contrastive
mixup: Self-and semi-supervised learning for tabular domain. arXiv preprint arXiv:2108.12296,
2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv, 1810.04805v2, 2019.

Alaaeldin El-Nouby, Gautier Izacard, Hugo Touvron, Ivan Laptev, Hervé Jegou, and Edouard
Grave. Are large-scale datasets necessary for self-supervised pre-training? arXiv preprint
arXiv:2112.10740, 2021.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11:
625–660, mar 2010. ISSN 1532-4435.

David Freedman and Persi Diaconis. On the histogram as a density estimator:l 2 theory. Z.
Wahrscheinlichkeitstheorie verw Gebiete, 57(4):453–476, December 1981.

Yura Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. arXiv preprint arXiv:2203.05556, 2022.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In NeurIPS, 2021.

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree
ensemble layer: Differentiability meets conditional computation. In ICML, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv, 2012.06678v1, 2020.

10

https://openreview.net/forum?id=CuV_qYkmKb3

Under review as a conference paper at ICLR 2023

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. In NeurIPS, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30:3146–3154, 2017.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters,
33(3):291–297, 1997.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661–18673, 2020.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In NIPS, 2017.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In KDD,
1996.

Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Tom Rainforth, and Yarin Gal. Self-
attention between datapoints: Going beyond individual input-output pairs in deep learning. In
NeurIPS, 2021.

Kundan Krishna, Saurabh Garg, Jeffrey P Bigham, and Zachary C Lipton. Downstream datasets
make surprisingly good pretraining corpora. arXiv preprint arXiv:2209.14389, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Renata C. B. Madeo, Clodoaldo Ap. M. Lima, and Sarajane Marques Peres. Gesture unit segmen-
tation using support vector machines: segmenting gestures from rest positions. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, SAC, 2013.

Andrey Malinin, Neil Band, German Chesnokov, Yarin Gal, Mark John Francis Gales, Alexey
Noskov, Andrey Ploskonosov, Liudmila Prokhorenkova, Ivan Provilkov, Vatsal Raina, Vyas
Raina, Mariya Shmatova, Panos Tigas, and Boris Yangel. Shifts: A dataset of real distributional
shift across multiple large-scale tasks. ArXiv, abs/2107.07455, 2021.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross,
Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3565–3569. IEEE, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. In ICLR, 2020.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. In NeurIPS, 2018.

Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. arXiv, 1306.2597v1, 2013.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. arXiv,
2106.03253v1, 2021.

Kamaljot Singh, Ranjeet Kaur Sandhu, and Dinesh Kumar. Comment volume prediction using
neural networks and decision trees. In IEEE UKSim-AMSS 17th International Conference on
Computer Modelling and Simulation, UKSim, 2015.

11

Under review as a conference paper at ICLR 2023

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Goldstein.
SAINT: improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv, 2106.01342v1, 2021.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In CIKM,
2019.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular data
for self-supervised representation learning. Advances in Neural Information Processing Systems,
34, 2021.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luı́s Torgo. Openml: networked science in
machine learning. arXiv, 1407.7722v1, 2014.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In ADKDD, 2017.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. Vime: Extending the success
of self- and semi-supervised learning to tabular domain. In NeurIPS, 2020.

A DATASETS

We used the following datasets:

• Gesture Phase Prediction (Madeo et al. (2013))
• Churn Modeling4

• California Housing (real estate data, Kelley Pace & Barry (1997))
• House 16H5

• Adult (income estimation, Kohavi (1996))
• Otto Group Product Classification6

• Higgs (simulated physical particles, Baldi et al. (2014); we use the version with 98K sam-
ples available at the OpenML repository Vanschoren et al. (2014))

• Facebook Comments (Singh et al. (2015))
• Covertype (forest characteristics, Blackard & Dean. (2000))
• Microsoft (search queries, Qin & Liu (2013)). We follow the pointwise approach to

learning-to-rank and treat this ranking problem as a regression problem.
• Weather (temperature, Malinin et al. (2021)). We take 10% of the dataset for our experi-

ments due to the its large size.

B HYPERPARAMETERS

B.1 CATBOOST

We fix and do not tune the following hyperparameters:

• early-stopping-rounds = 50

• od-pval = 0.001

• iterations = 2000

For tuning on the MI and CO datasets, we set the task type parameter to “GPU”. In all other
cases (including the evaluation on these two datasets), we set this parameter to “CPU”.

4https://www.kaggle.com/shrutimechlearn/churn-modelling
5https://www.openml.org/d/574
6https://www.kaggle.com/c/otto-group-product-classification-challenge/data

12

Under review as a conference paper at ICLR 2023

Parameter Distribution

Max depth UniformInt[1, 10]

Learning rate LogUniform[0.001, 1]

Bagging temperature Uniform[0, 1]

L2 leaf reg LogUniform[1, 10]

Leaf estimation iterations UniformInt[1, 10]

Iterations 100

Table 8: CatBoost hyperparameter space

B.2 XGBOOST

We fix and do not tune the following hyperparameters:

• booster = ”gbtree”
• early-stopping-rounds = 50

• n-estimators = 2000

Parameter Distribution

Max depth UniformInt[3, 10]

Min child weight LogUniform[0.0001, 100]

Subsample Uniform[0.5, 1]

Learning rate LogUniform[0.001, 1]

Col sample by tree Uniform[0.5, 1]

Gamma {0,LogUniform[0.001, 100]}
Lambda {0,LogUniform[0.1, 10]}
Iterations 100

Table 9: XGBoost hyperparameter space.

B.3 MLP

We fix and do not tune the following hyperparameters:

• Layer size = 512

• Head hidden size = 512

Parameter Distribution

Layers UniformInt[1, 8]

Dropout {0,Uniform[0, 0.5]}
Learning rate LogUniform[5e-5, 0.005]
Weight decay {0,LogUniform[1e-6, 1e-3]}
Corrupt Probability Uniform[0.2, 0.8]

Iterations 100

Table 10: MLP hyperparameter space.

13

Under review as a conference paper at ICLR 2023

B.4 EMBEDDING HYPERPARAMETERS

We fix and do not tune the following hyperparameters:

• Layer size = 512

• Head hidden size = 512

The distribution for the output dimensions of linear layers is UniformInt[1, 128].

PLR, T-LR. We share the same hyperparameter space for models with embeddings across all
datasets.

For the target-aware embeddings (tree-based) T-LR, the distribution for the number of
leaves is UniformInt[2, 256], the distribution for the minimum number of items per leaf is
UniformInt[1, 128] and the distribution for the minimum information gain required for making a
split is LogUniform[1e-9, 0.01].

For the periodic embeddings PLR. The distribution for k is UniformInt[1, 128], the distribution for
the σ parameter is LogUniform[0.01, 100]

C SYNTHETIC DATASET DETAILS

To generate the corresponding objects targets {yi}ni=1 for randomly sampled objects features
{xi}ni=1 and importance vector p ∈ Rm we build an ensemble of 10 random oblivious decision
trees {Ti(x)}10i=1 of depth 10, where on each tree level we sample a feature j ∼ Cat(p) and a
threshold t ∼ Unif(min(xj),max(xj)) for a decision rule. For each tree leaf, we sample a scalar
l ∼ N (0, 1), representing a logit in binary classification. We define the binary targets as follows:
y(x) = I

{
1
10

∑10
i=1 Ti(x) > 0

}
. We set the size of the dataset n = 50.000 and the number of

features m = 8 and generate 50 datasets with different feature importance vectors p for the analysis.

D PRETRAINING THE FT-TRANSFORMER MODEL

Here we evaluate the recommended pretraining objectives for pretraining the FT-Transformer model
from Gorishniy et al. (2021). We evaluate pretraining for the FT-Transformer on a subset of datasets
for the reconstruction, mask prediction, and their supervised variations (mask+target and rec+sup).
The results are in the Table 11.

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ AD ↑ Avg. Rank

MLP-PLR

no pretraining 0.668 0.858 0.469 3.008 0.483 0.809 0.926 2.7± 1.2
mask 0.685 0.863 0.434 3.007 0.477 0.818 0.927 2.1± 1.1
rec 0.667 0.852 0.439 3.031 0.472 0.808 0.926 2.1± 1.1
rec + supervised 0.709 0.858 0.433 3.059 0.465 0.807 0.927 1.7± 1.2
mask + target 0.694 0.862 0.425 3.023 0.474 0.821 0.929 1.9± 1.1

FT-Transformer

no pretraining 0.631 0.860 0.470 3.240 0.479 0.809 0.912 3.7± 1.5
mask 0.696 0.864 0.429 3.113 0.466 0.845 0.916 1.9± 1.4
rec 0.687 0.860 0.438 3.120 0.478 0.840 0.917 2.6± 1.3
rec + supervised 0.718 0.862 0.430 3.078 0.463 0.825 0.917 1.9± 1.1
mask + target 0.694 0.861 0.436 3.083 0.467 0.842 0.918 2.0± 0.9

Table 11: Results for pretraining the FT-Transformer model, along with the results for pretrain-
ing the MLP-PLR. Bold accounts for the best-performing model between both MLP-PLR and FT-
Transformer.

We can see that pretraining provides performance improvements for the FT-Transformer model
comparable to those for MLP-PLR, with MLP-PLR remaining state-of-the-art with or without pre-

14

Under review as a conference paper at ICLR 2023

training. Including transformers does not reveal new patterns or behavior, but provides additional
evidence that pretraining does help neural networks on tabular data.

E COMPARISON TO THE LEARNING RATE SCHEDULERS

Since in our setup pretraining is a technique which helps in the optimization process, we compare
it to various commonly used learning rate schedules which are also used as an aid in the optimiza-
tion. The results for various learning rate schedulers along with two self-training based pretraining
baselines are reported in Table 12.

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑ WE ↓ CO ↑ MI ↓ Avg. Rank

no pretraining 0.635 0.849 0.506 3.156 0.479 0.801 5.737 0.908 1.909 0.963 0.749 2.7± 0.6
cyclic 0.616 0.850 0.498 3.148 0.479 0.801 5.835 0.908 1.920 0.962 0.749 3.2± 0.9
warmup 0.655 0.854 0.491 3.123 0.478 0.799 5.662 0.908 1.912 0.964 0.749 2.5± 1.1
warmup + lin 0.669 0.851 0.489 3.123 0.480 0.801 5.669 0.908 1.912 0.968 0.748 2.2± 0.8
warmup + cos 0.639 0.851 0.494 3.107 0.478 0.801 5.823 0.908 1.893 0.962 0.748 2.6± 0.6
mask 0.691 0.857 0.454 3.113 0.472 0.814 5.681 0.912 1.883 0.964 0.748 1.5± 0.7
rec 0.662 0.853 0.445 3.044 0.466 0.805 5.641 0.910 1.875 0.965 0.746 1.5± 0.5

Table 12: Comparison of self-prediction based pretrains to learning rate schedulers. All the results
are for the MLP model

We can see that the learning rate schedules provide some improvement and help the optimization
process, however, the effect is almost negligible compared to the one from pretraining. We conjec-
ture that exhaustive hyperparameter tuning diminishes the benefits of using the advanced learning
rate schedules.

F DATASETS WITH MORE CATEGORICAL FEATURES

Additionally, we experiment with datasets that contain more categorical features. We add 4 datasets,
the information about the datasets is presented in Table 13.

Abbr Name # Train # Validation # Test # Num # Cat Task type Batch size

DI Diamond 34521 8631 10788 6 3 Regression 128
BL Black Friday 106764 26692 33365 5 4 Regression 128
BR Brazilian houses 6842 1710 2136 8 4 Regression 128
BA Bank 28934 7234 9043 7 9 Binclass 128

Table 13: Datasets with categorical features

The results for the MLP and MLP-PLR with self-prediction-based pretrains along with their super-
vised variations are presented in Table 14.

We can see that results on the datasets with more categorical features align with the results in the
main text: pretraining strategies based on self-prediction improve upon the supervised baselines and
target-aware objectives help further increase the downstream performance.

G SHARE OR SPLIT LEARNING RATE AND WEIGHT DECAY BETWEEN
PRETRAINING AND FINETUNING?

Here we demonstrate that tuning and using the same learning rate and weight decay for both pre-
training and finetuning results in similar performance to tuning these parameters separately for the
two stages. We opt for sharing the learning rate and weight decay for pretraining and finetuning in
all the experiments in the paper.

15

Under review as a conference paper at ICLR 2023

DI ↓ BL ↓ BR ↓ BA ↑

CatBoost 0.134 0.682 0.407 0.932
XGBoost 0.136 0.680 0.407 0.930

MLP

no pretraining 0.140 0.697 0.406 0.927
rec 0.140 0.695 0.400 0.926
mask 0.138 0.691 0.385 0.929
rec + supervised 0.135 0.689 0.394 0.930
mask + target 0.135 0.691 0.376 0.933

MLP-PLR

no pretraining 0.134 0.689 0.399 0.929
rec 0.133 0.684 0.390 0.931
mask 0.131 0.685 0.392 0.931
rec + supervised 0.133 0.681 0.393 0.928
mask + target 0.132 0.685 0.385 0.933

Table 14: The results for single models with various pretraining objectives on datasets with categor-
ical features.

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑ WE ↓ CO ↑ MI ↓

shared wd / shared lr 0.683±1e-2 0.857±2e-3 0.434±7e-3 3.056±4e-2 0.468±2e-3 0.819±2e-3 5.633±4e-2 0.914±1e-3 1.876±5e-3 0.965±7e-4 0.748±4e-4

shared wd / split lr 0.697±9e-3 0.857±3e-3 0.431±7e-3 3.032±3e-2 0.469±2e-3 0.819±2e-3 5.647±4e-2 0.915±9e-4 1.934±8e-3 0.964±9e-4 0.748±4e-4

split wd / split lr 0.688±9e-3 0.856±3e-3 0.430±4e-3 3.046±4e-2 0.471±3e-3 0.821±7e-4 5.734±5e-2 0.914±7e-4 1.891±6e-3 0.964±1e-3 0.748±3e-4

split wd / split lr 0.694±1e-2 0.858±2e-3 0.431±6e-3 3.066±3e-2 0.468±2e-3 0.821±2e-3 5.632±4e-2 0.914±1e-3 1.878±4e-3 0.966±1e-3 0.748±3e-4

Table 15: Results for single models with MLP mask + target pretraining

H EARLY-STOPPING CRITERIONS

Here we demonstrate that early stopping the pretraining by the value of the pretraining objective
on the hold-out validation set is comparable to the early stopping by the downstream metric on the
hold-out validation set after finetuning. See Table 16 for the results. This is an important practical
observation, as computing pretraining objective is much faster than the full finetuning of the model,
especially on large scale datasets.

GE ↑ CH ↑ CA ↓ HO ↓ OT ↓ HI ↑ FB ↓ AD ↑

finetune early stop 0.683 0.857 0.434 3.056 0.468 0.819 5.633 0.914
pretrain early stop 0.674 0.855 0.434 3.031 0.469 0.818 5.738 0.914

Table 16: Results for single models with MLP mask + target pretraining

I APPLYING AUGMENTATIONS TO GBDTS

We adopt the augmentations used in pretraining to GBDTs by augmenting the datasets before GBDT
tree construction, effectively enlarging datasets with random column resampling to match the num-
ber of pertrubations the neural network is exposed to during pretraining (tens of millions of randomly
corrupted samples). We report results in Table 17. We observe that adding noisy augmented samples
to the datasets deteriorates GBDT performance significantly.

J SUMMARY OF PRETRAINING METHODS

For summary of the pretraining methods mentioned in the paper see Table 18.

16

Under review as a conference paper at ICLR 2023

GE ↑ CH ↑ CA ↓ HO ↓ AD ↑ HI ↑

CatBoost 0.682 0.864 0.433 3.115 0.927 0.806
CatBoost (aug) 0.660 0.838 0.474 3.561 0.923 0.791

Table 17: Comparison of CatBoost and CatBoost on data augmented with random column resam-
pling.

Abbr. Description Uses target variable

contrastive Contrastive loss with resampling as augmentation ✗
mask Prediction of masks for the resampled columns ✗
rec Reconstruction original values of resampled columns ✗
mask + sup Mask prediction combined with supervised loss ✓
mask + target Mask prediction with modified column resampling and loss ✓
rec + sup Reconstruction combined with supervised loss ✓
rec + target Reconstruction with modified column resampling and loss ✓

Table 18: Summary of the objectives studied in this work

K EXTENDED TABLES WITH EXPERIMENTAL RESULTS

The scores with standard deviations for single models and ensembles are provided in 19 and 20
respectively.

17

Under review as a conference paper at ICLR 2023

G
E

↑
C

H
↑

C
A

↓
H

O
↓

O
T

↓
H

I↑
FB

↓
A

D
↑

W
E

↓
C

O
↑

M
I↓

C
at

B
oo

st
0
.6
8
3
±
4
.7
e

-3
0
.8
6
4
±
8
.1
e

-4
0
.4
3
3
±
1
.7
e

-3
3
.1
1
5
±
1
.8
e

-2
0
.4
5
7
±
1
.3
e

-3
0
.8
0
6
±
3
.4
e

-4
5
.3
2
4
±
4
.0
e

-2
0
.9
2
7
±
3
.1
e

-4
1
.8
3
7
±
2
.1
e

-3
0
.9
6
6
±
3
.2
e

-4
0
.7
4
3
±
3
.0
e

-4

X
G

B
oo

st
0
.6
7
8
±
4
.8
e

-3
0
.8
5
8
±
2
.3
e

-3
0
.4
3
6
±
2
.5
e

-3
3
.1
6
0
±
6
.9
e

-3
0
.4
5
7
±
6
.0
e

-3
0
.8
0
4
±
1
.5
e

-3
5
.3
8
3
±
2
.8
e

-2
0
.9
2
7
±
7
.0
e

-4
1
.8
0
2
±
2
.0
e

-3
0
.9
6
9
±
6
.1
e

-4
0
.7
4
2
±
1
.5
e

-4

M
L

P

no
pr

et
ra

in
in

g
0
.6
3
5
±
1
.3
e

-2
0
.8
4
9
±
1
.6
e

-3
0
.5
0
6
±
8
.6
e

-3
3
.1
5
6
±
2
.1
e

-2
0
.4
7
9
±
1
.4
e

-3
0
.8
0
1
±
9
.5
e

-4
5
.7
3
7
±
6
.1
e

-2
0
.9
0
8
±
1
.0
e

-3
1
.9
0
9
±
4
.6
e

-3
0
.9
6
3
±
8
.7
e

-4
0
.7
4
9
±
3
.6
e

-4

m
as

k
0
.6
9
1
±
1
.0
e

-2
0
.8
5
7
±
2
.5
e

-3
0
.4
5
4
±
5
.0
e

-3
3
.1
1
3
±
4
.3
e

-2
0
.4
7
2
±
3
.0
e

-3
0
.8
1
4
±
1
.7
e

-3
5
.6
8
1
±
3
.1
e

-2
0
.9
1
2
±
8
.0
e

-4
1
.8
8
3
±
2
.9
e

-3
0
.9
6
4
±
9
.3
e

-4
0
.7
4
8
±
3
.1
e

-4

re
c

0
.6
6
2
±
1
.0
e

-2
0
.8
5
3
±
2
.2
e

-3
0
.4
4
5
±
4
.0
e

-3
3
.0
4
4
±
3
.3
e

-2
0
.4
6
6
±
2
.1
e

-3
0
.8
0
5
±
1
.3
e

-3
5
.6
4
1
±
3
.2
e

-2
0
.9
1
0
±
1
.2
e

-3
1
.8
7
5
±
3
.4
e

-3
0
.9
6
5
±
5
.4
e

-4
0
.7
4
6
±
2
.3
e

-4

co
nt

ra
st

iv
e

0
.6
7
2
±
1
.4
e

-2
0
.8
5
5
±
2
.0
e

-3
0
.4
5
5
±
4
.5
e

-3
3
.0
5
6
±
5
.2
e

-2
0
.4
6
9
±
2
.6
e

-3
0
.8
1
3
±
1
.3
e

-3
5
.6
9
7
±
2
.9
e

-2
0
.9
1
0
±
1
.3
e

-3
1
.8
8
1
±
4
.5
e

-3
0
.9
6
0
±
1
.2
e

-3
0
.7
4
8
±
3
.6
e

-4

su
p

0
.6
9
3
±
1
.1
e

-2
0
.8
5
6
±
1
.8
e

-3
0
.4
4
1
±
5
.3
e

-3
3
.0
7
7
±
2
.9
e

-2
0
.4
5
9
±
2
.1
e

-3
0
.8
1
4
±
7
.4
e

-4
5
.6
8
9
±
2
.1
e

-2
0
.9
1
4
±
7
.8
e

-4
1
.8
8
3
±
4
.6
e

-3
0
.9
6
8
±
5
.2
e

-4
0
.7
4
8
±
3
.0
e

-4

su
pc

on
0
.6
6
6
±
1
.4
e

-2
0
.8
5
0
±
2
.2
e

-3
0
.4
5
4
±
4
.2
e

-3
3
.1
0
8
±
2
.5
e

-2
0
.4
8
0
±
1
.9
e

-3
0
.8
0
6
±
7
.3
e

-4
5
.6
8
0
±
2
.4
e

-2
0
.9
1
1
±
6
.0
e

-4
1
.8
7
3
±
2
.4
e

-3
0
.9
6
6
±
5
.8
e

-4
0
.7
4
7
±
3
.2
e

-4

m
as

k
+

su
p

0
.6
9
3
±
8
.2
e

-3
0
.8
5
7
±
2
.3
e

-3
0
.4
3
6
±
6
.9
e

-3
3
.0
9
9
±
2
.4
e

-2
0
.4
5
8
±
1
.7
e

-3
0
.8
1
7
±
5
.6
e

-4
5
.6
8
5
±
3
.6
e

-2
0
.9
1
5
±
5
.3
e

-4
1
.8
7
3
±
5
.1
e

-3
0
.9
6
7
±
4
.0
e

-4
0
.7
4
8
±
2
.8
e

-4

re
c

+
su

p
0
.6
8
4
±
7
.7
e

-3
0
.8
5
4
±
4
.5
e

-3
0
.4
3
6
±
4
.4
e

-3
3
.0
1
2
±
4
.0
e

-2
0
.4
5
6
±
1
.9
e

-3
0
.8
1
5
±
5
.8
e

-4
5
.6
7
2
±
3
.6
e

-2
0
.9
1
1
±
1
.4
e

-3
1
.8
6
2
±
2
.8
e

-3
0
.9
6
7
±
6
.6
e

-4
0
.7
4
7
±
4
.9
e

-4

m
as

k
+

ta
rg

et
0
.6
8
3
±
1
.0
e

-2
0
.8
5
7
±
2
.1
e

-3
0
.4
3
4
±
7
.2
e

-3
3
.0
5
6
±
4
.0
e

-2
0
.4
6
8
±
1
.9
e

-3
0
.8
1
9
±
1
.6
e

-3
5
.6
3
3
±
3
.7
e

-2
0
.9
1
4
±
1
.1
e

-3
1
.8
7
6
±
4
.8
e

-3
0
.9
6
5
±
6
.6
e

-4
0
.7
4
8
±
4
.5
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.6
8
0
±
9
.7
e

-3
0
.8
5
7
±
3
.1
e

-3
0
.4
3
2
±
4
.9
e

-3
3
.0
1
9
±
3
.5
e

-2
0
.4
6
8
±
1
.9
e

-3
0
.8
1
5
±
1
.7
e

-3
5
.6
9
7
±
3
.1
e

-2
0
.9
1
2
±
6
.7
e

-4
1
.8
8
7
±
3
.1
e

-3
0
.9
6
4
±
1
.1
e

-3
0
.7
4
8
±
3
.1
e

-4

re
c

+
ta

rg
et

0
.6
5
9
±
8
.6
e

-3
0
.8
5
3
±
3
.2
e

-3
0
.4
5
4
±
6
.7
e

-3
3
.0
4
4
±
4
.9
e

-2
0
.4
6
3
±
1
.6
e

-3
0
.8
0
6
±
1
.5
e

-3
5
.6
3
6
±
3
.1
e

-2
0
.9
0
9
±
9
.0
e

-4
1
.8
8
4
±
2
.3
e

-3
0
.9
6
5
±
8
.7
e

-4
0
.7
4
5
±
3
.9
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.6
4
1
±
5
.6
e

-3
0
.8
5
3
±
3
.4
e

-3
0
.4
5
5
±
4
.6
e

-3
3
.0
4
6
±
2
.4
e

-2
0
.4
6
3
±
2
.0
e

-3
0
.8
0
6
±
1
.3
e

-3
5
.6
4
0
±
1
.9
e

-2
0
.9
1
0
±
1
.1
e

-3
1
.8
7
7
±
3
.3
e

-3
0
.9
6
6
±
4
.4
e

-4
0
.7
4
6
±
3
.9
e

-4

M
L

P-
PL

R

no
pr

et
ra

in
in

g
0
.6
6
8
±
1
.4
e

-2
0
.8
5
8
±
4
.7
e

-3
0
.4
6
9
±
5
.2
e

-3
3
.0
0
8
±
2
.3
e

-2
0
.4
8
3
±
1
.6
e

-3
0
.8
0
9
±
2
.3
e

-3
5
.6
0
8
±
5
.6
e

-2
0
.9
2
6
±
6
.1
e

-4
1
.8
9
0
±
5
.0
e

-3
0
.9
6
9
±
1
.0
e

-3
0
.7
4
6
±
3
.7
e

-4

m
as

k
0
.6
8
5
±
5
.6
e

-3
0
.8
6
3
±
1
.8
e

-3
0
.4
3
4
±
4
.3
e

-3
3
.0
0
7
±
4
.6
e

-2
0
.4
7
7
±
2
.5
e

-3
0
.8
1
8
±
8
.4
e

-4
5
.5
8
6
±
2
.4
e

-2
0
.9
2
7
±
5
.1
e

-4
1
.9
1
1
±
5
.4
e

-3
0
.9
7
0
±
5
.1
e

-4
0
.7
4
8
±
3
.9
e

-4

re
c

0
.6
6
7
±
7
.2
e

-3
0
.8
5
2
±
7
.2
e

-3
0
.4
3
9
±
5
.2
e

-3
3
.0
3
1
±
3
.8
e

-2
0
.4
7
2
±
3
.0
e

-3
0
.8
0
8
±
1
.2
e

-3
5
.5
7
1
±
1
.2
e

-1
0
.9
2
6
±
6
.4
e

-4
1
.8
7
7
±
4
.0
e

-3
0
.9
7
1
±
4
.8
e

-4
0
.7
4
5
±
3
.6
e

-4

su
p

0
.7
1
0
±
4
.6
e

-3
0
.8
5
9
±
4
.1
e

-3
0
.4
3
3
±
3
.6
e

-3
3
.1
3
6
±
8
.1
e

-2
0
.4
7
9
±
1
.9
e

-3
0
.8
1
1
±
1
.0
e

-3
5
.5
2
1
±
4
.6
e

-2
0
.9
2
4
±
1
.5
e

-3
1
.8
7
3
±
2
.0
e

-3
0
.9
7
1
±
4
.5
e

-4
0
.7
4
8
±
8
.0
e

-4

m
as

k
+

su
p

0
.7
1
1
±
7
.1
e

-3
0
.8
6
6
±
2
.0
e

-3
0
.4
4
1
±
4
.9
e

-3
3
.1
2
9
±
4
.1
e

-2
0
.4
8
0
±
1
.8
e

-3
0
.8
1
3
±
8
.2
e

-4
5
.4
8
0
±
4
.6
e

-2
0
.9
2
5
±
1
.0
e

-3
1
.8
7
5
±
2
.2
e

-3
0
.9
6
9
±
6
.0
e

-4
0
.7
4
5
±
2
.4
e

-4

re
c

+
su

p
0
.7
0
9
±
5
.1
e

-3
0
.8
5
8
±
1
.9
e

-3
0
.4
3
3
±
2
.7
e

-3
3
.0
5
9
±
3
.6
e

-2
0
.4
6
5
±
2
.2
e

-3
0
.8
0
7
±
6
.2
e

-4
5
.5
7
1
±
1
.2
e

-1
0
.9
2
7
±
5
.8
e

-4
1
.8
6
5
±
3
.1
e

-3
0
.9
7
1
±
4
.4
e

-4
0
.7
4
5
±
2
.4
e

-4

m
as

k
+

ta
rg

et
0
.6
9
4
±
9
.1
e

-3
0
.8
6
2
±
1
.7
e

-3
0
.4
2
5
±
4
.2
e

-3
3
.0
2
3
±
4
.3
e

-2
0
.4
7
4
±
2
.0
e

-3
0
.8
2
1
±
1
.1
e

-3
5
.5
3
7
±
3
.4
e

-2
0
.9
2
9
±
3
.3
e

-4
1
.9
1
1
±
6
.2
e

-3
0
.9
6
9
±
5
.8
e

-4
0
.7
4
9
±
1
.2
e

-3

-t
ar

ge
ts

am
pl

in
g
0
.6
9
0
±
9
.6
e

-3
0
.8
6
4
±
2
.8
e

-3
0
.4
2
1
±
4
.5
e

-3
2
.9
7
1
±
4
.1
e

-2
0
.4
7
9
±
2
.0
e

-3
0
.8
2
1
±
1
.0
e

-3
5
.4
4
0
±
8
.1
e

-2
0
.9
2
8
±
5
.6
e

-4
1
.9
0
6
±
5
.5
e

-3
0
.9
7
0
±
3
.9
e

-4
0
.7
4
8
±
5
.3
e

-4

re
c

+
ta

rg
et

0
.6
8
8
±
8
.2
e

-3
0
.8
6
0
±
1
.4
e

-3
0
.4
4
5
±
2
.7
e

-3
3
.0
6
4
±
3
.4
e

-2
0
.4
7
5
±
1
.9
e

-3
0
.8
1
2
±
1
.1
e

-3
5
.5
0
7
±
1
.0
e

-1
0
.9
2
7
±
3
.9
e

-4
1
.8
8
7
±
2
.4
e

-3
0
.9
7
1
±
3
.9
e

-4
0
.7
4
8
±
7
.2
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.6
8
7
±
7
.9
e

-3
0
.8
5
5
±
4
.8
e

-3
0
.4
5
3
±
6
.4
e

-3
3
.0
0
8
±
2
.7
e

-2
0
.4
7
1
±
2
.1
e

-3
0
.8
1
2
±
5
.5
e

-4
5
.5
9
2
±
9
.8
e

-2
0
.9
2
7
±
3
.4
e

-4
1
.8
7
6
±
3
.1
e

-3
0
.9
7
0
±
4
.4
e

-4
0
.7
4
5
±
3
.5
e

-4

M
L

P-
T-

L
R

no
pr

et
ra

in
in

g
0
.6
3
4
±
6
.9
e

-3
0
.8
6
6
±
1
.3
e

-3
0
.4
4
4
±
1
.8
e

-3
3
.1
1
3
±
4
.5
e

-2
0
.4
8
2
±
1
.7
e

-3
0
.8
0
5
±
9
.3
e

-4
5
.5
2
0
±
3
.6
e

-2
0
.9
2
5
±
6
.8
e

-4
1
.8
9
7
±
4
.5
e

-3
0
.9
6
8
±
5
.0
e

-4
0
.7
4
9
±
5
.2
e

-4

m
as

k
0
.6
5
4
±
6
.4
e

-3
0
.8
6
8
±
1
.0
e

-3
0
.4
2
4
±
2
.4
e

-3
3
.0
4
5
±
3
.7
e

-2
0
.4
7
2
±
2
.5
e

-3
0
.8
1
8
±
1
.8
e

-3
5
.5
4
4
±
3
.5
e

-2
0
.9
2
6
±
7
.1
e

-4
1
.9
1
6
±
3
.1
e

-3
0
.9
6
9
±
4
.6
e

-4
0
.7
4
8
±
3
.5
e

-4

re
c

0
.6
5
2
±
7
.4
e

-3
0
.8
5
7
±
4
.4
e

-3
0
.4
2
4
±
3
.1
e

-3
3
.1
0
9
±
3
.7
e

-2
0
.4
7
2
±
2
.0
e

-3
0
.8
0
8
±
1
.0
e

-3
5
.3
6
3
±
6
.6
e

-2
0
.9
2
4
±
1
.8
e

-4
1
.8
6
1
±
3
.9
e

-3
0
.9
6
9
±
7
.3
e

-4
0
.7
4
6
±
4
.8
e

-4

su
p

0
.6
8
2
±
5
.1
e

-3
0
.8
6
0
±
4
.1
e

-3
0
.4
3
0
±
1
.9
e

-3
3
.1
3
5
±
1
.7
e

-2
0
.4
7
1
±
1
.2
e

-3
0
.8
0
7
±
6
.2
e

-4
5
.5
2
5
±
2
.3
e

-2
0
.9
2
7
±
3
.8
e

-4
1
.8
9
3
±
2
.4
e

-3
0
.9
7
1
±
5
.8
e

-4
0
.7
4
7
±
3
.1
e

-4

m
as

k
+

su
p

0
.6
7
6
±
7
.7
e

-3
0
.8
5
8
±
7
.9
e

-3
0
.4
2
9
±
1
.8
e

-3
3
.1
9
9
±
2
.4
e

-2
0
.4
6
8
±
9
.9
e

-4
0
.8
1
4
±
8
.2
e

-4
5
.5
1
0
±
3
.6
e

-2
0
.9
2
6
±
8
.7
e

-4
1
.8
6
9
±
2
.9
e

-3
0
.9
7
1
±
3
.9
e

-4
0
.7
4
8
±
2
.5
e

-4

re
c

+
su

p
0
.6
7
8
±
6
.7
e

-3
0
.8
6
5
±
1
.1
e

-3
0
.4
3
7
±
2
.0
e

-3
3
.1
1
2
±
4
.1
e

-2
0
.4
6
2
±
2
.2
e

-3
0
.8
0
7
±
2
.6
e

-3
5
.5
1
6
±
2
.2
e

-2
0
.9
2
7
±
3
.7
e

-4
1
.8
6
2
±
3
.4
e

-3
0
.9
7
0
±
5
.0
e

-4
0
.7
4
8
±
4
.2
e

-4

m
as

k
+

ta
rg

et
0
.6
4
9
±
7
.3
e

-3
0
.8
6
5
±
1
.7
e

-3
0
.4
2
1
±
3
.9
e

-3
3
.0
5
8
±
4
.3
e

-2
0
.4
7
4
±
1
.9
e

-3
0
.8
2
0
±
1
.2
e

-3
5
.6
4
4
±
4
.6
e

-2
0
.9
2
9
±
3
.5
e

-4
1
.9
2
4
±
7
.6
e

-3
0
.9
6
9
±
4
.8
e

-4
0
.7
4
9
±
5
.1
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.6
4
9
±
8
.3
e

-3
0
.8
6
1
±
3
.2
e

-3
0
.4
1
7
±
4
.9
e

-3
3
.0
5
0
±
3
.3
e

-2
0
.4
7
6
±
1
.7
e

-3
0
.8
1
9
±
1
.6
e

-3
5
.4
9
2
±
3
.2
e

-2
0
.9
2
8
±
5
.6
e

-4
1
.8
7
4
±
3
.7
e

-3
0
.9
6
9
±
4
.0
e

-4
0
.7
4
9
±
1
.4
e

-3

re
c

+
ta

rg
et

0
.6
6
8
±
7
.0
e

-3
0
.8
6
4
±
1
.7
e

-3
0
.4
4
0
±
3
.5
e

-3
3
.1
1
3
±
3
.5
e

-2
0
.4
7
3
±
4
.3
e

-3
0
.8
0
6
±
1
.0
e

-3
5
.4
9
3
±
4
.4
e

-2
0
.9
2
7
±
5
.6
e

-4
1
.8
6
2
±
3
.5
e

-3
0
.9
6
9
±
6
.5
e

-4
0
.7
4
6
±
3
.4
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.6
6
7
±
1
.0
e

-2
0
.8
5
9
±
2
.7
e

-3
0
.4
3
2
±
3
.3
e

-3
3
.1
0
4
±
2
.9
e

-2
0
.4
7
0
±
2
.2
e

-3
0
.8
0
6
±
1
.5
e

-3
5
.3
9
1
±
3
.9
e

-2
0
.9
2
7
±
4
.1
e

-4
1
.8
6
7
±
3
.8
e

-3
0
.9
6
8
±
7
.5
e

-4
0
.7
4
6
±
3
.1
e

-4

Table 19: Extended results for single models

18

Under review as a conference paper at ICLR 2023

G
E

↑
C

H
↑

C
A

↓
H

O
↓

O
T

↓
H

I↑
FB

↓
A

D
↑

W
E

↓
C

O
↑

M
I↓

C
at

B
oo

st
0
.6
9
2
±
1
.8
e

-3
0
.8
6
4
±
6
.8
e

-5
0
.4
3
0
±
1
.1
e

-3
3
.0
9
3
±
5
.1
e

-3
0
.4
5
0
±
3
.5
e

-4
0
.8
0
7
±
7
.5
e

-5
5
.2
2
6
±
1
.2
e

-2
0
.9
2
8
±
1
.3
e

-4
1
.8
0
1
±
1
.2
e

-3
0
.9
6
7
±
1
.3
e

-4
0
.7
4
1
±
1
.4
e

-4

X
G

B
oo

st
0
.6
8
3
±
1
.3
e

-3
0
.8
6
0
±
4
.3
e

-4
0
.4
3
4
±
7
.0
e

-4
3
.1
5
2
±
1
.2
e

-3
0
.4
5
4
±
2
.5
e

-3
0
.8
0
5
±
8
.3
e

-4
5
.3
3
8
±
1
.8
e

-2
0
.9
2
7
±
2
.1
e

-4
1
.7
8
2
±
4
.9
e

-4
0
.9
6
9
±
8
.8
e

-5
0
.7
4
2
±
5
.3
e

-5

M
L

P

no
pr

et
ra

in
in

g
0
.6
5
6
±
5
.9
e

-3
0
.8
5
2
±
5
.2
e

-4
0
.4
8
2
±
2
.9
e

-3
3
.0
5
5
±
8
.4
e

-3
0
.4
6
7
±
2
.0
e

-3
0
.8
0
5
±
2
.9
e

-4
5
.6
6
6
±
2
.6
e

-3
0
.9
1
0
±
2
.7
e

-4
1
.8
5
0
±
1
.0
e

-3
0
.9
6
8
±
2
.5
e

-4
0
.7
4
7
±
8
.6
e

-5

m
as

k
0
.7
2
2
±
1
.6
e

-3
0
.8
5
9
±
6
.4
e

-4
0
.4
3
7
±
8
.1
e

-4
3
.0
2
6
±
6
.3
e

-3
0
.4
5
1
±
1
.6
e

-3
0
.8
2
4
±
6
.5
e

-4
5
.5
7
8
±
6
.8
e

-3
0
.9
1
3
±
3
.0
e

-4
1
.8
2
8
±
1
.0
e

-3
0
.9
6
7
±
1
.1
e

-4
0
.7
4
6
±
7
.7
e

-5

re
c

0
.6
7
9
±
2
.0
e

-3
0
.8
5
6
±
2
.8
e

-4
0
.4
2
4
±
1
.0
e

-4
2
.9
6
7
±
6
.9
e

-3
0
.4
5
3
±
1
.2
e

-3
0
.8
1
2
±
2
.5
e

-4
5
.5
7
1
±
1
.4
e

-2
0
.9
1
2
±
7
.5
e

-5
1
.8
1
1
±
1
.4
e

-3
0
.9
7
2
±
2
.0
e

-4
0
.7
4
4
±
7
.8
e

-5

co
nt

ra
st

iv
e

0
.7
0
8
±
4
.4
e

-3
0
.8
5
7
±
8
.8
e

-4
0
.4
3
4
±
4
.0
e

-3
2
.9
5
2
±
4
.4
e

-3
0
.4
5
1
±
6
.1
e

-4
0
.8
2
0
±
4
.5
e

-5
5
.6
3
4
±
1
.4
e

-2
0
.9
1
2
±
1
.3
e

-4
1
.8
0
4
±
2
.8
e

-3
0
.9
6
4
±
2
.1
e

-4
0
.7
4
6
±
1
.7
e

-4

su
p

0
.7
1
7
±
2
.2
e

-3
0
.8
5
7
±
7
.4
e

-4
0
.4
2
4
±
9
.4
e

-4
3
.0
2
2
±
1
.9
e

-2
0
.4
4
3
±
1
.9
e

-3
0
.8
1
6
±
1
.4
e

-4
5
.6
0
2
±
6
.5
e

-3
0
.9
1
6
±
7
.0
e

-5
1
.8
2
8
±
4
.7
e

-3
0
.9
7
3
±
3
.6
e

-4
0
.7
4
6
±
2
.1
e

-4

su
pc

on
0
.6
8
6
±
5
.2
e

-3
0
.8
5
1
±
8
.4
e

-4
0
.4
3
4
±
3
.0
e

-3
3
.0
1
4
±
6
.0
e

-3
0
.4
6
5
±
1
.3
e

-3
0
.8
0
9
±
1
.3
e

-4
5
.5
7
9
±
3
.4
e

-3
0
.9
1
2
±
3
.2
e

-4
1
.8
2
7
±
9
.4
e

-4
0
.9
7
0
±
2
.1
e

-4
0
.7
4
5
±
5
.3
e

-5

m
as

k
+

su
p

0
.7
1
6
±
5
.7
e

-3
0
.8
5
9
±
1
.1
e

-3
0
.4
1
8
±
2
.2
e

-3
3
.0
6
6
±
1
.2
e

-2
0
.4
4
3
±
1
.5
e

-3
0
.8
1
9
±
1
.3
e

-4
5
.6
0
1
±
4
.7
e

-3
0
.9
1
6
±
2
.0
e

-4
1
.8
1
0
±
2
.9
e

-4
0
.9
7
3
±
3
.9
e

-5
0
.7
4
7
±
1
.3
e

-4

re
c

+
su

p
0
.7
0
9
±
3
.7
e

-3
0
.8
5
9
±
1
.8
e

-3
0
.4
1
9
±
2
.1
e

-3
2
.9
5
1
±
1
.9
e

-2
0
.4
4
2
±
8
.6
e

-4
0
.8
1
7
±
1
.0
e

-4
5
.5
3
1
±
3
.0
e

-3
0
.9
1
3
±
5
.2
e

-4
1
.8
0
1
±
4
.0
e

-3
0
.9
7
3
±
2
.6
e

-5
0
.7
4
5
±
1
.1
e

-4

m
as

k
+

ta
rg

et
0
.7
0
9
±
7
.3
e

-3
0
.8
6
0
±
1
.6
e

-3
0
.4
1
4
±
1
.1
e

-3
2
.9
4
9
±
1
.9
e

-2
0
.4
5
7
±
5
.9
e

-4
0
.8
2
8
±
6
.3
e

-4
5
.5
5
1
±
7
.2
e

-3
0
.9
1
6
±
4
.6
e

-4
1
.8
0
9
±
5
.3
e

-4
0
.9
6
9
±
5
.2
e

-5
0
.7
4
6
±
1
.9
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.7
0
6
±
4
.9
e

-3
0
.8
6
0
±
1
.1
e

-3
0
.4
1
0
±
1
.5
e

-3
2
.9
5
5
±
2
.1
e

-2
0
.4
5
6
±
3
.8
e

-4
0
.8
2
2
±
1
.1
e

-3
5
.6
0
1
±
2
.0
e

-2
0
.9
1
4
±
2
.5
e

-4
1
.8
3
7
±
1
.0
e

-3
0
.9
6
8
±
2
.8
e

-4
0
.7
4
6
±
2
.1
e

-4

re
c

+
ta

rg
et

0
.6
7
7
±
4
.6
e

-3
0
.8
5
7
±
3
.9
e

-4
0
.4
3
3
±
1
.1
e

-3
2
.9
2
6
±
2
.3
e

-2
0
.4
4
8
±
9
.4
e

-4
0
.8
1
6
±
5
.3
e

-4
5
.5
5
5
±
5
.8
e

-3
0
.9
1
0
±
2
.2
e

-4
1
.8
2
5
±
2
.5
e

-3
0
.9
7
2
±
6
.1
e

-5
0
.7
4
3
±
1
.2
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.6
6
9
±
3
.7
e

-3
0
.8
5
8
±
1
.4
e

-3
0
.4
3
5
±
8
.2
e

-4
3
.0
0
3
±
1
.1
e

-2
0
.4
5
1
±
1
.2
e

-3
0
.8
1
5
±
7
.0
e

-4
5
.5
7
7
±
1
.1
e

-2
0
.9
1
3
±
2
.4
e

-4
1
.8
2
2
±
6
.6
e

-4
0
.9
7
2
±
2
.7
e

-4
0
.7
4
4
±
7
.6
e

-5

M
L

P-
PL

R

no
pr

et
ra

in
in

g
0
.6
9
5
±
3
.7
e

-3
0
.8
6
4
±
7
.6
e

-4
0
.4
5
4
±
1
.2
e

-3
2
.9
5
3
±
7
.4
e

-3
0
.4
7
0
±
7
.5
e

-4
0
.8
1
4
±
7
.9
e

-4
5
.3
2
4
±
3
.2
e

-2
0
.9
2
8
±
7
.7
e

-5
1
.8
3
5
±
1
.5
e

-3
0
.9
7
4
±
2
.2
e

-4
0
.7
4
4
±
1
.2
e

-4

m
as

k
0
.7
2
5
±
4
.9
e

-3
0
.8
6
5
±
7
.0
e

-4
0
.4
2
1
±
1
.7
e

-3
2
.9
2
1
±
1
.0
e

-2
0
.4
5
7
±
8
.4
e

-4
0
.8
2
7
±
1
.1
e

-4
5
.4
4
4
±
5
.4
e

-3
0
.9
2
8
±
1
.0
e

-4
1
.8
5
0
±
3
.4
e

-3
0
.9
7
4
±
2
.3
e

-4
0
.7
4
5
±
6
.5
e

-5

re
c

0
.6
9
8
±
1
.5
e

-3
0
.8
5
7
±
1
.5
e

-3
0
.4
1
8
±
1
.2
e

-3
2
.9
5
4
±
8
.1
e

-3
0
.4
5
4
±
1
.9
e

-3
0
.8
1
3
±
7
.8
e

-4
5
.1
2
4
±
2
.4
e

-2
0
.9
2
8
±
2
.2
e

-4
1
.8
1
8
±
2
.5
e

-3
0
.9
7
5
±
2
.9
e

-4
0
.7
4
3
±
2
.1
e

-4

su
p

0
.7
3
3
±
2
.2
e

-3
0
.8
6
7
±
9
.6
e

-4
0
.4
2
1
±
1
.0
e

-3
3
.0
5
4
±
4
.5
e

-2
0
.4
6
5
±
1
.3
e

-3
0
.8
1
6
±
1
.4
e

-4
5
.4
0
7
±
3
.8
e

-2
0
.9
2
6
±
4
.3
e

-4
1
.8
3
4
±
3
.3
e

-4
0
.9
7
5
±
1
.6
e

-4
0
.7
4
6
±
2
.1
e

-4

m
as

k
+

su
p

0
.7
3
2
±
2
.0
e

-3
0
.8
6
9
±
3
.5
e

-4
0
.4
2
4
±
8
.9
e

-4
3
.0
5
5
±
1
.6
e

-2
0
.4
6
8
±
7
.8
e

-4
0
.8
1
7
±
3
.4
e

-4
5
.3
6
6
±
1
.1
e

-2
0
.9
2
7
±
2
.1
e

-4
1
.8
4
8
±
1
.7
e

-3
0
.9
7
4
±
2
.1
e

-4
0
.7
4
4
±
7
.9
e

-5

re
c

+
su

p
0
.7
3
7
±
2
.0
e

-3
0
.8
6
2
±
1
.3
e

-3
0
.4
2
4
±
9
.9
e

-4
2
.9
6
4
±
2
.3
e

-3
0
.4
4
9
±
2
.3
e

-4
0
.8
1
1
±
5
.3
e

-4
5
.1
2
4
±
2
.4
e

-2
0
.9
2
9
±
1
.7
e

-4
1
.8
1
3
±
1
.9
e

-3
0
.9
7
4
±
2
.2
e

-4
0
.7
4
4
±
7
.2
e

-5

m
as

k
+

ta
rg

et
0
.7
1
9
±
3
.5
e

-3
0
.8
6
6
±
4
.3
e

-4
0
.4
0
7
±
8
.2
e

-4
2
.9
5
2
±
3
.5
e

-3
0
.4
5
8
±
4
.2
e

-4
0
.8
2
8
±
6
.0
e

-4
5
.3
7
3
±
1
.8
e

-2
0
.9
3
0
±
1
.0
e

-4
1
.8
4
9
±
2
.1
e

-3
0
.9
7
3
±
1
.4
e

-4
0
.7
4
5
±
2
.5
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.7
2
4
±
7
.0
e

-3
0
.8
6
7
±
1
.0
e

-3
0
.4
0
3
±
1
.1
e

-3
2
.8
7
7
±
1
.0
e

-2
0
.4
6
6
±
9
.4
e

-4
0
.8
2
8
±
2
.5
e

-4
5
.1
7
5
±
1
.5
e

-2
0
.9
3
0
±
2
.0
e

-4
1
.8
3
3
±
3
.6
e

-3
0
.9
7
4
±
3
.3
e

-4
0
.7
4
4
±
2
.0
e

-4

re
c

+
ta

rg
et

0
.7
0
5
±
2
.3
e

-3
0
.8
6
2
±
2
.0
e

-4
0
.4
3
1
±
1
.4
e

-3
2
.9
8
3
±
1
.2
e

-2
0
.4
6
5
±
9
.2
e

-4
0
.8
1
6
±
1
.7
e

-4
5
.0
9
6
±
1
.8
e

-2
0
.9
2
8
±
1
.9
e

-4
1
.8
6
0
±
2
.0
e

-3
0
.9
7
4
±
3
.4
e

-5
0
.7
4
5
±
2
.7
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.7
1
2
±
2
.3
e

-3
0
.8
6
0
±
9
.3
e

-4
0
.4
3
7
±
3
.3
e

-3
2
.9
3
3
±
2
.0
e

-2
0
.4
5
0
±
1
.7
e

-3
0
.8
1
5
±
3
.5
e

-4
5
.1
7
3
±
2
.7
e

-2
0
.9
2
8
±
5
.6
e

-5
1
.8
1
1
±
1
.5
e

-3
0
.9
7
4
±
3
.6
e

-4
0
.7
4
4
±
6
.3
e

-5

M
L

P-
T-

L
R

no
pr

et
ra

in
in

g
0
.6
6
2
±
7
.6
e

-3
0
.8
6
8
±
5
.0
e

-4
0
.4
3
7
±
8
.2
e

-4
3
.0
2
8
±
1
.8
e

-2
0
.4
7
2
±
4
.7
e

-4
0
.8
0
8
±
1
.5
e

-4
5
.4
2
4
±
2
.2
e

-2
0
.9
2
7
±
2
.8
e

-4
1
.8
5
0
±
9
.0
e

-4
0
.9
7
2
±
1
.5
e

-4
0
.7
4
7
±
7
.6
e

-5

m
as

k
0
.6
7
9
±
4
.7
e

-3
0
.8
6
8
±
2
.3
e

-4
0
.4
1
3
±
1
.0
e

-3
2
.9
3
0
±
1
.2
e

-2
0
.4
5
0
±
7
.3
e

-4
0
.8
2
6
±
1
.3
e

-3
5
.3
7
0
±
8
.7
e

-3
0
.9
2
7
±
3
.1
e

-4
1
.8
3
6
±
2
.7
e

-3
0
.9
7
3
±
8
.8
e

-5
0
.7
4
5
±
1
.1
e

-4

re
c

0
.6
9
4
±
3
.7
e

-3
0
.8
6
1
±
1
.6
e

-4
0
.4
1
4
±
1
.5
e

-3
3
.0
3
5
±
1
.9
e

-2
0
.4
5
9
±
3
.4
e

-4
0
.8
1
2
±
2
.7
e

-4
5
.0
3
9
±
1
.8
e

-2
0
.9
2
5
±
1
.2
e

-4
1
.8
0
3
±
2
.3
e

-3
0
.9
7
3
±
4
.9
e

-5
0
.7
4
4
±
4
.5
e

-4

su
p

0
.6
9
8
±
3
.7
e

-3
0
.8
6
5
±
7
.0
e

-4
0
.4
2
4
±
1
.1
e

-3
3
.1
0
7
±
6
.8
e

-3
0
.4
6
3
±
3
.5
e

-4
0
.8
0
9
±
2
.5
e

-4
5
.4
4
2
±
1
.6
e

-2
0
.9
2
8
±
1
.4
e

-4
1
.8
4
9
±
5
.4
e

-4
0
.9
7
5
±
2
.8
e

-4
0
.7
4
6
±
1
.4
e

-5

m
as

k
+

su
p

0
.6
9
8
±
4
.0
e

-3
0
.8
6
6
±
1
.1
e

-3
0
.4
2
1
±
8
.6
e

-4
3
.0
8
8
±
5
.1
e

-3
0
.4
6
0
±
4
.6
e

-4
0
.8
1
8
±
2
.8
e

-4
5
.4
0
7
±
3
.3
e

-3
0
.9
2
7
±
5
.1
e

-4
1
.8
2
4
±
3
.0
e

-3
0
.9
7
5
±
1
.4
e

-4
0
.7
4
7
±
8
.2
e

-5

re
c

+
su

p
0
.7
0
5
±
2
.4
e

-3
0
.8
6
6
±
4
.6
e

-4
0
.4
2
5
±
5
.1
e

-4
3
.0
5
7
±
1
.0
e

-2
0
.4
4
4
±
1
.4
e

-3
0
.8
1
4
±
6
.8
e

-4
5
.4
2
2
±
1
.8
e

-3
0
.9
2
7
±
6
.6
e

-5
1
.8
1
1
±
1
.0
e

-3
0
.9
7
4
±
1
.1
e

-4
0
.7
4
6
±
3
.6
e

-4

m
as

k
+

ta
rg

et
0
.6
7
3
±
1
.0
e

-3
0
.8
6
8
±
4
.6
e

-4
0
.4
1
0
±
7
.8
e

-4
2
.8
9
4
±
1
.8
e

-2
0
.4
6
0
±
1
.4
e

-3
0
.8
2
7
±
3
.4
e

-4
5
.4
5
8
±
2
.8
e

-2
0
.9
3
0
±
1
.7
e

-5
1
.8
4
9
±
4
.2
e

-3
0
.9
7
2
±
2
.5
e

-4
0
.7
4
6
±
2
.3
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.6
7
7
±
5
.1
e

-3
0
.8
6
6
±
1
.1
e

-3
0
.3
9
7
±
3
.7
e

-4
2
.9
3
8
±
1
.8
e

-2
0
.4
6
2
±
4
.4
e

-4
0
.8
2
6
±
1
.2
e

-4
5
.3
8
4
±
1
.5
e

-2
0
.9
2
9
±
1
.6
e

-4
1
.8
4
0
±
2
.2
e

-3
0
.9
7
3
±
1
.1
e

-4
0
.7
4
7
±
5
.0
e

-4

re
c

+
ta

rg
et

0
.6
9
3
±
2
.5
e

-3
0
.8
6
6
±
3
.1
e

-4
0
.4
3
2
±
6
.1
e

-4
3
.0
4
5
±
1
.1
e

-2
0
.4
5
6
±
2
.4
e

-3
0
.8
1
2
±
6
.1
e

-4
5
.3
4
4
±
8
.1
e

-3
0
.9
2
8
±
1
.4
e

-4
1
.8
3
0
±
2
.4
e

-3
0
.9
7
2
±
1
.1
e

-4
0
.7
4
4
±
2
.1
e

-4

-t
ar

ge
ts

am
pl

in
g
0
.7
0
0
±
2
.5
e

-3
0
.8
6
3
±
1
.3
e

-3
0
.4
2
3
±
9
.8
e

-4
3
.0
2
9
±
1
.4
e

-2
0
.4
5
4
±
1
.8
e

-3
0
.8
1
1
±
5
.1
e

-4
5
.0
8
3
±
4
.7
e

-3
0
.9
2
8
±
1
.7
e

-4
1
.8
0
9
±
1
.0
e

-3
0
.9
7
2
±
5
.5
e

-5
0
.7
4
4
±
3
.0
e

-5

Table 20: Extended results for ensemble models

19

	Introduction
	Related Work
	Revisiting pretraining objectives
	Experimental setup
	Comparing pretraining objectives

	Target-aware pretraining objectives
	Comparing target-aware objectives
	Comparison to GBDT

	Analysis
	Investigating the properties of pretrained models
	Efficient ensembling
	On importance of finetuning on clean data
	Does pretraining require more compute?

	Conclusion
	Datasets
	Hyperparameters
	CatBoost
	XGBoost
	MLP
	Embedding Hyperparameters

	Synthetic dataset details
	Pretraining the FT-Transformer model
	Comparison to the learning rate schedulers
	Datasets with more categorical features
	Share or split learning rate and weight decay between pretraining and finetuning?
	Early-stopping criterions
	Applying augmentations to GBDTs
	Summary of pretraining methods
	Extended Tables With Experimental Results

